
SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1201-0001 $01.25/0

THE COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS*

V. STRASSEN-

Abstract. The Knuth-SchSnhage algorithm for expanding a quolynomial into a continued fraction is
shown to be essentially optimal with respect to the number of multiplications/divisions used, uniformly in
the inputs.

Key words, continued fraction, Euclidean representation, symbolic multiplication, computational
complexity, computation tree, lower bound, degree method

1. Introduction. Let k be a field, k Ix] the polynomial ring over k in the
indeterminate x. Let A 1, A2 be polynomials, A2 # 0. Applying the division algorithm
successively (Euclid’s algorithm) we get

A1
A2 IQ2A 3 + A4,

A,-1 =O,-1A,

where Ai # 0, deg Ai+l < degA for > 1. The sequence (O1, , Or-l) depends only
on the quolynomial A1/A2 and is called the continued fraction of A 1/A2. (For its
significance in several branches of mathematics see [13], [26].) The name comes from
the identity

A 1/A: 01 + 1/(02 + 1/(+1/(0,-2 + 1/lt-1))),

valid in k(x), which follows from (1.1) by dividing the ith equation by A/I and
eliminating all A/Ai/I with > 1. (Q1, , Qt-1) determines A 1/A2 uniquely.

Knuth [8] associates with (A1, A2) the extended sequence (Q1,"’, Qt-l, At),
which he calls the Euclidean representation of (A 1, A2). It represents the pair (A 1, A2)
uniquely. In fact, one has a bijection between pairs of polynomials (A 1, A2) such that
deg A --> deg A2 _>- 0 and finite sequences of polynomials (Q1, , Qt-1, At) such that

_-> 2, deg Q1 -> 0, deg Q > 0 for 1 < < and deg At >= O. If we put n deg A 1, m
deg a2, then obviously Et1-1 deg Qi +degAt n,1 deg Q +deg At m.

The Euclidean representation is rather informative. It contains the continued
fraction of A1/A 2 and the gcd At of A 1, A 2. Brown [3] and Collins [4] have exhibited
the resultant of A 1, A2 essentially as a power product of the leading coefficients of
the Qi and At. In particular, if A2 d/dx A1, one gets the discriminant of A1. If in
addition k R, one can read off from the Euclidean representation the number of
zeros of A in any real interval in linear time, since Sturm’s algorithm may be carried
out using the values of the Q and At at the endpoints of the interval.

In the sequel we will exclusively work with the Euclidean representation; however,
our results will apply mutatis mutandis also to continued fractions.

* Received by the editors May 26, 1981, and in revised form December 21, 1981. The results of this
paper were announced in Proc. Internat. Congress Math., Vancouver, 1974. Significant portions of this
paper are reprinted with permission from "The Computational Complexity of Continued Fractions", by
Volker Strassen, which was published in the Proceedings of the 1981 Symposium on Symbolic and Algebraic
Computation, Copyright 1981, Association for Computing Machinery, Inc.

t Seminar fiir Angewandte Mathematik, Universitiit Ziirich, Freiestrasse 36, CH-8032 Ziirich, Swit-
zerland.

2 v. STRASSEN

How fast can we compute the sequence (Q1,"’ ", Ot-,A,) from (A,A2)? For
simplicity and elegance we will allow in this paper additions, subtractions and multipli-
cations by fixed scalars (which are thought to be stored in the program) for free and
will thus only count "nonscalar" multiplications and divisions (Ostrowski’s measure).
For n m, Euclid’s algorithm requires in the worst and "normal" case, when deg Qi 1
for 1 < < and degAt 0, about n 2 mult/div. The algorithm cannot be essentially
improved if one insists on computing the Ai in addition to the Q (use a linear
independence argument).

Lehmer [10] suggested employing the fact that for small deg Q only a small initial
segment of Ag, Ai/ is needed to compute Q. Taking up this idea, Knuth [8] and
Sch6nhage [16] constructed an ingenious O(n log n) algorithm for computing the
Euclidean representation. Actually, all three authors were concerned with the number
theoretic analogue of our situation (7/instead of k [x]). The translation to the somewhat
simpler polynomial setting is due to Moenck 11].

In the present paper we will show that the Knuth-Sch6nhage algorithm is optimal
up to a multiplicative constant. In fact we will prove this not only for the worst case,
but in a strong sense uniformly over the set of input polynomials A 1, A2, at least
when k is algebraically closed.

We use the model of a computation tree, allowing tests of the form

"if a 0 goto else goto/"’

free of charge. A computation tree computes a "collection" (o, r), where q is a
function on the set J of inputs and 7r a finite partition of J (see 5). Fixing n and
m, we have in the case of the Euclidean representation

J {(A 1, A2): deg A n, deg A2 m }

{(ao, ", an, b0,’ ", b,,) k n+,,+2, aobo # 0}

(with the identification A Y0 air -, A2 o bit"-’),
qg(A1, A2)=(QI, Q,-x, At)

(also represented by its sequence of coefficients of total length n + t),

"tr {D(ne, .,nt)’t>2, na, nt>O, ni>Oforl<i<t, }ni gl 22 gli m

where

D(nl,’", nt)={(Ax, A2)eJ" (deg O, ., deg O,-1, deg A,)= (nl,’’’, n,)}

is the set of inputs, whose Euclidean representation has the "format" (n 1,..., nt).
Our main result is the following (see 4 and 6)’

1. The Knuth-Sch6nhage algorithm computes the Euclidean representation with
cost

<-30n(H(n,..., nt) + 6.5)

on D(nx, , nt) (H is the entropy function, see (2.1)).
2. Let k be algebraically closed. Any algorithm that computes the Euclidean

representation has cost

>-n (H(n l, n,)- 2)

on a Zariski dense open subset of D(na,..., n,). (Any algorithm may, of course, be
speeded up on particular inputs by a table-look-up procedure.)

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 3

In particular, for n m, the order n log n of the worst case of the Knuth-
Sch6nhage algorithm cannot be improved. The above result 2 remains true also for
nonclosed fields, if the algorithm is assumed to yield the Euclidean representation
over the algebraic closure as well. If this condition is not satisfied, we still get
order-sharp lower bounds on those D(nl,..., nt) with >= (1/2+e)m. (e >0; this of
course covers the worst case.) Similar results hold in the important situation of
polynomials over a field Zp, where p is not known in advance.

For proving lower bounds we employ the geometric degree method (Strassen
[23], see also Borodin-Munro [2], Sch6nhage [17], Heintz [6’], Schnorr [15]). For
this reason the paper assumes some knowledge of the language of classical algebraic
geometry (see Mumford [12], Shafarevich [18], Samuel [14]). Let k be algebraically
closed. The degree of a closed irreducible set X c k is the typical number of points
of intersection of X with an affine subspace of k of complementary dimension. (This
coincides with the degree of the closure of X in P".) The degree of a closed, but
reducible subset of k" is the sum of the degrees of its components. The degree of a
locally closed set X is the degree of its closure X (thus also the sum of the degrees
of its components). We have Bezout’s inequality

(1.2) deg (X f’l Y) <_- degX deg Y

for closed X, Y c k". We will use this inequality mainly in the case, when Y is an
affine subspace of k ", where it becomes deg(Xf’l Y)-<_degX. If 1,"" ,/ere
k (Xl,"" ", x,) are rational functions, we denote by deg (fl,""", fi) the degree of the
locally closed graph W k "+r of the rational map k k defined by (fl, ’, fi). Then
if L(/cl, fi) is the complexity of/1,’’’, fi with respect to the cost measure intro-
duced above (see [23], [2]), we have the degree bound

L(fl,’" ", fr) >__--log deg (fl, ", fi).

(In this paper log always means log2.)

2. Symbolic multiplication of several polynomials. The results of this section will
be used later, but they are also of independent interest. Let n 1, , nt be nonnegative
integers, n 2i hi. We denote the entropy of the probability vector (nl/n,..., nt/n)
by H(n 1, ",nt), i.e.,

(2.1) H(nl," ", nt) Y’. nlogn/
n>0 /’/ n

(In case n =0 we set H(nl,"’, nt)=0.) Obviously the entropy does not change if
we remove from (n 1,’’ ’, nt) all ni which are 0. We list a few properties of the
entropy, some of which will be used in later sections (for detailed proofs see Fano
[5]). We have O<=H(nl,...,n)<=logn for n>0, with both bounds attained.
nil(n1,..., nt) is monotonic in each argument ni (as one sees by differentiating): If

n <= n for all and if n’ Y’.’I n i, then

(2.2) nil(n1," ", n,) <-_ n’H(n’, ", n).

Since inserting zeros into the sequence (n 1, , n,) does not change the entropy, this
implies

(2.3) ni H(nl,’", n,-1)<-_nH(nl, n,).
\

4 v. STRASSEN

The following crucial property is easily checked:

(2.4)
ni H(nl,’’’, ns)+ ni H(ns+l, n,)

s+l

It is convenient to extend the definition (2.1) by allowing nonnegative real numbers
pi in place of hi. Since the entropy is invariant under scaling, we can reformulate (2.4)
as follows: If Y ni pn, then

(2.5) pH(nx," ",ns)+(1-p)H(n+l," ",nt)=H(nl," ",nt)-H(p, l-p).

In the sequel we will often write H for H(n 1, , nt).
LEMMA 2.1.

lo(nV)-" >n(H(nl, n,)- 2).
nl! n!

Proof. We may assume that all ni are positive. By Stirling’s formula with error
estimate, we have

>- 2"H (2rn)1/2
11 (27rni)-1/2 e-1/(12ni).

nl! nt!-- i=1

(See, e.g., Fano [5, (8.87)]; notice that Fano works with natural logarithms.) Because
of n nt < (n/t) t, this implies

log(n’) 1 2zrn-." > nH + log (27rn)- log log e.
nl! nt! 12

27rn
>- nH -- log

12
log e.

Given n, the sum of the absolute values of the last two terms is maximal for

27rne -5/6

and for this value of t, we have

log (2n) + log e <2n.
2

Let k be an infinite field and let x, pll,""", Pin1,’’’, Ptl,’’’, Ptn, be indeterminates
over k. We put

(2.6) Pi x ni +PixX n-I +" +pint

and

(2.7) A P1 P,

The polynomial A has the form

A x" + a 1x
n-1 .- .-t-- an,

where the a are polynomials in the pj, i.e., a k[p 11, ’, p,n,] k [p]. The following
theorem holds true irrespective of whether we interpret the complexity L(al," , a,,)

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 5

in kip] (not allowing division) or in the field of rational functions k(p). In either case
linear operations are not to be counted.

TI-IEOREM 2.2.

n (H(n, nt) 2) <-_L(a l, an) <- n (H(n l, nt) + 1).

In particular, as H o,

L(aa,. ,a,)-nH(n, ,nt).

Proof. We may assume that all n are positive.
Left inequality. Without loss of generality let k be algebraically closed. Choose

a ,..., a, k such that the polynomial x" +ax"-+ + a, has n simple roots in
k, say 0 a, .., 0,. We will determine the number of solutions of the system of equations

(2.8) a ot , a ot.

A point (a,. , x,, ., 1, , t,,) k" is a solution of (2.8) if and only if

(X--01)’’" (X--On)"-(Xn’’KlxxnX-l-[’-’KI.1) (xn’"["KtXXn’-l-
Therefore we have a bijection of the set o solutions of (2.8) and the set of partitions
of {01,’" 0,} into classes with n 1,’", nt elements, respectively. Thus they are
exactly n !/(nl!’" nt!) solutions. By (1.2) and Lemma 2.1 this implies

/
(2.9) log deg (al,’’., an)_->log k)nl!’n! >_-n(H-2),

and therefore by (1.3)

L(al," ,a,)>-n(H-2).

Right inequality. A word is a finite (possibly empty) sequence from the set {0, 1}.
An s-code is a sequence wl," ", ws of s words such that for any the word Wg is
not an initial segment of the word wj. We will first show by induction on (t being
the number of polynomials to be multiplied symbolically, see (2.7)) that for any t-code
WI Wt

(2.10) L(a l, a,) <- ng length (wg).

This is clear for 1. Now let > 1. It suffices to show (2.10) for a t-code w 1, , wt
for which Y’. ng length (wg) is as small as possible. Because of > 1 the code does not
contain the empty word. We partition {1,..., t} into the set E of those for which
w begins with 0 and its complement F. E is nonempty. Otherwise all wg would begin
with 1. Deleting the initial i in each wg would still leave us with a t- code, in contradiction
to the assumption of minimality above. Similarly F is nonempty. We assume without
loss of generality that E {1,. , s}. Deleting the initial zeros in w 1, , ws and the
initial ones in W+x,’",wt we obtain an s-code if1,’", ff and a (t-s)-code
+1, ", t. We put m nl +" + n and define bl, , b,,, cl, , cn-,, k[p] by

m-1x +blx +’"+b,,=PI’"Ps,
n--m--1

X "[-CIX -’’" "+Cn-m =Ps/l Pt.
Obviously

X +alx
n-1 +... + an (x" + blx ’-1 +" + b,n)(X +clx

n-’-I +... +cn-,).

6 v. STRASSEN

Our induction hypothesis implies

L(b, , b,) <- i n length (),

L(Cl,""", Cn-m) rti length (ldi).
s+l

Since the symbolic multiplication of two monic polynomials of degrees rn and n-m
can be achieved with n nonlinear operations (cf. [23, p. 244]) we conclude

L(al, ., a,) <=L(bl, ", b,,)+L(cl, C,-m)+ n

_-< n length (uS)+ Y n length (uS)+ n
s+l

=ni (length (u3) + 1)+ ni (length ()+ 1)
s+l

ni length (wi)+ Y n length (w)
s+l

n length (wi).

Thus, we have proved (2.10) for an arbitrary t-code w,..., w,. Now we can always
choose a t-code w, ., w, such that

n length (wi)<-n(H + 1)

(see Fano [5, 3.5]). Therefore,

L(a, ,a,)<-_n(H+l).

This completes the proof of the theorem.

3. Conversion of a continued fraction into a rational fraction. We need the
following:

LEMMA 3.1. Let k be algebraically closed and let

fl(y, Xl,’"’ ,Xn),

L(y,x, ,x,)

be polynomials. For tz k let W, c k +r be the graph of the map

(, ,)(f(,), h(, ’)).

Then the function

z -> deg (W,)
is Zariski lower semicontinuous (i.e., it equals its maximum value except on finitely
many points).

Proof. Let W be the graph of the map

(/z, al,’"’, ten)-> (/1(#, Or),"’’, fr (/z,

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 7

W is an (n + 1)-dimensional closed subvariety of k x k "+r. For any Ix e k the graph
W, is an n-dimensional closed subvariety of k n+r, and we have

(3.1) {g } x w, w n (b } x "+) w. ({g } x k"+’),

since W and {Ix}xk n/r intersect transversally (see van der Waerden [27], Samuel
[14], Hartshorne [6], Mumford [12]). Let if/be the closure of W in k pn/r, if., the
closure of W, in P/. Since

dim (i, (’I ({Ix} x "+")) _<- dim (({Ix } x W,.,.)U (i,- W))

max {dim W, dim (W- W)} n,

and {Ix } x "+ intersect properly. By conservation of number (see van der Waerden
[27], Samuel [14]), the quantity

deg (if’. ({Ix } x

is independent of Ix, say c.
On the other hand we have

(3.3) {g}x w,, w. (b}xp")

for all but finitely many points Ix 1,"" ’, Ixv. For if we restrict both sides of (3.3) to
affine space k x k"+r, we get equality by (3.1). So (3.3) can be invalidated only by the
appearance of components of if’ f’l ({Ix } x "+) disjoint from k x k n+,. Now any such
component lies in W-W and has dimension n by (3.2), so it is a component of
if’- W. But {Ix } x P"+’ can contain a component of if"- W for only finitely many Ix.
Equation (3.3) implies

deg (W)=deg (ff’.)=deg (Igz. ({Ix} x P"+r))=C

for Ix {Ix 1, Ixv}. Also we have

deg (W,,)= deg (lg/,,)-<_ deg (if’. ({Ix,} x [P"+)) c

since lgz,, is always a component of lg/ ({Ix/} x [P"+). These two statements prove the
lemma. (As has been observed by J. Heintz, the lemma can also be proved without
using the principle of conservation of number.)

Now let k be an arbitrary infinite field, >-2 and n a,’", n, be nonnegative
integers such that ni > 0 for 1 < < t. Let x and

qlo, qln,

be indeterminates over k. Put

for l<_-i<t and

qto, qtnt

Qi qiox ni +. + qini

At qtox n, +... + qtn,.

8 v. STRASSEN

Then the system of polynomial equations

A1 =Q1A2+A3,

A2=Q2A3+A4,

At-1

uniquely determines polynomials A 1, ’, A-I. We have

A aox +... + an, A2 box +" + b,,,

where n t ni, m ’.t2 ni and ao," ", an, bo,"’, b,, k[q].
In the following theorem we can interpret L(ao,’", an, bo,"’, b,,) either in

k[q] (not allowing division) or in k(q). As usual, linear operations are free.
THEOREM 3.2. Let n > O. Then

n (H(nl,. ", n,)- 2) <-L(ao," ", an, bo," ", b,,) <-_ 8n (H(nl,. ", n,) + 7).

Proof. Left-hand inequality. Without loss of generality let k be algebraically
closed. By induction one easily sees

(AiAI)=(Oll
in particular,

Let Ix k be different from 0. In (3.4) we make the substitution

1 1
qio--> m, qii ->-- pii

Ix Ix

(where 1 =< <-t, 1 -</" <_-n and the Pit are new indeterminates) and multiply both sides
of (3.4) by Ix. We get

(3.5)
bo(ix)xm +bl(ix)x,,_l+ +b,n(ix)] Ix Ix 0

where

Pi x ni + pilx hi-1 +" +

and where at(Ix), bt(Ix are obtained from at, bt by the above substitution and subsequent
multiplication by Ix . Since the graph of the polynomial map defined by a (Ix), , an (Ix)
is essentially an affine linear section of the graph of a 1,..., an, the degree of the
former is less or equal than the degree of the latter. Thus, for any Ix 0,

(3.6)
log deg (a0, , an, bo, , b,) -> log deg (a 1, , an)

-> log deg (a 1(ix), , an (ix)).

(3.5) shows that the at(ix) are polynomials in p which depend polynomially on the
parameter Ix. In particular, at(Ix) make sense for Ix 0 and (3.5) remains correct in
this case, i.e.,

(3.7) x + al(0)x n- +’. + an(0) PI’ Pt.

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 9

By Lemma 3.1 we have

(3.8) log deg (al(/z),’.., an(Ix))>-log deg (al(0),..., an(0))

for all but finitely many tz. Equation (3.7) together with (2.9) imply

(3.9) log deg (a (0), , a, (0)) ->_ n (H 2).

Equations (3.6), (3.8) and (3.9) yield

(3.10) log deg (a0,... ,an, bo,"" ,b,,)>-n(H-2).

Now (1.3) gives the left-hand inequality of the theorem.
Right-hand inequality. For any 2 2 matrix

G=(g g12
\g2 g22/

whose coefficients g are polynomials in x with coefficients in k (q), we put

max deg G maximum of the degrees with respect to x of the

L(G) L (the set of the coefficients with respect to x of the g).

Let

for <= t- 1 and

Then max deg Gi hi, and by (3.4), it suffices to show

(3.11) L(G G,)<=8n(H(nl, n,)+7).

The problem of computing the matrix product G1 Gt is similar to the problem of
computing the product of polynomials P1 Pt as in Theorem 2.2 (of course, in both
cases we are dealing with symbolic computations, i.e., computations on coefficients),
the main difference being that matrices do not commute. We replace (3.1)) by

(3.12) L(G1. G,)<-_cn(H(n, n,)+d)+7(t- 1),

where we will choose c, d >- 1 at the end of the proof, which is by induction on t. (To
carry out the induction, we will use the special form of the Gi only in as far as
max deg Gi =< ni and the coefficients of the polynomials in x appearing in any Gi are
either indeterminates or constants.)

The start (t 2) being clear, let > 2 and, therefore n > 0. There is a unique s
(1 =< s =< t) such that

s-1 n +/- n

1 I’ti < " ni >-2

Define p, p’ by

pn , ni, p’n hi.

Then we have p <= < p’. Choose 0 < e < 1/2.

10 v. STRASSEN

Case p’_-< 1-e. We first compute GI’" Gs and Gs+l"’" Gt, and then, by one
matrix multiplication, GI’" Gt. Using the matrix multiplication algorithm of [20]
together with the fact that

max deg (G Gt) <- n

and then the induction hypothesis and property (2.5) of the entropy function, we get

L(G1. Gt)<-L(G1 Gs)+L(G+I Gt)+7(n +1)

<-_ cp’n (H(n l, ", n,) + d) + 7(s 1) + c(1 -p’)n (H(n+l, ", n,) + d)

+7(t-s-1)+7(n+l)

<-_cn(H(nl, nt)+d)+7(t- 1)+7n -cnH(p’, 1-p’).

Now H(p’, 1-p’) >_-H(1- e, e). Thus, if the condition

(3.13) 7 <-cH(e, l-e)

is satisfied, we have (3.12).
Case p’> l-e, p >_-e. We first compute GI"’’ Gs-1 and G... Gt and then

GI’" Gt. Again (3.13) implies (3.12).
Case p <e, p’> 1-e. We first compute GI"" Gs-1 and Gs+l’’’ Gt and then,

by two matrix multiplications, (GI’"G-I)Gs(G/I’"G). Using induction
hypothesis and properties (2.3) and (2.5) of the entropy function, we get

L(G1. G)<-_L(GI G-I)+L(G+I G)+14(n +1)
<- cpn (H(n l, ", ns-1) + d) + 7(s 2) + c (1 -p’)n (H(n+l, ", n,) + d)

+7(t-s-1)+14(n+l)

<-cn(p’H(nl,..., n)+ (1-p’)H(n,+l,’",

+(p + 1-p’)d) + 7(t- 1)+ 14n

<- cn (H(n 1, , nt) + 2ed) + 7(t 1) + 14n.

Thus in this case the condition

(3.14) 14<-(1-2e)cd

implies (3.12). Now we choose e 0.325, c 8 and d 5. Then (3.13) and (3.14) are
satisfied and the theorem follows from (3.12), because n >0 for 1 <i <t implies
t-l<-n+l.

4. Conversion o a rational raction into a continued traction: Analysis o the
Knuth-Sch6nhage algorithm. Let k be an infinite field, n -> m nonnegative integers.
Given univariate polynomials A 1, A2 over k with deg A1- n, deg A2 m, there are
unique nonzero polynomials Q1,’", Qt-1, A3,"" ,At such that

A1 =QIAE+A3,

A:z Q2Aa +A4,
(4.1)

A,-1

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 11

and deg Ai+l < deg Ai for ->_ 2 (Euclid’s algorithm). The sequence

(O," ", O,-, A)

is called the Euclidean representation of (A 1, A2) (Knuth [8]). We have _-> 2. If we put

(4.2) ni := degOi (l<-i_-<t- 1), nt:=degAt,

then ni->_ 0 for all and ni > 0 for 1 < < t. Furthermore

n =ni, m
2

We define At+l 0 and

(4.3) Mi _Og

Then

(AS)=Ms-I’"MI(I)(4.4)
As+l 2

for s-<_ t. (The reader will notice that (4.4) for s is just the inverse relationship of
(3.4) if there the indeterminates qij are replaced by elements of k.)

In this section we will show, using an algorithm that is essentially due to Knuth
[8] and Sch6nhage [16] (see also Moenck [11]), how to compute the coefficients of
A 1, A2 in a rather efficient way. Since the length of the output (number of coefficients
of the Qi and of At) depends on the input (A 1, A2), it is clear that our computational
model has to be extended by allowing branching instructions, say of the form

"if f 0, then goto else goto/"’.

In this way we get the well-known model of a computation tree. For the purpose of
proving lower bounds for the complexity of our problem, we will discuss this model
in some detail in the next section. In the present section we will analyze the cost
(number of nonlinear multiplications/divisions as a function of the input) of the
Knuth-Sch6nhage algorithm and implicitly present the algorithm using an informal
approach. The style is such, however, that it can easily be formalized with the help
of Propositions 5.2 and 5.3. For completeness we will give an ALGOL-like formulation
of the algorithm at the end of this section.

We need a preliminary result. Given a polynomial A aox ’ +... + aq k[x] of
degree q -> 0 and an integer l, we set

/(4.5) All= aox + + a

aox + + aqx l--q

if 1<0,

if 0-<_1 -<_q,

if l>q.

(All consists, so to speak, of the significant part of A of length + 1.) Obviously

(Ax;)ll=AI;.

Given two pairs of polynomials (A,B) and (A’, B’) such that

deg A _-> deg B _-> 0, deg A’ _-> deg B’ _-> 0,

12 v. STRASSEN

and an integer l, we say that (A, B) and (A’, B’) coincide up to if and only if

All =A’ll,
B I(l- (deg A -deg B)) B’l(l- (deg A’-deg B’)).

Coincidence up to is an equivalence relation. (A, B) and (Ax j, Bx i) coincide up to
for every/’ >_-0 (given that degA >= deg B ->_ 0). If (A,B) and (A’,B’) coincide up

to and l>=degA-degB, then degA-degB-degA’-degB’. The qualitative
idea of the following lemma is due to Lehmer [10].

LEMMA 4.1. Besides (4.1) consider Euclid’s algorithm for another pair A’, A’z
k [x with deg A => deg A;"

A Q’A +A ’3,

A QA +A ’4,

,’-1 =Q,,-aAe.

Let be a nonnegative integer and 1 <- s <= be such that y-a ni <= and either s or
ni > l. Define s similarly (using A’, A2 instead of A 1, A2). Then, if (A 1, A2) and

=s’ ’for 1<i < -1(A, Az) coincide up to 2l, we have s and Qi Q =s

Proof. We show by induction on 1 <-/’ <-s"

] <=s’, Oi =O for alli<],

and either] s or (Ai, Ai+l) and (A, A+I) coincide up to 2(/- Yj1-1 ni). (This implies
the lemma by symmetry.) The start of the induction is clear and the induction step is
a consequence of the following statement"

Let (A,B) and (A’, B ’) coincide up to 2/, where l>-degA-degB, and let

A =OB +C, deg C < deg B,
(4.6)

A’ O’B’ + C’, deg C’ < deg B’.

Then Q =Q’ and either C =0 or /-deg O <degB-deg C or (B, C) and (B’, C’)
coincide up to 2(/-deg). To prove this statement, we may assume

degA degA’>2/

(by multiplying (A, B) and (A’, B’) with appropriate powers of x) and, therefore,

deg (A A’) _-< deg A 21 1,

deg B deg B’,

deg (B -B’) -<_ degA- 2l- 1.

Subtracting the equations (4.6), we get

(4.7) A-A’=Q(B-B’)+(Q-Q’)B’+C-C’.

The polynomials A-A’, Q(B-B’) and C-C’ all have degrees <degB. Therefore,

deg (O Q’)B’ < deg B,

which implies O O’. But then (4.7) gives

(4.8) deg (C C’) < deg Q + deg A 21.

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 13

Now assume C#0, l-degQ>-degB-degC. Comparing this with (4.8) we get
deg C deg C’ (in particular C’ # 0). But then (4.8) implies

ci2(/- deg Q)-(deg B-deg C)= c’12(/- deg Q)- (deg B’-deg C’).

This proves the statement and the lemma.
In the sequel when we speak of computing polynomials from polynomials, we

always think of computing their coefficients from the coefficients of the given poly-
nomials. At the end of such a computation, one will, of course, also know the degrees
of the output polynomials. Similar remarks apply to matrices built up from polynomials.

LEMMA 4.2. Let n >--m >--0 and >-0. The function that assigns to any pair of
polynomials A 1, A 2, with deg A n, deg A2 m, the sequence

(Ol," ", Q-I,M-I"

with ,1 ni <-_ and either s or Y.1 ni > l, is computable in time

cl n 1, , n-l, n + + e (s 1) + 1,

where c 30, d 5 and e 16.
Proof. Induction on l. The cases 0 or < n-m being clear, assume 1 <_-l <_-n

without loss of generality and l-> n- m. By working with the initial segments A
and A12/- (n m), instead of A and A2 respectively, and using Lemma 4.1, we may
assume without loss of generality that

deg A -< 21, deg A2 <-- 2l.
By the induction hypothesis (applied to [//2J instead of l) and (2.2), we can compute

in time

(A1, A2) ->(O1, Or-l, Mr-l’" M1)

ni + +e(r- 1)+ 1

r--1
where 1 ni <= l/2 and either r or Y n > 1/2. By (4.4) we can compute

(A1, A2, Mr-I M1)(Ar, Ar+I)

in time

4 n +2/+1 -<10/+4.

Therefore

(4.9) (A1, A2)-(Q1, Q,-1, Mr-I M1, Ar, Ar/I)

is computable in time

n + +e(r-1)+ lO/ + 5.

Now, if r =s (this can be tested at no cost since r =s if and only if Ar/l =0 or
r--1,1 ni+degAr-degAr/l>/), no further computation is necessary. Otherwise, we

can compute

(At, At+l) -> (Or, At+l, At+2)

14 v. STRASSEN

in time

6nr/ 1 +2/+ 1 <_--8/+2

(by a division with remainder, using Sieveking [19], Strassen [23], Kung [9]). If
At+2 # 0, we apply the induction hypothesis to (At: 1, At+2) instead of (A1, A2) and
1- n, instead of l. Thus,

(Ar+l, Ar+E)-->(Qr.-l, Qs-l, Ms-l Mr+l)

is computable in time

C l--._," /r+l,’’’,ns_l, l-_n,- n, + +e(s-r-1)+l.
r+l

If At+2 0 we have r s 1. So in any case (if r < s) we can compute

(01," ", Qr-,, Mr-1 M1, At,
(4.10)

-->(Ol,"’,Os-l, Ms-l’"Mr+l, Mr-l’"M1)

in time

c l- ni nr+l,’’’,n,-1,1- n, + +e(s-r-1)+81+3.

By two matrix multiplications, taking into account the special form (4.3) of Mr, we
can compute

in time

(Ms-l Mr+l, Mr, Mr-l M1)-->(Ms-1

2(/+ 1) + 7(/+ 1) 9(/+ 1).

Together with (4.10) we see that

(Q1, Qr-l, Mr-l M1, Ar, Ar+I)--(Q1, Qs-l, Ms-l
is computable in time

c l- n, r/r+1, ", rls-1, l- n, + +e(s-r- 1)+ 17/+ 12,

when r < s. Finally, we combine this with (4.9). Thus, (in any case),

(A1, A2)-->(Ol, Os-l, Ms-l"

is computable in time

n, + + e(s- 1)+ 10/+ 5 =: tl

if r s, or in time

ni +

+c l- n n+l,"’,n_l,l- ng+ +e(s-1)+271+l=:t

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 15

if r < s. (We have used e 16.) To complete the induction, we have to show

(4.11) ti <-cl nl, ", ns-1, l- ni + +e(s-1)+ l.

Now by (2.2)

tl<-cl nl,’",ns-l,l- n + -czd+e(s-1)+lOl+5,

implying (4.11) easily for c 30, d 5. To estimate te, choose 0<e < 1/2.
Case E ni < (1-e)l. By (2.2) and (2.4) we have

tc n(H(n,...,n)+d)+c l- ni n+,...,n_,l- n +

+ e(s -1) + 27/ + 1

Ncl nl,"’,n-,l- ni + +e(s-1)+l+l(27-cH(1-e,e)).

Thus, in this case (4.11) is a consequence of the condition

(4.12) 27NcH(1-e,e).

Case n (1 e)l. Here we have

+c l- n n+,...,n_,l- n + +e(s-1)+271+l

cl n,’’’,n_,l- n + +e(s-1)+l+27/+c e- M.

In this case (4.11) is implied by

(4.13) 27 (-e)cd.
Now (4.12) and (4.13) are satisfied for e 0.32, c 30, d 5.

THEOREM 4.3. Let n m 0, n >0. The [unction that assigns to any pair o[
polynomials A, A with deg A n, deg A m their Euclidean representation
(O, O,-, A,) is computable in time

30n(H(n,..., n,) + 6.5).

Proof. Lemma 4.2 with n shows that

(A, A)(O, O,-, M,_ M)

is computable in time

By (4.4),

30n(H(nl,. ", n,)+ 5)+ 16(t- 1)+ 1.

(A 1, A 2, Mr-1 M1) --Atis computable in time 2(n + 1). Now use t- 1 -< n + 1. For completeness we now give

16 v. STRASSEN

an ALGOL-like procedure for the function that appears in Lemma 4.2.

procedure SCH (A, B, u z, O, M):
|f B 0 or u < deg A -deg B then

begin z := 1;
M := (o);
Q:=;

end
else

begin F := .412u
G := Bl(2u-(degA-degB));
v := Lu/2J;
SCH (F, G, v; z, O, M);

(g) := M();

if (,.<z deg Q[i]) +deg F-deg G -<_u and G # 0 then

begin Q[z] := div (F, G);
H := rem (F, G);
F:=G;
G:=H;

v := u- E deg Q[i];
i<--z

SCH (F, G, v z’, Q’, M’);
for := 1 to z’- 1 do O[i + z] := O’[i];
M :=
Z :’-Z4-Z

Remarks. 1. u, v, z, z’, are variables for numbers, A, B, F, G, H are variables
for polynomials, M, M’ are variables for 2 x 2 matrices of polynomials, O, O’ are
variables of sequences of polynomials.

2. Given A, B such that B # 0, we have

A =div (A,B)" B +rem (A,B)

such that deg rem (A, B) < deg B.
3. Let the contents of A, B, u be A 1, A2, respectively (see Lemma 4.2). Then,

after running the procedure SCH, the contents of A, B, u will be unchanged, the
content of z will be s, the content of Q[i] will be Qi for 1 _< < s and the content of
M will be Ms-1 M1 (hopefully).

5. The computational model. We will discuss here the notion of a computation
tree in some generality. Let fl, P be disjoint types (sets together with arity functions).
The o 12 are called operational symbols, the p P are called relational symbols. A
structure of type (, P) is a set A together with an interpretation for each m => 0 of
any m-ary o [l as an m-ary partial operation in A and of any m-ary p s P as an
m-ary relation in A. Notationally we will not distinguish between a symbol and its
interpretation.

Example. I)= {0, 1, +,-,.,/}, P= {<-}, A R. (See also [21], [22].)

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 17

Let s 1, s2, be variables (symbols which denote storage locations). A computa-
tion tree of type (fl, P) is a binary tree B (see [1]) together with

1. A function that assigns:
to any vertex with exactly one son (simple vertex) an operational instruction
of the form

Si :’- O.)(Sjl, ", Sire),

where m >_-O, i, jl, , jm > 0 and 0 s I’l m-ary,
to any vertex with two sons (branching vertex) a test instruction of the form

o (s;,, ..,
where m -> O, jl, ’, jm > 0 and 0 P m- ary,
to any leaf an output instruction of the form

(s;,..., s),
where q => 0,/’1,’’",/’q > 0;

2. A partition r of the set of leaves such that the length q of the assigned output
instructions is constant on r-classes.

The purpose of the partition is to collect the relevant part of the information
gathered by the various tests of the tree, as is most easily visualized in the case of a
decision tree, i.e., a computation tree with fl b. Computation trees will have inputs
as well as outputs of the form

(A, al,. ,a,),

where A is a structure of type (fl, P) and a 1, ", a, s A. n is called the length of the
input (output). Let J be a set of inputs of length n (A may vary).

A collection for J is a pair (q, r), where (is a function that assigns to any input
a=(A, al,... ,a,)sJ an output 0(a)=(A, bl,... ,bq) (the structure of (a) is the
same as that of a, q may vary as a function of a) and where 7r is a finite partition of
J such that the length of q (a) is constant on r-classes.

Examples. If it is clear from the context which structure is in front of an input
(or output) we will often neglect to write it.

(5.1) Matrix inversion. Let k be a field, J k

(aij) if det (aij) O,
p((aij))- q otherwise,

7r {{regular matrices}, {singular matrices}}. Then (, r) is a collection for J. Other
interesting input sets for the same problem are, e.g.,

J= U {/}xp
p prime

J {(aii) k"": (au) orthogonal}.

(5.2) Knapsack. Consider R as an ordered field and let J R",

q (a) b for all a s ",

r {E, "\E}, where

E={aeN"" :llc{1,. ,n} fai=
Then (q, r) is a collection for J.

18 V. STRASSEN

(5.3) Euclidean representation. Let k be an infinite field, considered as a commu-
tative k-division algebra with equality (12 {0, 1, +,-,.,/}lk, where
h k is interpreted as multiplication by h, P={=}). Let n>=m>_O, J=
(k k n) (k k m) kn+m+2 (k k \{0}). Think of inputs J as pairs of polynomials
A 1, A2 such that deg A n, deg A2 m. Put

q(al, a2)= (O, Qt_,A,)

(see (4.1)) and let rr be the partition of J into the fibres of the map

(Ax, A2)- (deg Q1,""", deg Q,_, deg A,).

In other words, given nonnegative numbers n 1, , nt such that n > 0 for 1 < < and

i i m,
2

let D(nx, ., nt)=J be the set of those (A,Az) for which deg Oi ni (i <t), degAt
nt. Then the D(n,..., nt) are just the -classes. (,) is a collection for L which
we call the Euclidean representation.

We will skip a detailed semantics of computation trees and just state the following
conclusion: An input a (A, aa,..., a,) fed into a computation tree B of the same
type may or may not produce a leaf together with an output b= (A, bx,..., b). (At
the root of B the variables are assigned the values (a, a2," ", a,, , ,...). Then
a directed path starting from the root together with an assignment to the variables
for any vertex of the path is constructed.) If it does, we say that B is defined on a. If
B is defined on a set J of inputs of the same length, we let (a)= b, where b is the
output produced by B on a, and we let be such that a and a’ are in the same -class
if and only if the leaves that B produces at a and a’ are in the same -class. Then
(,) is a collection for J. We say that B computes (,). Now let a cost function

z:P+

be given. By adding the costs of the various instructions encountered when going
from the root of B to a leaf, we may define the cost of any leaf of B. If B is defined
on J, this gives us a function

t: J +,
the cost of B on J (t(a) is the cost of the leaf of B produced by the input a). Finally,
given J, a collection (,) for J and a function

t:J +,
we say that (,) is computable in time if there is a computation tree B which
computes (,) and has cost t on J. We also say that (,) is strictly computable
in time if in addition B is required to have {{v}: v leaf of B} (i.e., B has to
output all the information gained by performing tests). Obviously, (,) is computable
in time if and only if there is a partition ’ of J finer than such that (, ’) is a
collection, strictly computable in time t.

In order to eliminate the clumsy notion of a computation tree, we will now
axiomatically characterize the correct statements of the form

(5.4) "(,) is computable in time t".

To this end fix (, P), z and J.
AxioM. (id, {J}) is computable in time O.

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 19

Rules of inference. Let (, 7r) be a collection for J, computable in time t, D r and

ID (0, ’, q).

(Thus for a D we have 0(a) A, i(a) A for -> 1.)
(I) If t-< t’, then (, zr) is computable in time t’.
(II) If ’= on J\D and

where 1 <-ix, , iv <-q, then (’, 7r) is computable in time t.
(III) If ’ on J\D and

’ID (0, 1,""’, q, 0)(1, m)),

where m <_-q, to fl m-ary and (1(a), , ,(a))Defio for any aD, then (’,
is computable in time + z (w)1D (where 1D indicator of D).

(IV) If

7r’ (Tr\{D})U{{ae D" ((a),..., ,(a))e p}, {aeD" (1(a),’’’, ,(a)) p}},

where m _<-q, O P m-ary, then (, 7r’) is computable in time + z (O)lo.
(V) If

,rr’= (\{D, E}) 1,3 {D 1,3 E},

where E e 7r, E #D but length (IE) q, then (, 7r’) is computable in time t.
THEOREM 5.1. The correct statements of the form "(, 7r) is computable in time

t" are exactly those which can be deduced from the above axiom with the Rules of
Inference (I)-(V). (Similarly for "strictly computable" and Rules (I)-(IV).)

Proof. "Deducible=)> correct": Straightforward. "Correct=), deducible": Show
that if (, r) is strictly computable in time t, then the corresponding statement may
be deduced from the axiom by the Rules (I)-(IV), using induction on the size of a
"strict" computation tree which computes (, r).

A convenient way to use Theorem 5.1 is by axiomatic induction: Given z and J,
let 92 be a statement about triples (, zr, t) such that the above axiom and the Rules
(I)-(V) hold when all statements of the form (5.4) have been replaced by the
corresponding statements 92[(, 7r, t). Then we can conclude

(, r) computable in time =)> 92[(, 7r, t).

As simple applications of axiomatic induction, the following two propositions can
be proved.

PROPOSITION 5.2. Let (, 7r) be a collection for J, computable in time and let
D1 zr. Moreover, let (1, 7rl) be a collection for J1, computable in time tl, and assume
(D 1) c J1. Put

! on J\D 1,

/ 1 on 01,
-1# (r\{D}) tJ r,

t+(tl). 1D1.
Then (, (r) is computable in time [.

PROPOSITION 5.3. Let (i, 7ri) be collections for J, computable in time ti (i 1, 2).
Define by

(a)= (A, b 1,""", bq,, c 1,’’’, Cq2),

20 v. STRASSEN

where 1(a) (A, bl, ", bql), .(a)= (A, c 1, ", cq2), and let

7"/" 7rl A y/’2

Then (, 7r) is a collection for J, computable in time tl + t2.
Both propositions remain correct when everywhere "computable" is replaced by

"strictly computable".
Application. Consider the collection (, 7r) of Example (5.3) (Euclidean rep-

resentation). If we take the cost function z 1.,/}, i.e., if we allow linear operations
and tests for free and count the remaining multiplications/divisions, then Theorem 4.3
(or rather its proof) shows that

(5.5) (, or) is strictly computable in time 30n (H + 6.5).

In fact, using Propositions 5.2 and 5.3, the proof of 4 can easily be formalized for
the present model.

6. Conversion of a rational fraction into a continued fraction: Lower bounds. I,et

k be an infinite field, considered as a k-field with equality (f {0, 1, +,-,.,/}Ilk
with constants 0, 1 and unary h e k, P { }). As before, let z lt.,/.

THEOREM 6.1. Assume that k is algebraically closed. Let J c k be Zariski open
and (, r) be a collection for J, strictly computable in time T. Let D 7r and ID
(1, , cq) (disregarding o k). Then"

1. D is a Zariski locally closed (see [12]) subset of k" D is the restriction to D
of a rational map k k, whose domain of definition includes D. Graph (D) is a
locally closed subset of k+.

2. TID >-_ log deg graph (ID).
Proof. By axiomatic induction we first show" If (, zr) is strictly computable in

time T, then for any/ r with/ (if1," ’, qu) (say) there are rational functions
F1,’",Fu, G1,’", Gv, H1,’",Hw on k such that

(6.1) / {G1 Gv O, Hi... Hw 0} J,

(6.2) the Fi are defined on/ and ffi F//,
(6.3) T 1 >-L(F1, F,, G1, G,,H1, ,Hw).

(The domain of definition of a rational function F is the set of points in k" for which
the reduced denominator does not vanish. The condition G 0 is satisfied at a point
a if and only if G(a) is defined and equals 0. Similarly H(a) 0 is meant to imply
that H(a) is defined.) The inductive proof is quite straightforward, and we content
ourselves with giving two instances of treating the rules of inference ((V) excluded).
First, Rule (III) with to -/" The case D D being clear, let D D. Then u =q and
the rational functions F1, , F,, F1/F2, G1, ", G,, H1, ", Hw will do. Second,
Rule (IV)’ Take F1,"’,F,,G1,’",G,, F1-F2, H1,’",Hw in case D=
D fq {1 2} and F1, , Fu, G1, ", Gv, Hi, Hw, FI -V2 in case D
D f) {q 2}.

Equations (6.1) and (6.2) imply the first assertion of the theorem. By (6.3), (1.3)
and (1.2) (intersection with a linear space), we have

T 1 >=L(F1,... ,Fu, GI,..., Gv, HI,...

=> log deg (F1, .., F, G1,. ’, G)

=> log Y. deg C.
C component of

graph (FI,..., Fu) f’) ({G Gv 0} k u)

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 21

Now by (6.1) and (6.2)

graph (0 /) graph (F,..., F,)

I"l ({G G O}x k")I"l (({H1... Hw O}f3J) x k").

Thus the closure of any component of the graph of o D is also the closure of a
component of graph (F1, , Fu) Yl ({G1 Gv 0} x k u). Therefore,

T I/ --> log deg C,
C component
of graph

proving assertion 2 of the theorem.
We remark that there are finite partitions zr of k" into locally closed subsets, for

which (id, r) is not strictly computable: Take k C, n -2 and zr {D, E, F}, where
D {y x 2-1, x t 1}, E {-y x2I 1, x # -1}, F C2\(D UE).

Now for any field k let

& (n, m) {k } x (k x k") x (k x k").

This is an open subset of k n+m+2. A typical input (k, ao, a,, bo, ", b,)Jg(n, m)
is interpreted as a pair of polynomials A 0 ax -, A2 ’0 bjx m-/" k [x of degrees
n and m, respectively. Let (p, zr) be the Euclidean representation for Jk (n, m) (see
(5.3)). Then Zrk consists of the classes Dk(nl, nt) (t >-2,

n n, 2 n m), which by are mapped bijectively onto

](nl,’" .,nt)={k}x H (kk"’).
i=1

J (n,..., nt) is an open subset of k
LEMA 6.2. Let k be algebraically closed.
1. Ok(n1,’’’, nt) is a locally closed irreducible subvariety of k "+"+2.
2. p Dk (n l, nt) is an isomorphism of varieties

D(n,..., n,)-](n,..., n,).

Its inverse is given by polynomials of degree <=t.
3. Let Wk k"+"+Zk"+t be the graph Of qk D(nl, ,nt). Then Wk is locally

closed, irreducible and

log deg W >=n(H(na,..., nt)- 2).

4. Put N (n + m + 2) + (n + t), z=(n+m+2). There are polynomials
Fa, ,Fz e k[xl, ,xr] of degree <-_t such that

W ={F F =0}.

Proof. By (5.2) the Euclidean representation is strictly computable. Thus, by
Theorem 6.1 D(n,..., nt) is locally closed and qk Dt,(nl,’", nt) is a morphism
into .It, (n , , nt). Equation (3.4) interpreted as a function 6 on Jk (n , , nt) gives
its inverse. So t,]k (n 1, ", nt) is an isomorphism, D(n 1, , nt) is irreducible and
O is defined by polynomials of degree =<t. Since W is up to a permutation of the
coordinates the same as graph 6, (3.10) gives

log deg W >= n (H 2).

Finally, let fx,’", fz k[xz+l,’", xr] be the polynomials defining 6. Put F x-1
for 1 <_- -<_ z. Then by (3.4) deg F =< and W {Fx Fz 0}.

22 V. STRASSEN

THEOREM 6.3. Let k be algebraically closed and let the Euclidean representation
for Jk(n, m) be computable in time T. Then any Dk(nl," ", nt) contains a dense open
subset U such that

T U>=n(H(nl,..., nt)-2).

Proof. There is a refinement zr’ of rk such that (Pk, r’) is strictly computable in
time T. 7r’ further subdivides Dk(rtl,’’’, rtt) into D1,’’’ ,Dp, say. By Theorem 6.1
the Di are locally closed subsets of the irreducible variety Dk(nl,’’’, n), so one of
them (call it U) is a dense open subset of D(nl,..., nt). Then the graph of Ck U
and the graph of qk Dk(nl,’’’, nt) have the same closure. Therefore, the graph of
Ck U is irreducible and, by Lemma 6.2.3,

log deg (graph qk U) -_> n (H 2).

Theorem 6.1.2 now yields T U => n (H 2).
Next we will discuss the Euclidean representation for nonclosed fields. Let k be

an infinite field, K its algebraic closure. A point of K that belongs to k is called
rational, k" has a Zariski topology (generated by the sets {f0}, where f
k[xl,..., x,]). This is also the topology induced by the Zariski topology in K ". (If
f K[x], let {fl," ", fz} be its orbit under the action of Gal (K/k) on K[x]. Put g I-I fi
if char k 0 and g (1-[fi)Pe with e sufficiently large if char k p. Then g k Ix] and
(k" f() 0} { k n" g() 0}.) Since k is infinite, k is dense in K n, hence, it is
an irreducible topological space. Since Euclid’s algorithm is "field independent", we
have

(6.4) D(nl, ,nt)=Dk(nl, ,nt)fqJk(n,m),

(6.5) 0 Dk (n 1," ’, nt) qgk D (n 1, ", n,)

(disregarding k and K in front of an input or output). Therefore, D(nl,..., nt) is
mapped onto J(nl,’", nt) under q:. Since k "+’ is dense in K"+’, J(nl,’" nt) is
dense in J:(nl,’", n,) and therefore Dk(nl,’’’, nt) is dense in D:(nl,.’’, n,), in
particular, irreducible. Also Wk is dense in W:.

COROLLARY 6.4. Let k be an infinite field, n >-m >-0 and let B be a computation
tree which computes the Euclidean representation for J (n, m) in time T. Assume that
B computes also the Euclidean representation for J:(n, m). Then any D(nl,.", nt)
contains a dense open subset U such that

T U>-n(H(nl,.. ", nt)-2).

Proof. Let B compute (q, 7r) in time T. Then

J(n, m)= T,

and by Theorem 6.3 there is a dense open subset of Dr (n 1," ", n,) such that

7 O->n(n-2).
Since Dk (n 1, , nt) is dense in D: (n 1, ’, nt), U := U (3 Dk (n 1, ", nt) is dense
open in Dk (n 1," ", nt). Moreover, since U c Jg (n, m) we have

T U U->n(n-2).

Next we try to free ourselves from the assumption that B computes the Euclidean
representation also over the algebraic closure of k. To this end we will have to estimate
the degree of an unknown rational map that extends q Dk (nl,. ", nt). A result of

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 23

this nature is proved (for a similar purpose) in Strassen [24]. A more powerful method
is contained in the proof of Theorem 1 of Heintz-Sieveking [7]. The following lemma
comes out of their approach.

LEMMA 6.5. Let K be algebraically closed and X cKN be a Zariski closed set;
all of whose components have the same dimension. Assume that there are polynomials
F,.’’,Fz K[x,.",x] of degree <-d such that any component of X is also a
component of {F Fz 0}. Then ifX Y K and Y is closed, we have

deg Y _-> degX ddimX-dim v.
Proof. Induction on dim Y: The start dim Y dimX being clear, let dim Y >

dim X. Cleaning Y of superfluous components we may assume that any component
of Y contains a component of X. Let C1, ’, Cr be the components of Y of highest
dimension. If all Fi would vanish on a Co, then a component of X contained in Co
would not be a component of {F1 Fz 0}. Thus, for each p there is an i0 <- z
and a co Co such that Fi (co) # O. The set

{(A1,’’’ ,/r)K r" ::lcr<=r AFi.(c)=O}
0=1

is a union of r proper subspaces of K r, therefore, not all of K r. So we can choose
h 1, , hr K such that Yo_<r hoFo does not vanish on any C. Let

{ }(6.6) Y=YN Z AoFgo=O

Then dim I7" < dim Y and X I7". The induction hypothesis applied to I7" yields
deg I7" _-> degX ddim X-dim

On the other hand, (6.6) and Bezout’s inequality (1.2) gives

deg I7, -<_ deg Y. d.

The two last inequalities together complete the induction.
THEOREM 6.6. Let k be infinite and e >0. If the Euclidean representation for

J, (n, m) is computable in time T, then any Dk (n 1," ", nt) with >-_ (1/2 + e)m contains a
Zariski dense open subset U such that

T U>-2enH(nl,. ., nt)-5n.

Proof. By axiomatic induction (over k) one easily shows: Let a collection (q, zr)
for Jk (n, m) be computable in time T. Then there is a collection (q3,-k) for Jk (n, m),
strictly computable in time , such that

(6.7)

(6.8)

Jt,(n, m) qg,

for any r-class D there are -classes,/1, ,/p such that

p

D U (1 NJk(n, m)),

(6.9) T Jk (n, m).

(Only Rule (III) with o) / requires some care: One has to insert a test as to whether
the denominator takes the value 0 or not.)

24 V. STRASSEN

We apply this to the Euclidean representation (qk, 7rk) for Jk (n, m). Unfortunately,
(q3, ,) need not be the Euclidean representation for Jr (n, m). Let

p

(6.10) Dk(nl, nt)= (1i f’lJk(n, m)).

Without loss of generality/i Jk (n, m) b for all i. Let/i be the closure of/. Then
(6.10) implies

p

Dk (n 1," ", n,) c [.J i.

Since Dk (n 1, , nt) is irreducible, it is contained in some ’, sayD(n 1, , nt) c ’1.
Since/1 e is open in/1 by Theorem 6.1 and1 f’lD(nl, ", nt) , the irreduci-
bility of D(n,..., n) implies that

(6.11) U :=/1 f"lDt(nx,’" ", nt) is dense open in Dk(nl,’" ", nt).

From (6.7) we see that

V := graph (ok U) graph (q3 I/1).

Equation (6.11) implies that V is dense in Wk, thus also in W:. Therefore,

X := if/t(= closure graph (q3 I/1) := Y,

Now we apply Lemma 6.5. We have dim X=n+t, dim Y<-_n+m+2, N=
(n +m +2)+(n +t). By Lemma 6.2. 4 (with k replaced by K) we can take d t,
z n + m + 2. Thus,

log deg Y _>- log degX (m + 2 t) log

>-n(H-2)-(m +2-t) logt

by Lemma 6.2.3. Now Theorem 6.1.2 applied to (q3, ,k) and/1 yields

f" 11 >-n(H-2)-(m +2-t) log t,

and therefore, by (6.11) and (6.9),

TI U>-n(H-2)-(m+2-t)logt.

Now, since ni/n >= 1/n for 2 -< <_- 1, we have

t-:z 1 t-3
H_-> -logn_->logn.

i=2n n

Thus, for >= (1/2 + e)m >= m/2 we have m log n <= 2nil + 6 log n and therefore,

TI U>-n(H-2)-(m+2-(1/2+e)m)logn

n (H 2) (1/2- e)m log n 2 log n

_-> n (H 2) (1 2e)nil 5 log n

>-2enH-5n.

In practice, one frequently wants to compute the Euclidean representation over a
field 7/p (or several such fields, see [3]). Typically, p is not known in advance. So we
are led to consider the type l’l {0, 1, +,-,.,/}, P ={ } and the following set of

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 25

inputs"

(6.12) J’(n,m)= Jzp(n,m).
p prime

A typical input (7/v, ao,’’ ", an, bo,"" ’, b,,) is interpreted as a pair of polynomials
o aix , o bx’- 7/[x] of degrees n and m, respectively. Let (q’, -’) be the
Euclidean representation for J’(n, m). If we put

(6.13) D’(nl, nt)= Dzp(nl, nt),
p prime

we have

qg’ U
p prime

r’= D’(n,...,nt)’t>-2, n>-O,n,...,n_>O,n>-O,Yn=n,Yn=m.
2

Given n _-> m _-> 0, Theorem 4.3 applies not only to infinite ground fields, but also to
fields 7/, with p sufficiently large. Using a table-look-up procedure for small 7//9, we
obtain:

(6.14) The Euclidean representation (q’, r’) for J’(n, m) is computable in time

30n(H(n,..., n) + 6.5).

If we dismiss in the Knuth-Sch6nhage algorithm the symbolic multiplication of
polynomials by interpolation in favor of a slower direct method, the algorithm works
for any 7/. Thus, (q’, -’) is also strictly computable.

J’(n, m) carries a Zariski topology, a basis being given by the sets

U := {(./9, a, b)J’(n, m): f(a, b) 0 in 7/v},

where f 7[x,. ., x,+,+]. Since U 4’ for [0, and U VI Ug Ug, any two non-
empty open sets intersect. Thus J’(n, m) is irreducible. Similarly,

(6.15) J’(nl, ., nt) := U Jz,(n, nt)
p prime

is irreducible in its Zariski topology.
LzMMA 6.7. 1. Let a collection (o, 7r) for J’(n, m) be strictly computable. Then

any D r is locally closed and

,ID’Do U {7//9}xZ
p prime

is Zariski continuous.

2. o ’: D’(n , ., n)- J’(n l, ", n)

is a homeomorphism. In particular, D’(n, n,) is irreducible.
Proof. 1. Similar to the proof of Theorem 6.1.1.
2. Byl,

n+t" D’(n ,...

26 v. STRASSEN

is continuous. But p’ maps D’(n 1," , nt) into J’(n 1," ", nt), whose Zariski topology
is induced from the Zariski topology of (.J p {7/p} Z+’. Thus,

p’: D’(nl, nt)->J’(nl, nt)

is continuous. It is also bijective and its inverse is continuous (see (3.4)).
It follows easily from Lemma 6.7.2, that all D’(n 1, , nt) are infinite and that

any Zariski dense open subset U of D’(n 1, ",nt) has asymptotic density one (along
the decomposition (6.13)).

THEOREM 6.8. Let n >=m >=0 and B be a computation tree that computes the
Euclidean representation for J’(n, m) in time T. Assume that B also computes the
Euclidean representation for Jc(n, m). Then any D’(n 1," , nt) contains a dense open
subset U’ such that

T U’>=n(H(nl, nt)-2).

Proof. We apply B to the "combined" input set

J"(n, m) := J’(n, m) t.JJc(n, m).

J"(n, m) also has a Zariski topology (defined by polynomials 7/[xl,..., x,+,,+2]).
The Zariski topology on Y’(n, m) is induced by that of J"(n, m), and the Zariski
topology on Jc(n, m) is finer than the induced topology. Similarly for

J"(n 1,’" ", nt) J’(n 1, ", ne) (.J Jc(n 1, ", nt).

B computes the Euclidean representation (", r") on J"(n, m). Lemma 6.7 also holds
for this situation, i.e.,

q ": D"(n 1, ", ne) J"(n 1, ", nt)

is a homeomorphism, q" restricts to q’ on D’(n 1, , n,) and to qc on Jc(n 1, , nt).
Since, obviously, Yc(nl, ", nt) is dense in Y"(n 1, ", n), Dc(n 1, ", nt) is dense in
D"(n 1, , nt). Similarly D’(n 1, ", n,) is dense in D"(n 1, , nt). Let TI be the cost
of B on J"(n, m). Then

(6.16) T11J’(n, m)- T.

Each D"(n 1, , n,) is subdivided into locally closed sets D, on which T1 is constant.
Since D"(n 1, ", nt) is irreducible, one of the D is dense open in D"(n 1, , n,), say
D1. Then D1 fqDc(nl," , nt) is b and open in De(n1, , n,) with respect to the
induced topology, thus, also with respect to the Zariski topology. By Theorem 6.3
there is a dense open U in De(n1," ", n,) such that

rx U_->n(H-2).

We have U fq D 4 and therefore

(6.17) TI DI >--n(H-2).

Now U’ := D1CID’(nx,..., nt) is dense open in D’(nl,... ,nt), and by (6.16) and
(6.17), we have

T U’>=T11 U’>-n(H-2).

THEOREM 6.9. Let e >0, n >--m >--0, and let the Euclidean representation for
J’(n, m) be computable in time T. Then any D’(nl," ", nt) with >-_ (+ e)m contains
a dense open subset U’ such that

T U’>-- 2enH(n 1, , nt)- 5n.

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 27

Proof. Analogous to the proof of Theorem 6.8, with C replaced by and using
Theorem 6.6 instead of Theorem 6.3. One only has to show that a computation tree
which computes the Euclidean representation for J’(n, m) also computes the Euclidean
representation for Ja(n, rn). This is achieved by looking at large p.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. C. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. BORODIN AND I. MUNRO, Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

[3] W. S. BROWN, On Euclid’s algorithm and the computation of polynomial greatest common divisors,
J. Assoc. Comput. Mach., 18 (1971), pp. 478-504.

[4] G. E. Corgi.INS, Subresultants and reduced polynomial remainder sequences, J. Assoc. Comput. Mach.,
14 (1967), pp. 128-142.

[5] R. M. FANO, Transmission of Information, a Statistical Theory of Communications, John Wiley, New
York, 1961.

[5’].W. HABICHT, Eine Verallgemeinerung des Sturmschen Wurzelziihlverfahrens, Commentarii
Mathematici Helvetici, 21, 2 (1948), pp. 99-116.

[6] R. HARTSHORNE, Algebraic Geometry, Springer, New York, 1977.
[6’] J. HgINTZ, Definability bounds of first order theories of algebraically closed fields, Fundamentals of

Computation Theory, FCT 79, Berlin, 1979, pp. 160-166.
[7] J. HEINTZ AND M. NIEVEKING, Lower bounds for polynomials with algebraic coefficients, Theor.

Comput. Science, 11 (1980), pp. 321-330.
[8] D. E. KNUTH, The analysis of algorithms, Proc. Internat. Congress Math. (Nice, 1970), Vol. 3,

Gauthier-Villars, Paris, 1971, pp. 269-274.
[9] H. T. KUNG, On computing reciprocals ofpower series, Numer. Math., 22 (1974), pp. 341-348.

[i0] D. H. LEHMER, in Amer. Math. Monthly, 45 (1937), pp. 227-233.
[11] R. MOgNCK, Fast computation of GCD’s, Proc. Fifth Symposium on Theory of Computing, ACM,

New York, 1973, pp. 142-151.
[12] D. MUMFORD, Introduction to Algebraic Geometry, Chap. I, Harvard University Cambridge, MA

(mimeogr. notes).
[13] O. PgRRON, Die Lehre yon den Kettenbriichen, Teubner, Berlin, 1913.
[14] P. SAMUEL, Mdthodes d’algbre abstraite en gomtrie algebrique, Springer, New York, 1967.
[15] C. P. SCHNORR, An extension of Strassen’s degree bound, Proc. of the FCT Conference, Berlin/Wen-

disch-Rietz, 1979, L. Budach, ed. Akademie-Verlag, Berlin, pp. 404-416, 1979.
[16] A. SCHONHAGg, Schnelle Berechnung yon Kettenbruchentwicklungen, Acts Inform., (1971), pp.

139-144.
17],An elementary proofofStrassen’s degree bound, Theor. Comput. Science, 3 (1976), pp. 267-272.
[18] I. R. SHAFAREVICH, Basic Algebraic Geometry, Part I, Springer, New York, 1974.
[19] M. SlgVgKING, An Algorithm for Division of Power Series, Computing, 10 (1972), pp. 153-156.
[20] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-456.
[21],Berechnung und Programm I, Acts Inform., (1972), pp. 320-335.
[22] ,Berechnung und Programm II, ibid., 2 (1973), pp. 64-79.
[23] .,Die Berechnungskomplexitiit yon elementarsymmetrischen Funktionen und yon Inter-

polationskoeffizienten, Numer. Math., 20 (t973), pp. 238-251.
[24] ., Computational complexity over finite fields, this Journal, 5 (1976), pp. 324-331.
[25] ., Some results in algebraic complexity theory, Proc. Internat. Congress Math., Vancouver, 1974.
[26] H. S. WAI.I, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948.
[27] B. L. VAN DER WAERDEN, Einfiihrung in die Algebraische Geometrie, Springer, Berlin, 1973.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

() 1983 Society for Industrial and Applied Mathematics

0097-5397/83/1201-0002 $01.25/0

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS*

DAVID KIRKPATRICK"

Abstract. A planar subdivision is any partition of the plane into (possibly unbounded) polygonal
regions. The subdivision search problem is the following: given a subdivision S with n line segments and
a query point P, determine which region of S contains P. We present a practical algorithm for subdivision
search that achieves the same (optimal) worst case complexity bounds as the significantly more complex
algorithm of Lipton and Tarjan, namely O (log n) search time with O (n) storage. Our subdivision search
structure can be constructed in linear time from the subdivision representation used in many applications.

Key words, computational geometry, analysis of algorithms, point location, planar graphs, hierarchical
search

1. Introduction. Any finite collection of finite, semi-infinite or infinite line seg-
ments induces a partition of the plane into polygonal regions. We will restrict our
attention, for the present, to collections of line segments whose pairwise intersections
are restricted to segment endpoints. We call such a collection (or the finite set of
polygonal regions induced by the collection) a (planar) subdivision.

We define the subdivision search problem to be the following: Given a subdivision
S with n line segments and an arbitrary query point P, determine which region of S
contains P. Our subdivision search problem is equivalent to the "region-searching"
problem of Dobkin and Lipton [6]. It is a slight (but, as we shall see, inconsequential)
generalization of both the "point-location" problem studied by Lee and Preparata
[14] and the "triangle" problem of Lipton and Tarjan [18]. The "point in polygon"
problem [1], [3], [24] (given a simple polygon, does it contain a specified query
point ?), the "rectangle searching" problem [27] (given a set of nonoverlapping
rectangles, which, if any, contains a specified query point?), and the "line searching"
problem [6] (given a set of lines in the plane, which, if any, contains a specified query
point?) can all be formulated as instances of our subdivision search problem.

Dobkin and Lipton [6] were the first to cast Knuth’s [12] "post-office" problem
(given a set of points in the plane, which is closest to a specified query point?) as a
subdivision search problem. Shamos [25] (and independently Dewdney [4]) refined
this formulation by introducing the Voronoi diagram of a point set, a planar subdivision
of remarkable utility in connection with nearest neighbor and other related problems.

In many applications, a planar subdivision is the object of numerous location
queries. For this reason, algorithms for point location are generally characterized by
three attributes: i) preprocessing timemthe time required to construct a search structure
from a standard representation of S; ii) spacemthe storage used in the construction
and representation of the search structures; and iii) search timemthe time required
to locate a specified query point, given the search structure. We restrict our attention
here to the worst-case behaviour of these attributes.

Dobkin and Lipton [6] employ a projective technique to reduce subdivision search
to linear search. The resulting algorithm is asymptotically optimal (among comparison-
based algorithms) in terms of search time but may be quite expensive in terms of both
preprocessing time and storage. Specifically, Dobkin and Lipton provide an O(lg n)l

* Received by the editors November 24, 1981. This work was supported in part by the National
Sciences and Engineering Research Council of Canada, grant A3593.

" Departmeht of Computer Science, University of British Columbia, Vancouver, British Columbia,
Canada V6T 1W5.

lg denotes log2.

28

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS 29

search-time, O(n 2) space, and O(n 2 lg n) preprocessing-time algorithm for subdivision
searching. Dobkin and Lipton were also the first to raise the question" Can subdivision
searching be done with O(lg n) search-time and O(n) (or even O(n lg n)) space?

Shamos [25] introduces an O((lg n)2) search-time, O(n) space, and O(n lg n)
preprocessing-time algorithm suitable for searching a class of subdivisions that includes
Voronoi diagrams. Employing an O(n lg n) algorithm for constructing a Voronoi
diagram on n points [28], this leads to an O((lg n)2) search-time, O(n) space, and
O(n lg n preprocessing-time solution of the "post-office" problem. Shamos’ algorithm
is generalized by Lee and Preparata [15] to an O((lg r/)2) search-time, O(n) space,
and O(n lg n) preprocessing-time algorithm for the location in arbitrary subdivisions.
Lee and Preparata’s approach is divide-and-conquer; each reduction of the subdivision
is achieved by discrimination of the query point with respect to a monotone chain of
edges that splits the subdivision (at a cost of O(lg n) comparisons, in the worst case).

The first affirmative answer to the question of Dobkin and Lipton was provided
by Lipton and Tarjan [18]. Lipton and Tarjan’s O(lg n) search time, O(n) space, and
O(n lg n) preprocessing time algorithm for search in arbitrary triangular subdivisions
(each interior region of the subdivision is bounded by exactly three line segments) is
one of many important applications of their planar separator theorem [18], [19]. That
general subdivision search can be efficiently reduced to triangular subdivison search
follows from the O(n lg n) polygon triangulation algorithm of Garey et al. [8]; the
details of this reduction are discussed in 4. Unfortunately, Lipton and Tarjan’s
algorithm is of primarily theoretical interest; to quote Lipton and Tarjan [19], "We
do not advocate this algorithm as a practical one, but its existence suggests that there
may be a practical algorithm with an O(lg n) time bound and O(n) space bound".

A recent result of Preparata [21] claims to come "very close to providing a
complete substantiation" of Lipton and Tarjan’s conjecture. Preparata’s algorithm,
which he describes as an evolution of the approach of Dobkin and Lipton [6], uses
O(lg n) search time, O (n lg n) space, and O(n lg n) preprocessing time.

The purpose of this paper is to affirm Lipton and Tarjan’s conjecture; we present
a new subdivision search algorithm with exactly the same asymptotic bounds as Lipton
and Tarjan’s algorithm. The simplicity of our approach (and the existence of an
implementation) suggests that it may also deserve to be called practical. A discussion
of the implementation and more detailed evaluation of our algorithm will be presented
elsewhere.

In the next section we present some preliminary definitions and comments on
the data structures used by our algorithm. Sections 3, 4 and 5 describe our algorithm
and a number of its applications. Section 6 concludes the paper with a discussion of
some related open problems.

2. Definitions and preliminaries. A finite planar subdivision is a planar sub-
division each of whose line segments is finite. Such a subdivision is indistinguishable
from a straight-line embedding of a planar graph. Thus we can refer without confusion,
not only to the vertices, edges and regions (or faces) of a finite planar subdivision,
but also to such graph-theoretic notions as degree, incidence and independence [10].
It is an immediate consequence of Euler’s formula (cf. [10]) that the numbers of
vertices and edges of a finite planar subdivision are linearly related, and hence either
number serves to characterize the size of such a subdivision. Hereafter, [SI will denote
the number of vertices of the finite subdivision S.

Let S be a finite planar subdivision. We take as a starting point for our algorithm
what we call an edge-ordered representation of S. Specifically:

(a) if x is a line segment joining vertex v to vertex w, then x is represented by
the pair of directed edges {(v, w), (w, v)};

30 DAVID KIRKPATRICK

(b) each vertex v has associated with it not only its coordinates but also a list,
in counterclockwise order, of all directed edges whose source is v; and

(c) each directed edge (v, w) has associated with it a pointer to the edge (w, v)
as well as the name of the region lying immediately to the right of (v, w).

An edge-ordered representation is provided either implicitly or explicitly by the
representations taken as standard in a number of earlier papers [20], [23]. It differs
from the basic (unordered) list of adjacencies chosen by Lee and Preparata [15] as
their initial representation. However, it should be clear that"

i) it occupies O(ISI) space;
ii) it can be constructed in O(ISI lg ISI) time from a list of adjacencies or other

standard representations of planar graphs;
iii) it can be constructed in O(ISI) time if the underlying planar graph has bounded

degree; and
iv) it can be constructed in O(ISI) time from the natural graph representation

provided in certain applications (cf. 5).
Thus our choice of representation for subdivisions is intended to allow a realistic
estimate of actual preprocessing costs.

The obvious redundancy in an edge-ordered representation can be neatly
exploited in the development of our hierarchical search structure. A detailed descrip-
tion of the data structures used in one efficient implementation or our algorithm will
be presented elsewhere.

A finite planar subdivision S has exactly one unbounded region, called the external
region of S. Its complement is called the interior of S. The edges bounding the external
region define what we call the boundary of S.

A convex subdivision is any finite planar subdivision whose interior is convex and
whose interior regions are all convex. A triangular subdivision is a special case of a
convex subdivision in which each region (including the exterior region) is bounded
by three line segments. It is easily confirmed that a triangular subdivision on n _-> 3
vertices has exactly 3n-6 edges and 2n-4 regions (including the external region).

In 3, we give a new constructive proof of the following:
THEOREM 3.1. There is an O(lg n) search time, O(n space and O(n preprocess-

ing time algorithm]’or the triangular subdivison search problem.
This result is extended to arbitrary planar subdivisions in 4.
3. Fast search in triangular subdivisions. Let S be an arbitrary triangular sub-

division with n vertices. A subdivision hierarchy associated with S is a sequence
S, S.,..., Sh<) of triangular subdivisions, where $1 S and each region R of Si/l
is linked to each region R’ of Si for which R’R (the so-called parents of R in
Si), for 1-_< < h (n). We call h (n) the height of the subdivision hierarchy. Obviously
the space required for a subdivision hierarchy is just the space required for the
individual subdivisions (O(,hi=)[Sil)) plus the space used by the intersubdivision links.

Our basic point location algorithm involves a single pass through the subdivision
hierarchy, locating the test point at each level. Let p denote an arbitrary test point.

ALGORITHM HIERARCHICAL SUBDIVISION SEARCH
CANDIDATESh(n)- regions of Sh(n)
R - region in CANDIDATESh(n) containing p
i-h(n)-i
while > 0 do

CANDIDATESi parents(R)
R region in CANDIDATESi containing p
i-i-1

report (region R)

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS 31

Since membership in any triangular region can be tested in constant time, the
complexity of this search procedure is O(h_-(’ICANDIDATESil). Obviously we are
motivated to construct subdivision hierarchies in which both the height and the size
of all CANDIDATE sets are minimized.

We start by constructing a subdivision hierarchy of height two.
LEMMA 3.1. There exist positive constants c and d such that for any triangular

subdivision S with ISI > 3, a triangular subdivision T can be constructed in O(ISI) time,
satisfying"

i) IT[-<_ (1 1/c)lSl, and
ii) each region of T has at most d parents in S.
Proof. Let v be any internal (nonboundary) vertex of S, and let deg (v) denote

its degree. Then, exactly deg (v) regions of S are incident with v. The union of these
regions, which we call the neighborhood of v, forms a star-shaped polygonal region
with deg (v) bounding edges. Now, if v and its deg (v) incident edges are removed
from S and the neighborhood of v is retriangulated (introducing deg (v)- 3 new edges)
what results is a new triangular subdivision with IS[-1 vertices. It should be clear that,
regardless of how the neighborhood of v is retriangulated, each new region intersects
at most deg (v) regions of S. Of course, the simplification achieved by this vertex
removal and retriangulation is minimal. However, if w is any vertex which is indepen-
dent of (i.e. nonadjacent to) v in S, then the neighborhoods of v and w do not intersect
except possibly along one or more edges of S. Hence, such a pair of vertices can be
removed in parallel and the triangular subdivision that is created by retriangulating
their vacated neighborhoods has the property that each of its regions intersects at
most max {deg (v), deg (w)} regions of S. By identical reasoning, if Vx," , v, form an
independent set of vertices in S, then the IS]- vertex triangular subdivision T formed
by removing v,..., v, and retriangulating all vacated neighborhoods has the
property that each of its regions intersects at most max {deg (vi), 1 _-</" _-< t} regions of
S. To complete the proof it suffices to show that if c and d are sufficiently large then
an independent set Vl, /At with deg (vg) -< d, 1 -< =< t, and >-]S]/c can always be
identified in o(Isl) time. This is an immediate consequence of the following lemma.

LEMMA 3.2. There exist positive constants c and d such that every planar graph
on n vertices has at least n/c independent vertices of degree at most d. Furthermore, at
least n/c of these can be identified in O(n time.

Proof. We make no attempt to optimize c and d here. (Their optimal values
influence the asymptotic constants for each of space, preprocessing time, and search
time, and some tradeoffs can be expected.) We have already noted that an n-vertex
planar graph has at most 3n-6 edges. Hence the average vertex degree is less than
6, and so less than half of the vertices have degree exceeding 11. Starting with the
set V of vertices of degree at most 11 (which can be identified easily in linear time),
a straightforward elimination procedure identifies an independent subset containing
at least IVI/12>-n/24 vertices.

Of course, a subdivision hierarchy of height two provides no significant
simplification over the original subdivision. However, if Lemma 3.1 is applied itera-
tively, we are led to a subdivision hierarchy in which asymptotically improved (in fact,
optimal) search is possible.

LEMMA 3.3. There exist positive constants c and d such that, for any triangular
subidivision $ with n vertices, an associated subdivision hierarchy $, S(, can be
constructed in O(n time, satisfying:

i)]Sh([3;
ii) 1/c)lS, l., and
iii) each region ofS/ has at most d parents in

32 DAVID KIRKPATRICK

Proof. Immediate from Lemma 3.1.
COROI.I.AR 3.1. The subdivision hierarchy above has height h (n) O(lg n) and

uses O(n) space in total.
Proof. It suffices to note that the sequence [$11, Is2l, .., Is.()l forms a decreasing

geometric progression.
We now restate and prove our basic result.
TI-IZOIEM 3.1. There is an O(lg n) search time, O(n space, and O(n preprocess-

ing-time algorithm for the triangular subdivision search problem.
Proo]’. We use the hierarchical subdivision search algorithm in conjunction with

the subdivision hierarchy constructed in Lemma 3.3. By Lemma 3.3, the preprocessing
time is O(n). By Corollary 3.1, the total space is O(n). By our earlier observations,
the complexity of search is O([Sh(n)[-[- 2/h(t)-1Pi) where p maxRs,+ ([parents (R)[).
But, by Lemma 3.1 and Corollary 3.1, Sh(,) and p are O(1) and h(n) is O(lg n), so
the search time is O(lg n).

4. Fast search in general subdivisions. In this section we consider the reduction
of general subdivision searching problems to triangular subdivision search. Let S be
an arbitrary planar subdivision. We can reduce the question of searching in S to
searching in a finite planar subdivision by intersecting S with a sufficiently large triangle
chosen to contain all intersections of line segments of S. The interior of this triangle
is clearly a finite planar subdivision. The exterior can be searched using a straightfor-
ward generalization of binary search, exploiting the fact that none of the semi-infinite
line segments intersect in this region. This reduction adds a factor of only O([S[) to
both the preprocessing time and space and O(lg IS[) to the search time used in the
resulting finite subdivision search problem. Hence the asymptotic complexities of
general and finite subdivision searching are equivalent.

It remains to reduce finite subdivision searching to triangular subdivision search-
ing. Let S be a finite planar subdivision. We can assume from the preceding reduction
that the boundary of S is triangular. Let T be the subdivision formed from S by
triangulating each interior region of S. The size of T remains proportional to the size
of S and, since T is a refinement of S, the location of points in T immediately implies
their location in S. In the general case T can be formed from S in time O([S[lg[S[),
using the general polygon triangulation algorithm of Garey et al. [8]. However, if the
regions of S are all convex, or even star-shaped, a straightforward linear algorithm
exists for constructing T. Thus, we have demonstrated the following"

THEOREM 4.1. There is an O(lg n) search time, O(n) space and O(n lg n) prepro-
cessing time algorithm for the general subdivision search problem.

THEOREM 4.2. There is an O(lg n) search time, O(n) space and O(n) preprocess-
ing time algorithm for the convex subdivision search problem.

5. Applications. Earlier papers on subdivision search, notably [15], [21], have
mentioned a number of applications. We recall and expand on a few of these here.

5.1. Point in polygon proMem. A planar polygon is a special case of a finite
planar subdivision. Theorem 4.1 gives an immediate O(lg n) search time, O(n lg n)
preprocessing time and O(n) space algorithm for testing the inclusion of an arbitrary
point in an n vertex planar polygon. For convex or star-shaped polygons, or any other
family of polygons that can be triangulated in O(n) time, the preprocessing time is
linear.

5.2. Point in convex polyhedron problem. Lee and Preparata [15] note that the
problem of testing the inclusion of an arbitrary point in an n-vertex convex polyhedron
can be reduced to convex subdivision search with O(n) preprocessing. It follows, by

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS 33

Theorem 4.2, that an O(lg n) search time, O(n) preprocessing time and O(n) space
algorithm exists for the point in convex polyhedron problem.

By dualization, an algorithm with identical attributes can be formulated for the
problem of testing for the intersection of an arbitrary plane and a polyhedron in
3-space [5].

5.3. Locating a set of points in a planar subdivision. Preparata [22] shows that
a set of k points can be located on an n-vertex planar subdivision in O(k lg k + n +
k lg n) time, given O(n lg n) preprocessing time. This result is an immediate con-
sequence of Theorem 4.1. Furthermore, by Theorem 4.2, the preprocessing time can
be reduced to O(n) for convex planar subdivisions (which arise in a principal applica-
tion [20] of Preparata’s batched point location algorithm).

5.4. Closest point problems. The problem of determining which of a set of data
points is closest to a given test point has been extensively studied. Shamos [25] (and
independently Dewdney [4]) show how this problem can be reduced to point location
in a particular family of planar subdivisions known as Voronoi diagrams. Voronoi
diagrams (in any Lp metric) can be constructed in O(n lg n) time [13]. While Voronoi
diagrams in arbitrary Lp metrics may involve curved edges, every region is star-shaped
and hence Voronoi point location can be solved using subdivision search followed by
at most one test against a curved edge. Furthermore, only linear preprocessing is
required following the construction of the Voronoi diagram. This fact can be exploited
in the dynamic maintenance of Voronoi diagrams and dynamic solution of closest
point problems [9].

By replacing Voronoi diagrams by what are called generalized Voronoi diagrams
[11], [14] it is possible to use an analogous approach to solve the closest line problem
(which of a set of lines or line segments is closest to a given test point?).

6. Open problems and conclusions. It is tempting to extend the approach of this
paper to the location of points in higher-dimensional subdivisions. Such an extension
is by no means obvious. The number of vertices, edges, faces and regions of three-
dimensional subdivisions are not necessarily linearly related, and the analogue of
triangulation (tetrahedralization) is not a straightforward process. A more detailed
discussion of subdivision search in higher dimensions will be taken up elsewhere.

Our algorithm seems to depend on the fact that the given subdivision is formed
out of straight line segments. While the algorithm can be adapted to certain other
situations (for example, when all internal regions are star shaped), the general problem
of optimal search in subdivisions formed from arbitrary curve segments may require
a totally new approach. As a concrete example of such a subdivision, consider those
subdivisions which arise in the so-called locus approach to the fixed-radius nearest
neighbor search problem [2]. Such subdivisions are formed by the intersection of
fixed-radius circles, and in general do not seem to admit a simple refinement using
straight edges. Thus the fixed-radius nearest neighbor search problem still awaits an
O(lg n) search time, O(n 2) space and O(n 2 lgn) preprocessing time solution. A
solution using O(log n) search time, O(n log n) space and O(n log n) preprocessing
time is a byproduct of Preparata’s subdivision search algorithm [21]. Edelsbrunner
and Maurer [7] present search algorithms for subdivisions formed by segments other
than straight lines.

We have described a new subdivision search algorithm which, as pointed out by
Lipton and Tarjan [18], is optimal for both search time and space, assuming only
binary decisions are possible. Our algorithm is based on the hierarchical decomposition

34 DAVID KIRKPATRICK

of an arbitrary subdivision. It is conjectured that this technique will find a number of
other applications in computational geometry and elsewhere. On this point we should
acknowledge the fact that this technique does not originate with this paper; Lipton
and Miller [17] use a very similar idea in developing a fast algorithm for coloring
planar graphs.

REFERENCES

[1] J. L. BENTLEY AND W. CARRUTHERS, Algorithms for testing the inclusion of points in polygons, in
Proc. 18th Annual Allerton Conference on Communication, Control and Computing, 1980, pp.
11-19.

[2] J. L. BENTLEY AND H. m. MAURER, A note on Euclidean near neighbour searching in the plane,
Inform. Process. Lett., 8 (1979), pp. 133-136.

[3] W. BURTON, Representation o many-sided polygons and polygonal lines]or rapid processing, Comm.
ACM, 16 (1973), pp. 230-236.

[4] A. K. DEWDNEY, Complexity o] nearest neighbour searching in three and higher dimensions, Rep. 28,
Dept. Computer Science, Univ. of Western Ontario, London, Ontario, 1977.

[5] D. P. DOBKIN AND D. G. KIRKPATRICK, Fast detection o] polyhedral intersections, Proc. 9th
International Colloquium on Automata, Languages and Programming, Aarhus, Denmark, 1982,
to appear.

[6] D. P. DO3KIN AND R. J. LIPTON, Multidimensional searching problems, this Journal, 5 (1976), pp.
181-186.

[7] H. EDELSBRUNNER AND H. A. MAURER, On region location in the plane, Rep. 52, Institut fiir
Informationsverarbeitung, Technical Univ. Graz, Graz, Austria, 1980.

[8] M. R. GAREY, D. S. JOHNSON, F. P. PREPARATA AND R. E. TARJAN, Triangulating a simple
polygon, Inform. Process. Lett., 7 (1978), pp. 175-179.

[9] I. G. GOWDA, D. G. KIRKPATRICK, D. T. LEE AND A. NAAMAD, Dynamic Voronoi diagrams,
IEEE Trans. Inform. Theory, to appear.

[10] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[11] D. G. KIRKPATRICK, Efficient computation o] continuous skeletons, in Proc. 20th Annual IEEE

Symposium on Foundations of Computer Science, 1979, pp. 18-27.
[12] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[13] D. T. LEE, Two-dimensional Voronoi diagrams in the Lt,-metric, J. Assoc. Comput. Mach., 27 (1980),

pp. 604-618.
[14] D. T. LEE AND R. L. DRYSDALE III, Generalization of Voronoi diagrams in the plane, this Journal,

10 (1981), pp. 73-87.
[15] D. T. LEE AND F. P. PREPARATA, Location of a point in a planar subdivision and its applications,

this Journal, 6 (1977), pp. 594-606.
[16] D. T. LEE AND C. C. YANG, Location of multiple points in a planar subdivision, Inform. Process.

Lett. 9 (1979), pp. 190-193.
[17] R. J. LIPTON AND R. E. MILLER, A batching method for coloring planar graphs, Inform. Process.

Lett., 7 (1978), pp. 185-188.
[18] R. J. LIPTON AND R. E. TARJAN, Applications o] a planar separator theorem, in Proc. 18th Annual

IEEE Symposium on Foundations of Computer Science, 1977, pp. 162-170.
[19],A separator theorem]’or planar graphs, SIAM J. Appl. Math., 36 (1979), pp. 177-189.
[20] D. E. MULLER AND F. P. PREPARATA, Finding the intersection of two convex polyhedra, Theoret.

Comput. Sci., 7 (1978), pp. 217-236.
[21] F. P. PREPARATA, A new approach to planar point location, this Journal, 10 (1981), pp. 473-482.
[22],A note on locating a set o]’points in a planar subdivision, this Journal, 8 (1979), pp. 542-545.
[23] F. P. PREPARATA AND S. J. HONG, Convex hulls of finite sets of points in two and three dimensions,

Comm. ACM, 20 (1977), pp. 87-93.
[24] K. B. SALOMON, An efficient point-in-polygon agorithm, Comput. Geosci., 4 (1978), pp. 173-178.
[25] M. I. SHAMOS, Geometric complexity, in Proc. 7th Annual ACM Symposium on Theory of Computing,

1975, pp. 224-233.
[26], Computational geometry, Ph.D. Thesis, Yale Univ., New Haven, CT, 1978.

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS 35

[27] M. I. SHAMOS AND J. L. BENTLEY, Optimal algorithms]:or structuring geographic data, in Proc.
Symposium on Topological Data Structures for Geographic Information Systems, Harvard Univ.,
Cambridge, MA, 1977, pp. 43-51.

[28] M. I. SHAMOS AND D. HOEY, Geometric intersection problems, in Proc. 17th Annual IEEE Symposium
on Foundations ot Computer Science, 1976, pp. 208-215.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1201-0003 $01.25/0

TOOLS FOR TEMPLATE DEPENDENCIES*

RONALD FAGINt, DAVID MAIER, JEFFREY D. ULLMAN
AND MIHALIS YANNAKAKIS

Abstract. Template dependencies (TD’s) are a class of data dependencies that include multivalued
and join dependencies and embedded versions of these. A collection of techniques, examples and results
about TD’s are presented. The principal results are:

1) Finite implication (implication over relations with a finite number of tuples) is distinct from
unrestricted implication for TD’s.

2) There are, for TD’s over three or more attributes, infinite chains of increasingly weaker and
increasingly stronger full TD’s.

3) However, there are weakest (nontrivial) and strongest full TD’s over any given set of attributes.
4) Over two attributes, there are only three distinct TD’s.
5) There is no weakest (not necessarily full) TD over any set of three or more attributes.
6) There is a finite relation that obeys every strictly partial TD but no full TD.
7) The conjunction of each finite set of full TD’s is equivalent to a single full TD. However, the

conjunction of a finite set of (not necessarily full) TD’s is not necessarily equivalent to a single TD and
the disjunction of a finite set of full TD’s is not necessarily equivalent to a single TD.

8) There is a finite set of TD’s with an infinite Armstrong relation but no finite Armstrong relation.
9) A necessary and sufficient condition for the existence of finite Armstrong relations for sets of TD’s

can be formulated in terms of the implication structure of TD’s.

Key words, relational database, template dependency, finite implication, multivalued dependency,
join dependency

1. Introduction. Template dependencies (TD’s) were introduced by Sadri and
Ullman [SU] and, independently, by Beeri and Vardi [BV2]. Both sets of authors
introduced TD’s to provide a class of dependencies (sentences about relations) that
include join dependencies [Ri] and embedded multivalued dependencies [Fa2] and
that also has a complete axiomatization (no complete axiomatization is known for
either join dependencies or embedded multivalued dependencies). TD’s are examples
of the "tuple-generating dependencies" of Beeri and Vardi [BV2]. Tuple-generating
dependencies, along with "equality-generating dependencies" (which include func-
tional dependencies [Co]) together comprise Fagin’s [Fa3] class of embedded implica-
tional dependencies (which is equivalent to Yannakakis and Papadimitriou’s [YP]
class of algebraic dependencies). This paper is a compendium of techniques, examples
and counterexamples for TD’s.

In 2, we present definitions. In 3, we demonstrate the existence of a strongest
TD and a weakest nontrivial full TD. (Note. Unless stated otherwise, TD’s are not
assumed to be full.) We show that there is no weakest TD. In 4, we show that there
are only three distinct TD’s on two attributes. In 5, we demonstrate a useful
correspondence between TD’s and graphs and introduce the notion of an lp-
homomorphism (label-preserving homomorphism). In 6, we utilize this correspon-
dence to help prove the existence of infinite chains of progressively weaker and
progressively stronger full TD’s. In 7, we show that for TD’s, implication is distinct

* Received by the editors May 21, 1981, and in revised form March 15, 1982.
t IBM Research Laboratory, San Jose, California 95193.
State University of New York, Center at Stony Brook, Stony Brook, New York, 11794. The research

of this author was supported in part by the National Science Foundation under grant IST-79-18264.
Stanford University, Stanford, California 94305. The research of this author was supported in part

by the National Science Foundation under grant MCS-79-04528.
Bell Laboratories, Murray Hill, New Jersey 07974.

36

TOOLS FOR TEMPLATE DEPENDENCIES 37

from implication restricted to finite relations. In 8, we show that the conjunction of
a finite set of full TD’s is equivalent to a single full TD. However, we show that the
conjunction of a finite set of TD’s is not necessarily equivalent to a single TD, and
the disjunction of a finite set of full TD’s is not necessarily equivalent to a single TD.
In 9, we show that there is a finite relation that obeys every strictly partial TD but
no nontrivial full TD. In 10, we demonstrate a finite set of TD’s with no finite
Armstrong relation [Fa3] (although we know [Fa3] that there is an infinite Armstrong
relation). We also give a necessary and sufficient condition for the existence of finite
Armstrong relations for sets of TD’s.

2. Definitions. A relational database scheme consists of a universal set of
attributes U and a set of "dependencies". The attributes in U are names for the
components (columns) of relations in the database. The most common forms of
dependencies are functional dependencies, or FD’s [Co], and multivalued dependen-
cies, or MVD’s [Fa2]. We shall not discuss FD’s in this paper.

In database theory, a tuple is formally regarded as a.mapping from attributes to
values, rather than as a list of component values, although the latter viewpoint is
handy when the order of the attributes in the list is understood. We often use t[Z],
where is a tuple and Z is a set of attributes, to stand for restricted to domain Z,
that is, the components of for the attributes in Z. If A is an attribute, then we call
t[A the A entry or A value of t.

Multivalued dependencies are denoted syntactically by X - Y. The meaning of
this dependency is that if relation R obeys the dependency, and if and t2 are tuples
of R with t[X] t2[X], then there exists t3 in R such that:

t [x] t [x]
2. t3[Y] tx[Y] and
3. u xY] u xY].

Intuitively, the set of Y-values associated with each given X-value is independent of
the values in all other attributes. By XY in 3 above, we mean X U Y.

Example. Consider the relation R, in Fig. 1.1, where U {A, B, C, D}.

A B C D

0 1 2 3
0 2 1 4
0 1 1 4
0 2 2 3
5 1 3 2

FIG. 1.1. The relation R.

The MVD A -- B holds in R. For example, if and t2 are the first two tuples in Fig.
1.1, then we may check that the tuple t3, where ta[A =tl[A tE[A O, ta[B t[B
1, and ta[CD] tE[CD] 14, is present; it is row three. (By 14, we mean the tuple
with first entry 1 and second entry 4; we shall sometimes find this type of abbreviation
convenient.)

Let E be a set of dependencies, and let o- be a single dependency. When we say
that E logically implies tr or that tr is a logical consequence of ,, we mean that whenever
every dependency in E holds for a relation R, then tr also holds for R. That is, there
is no "counterexample relation" such that every dependency in E holds for R, but
such that tr fails in R. We write E tr to mean that E logically implies tr. For example,
if A, B, and C are attributes, then {A -- B, B -- C}A -- C.

38 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

It appears that FD’s and MVD’s are almost sufficient to describe the "real world,"
and thus could be used for a database design theory. However, there is at least one,
more general form of dependency that appears naturally, and this form causes severe
difficulties when we try to infer dependencies. This type of dependency, called an
embedded multivalued dependency (EMVD), was first studied by Fagin [Fa2] and
Delobel [De]. For disjoint X, Y and Z, we say X -- Y Z holds if, when any "legal"
relation over the set of attributes is projected onto the set of attributes XYZ (we
project by restricting tuples to these attributes), then the MVD X -- Y holds. (Note
that X - Y holds in XYZ if and only if X -- Z holds [Fa2]).

Another way of looking at the EMVD X -- Y [Z is that if the relation R over
attributes U obeys the dependency, then whenever we have two tuples tl and t2 in
R, and t[X] t2[X], it follows that there is some t3 in R, where

t [x] t [s]
2. t3[Y] tl[Y] and
3. t3[Z] t2EZ].

Note that t3[U-XYZ] can be arbitrary; we can assert nothing about the values t3
has in these components.

Unfortunately, when we try to make inferences about EMVD’s we appear to run
into a stone wall. It is not known whether the decision problem for EMVD’s is
decidable (the decision problem for EMVD’s is the problem of deciding whether
when Y_, is a set of EMVD’s and tr is a single EMVD). Neither is a complete
axiomatization for EMVD’s known. It is known [SW], [CFP] that there is no k-ary
complete axiomatization for EMVD’s for any fixed k, and, in particular, no finite
complete axiomatization.

To tackle these problems for EMVD’s, some more general types of dependencies
have been studied recently, with the hope that the more general class would have a
complete axiomatization or would provide insights on the EMVD decision problem.
In particular, Sadri and Ullman [SU] and, independently, Beeri and Vardi [BV2]
introduced template dependencies, or TD’s, and provided a complete axiomatization.
TD’s include as special cases (a) MVD’s, (b) EMVD’s, (c) subset dependencies [SW],
(d) mutual dependencies [Ni], (e) generalized mutual dependencies [MM] and (f) join
dependencies [Ri]. The class of TD’s was studied independently by Beeri and Vardi
[BV2] and by Paradaens and Jannsens [PJ], and still more general classes were
considered by Fagin [Fa3] and Yannakakis and Papadimitriou [YP]. Vardi [Val] and,
independently, Gurevich and Lewis [GL] have recently shown that the decision
problem for TD’s is undecidable.

A template dependency is an assertion about a relation R, that if we find tuples
rl, .., rk in R with certain specific equalities among the entries of these tuples, then
we can find in R a tuple r that has certain of its entries equal to certain of the entries
in r,..., rk. Other entries of r may be arbitrary. Formally, we write a template
dependency as rl,"’, rk/r, or as

rl

rk

where the ri’s and r are strings of abstract symbols (sometimes called variables). The
length of the ri’s and r equals the number of attributes in the universal set, and positions
in these strings are assumed to correspond to attributes in a fixed order. No symbol

TOOLS FOR TEMPLATE DEPENDENCIES 39

may appear in two distinct components among the ri’s and r. It is, of course, permissible
that one symbol appear in the same component of several of the ri’s or r.

Let R be a relation and let T be a TD. Let h be a homomorphism that maps
symbols in T into entries of R. By saying that h is a homomorphism, we mean that
h (a an) is defined to be h (a 1)" h (an). We call h a valuation. Relation R is said
to obey TD T if whenever there is a valuation h on the symbols appearing in the r’s
such that h(ri) is a tuple in R for all i, then we can extend h to those symbols that
appear in r but do not appear among the r’s, in such a way that h(r) is also in R.

Example. Let U {A, B, C, D} and let R be the relation previously given in Fig.
1.1. Let T be the TD

as bl ca d2
al b2 c d3

as b3 ca

Define h by: h(al) h(aa)=O;h(bl) h(cl)= 1; h (b) h(c) 2; h (da)= h(d3)=
3, and h(dl)=4. Then h(alblcldl)=Oll4, h(a2blcada)=O123, and h(albacad3)=
0223, which are rows three, one, and four of Fig. 1.1. Thus, we must exhibit a value
b for h(b3) such that h(aab3c2dl) is in the relation of Fig. 1.1, if that relation is to
obey the TD T. However, for no value of b is 0b24 a row of Fig. 1.1, so we may
conclude without further ado that R does not obey T. Of course, if a value of b had
been found, we would then have to check all other possible valuations that mapped
the first three rows of T into rows of Fig. 1.1.

When we say that a relation is finite (respectively, infinite), we mean that it has
a finite (respectively, infinite) set of tuples. Database theory is most concerned with
finite relations; however, sometimes it is convenient to consider infinite relations. If
E is a set of dependencies, such as TD’s, then by SAT (E), we mean the collection of
relations (finite or infinite) that obey all of . Note that E tr if and only if SAT (E)_
SAT (tr). If we wish to consider only finite relations, then we can write SATn (E) to
mean the collection of finite relations that obey E. Similarly, we can define E fin O"

to mean that every finite relation that obeys E also obeys tr. As above, E fin O" if and
only if SATn (E) SATn (tr). Note that if Etr, then E fin O’. AS we shall show in
7, the converse fails for TD’s.
When we speak of two dependencies tr and z being equivalent, we mean that

SAT (tr)=SAT (z), or equivalently, that tr" and z tr. Similarly, we can define
equivalent sets of dependencies. We shall sometimes speak of conjunctions or disjunc-
tions of TD’s. A relation obeys the conjunction (respectively, disjunction) of a set of
TD’s precisely if it obeys all (respectively, at least one) of them. Thus,

SAT (A{: S})= FI{SAT (): cr S},

SAT (v{a’: a’ S}) U{SAT (a’): a" S}.

The following terminology will prove helpful. If r1,"’, rk/r is a TD, then
rl,’’ ", rk are called the hypothesis rows, or hypotheses, and r is the conclusion row,
or simply the conclusion. Each symbol that appears in the conclusion is said to be
distinguished. A TD is said to be full if each of its distinguished symbols also appears
in the hypotheses; otherwise, it is said to be strictly partial. If T is a TD, and if V is
exactly the set of attributes for which the hypothesis rows of T contain distinguished
variables, then we may call T a V-partial TD (we allow the possibility that V U,

40 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

the set of all attributes). A TD is trivial if it always holds (in relations over the
appropriate attributes).

Remark. A V-partial TD is trivial precisely if some hypothesis row of T contains
distinguished variables for every one of its V entries. For if no hypothesis row of T
contains distinguished variables for every one of its V entries, then the relation that
consists of all of the hypothesis rows of T but not the conclusion is a relation not in
SAT (T); hence, T is nontrivial.

Example. Let U {A, B, C, D}. Then the MVD A -- B is synonymous with the
TD:

al

al

al

The EMVD A -B IC is written:

al

al

bl c1 dl
b2 c2 d2

bl C2 dz

b cx d
b2 C2 d2

al bl C2 d3.

Note that this EMVD is a strictly partial TD. However, MVD’s are full TD’s.

3. Strongest and weakest TD’s. An important tool in the study of dependencies
is the chase process [ABU], [MMS], [SU]. When TD’s alone are involved, could the
chase go on forever in a nontrivial way? The question of the existence of infinite
chases where "things keep happening" can be related to the existence of certain
infinite sequences of TD’s as follows. The set of rows in the tableau at any time during
a chase may be taken to be the hypothesis rows of a TD whose conclusion row is the
goal row for the chase. It is easy to show that as the chase proceeds, these TD’s get
progressively weaker. If the chase is successful, then we eventually arrive at a TD so
weak that it is trivial.

If the chase is unsuccessful, then we might obtain an infinite sequence of TD’s
that, although some could be equivalent to the previous TD, would include an infinite
subsequence of strictly weaker TD’s. Or, we might necessarily reach a point where
all successive TD’s were equivalent but not trivial, and if we knew that we had reached
that point, then we could deduce that the chase was unsuccessful.

These observations lead to the consideration of the structure of the space of
TD’s. Are there infinite sequences of strictly weaker TD’s? Can we construct such a
sequence by showing that for every nontrivial TD there is a weaker nontrivial TD?
The answers to these (yes and no, respectively) and related questions are contained
in later sections.

THEOREM 3.1. For each set of attributes, there is a strongest TD. That is, there is
a TD T such that T T’ for each TD T’ over the same set of attributes as T.

Proof. The TD that states a relation is a Cartesian product is the strongest TD.
For example, the Cartesian product TD over three attributes is

a bl b2
b3 a2 b4
b5 b6 a3

al a2 a3.

TOOLS FOR TEMPLATE DEPENDENCIES 41

The Cartesian product TD is strongest because each relation that is a Cartesian product
is easily seen to obey every TD (over the same attributes). E]

Recall that a TD is said to be V-partial if V is the set of attributes for which the
hypothesis rows of T contain distinguished variables.

COROLLARY 3.2. There is a strongest V-partial TD. That is, there is a V-partial
TD Tsuch that T T’ lor every V-partial TD T’ over the same attributes.

Proo] The V-partial TD that says of a relation that its projection onto V is a
Cartesian product is the strongest V-partial TD. Thus, if U is ABC and V is AB,
then this TD is

al a2 a3.

THEOREM 3.3. Assume that V contains at least two attributes. Then there is a
weakest nontrivial V-partial TD. That is, there is a nontrivial V-partial TD T such
that T’ T]or every nontrivial V-partial TD T’ over the same attributes. In particular
(when V U) there is a weakest nontrivial]ull TD.

Note. The assumption that V contains at least two attributes is necessary, since
it is easy to see that if V contains 0 or 1 attribute, then every V-partial TD is trivial.

Pro01 Assume that the attributes in V are A,... ,Am. Denote by W the
attributes not in V. (Possibly, W is empty.) Assume that the attributes in W are
A,/, , An. The variables of T that appear in the column Ai (1 -< -< m) of T are
as and b. The only variable that appears in the hypothesis rows of Aj, for/" > m, is cj.

The projection of the hypothesis of T into V contains all possible rows e... e,,
where e is either as or b, except that the row of all a’s does not appear. The conclusion
row contains all a’s. For example, if V=AA2A3 and W AaA5, then T is

al a2 b3 C4 C5

al b2 a3 c4 c5

a b b3 C4 C5

b a a3 c4 c5

b a b3 174 175

b b a3 174 C5

bl b b3 C4 175

al a2 a3 a4 a5

Clearly, T is nontrivial (see the remark near the end of 2). We now show that
if T’ is a nontrivial, V-partial TD, then SAT (T’)___ SAT (T), that is, that T’ T. Let
r be a relation (over set of attributes U) that is not in SAT (T); we shall show that
r is not in SAT (T’). Let g be a valuation that maps every hypothesis row of T to a
tuple in r, but such that g(a a,) does not appear in the projection r[V] of r onto
V. We know that g exists since r is not in SAT (T). We define a valuation h on T’
as follows. We assume for convenience that T’ and T have the same distinguished
variables a,"’,an. For each distinguished variable a, let h(a)=g(a). For each
nondistinguished variable d in T’, if d is in the As column, for some Ai in V, then
let h(d)= g(b); if d is in the A column for A in W, then let h (d)= g(c).

Since T’ is nontrivial, no hypothesis row of T’ contains a. a, as its V entries.
Let w’ be an arbitrary hypothesis row of T’ and let w be the row in T that has a’s

42 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

in its V entries exactly where w’ does. Since those entries are not all a’s, we know
that w exists. By definition of h, we know that h(w’)= g(w), and so h(w’) is a tuple
in r. However, h(al"" a,)= g(al"" a,,) is not in r[V], so r violates T’, as was to
be shown. [-1

We shall conclude this section by showing that there is no weakest nontrivial TD
(including full and strictly partial TD’s) if the number of attributes is at least 3. We
first need a preliminary result.

THEOREM 3.4. Let E be a set of Vl-partial TD’s and lettr be a nontrivial V2-partial
TD. If , tr, then V2

_
V1.

Proof. Assume that Etr and that it is false that V._ V1; we shall derive a
contradiction. Let Tl be the strongest Vx-partial TD constructed in the proof of
Corollary 3.2, and let T2 be the weakest nontrivial VE-partial TD constructed in the
proof of Theorem 3.3. Since (a) T1 E (that is, T1 7" for every 7" in E), (b) Etr, and
(c) tr T2, it follows by transitivity of logical implication that T1 T2. Let r be the
relation consisting of the hypothesis rows of T2. Then r violates T2. We shall show
that r obeys T1, a contradiction.

Since it is false that V2 V there is an attribute A in V2 but not V. It is easy
to verify that the projection r[U A of r onto every attribute exceptA is the Cartesian
product of the projection of r onto each attribute in U-A (see Fig. 3.1). So, r obeys
T, which was to be shown.

THEOREM 3.5. Assume that there are at least three attributes. Then there is no
weakest nontrivial TD. That is, there is no nontrivial TD T such that T’ T for every
nontrivial TD T’ over the same attributes.

Note. The assumption that there are at least three attributes is necessary, as we
shall see in 4. Also, observe that unlike Theorem 3.3, which might seem superficially
to contradict Theorem 3.5, we are not fixing our attention on V-partial TD’s for a
given V, but rather considering the whole class of TD’s at once.

Proof. Assume that there are at least three attributes, and that a weakest nontrivial
TD T exists. Then T is V-partial for some V (possibly V U). Now V is nonempty,
since each V-partial TD with V is trivial. So V contains an attribute A. Let
W U-A. Then W contains at least two attributes, since U contains at least three
attributes. So there is a nontrivial W-partial TD T’. By definition of T, we know that
T’ T. This implication contradicts Theorem 3.4, since V is not a subset of W.

4. TD’s over two attributes. In this section, we prove the following result.
THEOREM 4.1. There are only three distinct TD’s (up to equivalence) on two

attributes.
Proof. The three TD’s over two attributes are the following:

al a2

al b2
bl a2

a b2
bl b2
hi a2

al a2 al a2 al a2

TD T is the trivial TD, obeyed by every relation. TD T2 says that the relation is a
Cartesian product; it is the strongest TD. T3 is the weakest nontrivial TD over two
attributes. It is easy to check that none of T1, T2, and T3 are equivalent. We must
show that every TD over two attributes, say T ta, t2,’", tn/ala2 is equivalent to
one of these.

TOOLS FOR TEMPLATE DEPENDENCIES 43

Case 1. None of tl,’", tn has al in the first column, or none of tl,"’, tn has
a2 in the second column, or some ti is ala2. It is easy to show that T is trivial. Thus,
every strictly partial TD over two attributes is trivial.

Case 2. Case 1 does not hold, but there is no sequence of rows among tl," ’, tn
of the form

(,)

b2
b2 b3
b4 b3

b bt-i
bk a2

for any bl,’’ ", b, with k >-2. Then, we can divide tl,’’ ", t, into two groups. The
first group contains those "reachable" from a 1, in the sense that they appear in some
sequence a 1bl, bzbl, b2b3, b4b3, , and the second contains those that are not. Tuples
in the second category may be "reachable" from a2 or they may be "reachable" from
neither a nor a2.

We now show that T and T2 are equivalent. We know that T2 T, since the proof
of Theorem 3.1 shows that T2 implies every TD over two attributes. To show that
T T2, we need only show that when we chase [MMS] the hypothesis rows of T2,
using T, we get the conclusion row of T2 [SU]. But this chase needs only one step.
Map all tuples of T in the first group to alb2 and all others to ba2. This mapping
cannot map one symbol of T to two distinct symbols of T2, or the groups are not
defined correctly. That is, we cannot have some tuple t =cd mapped to a lb2, and
then have some tuple ti ed or cf mapped to b la2, because ed and cf would be in
group 1.

Case 3. A sequence (.) exists, with k _-> 2, and a la2 is not a hypothesis row. Then
T is nontrivial, so by the proof of Theorem 3.3, we know that T T3 (since T3 is the
weakest nontrivial full TD).

To show that T3 T, we can chase the hypotheses of T with T3 to infer successively
the rows a lb3, a lbs," ", a lb-I and then a xa2.]

5. The correspondence between TD’s and graphs. For the upcoming examples,
it is useful to give a graphical interpretation to TD’s and relations. The graph for a
TD or relation will have a node for each row or tuple, and edges labeled with attribute
symbols, indicating in which components the rows or tuples agree. More precisely:

Definition. Given relation r on relation scheme R {A 1, A 2, A,}, the graph
of r, denoted Gr, is defined as follows. Let {tl, t2," tin} be the tuples in r; the nodes
in G will also be tx, t2," tin. For nodes tx and t2, there is an undirected edge (tl, t2)
with label A (possibly among others) in R exactly when ta(A) t2(A).

Example. Let r be
A B C

tl: 0 0 1

t2: 0 1 0

t3: 0 1 1

t4: 1 0 0

ts: 1 0 1

t6: 1 1 0.

44 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

Then Gr is as in Fig. 5.1. There is always a self-loop from each node to itself, labeled
by all the attributes, but we shall omit drawing such edges. We can also omit drawing
some of the edges implied by transitivity of equality, to help reduce the clutter. Figure
5.2 represents the same relation as Fig. 5.1 when transitivity of equality is considered.

The graph (denoted Gr) for a template dependency T is defined similarly, except
that there is a node denoted (,) that represents the conclusion row.

Example. Let T

WI: a b c
W2: al b Cl

w3: al bl c

Then Gr is as in Fig. 5.3.

a b c

We can characterize when a relation obeys a TD in terms of certain homomorph-
isms between their respective graphs.

DEFIrI:ION. An lp-homomorphism (label-preserving homomorphism) between
labeled, undirected graphs G (V, El) and G2 (V2, E2) is a mapping h: VI- V2
such that if (v, w) is an edge of E with label A (possibly among others) then
(h (v), h (w)) is an edge of E2 with label A.

Example. Let Gr and Gr be the graphs in the last two examples. Define the
mappings h and h2 as follows:

h(*) t5, h2(*) t3,

h(w) ts, h2(w) t3,

h(w.)=t, h2(w2)=t3,
hi(w3) tl, h2(w3) t3.

Then h and h2 are each lp-homomorphisms from Gr to Gr.
The mapping

h3(*) tl,

h3(w1)=t3,
h3(w2)=ts,
h3(w3)=t6

is not an lp-homomorphism from Gr to Gr, since (h (,), h (W3)) (tx, t6) does not exist
in Gr, and thus certainly does not have label C, as (,, w3) does.

We can now interpret the criterion for a relation r to obey a TD T in terms of
their respective graphs.

THEOREM 5.1. Relation r obeys T if and only if every lp-homomorphism from
Gr -{*} to Gr can be extended to an lp-homomorphism from all ofG to Gr.

The straightforward proof of Theorem 5.1 is left to the reader.
Example. Let T and r be the TD and relation used in previous examples. Some

lp-homomorphisms from Gr-{*} to Gr can be extended, such as h and h below:

hl(Wl)=ts, hz(wx)=t3,
hl(wz)= ta, h2(w:z)= t3,

h(w3)=tl, hz(w3)=t3.

In fact, any lp-homomorphism that maps Gr-{*} to a single node in Gr can be
extended to Gr. We shall later use this fact to show that a particular TD T is obeyed

TOOLS FOR TEMPLATE DEPENDENCIES 45

A,B

FIG. 5.1

FIG. 5.2

A

C

A

FIG. 5.3

46 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

by r, by showing that every lp-homomorphism from GT- {*} to r maps all of Ga- {*}
to a single node in r.

Relation r in our previous examples does not obey T, because there are lp-
homomo,,phisms from GT--{*} to Gr that cannot be extended, such as

h3(Wl)=t3,
h3(w:)= ts,

h3(w3)=t6.

For, if h3(*)= t, then would have to agree with t3 on A, with t5 on B, and with t6
on C. Then would be (0, 0, 0), which is not in the relation r.

6. Chains of lull TI)’s. We now use the correspondence between TD’s and graphs
to help prove the existence of infinite chains of progressively weaker and stronger
full TD’s.

LZMMA 6.1. Let T’ be a TD derived from TD T by the addition of hypothesis
rows that use no distinguished symbols not already used in some hypothesis row. Then
T is at least as strong as T’. That is, T T’.

Proof. This result is easily verified by noting that any lp-homomorphism h’ from
Gr,-{*} to a relation r can be restricted to an lp-homomorphism h from Gr-{*} to
r. Furthermore, if h cannot be extended to Gr,, then h cannot be extended to Gr. 1

TI-IEOREM 6.2 (progressively weaker chain). There exists an infinite sequence of
full TD’s T1, T2, T3, such that SAT (T/) c SAT (Ti+l) for >- 1. Thus, Ti Ti+ for
each i, and no Tg’s are equivalent.

Proof. Consider the infinite graph G (Fig. 6.1). Let Ti be the TD corresponding
to the subgraph of G on nodes., 1, 2,. ., + 1. ByLemma 6.1, SAT (T)

SAT (T/).

A A A A

A,B A A A
C,A

FIG. 6.1

To show proper containment, we need only exhibit a relation r in SAT (T/I) that
does not obey T.

Relation r is simply the hypothesis rows of T considered as a relation. That is,
r is any relation such that Gr is G restricted to nodes 1, 2,..., + 1. We see that r
violates T, since the lp-homomorphism h from GT-,-{*} to G defined by h(f)=f,
1 -</" -<_ + 1, cannot be extended to

We now show that r obeys T/, that is, that each lp-homomorphism h from
Ga,/I-{*} to G can always be extended to an lp-homomorphism from Ga,/I to G.

Case 1. For some nodes f and/" + 1 in GT,/-{*}, we have h(/’)= h(f + 1). Since
in G, all odd nodes agree on A, and likewise all even nodes, if h () h (] + 1) it follows
that h(p) and h(q) agree on A for all p and q. In particular, h(1), h(2) and h(3) agree
on A, so we can extend h by letting h (.) h (2).

Case 2. No nodes/" and/’ + 1 are mapped to the same node in Gr by h. Let
h(1) =/’. There are 2 subcases, depending on whether/" is even or odd.

TOOLS FOR TEMPLATE DEPENDENCIES 47

Case 2a. /" is odd. We shall show inductively that h (k) =/" + k 1 for 1 -<_ k -< + 2.
Assume h (k- 1)=/" + k- 2. Suppose k is odd. Since k- 1 and k are connected

by a C-labeled edge, h (k 1) and h (k) must be connected by a C-labeled edge. Since
/" + k 2 is even, the only candidates for h (k) are/" + k 2 and/" + k 1. The/’ + k 2
choice is ruled out, since we are not in Case 1. Hence, h(k)=/" + k- 1. A similar
argument holds if k is even.

Now look at h (i + 2). By our inductive argument, h (i + 2) + + 1 >= + 2, which
is nonsense, since Gr contains only nodes 1,..., + 1. Thus, Case 2a cannot occur.

Case 2b. /" is even. This case is very similar to Case 2a, except that we show
inductively that h (k) =/" + 1 k, for 1 =< k <- + 2. Then h (i + 2) =/’ 1 =< 0, which is
nonsense, since Gr contains only nodes 1,. ., + 1. Thus, Case 2b cannot occur.

We have shown that Case 2 cannot occur. Thus, r obeys Ti+l, and the proof is
complete. [3

THEOREM 6.3 (progressively stronger chain). There exists an infinite sequence of
full TD’s T1, T2, T3," such that SAT (Ti+I) SAT (Ti). That is, T/+t Ti for each i,
and no two T’s are equivalent.

Proof. Let T be the TD corresponding to the finite graph of Fig. 6.2, which we
shall call G. G is just the graph for TD T2, in the last proof wrapped around with
nodes 1 and 2+ 1 overlaid.

FIG. 6.2

The hard part of this proof is showing that SAT (Ti/x)_ SAT (T).
Let r be any relation in SAT (T/x); we shall show that r is in SAT (T). To prove

this, let h be any lp-homomorphism from G-{,} to G; we must show that h can be
extended to an lp-homomorphism from G to G. We define an lp-homomorphism h’
from G/I-{*} to G in terms of h, by letting h’() be h(j), if 1-<_/" =<2, and h(-2i)
if 2 </" <-2/1. Essentially, h’ wraps G/ twice around the image of G in G under
h. Since r is in SAT (T/), we know that h’ can be extended to Gi/x. The reader may
check that h can be extended to G by letting h(,) h’(,).

The proof that SAT (T/) is a proper subset of SAT (T) is by a counting argument
similar to that used in the proof of Theorem 6.2. The relation r to use is one

48 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

corresponding to Gi+I-{*}. This relation is not in SAT (Ti+l). However, it is in
SAT (Ti). For, any lp-homomorphism h from Gi-{.} to Gr must map two nodes
and/’ + 1 to the same node in Gr, which means the extension of h by h (.) h (2) will
always work. U

7. Finite implication versus implication. In this section we show that finite impli-
cation (implication where we restrict our attention to finite relations) and unrestricted
implication are distinct for TD’s. Thus, the inference rules of Sadri and Ullman [SU]
and of Beeri and Vardi [BV2] for TD’s, which are complete for unrestricted implica-
tion, are incomplete when implication over finite relations only is considered. To state
the result another way, let SATn (T) be the set of all finite relations that obey a TD
T. We shall exhibit TD’s To, T1, T2,’", Tk such that

SmTfin (T1, , Tk)
_
SmTfin (To),

but

SAT (T1, ., Tk) SAT (T0).

Thus, {T1,. ., Tk} n To, but it is false that {T,. ., T} To. Further, we show that
there can be no such example with k 1. That is, we show that if To and T are TD’s,
then T fin To if and only if T To.

Apart from its inherent interest, we note another reason for studying the issue
of whether finite and unrestricted implication are distinct. It finite implication and
unrestricted implication were the same, then the decision problem would be decidable.
That is, it would be decidable whether or not Zr, whenever Z is a finite set of TD’s
and o. is a single TD. For, {(, or): is finite and Z r} is r.e. (recursively enumerable),
by G6del’s completeness theorem for first order logic [En] (or, in our special case,
by the known [BV2], [SU] complete set of inference rules for TD’s). Also, {(Z, r): Z
is finite and it is false that n o-} is r.e., since it is possible to systematically check
for finite relations that obey Z but not r. Hence, if and n were the same, then
{(Z, r): is finite and Zo-} would be both r.e. and co-r.e., and hence decidable. As
we have noted, Vardi [Val] and, independently, Gurevich and Lewis [GL] have
recently shown that the decision problem for TD’s is undecidable.

THEOREM 7.1. and fin are distinct. That is, implication o1 TD’s over the universe
o] all relations is distinct]rom implication o] TD’s over the universe o] finite relations.

Proof. This proof draws its basic outline from a proof by Beeri and Vardi [BV3]
of the same result for untyped TD’s, that is, TD’s in which a symbol may appear in
more than one column. The construction used here is greatly more complicated than
Beeri and Vardi’s. We exhibit TD’s To, T1, T2, T3, T4 for which there is an infinite
relation that obeys T,. ., T4 and violates To, but for which there is no such finite
relation. The TD’s T1,. , T4 are given by graphs G1, , G4 in Fig. 7.1.

There is an underlying logic to these TD’s. The intuition is that if we look at a
relation r, we interpret the subgraph of Gr in Fig. 7.2 as representing a directed edge
rom t to t. The relation ean then be interpreted as a directed graph Dr on some
subset ot its tuples. TD’s T and T together say that if D has an edge u v then
tor some w it has edge v- w. That is, no node v is a sink. TD T3 says roughly that
D is transitively closed. What it actually tells us is that if we have the linked
configuration of Fig. 7.3, then for some tuple t’ we have Fig. 7.4, where t’ is the tuple
of G3. As we shall see, TD T4 applies nontrivially when Dr has an edge u such that

//---> U.

The last TD, To, corresponds to graph Go in Fig. 7.5.

TOOLS FOR TEMPLATE DEPENDENCIES 49

D D D

FIG. 7.1

A

D

D

FIG. 7.2

D

FIG. 7.4

D D

FIG. 7.5

50 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

The property of directed graphs we shall exploit is that any finite directed graph
D that has no sinks and that is transitively closed has at least one loop edge. This
statement is not true for infinite graphs; consider the graph on the natural numbers,
where /" is an edge if and only if </’.

We now present an infinite relation ri, and show that r1 obeys T1, T2, T3 and T4,
but violates To. Thus, it is false that {T1, T., T3, T4} To.

Letrt ={(i,i,f, 0): 1-<i <]} U {(O, i, i, i)" 1-<i}. We shall refer to tuples of rt ofthe
form (i, i,/’, 0) with 1 <-i </" as tuples of the first type and tuples (0, i, i, i) with 1 <-i
as tuples of the second type.

1. rt obeys TI. We shall show that if we chase rt with T, then no new tuples
appear. Consider the first time that a new tuple could appear. The only AC combina-
tions not already present in r that could be forced by chasing with Tx are those in
which the A entry is (we write this informally as A i), C =/’, and >-/"-> 1. To
obtain such an AC combination, an application of T must have t4 (’, b,/’,’) and
t3 "-(i, b, ",’). (By this we mean that/’3 and t4 have the same B entry b, and the. ’s
represent entries we don’t care about now.) Since >= 1, we know that t3 is a tuple of
the first type, so b i. So t4 is (’, i,/’,’) with =>/’. Thus, t4 is a tuple of the second
type, so /’4 (0, i, i, i). Since t2 agrees with /’4 in D, we know that t2 =/’4. Hence, t4
agrees with/’3 in C (since t2 agrees with/’3 in C). So the A and C entries of t3 are
both i, and hence equal. But in no tuple of r do the A and C entries agree. This is
a contradiction, so chasing rt with T can produce no new AC entries. Hence, rt obeys
T1, since T is an AC-partial TD.

2. rt obeys T2. The only BD combinations that can be generated by chasing rt
with T2 and that are missing have B i, D =/’, /" and/" 0. So/’3 (’,’, c,/’), and
t4 (’, i, C,"). Since/" 0, we know that /’3 (0, f, f, f). Since/" c i, we know t4
(i, i,/’, 0). Now t2 agrees with/’4 in A, so t. (i, i,., 0). Thus, t2 does not agree with/’3
in B, a contradiction.

3. rt obeys T3. Since t2 and t4 agree on D, they are both tuples of the first type
or they are both tuples of the second type. If they are both tuples of the second type
then they are equal, since they agree on D. In this case, either can serve as (. must
have C from t4, and BD from t2). So we can assume that/’2 and/’4 are both of the
first type. The only way that no tuple of rt can serve as is if the B entry of t (and
t2), say i, is greater than or equal to the C entry of t5 (and/’4), say j. So assume =>f.
Let/’3 (a, i’,/",). Since/’2 (i, i,/", 0), we know that </". Similarly,/’4 (i’, i’,/’, 0)
and i’</’. There are now two cases. Case 1. a O. Then, tl, t3 and t5 are all of the
first type. Since/’3 is of the first type, a i’. Now, the B entry of t is i, so the A entry
of tl is i. Thus, a i, so i’. Since i’ </’, it follows that </’, a contradiction. Case
2. a 0. Then i’ =/", so </" i’ </’, a contradiction.

4. rz obeys T4. Since tl and t2 agree on B and C, it follows easily that tl t2.
Thus, can be taken to be t.

5. rt violates To. Let tl (0, 1, 1, 1), t2 (1, 1, 2, 0), /’3 (0, 2, 2, 2) and /’4
(2, 2, 3, 0). Then must be (0,.,., 0), and rz contains no such tuple.

We now show that no finite relation rF in SAT (Tx, T2, T3, T4) violates To. Suppose
rF violates To. Then, GrF contains the configuration in Fig. 7.6 (ignoring X and its
edges), where no tuple in rF can serve as the node marked X (and so t t2), even if
we allow other edges connecting X to tx,...,/’4. By TD’s T1 and T2, we know that
rF must also contain tuples t5 and/’6 such that GrF contains the subgraph in Fig. 7.7.
We do not require that the tuples be distinct. Further applications of T and T2 give
the subgraph in Fig. 7.8, which we shall abbreviate as in Fig. 7.9. We remarked before
that the tuples need not be distinct. Actually, if we extend this chain far enough they

TOOLS FOR TEMPLATE DEPENDENCIES 51

D D

FIG. 7.6

D D

FIG. 7.7

D D D D

FIG. 7.8

FIG. 7.9

FIG. 7.10

FIG. 7.11

cannot be distinct, since rF is finite. The chain must eventually loop back on itself
(Fig. 7.10). By repeated application of the "transitivity" TD, T3, we eventually get
an edge from ti to itself (Fig. 7.11). The self-loop from ti to itself means the same as
the configuration shown in Fig. 7.12, where ti appears twice, and where the exact
identities of t’ and t" do not matter (except that t’[D]= ti/l[D]= t2[D]). As we see,
t’ agrees with t on both B and C. T4 now applies to give us a tuple where Fig. 7.13
holds. But t[A]= t[A] and t’[D]= t2[D], so Fig. 7.14 holds. Hence, serves as the

52 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

slot marked by X in the original figure, a contradiction. Relation rF cannot violate
To, concluding the proof.

Although, as we just proved, there are TD’s To, T1,’", Tk such that
{TI,""", Tk} fin To but for which {T1,’’ ’, Tk} To fails, we now show that this is
impossible if k 1.

THEOREM 7.2. Let To and TI be TD’s. Then Tfin To if and only if T To.
Proof. It is immediate that if T To, then Tfin To. So assume that T1 n To.

We must show that T To. Assume that T is V-partial, and that To is Vo-partial.
Now Theorem 3.4 holds when "" is replaced by "n", by the same proof. So, since
T fin To, it follows that Vo___ V1. So, when we use T to chase the hypothesis rows
of To, it is easy to see that we never need to add a new row whose projection onto
V is already present. No new variables are added in the V1 columns during the chase,
so the chase terminates after a finite number of steps. Thus, as in the theory of the
chase for full TD’s [MMS], if there is a "counterexample" relation that obeys T1 but
not To, then there is a finite such counterexample. The result follows.

D

FIG. 7.12

FIG. 7.13

FIG. 7.14

We note that Theorem 7.2 was proven by Sadri [Sa] in the case where To and
Tx are EMVD’s. Also, Beeri and Vardi [BV1] showed if is a set of V-partial TD’s
and tr a TD, then Z tr if and only if Z nn tr. This implies Theorem 7.2.

8. Closure of full TD’s under conjunction. In this section, weshow that full TD’s
are closed under finite conjunction. That is, we show that if is a finite set of full
TD’s, then there is a single full TD T that is equivalent to E (in other words,
SAT (T) SAT (Y.,)). The same result was obtained independently by Beeri and Vardi
[BV2]. However, we show that the conjunction of a finite set of TD’s (not necessarily
full) is not necessarily equivalent to a single TD, and the disjunction of a finite set of
full TD’s is not necessarily equivalent to a single TD.

TOOLS FOR TEMPLATE DEPENDENCIES 53

Since every multivalued dependency is equivalent to a full TD, it follows in
particular that (the conjunction of) every set of multivalued dependencies is equivalent
to a TD. However, sets of multivalued dependencies that are not only equivalent to
a TD, but even to a join dependency (which are special cases of TD’s), are quite
special [BFMMUY], [BFMY], [FMU].

Our main tool is the direct product construction of Fagin [Fa3]. Let r and r’ be
relations, each with attributes U A1 An. The direct product r(R) r’ has the same
set U of attributes. The possible entries in the Ai column of r(R) r’ are elements (a, a’),
where a is an entry in the Ai column of r, and a’ is an entry in the Ai column of r’.
A tuple ((a 1, a),..., (an, a ’)) is a tuple of the direct product if and only if (a 1,’ ", an)
is a tuple of r and (a ,..., a’,) is a tuple of r’. Fagin [Fa3] shows that if T is a TD
(or even more generally, an embedded implicational dependency), and if r and r’ are
nonempty relations, then T holds for r(R)r’ if and only if T holds for each of r and
r’. This property is called faithfulness of T.

THEOREM 8.1. Full TD’s are closed under finite conjunction.
Proof. It is sufficient to prove that if T1 and T2 are full TD’s, then there is a TD

T that is equivalent to their conjunction; the result then follows by an easy induction.
We use the direct product construction on hypothesis rows of the TD’s T1 and T2.
That is, let T1 be

Cll C12 Cln

Cr Cr2 Crn

al a2 an

and let T2 be

dll d12 din

al a2 an.

We now define a new TD T, that we shall prove is equivalent to T1 ^ T2. The hypothesis
rows of T are the direct product of the hypothesis rows of T1 (treated as a relation)
and the hypothesis rows of T2 (treated as a relation). Thus, let the symbols for the
kth column of T be the product symbols (ik, djk) for 1 _--<i _--<r and 1 <_-/" -<_s, with (ak, ak)
being the distinguished symbol for column k. The rs hypothesis rows of T are all of
the rows of the form

for all and/’. The conclusion row of T is (al, al)(a2, a) (an, an), of course.
T T1, as we can show in one step of a chase by using the mapping that sends

(cj, d) to c for each d. Similarly, T T2.
We shall show, by chasing the hypothesis rows of T, that {T1, T2} T. First, for

each (fixed) j, apply T1 to the r hypothesis rows of the form (cil, dl)" (cn, dn) for
1 <=i _-< r to infer the rows of the form (a 1, dl)" (an, din) for 1 <-/" <_-s. Then apply T2
to these rows to infer

Although the finite conjunction of full TD’s is equivalent to a single TD, we now
show that the finite conjunction of TD’s (not necessarily full) is not necessarily
equivalent to a single TD.

THEOREM 8.2. There is a pair of TD’s whose confunction is not equivalent to a
single TD.

54 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

Proof. It is sufficient to show that there is a finite set T1," ", Tk of TD’s such
that T1 ^ ^ Tk is not equivalent to a single TD. For, if the conjunction of a pair
of TD’s were always equivalent to a single TD, then by induction, the conjunction of
a finite set of TD’s would be equivalent to a single TD.

Let To, T1,. , T4 be the TD’s of 7 (for which {T,. , T4} fin To but for which
{Tx,..., T4} To fails). If T ^. ^ T4 were equivalent to a single TD T, then T fin To,
since {T,. ., T4} n To. By Theorem 7.2, it follows that T To. So, {T1, ’, T4} To.
This is a contradiction. E]

Vardi [Va2] has posed the interesting question as to whether the conjunction of
a pair of V-partial TD’s (for the same V) is necessarily equivalent to a TD.

We now prove a result that implies (by Corollary 8.4 below) that TD’s are not
closed under finite disjunction.

THEOREM 8.3. Let T1 and T2 be incomparable TD’s (that is, neither TI T2 nor
T2 Tx). Then the disfunction T v T2 is not equivalent to a single TD.

Proof. Let r be a relation that obeys T1 but not T2, and let r2 be a relation that
obeys T2 but not Tx. Let r be the direct product r(R)r2. Then by faithfulness of TI,
we know that r does not obey T1, since r2 does not obey T. Similarly, r does not
obey T2, and so r does not obey T1 v T2. However, each of r and r2 obeys rx v r2,
since r obeys T and r2 obeys T2. If Tx v T2 were equivalent to a TD T, then the
faithfulness of T would be violated. E]

COROLLARY 8.4. There are full TD’s T and T2 such that T v T2 is not equivalent
to a single TD.

Proof. Let Tx and T2 be incomparable full TD’s. For example, over three attributes
ABC, let Tx be the MVD A -- B and let T2 be the MVD B - A. By Theorem 8.3,
it follows that Tx v T2 is not equivalent to a TD. El

We note that Ginsburg and Zaiddan [GZ] have considered questions similar to
those discussed in this section, but for FD’s instead of TD’s, by studying intersections
and unions of "functional dependency databases." Classes SAT (E), where E is a set
of FD’s, are calledfunctional dependency classes by Fagin [Fa3]. Functionaldependency
databases differ from functional dependency classes by explicitly defining the domains
for each attribute.

9. A set o[strictly partial TD’s cannot imply a full TD. In this section, we prove
the following result.

THEOREM 9.1. There is a finite relation that obeys every strictly partial TD but
no nontrivial full TD. In particular, if is a set of strictly partial TD’s and cr is a
nontrivial full TD, then it is false that Er (or even that nn r).

We give two proofs of Theorem 9.1, since both proofs are amusing and both give
additional information.

Proof 1. This proof is in the spirit of Sadri’s [Sa] proof that there is a finite
relation that obeys every EMVD that is not a MVD but violates every MVD. Let R
be the relation that contains every tuple consisting only of O’s and l’s except the tuple
of all O’s. For example, if there are three attributes, then R is

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

1 1 1.

TOOLS FOR TEMPLATE DEPENDENCIES 55

This relation obeys every strictly partial TD, since the projection onto each proper
subset V of the attributes U is the Cartesian product of the projection onto each
attribute of V. However, R clearly violates the weakest nontrivial full TD T construc-
ted in the proof of Theorem 3.3. Hence, R violates every nontrivial full TD (if R
obeyed a nontrivial full TD T’, then R would obey T, since T’ T by Theorem 3.3). [3

Proof 2. Let tn be the set of all relations (with attributes U) such that every
entry of the relation is a member of {1,. , n }. Thus,n contains 2nu members, where
u is the number of attributes (that is, the size) of U. If P is a property of relations,
then we say that "almost all relations have property P" (or "a random relation has
property P") if the fraction of members of , with property P converges to 1 as
n . Fagin [Fall showed that if P is a first-order property of relations, then either
almost all relations have property P or almost all relations fail to have property P.
Using his techniques, it is easy to show that if r is a strictly partial TD, then almost
all relations obey tr, while if tr is a nontrivial full TD, then almost all relations violate
O’.

Let Tv be the strongest V-partial TD (which exists by Corollary 3.2), and let
E {Tv: V is a proper subset of U}. Then E is a finite set of TD’s, since U contains
only a finite number of subsets. By the above remarks, for each TD Tv in Y_,, almost
all relations obey Tv (since Tv is strictly partial). Since E is finite, it follows from
elementary probability theory that almost all relations simultaneously obey every
member of E. Furthermore, if tr is the weakest nontrivial full TD, whose existence
is guaranteed by Theorem 3.3 (with V U), then it follows by our earlier remarks
that almost all relations violate tr (since tr is full). Thus, almost all relations obey E
and violate tr. If a relation R obeys E, then it obeys every strictly partial TD, since
if T is a V-partial TD, then T is implied by Tv, which is in E, if V is a proper subset
of U. Further, if a relation R violates the weakest nontrivial full TD tr, then it violates
every nontrivial full TD T (since Ttr). Thus, almost all relations simultaneously
obey every strictly partial TD and violate every nontrivial full TD. This is even stronger
than the statement of Theorem 9.1. 71

10. Finite Armstrong relations. Let E be a set of TD’s. Let E* be {r" E n r}.
Thus, E*n is the set of all TD’s that hold in every finite relation obeying E. A finite
Armstrong relation [Fa3] for is defined to be a finite relation that obeys *n but no
other TD’s. The following facts are easy consequences of results by Fagin [Fa3].

Fact 1. There is an Armstrong relation (not necessarily finite) for . This fact
can be interpreted in two distinct ways, both of which are correct. One meaning is
that there is a relation (not necessarily finite) that obeys every TD in E*= {r" Er},
but no other TD’s. The second meaning is that there is a relation (not necessarily
finite) that obeys every TD in n but no other TD’s; this is true because (*n)* n.

Fact 2. Let be a fixed finite set of TD’s (such as the set of all EMVD’s over
some fixed set of attributes). Then, there is a finite relation that obeys every TD in
*n but violates every TD in 6 that is not in *fin.

In this section, we shall show (Theorem 10.1 below) that the second sentence of
Fact 2 is not necessarily true if is the set of all TD’s (this set is infinite by 6, if
there are at least three attributes). Also, we note that Fagin shows [Fa3] that the
second sentence of Fact 2 is false if "TD" is replaced by "EID" (embedded implica-
tional dependency) and if is the set of all EID’s.

By Theorem 10.1 below, there is a finite set E of TD’s that have no finite
Armstrong relation (although has an infinite Armstrong relation, by Fact 1 above).

56 R. FAGIN, D. MAIER, J. I). ULLMAN AND M. YANNAKAKIS

However, there are certainly some sets Y,, of TD’s that do have a finite Armstrong
relation; for example, if E is the set of all TD’s, then E has a finite Armstrong relation,
namely, any one-tuple relation. Also, we show at the end of this section that if E is
the empty set, then has a finite Armstrong relation. In Theorem 10.2 below, we
give several characterizations of those sets Y_, of TD’s that have a finite Armstrong
relation.

THEOREM 10.1. There is a finite set of TD’s such that E has no finite Armstrong
relation (with respect to TD’s). That is, there is no finite relation that obeys Z’n and
no other TD’s.

Proof. Let Y_, be {T3, T4}, where T3 and T4 are as in the proof of Theorem 7.1.
We shall show that there is no finite Armstrong relation for . Let T be the TD that
looks like To of Theorem 7.1, except that the quadrangle is repeated k times; i.e.,
T is the TD shown in Fig. 10.1.

D D D D

FIG. 10.1

We shall show that 1) for every k, it is false that E fin Tk, and 2) every finite
relation obeying E also obeys some Tk. It follows easily from 1) and 2) that there is
no finite Armstrong relation for E.

1) holds. Let rk be the relation {(i, i, j, 0): 1 -< < =< k + 2} {(0, i, i, i): 1
k + 1}. Then r k is roughly the truncation of the relation rt in the proof of Theorem
7.1 to the first k + 2 positive integers. Now rk obeys E. The proot is exactly the same
as the proof in Theorem 7.1 that r satisfies T3 and T4, However, r k violates Tk. For,
let t2i-1 (0, i, i, i), and t2i (i, i, + 1, 0) for 1, ., k + 1. Then the role of in
the TD Tk must be filled by (0,.,., 0), although r contains no such tuple. We have
shown that r k obeys E but not Tk. This proves 1).

2) holds. Let r be a finite relation that obeys E and that has exactly k tuples.
Consider the TD Tk. Every lp-homomorphism from the graph GTk-{,} to Gr must
map two distinct nodes 2i + 1, 2/" + 1 to the same node (since there are k + 1 odd-
numbered nodes in GT-k -{*} and only k nodes in Gr). Then, as in the proof of Theorem
7.1, we can show that there is a tuple of r that can play the role of ,. Therefore, r
obeys Tk. This completes the proof of 2), and hence the proof of the theorem.

An alternative proof of Theorem 10.1 can be obtained by using Vardi’s result
[Val] that there is a single finite set E of TD’s such that the set of all TD’s tr for
which E n r is not recursive. This result implies that there is no finite Armstrong
relation for E, since we could test whether or not E n tr by simply checking whether
or not the finite Armstrong relation obeys

THEOREM 10.2. Let E be a set of TD’s. The following are equivalent:
(a) There is a finite relation that obeys ,*n and no other TD’s ("E has a finite

Armstrong relation ").
(b) There is a finite set of TD’s, disjoint from E, such that for each TD T not

in Zn there is a TD T’ in 3" where T T’.

TOOLS FOR TEMPLATE DEPENDENCIES 57

(c) There is a finite set of TD’s, disjoint from Xn, such that T v{T" T: 3"}
for each TD T not in

(d) There is a finite set 3- of TD’s, disfoint from Zn, such that v{T" TaZn*n} is
equivalent to v{T’ T’ 3-}.

Note that {T" T’ 3} in (d) is a finite subset of {T" TZn*n} in (d). So, (d) is a
kind of compactness result, that says that a certain set has a finite subcover (that is,
it says that a finite number of disjuncts of v{T’ T Xn*n} "covers" all of it).

Proof. (a)=> (b). Let R be a finite relation that obeys Zn*n and no other TD’s. We
now define a finite set 3- of TD’s, each of which R violates. For each set P of rows
of R and for each set V (V

__
U) of attributes, let 3- contain every V-partial TD with

P as its hypothesis rows that is false about R. It is easy to see that 3 is a finite set
of TD’s. The set is disjoint from X*, since R obeys X*n and violates every member
of ft. Now let T be a TD not in X*n. We must show that there is a TD T’ in ff where
T T’. Assume that T is V-partial. Since T is not in X*n, we know that R violates
T. So, there is a valuation h that maps the hypothesis rows of T onto rows of R such
that there is no way to extend h to get the conclusion row of T mapped onto a row
of R.

Let T’ be the V-partial member of ff whose hypothesis rows are the images
under h of the hypothesis rows of T, and such that for each attribute A in V, the A
entry of the conclusion row of T’ is the image under h of the A entry of the conclusion
row of T. We now show that T T’. For, assume that a relation S obeys T; we must
show that S obeys T’. To show this, assume that the hypothesis rows of T’ can be
mapped by a valuation h’ onto rows of S. We must show that h’ can be extended to
a mapping from the conclusion row of T’ onto a row of S. Now h h’ is a valuation
from the hypothesis rows of T onto these same rows of S. Then h h’ is already
defined on the V entries of the conclusion row of T, and (since T holds for S) can
be extended to map all of the conclusion row of T onto a row of S. This gives us an
extension of h’ to map all of the conclusion row of T’ onto the same row of $, by
mapping the A entry of the conclusion row of T’ (for each A not in V) onto the
same entry of S as the extension of h h’ maps that entry. This was to be shown. So,
T T’, as desired.

(b)=> (c). Let the set 3- of (c) equal the set 3- of (b). Take T not in Xfi*n. By (b),
there is some T’ in ff such that T T’. Hence, T v{T’: T’ if}.

(c) =), (d). Let the set T of (c) equal the set ff of (d). It is obvious that v{T’: T’
v{T" TXn}, since {T" T’T}G{T" T6Xfi*n}. Conversely, we must show that
v{T" T Xfi*n} v{T" T’ 3"}. Let R be a relation that obeys v{T" T X*n}; we must
show that R obeys v{T" T’ 3-}. SinceR obeys v{T" T6 Xn}, this means that R obeys
some T not in X*n. By (c), we know that T v{T’: T’ if}, so R obeys v{T" T’ },
which was to be shown.

(d) =>(a). Assume that (d) holds. By Fact 2 above, there is a finite relation R
that obeys every TD in ,fi*n but violates every member of ft. Since R violates every
member of -, we know that R violates v{T’: T’ 3"}. By assumption, v{T’: T’
is equivalent to v {T’ T X*n}. Thus, R violates v {T" T Xfi*n}. Hence, R obeys Xfi* and
no other TD’s, which was to be shown.

As a simple application of Theorem 10.2, we now show that there is a finite
Armstrong relation for the empty set, that is, that there is a finite relation that violates
every nontrivial TD. Let 3- be the set of weakest nontrivial V-partial TD’s, one for
every subset V, with at least two members, of the set U of attributes. These weakest

58 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

nontrivial V-partial TD’s exist by Theorem 3.3. But this set can play the role of
in (b) of Theorem 10.2. Hence, (a) of Theorem 10.2 holds, and so the empty set

has a finite Armstrong relation.

11. Acknowledgment. The authors are grateful to Moshe Vardi for several useful
suggestions.

REFERENCES

[BFMMUY] C. BEERI, R. FAGIN, D. MAIER, A. O. MENDELZON, J. D. ULLMAN AND
M. YANNAKAKIS, Properties of acyclic database schemes, Proc. Thirteenth Annual ACM
Symposium on the Theory of Computing, 1981, pp. 355-362.

[BFMY] C. BEERI, R. FAGIN, D. MAIER AND M. YANNAKAKIS, On the desirability of acyclic database
schemes, J. Assoc. Comput..Mach., to appear.

[BV1] C. BEERI AND M. Y. VARDI, A proofprocedure for data dependencies, Technical Report, Hebrew
Univ. of Jerusalem, August 1980.

[BV2] ., Formal systems for tuple and equality generating dependencies, Technical Report, Hebrew
Univ. of Jerusalem, April 1981.

[BV3] ., The implication problem for data dependencies, Proc. 8th ICALP, Acre, Israel, July 1981,
in Lecture Notes in Computer Science 115, Springer-Verlag, New York, 1981, pp. 73-85.

[CFP] M. A. CASANOVA, R. FAGIN AND C. PAPADIMITRIOU, Inclusion dependencies and their interaction
with functional dependencies, Proc. First ACM SIGACT-SIGMOD Principles of Database Systems,
1982, pp. 171-176.

[Co] E. F. CODD, Further normalization of the data base relational model, in Courant Computer Science
Symposia 6: Data Base Systems, May 24-25, 1971, R. Rustin, ed., Prentice-Hall, Englewood
Cliffs, NJ, 1971, pp. 33-64.

[De] C. DELOBEL, Normalization and hierarchical dependencies in the relational data model, ACM Trans.
Database Systems, 3 (1978), pp. 201-222.

[En] H. B. ENDERTON, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
[Fal] R. FAGIN, Probabilities on finite models, J. Symbolic Logic, 41 (1976), pp. 50-58.
[Fa2], Multivalued dependencies and a new normal form for relational databases, ACM Trans.

Database Systems, 2 (1977), pp. 262-278.
[Fa3],Horn clauses and database dependencies, Proc. 1980 ACM SIGACT Symposium on Theory

of Computing, pp. 123-134. J. Assoc. Comput. Math., to appear.
[FMU] R. FAGIN, R. A. O. MENDELZON AND J. D. ULLMAN, A simplified universal relation assumption

and its properties, ACM Trans. Database Systems, to appear.
[GZ] S. GINSBURG AND S. M. ZAIDDAN, Properties offunctional dependency families, J. Assoc. Comput.

Math., 29 (1982), pp. 678-698.
[GL] Y. GUREVICH AND H. R. LEWIS, The inference problem for template dependencies, Proc. First ACM

SIGACT-SIGMOD Principles of Database Systems, 1982, pp. 221-229.
[MMS] D. MAIER, A. MENDELZON AND Y. SAGIV, Testing implications of data dependencies, ACM

Trans. Database Systems, 4 (1979), pp. 455-469.
[MM] A. MENDELZON AND D. MAIER, Generalized mutual dependencies, in Proc. 1979 Very large

Data Bases Conference, pp. 75-82.
[Ni] J.-M. NICOLAS, Mutual dependencies and some results on undecomposable relations, in Proc. 1978

Very Large Data Bases Conference, pp. 360-367.
[PJ] J. PARADAENS AND D. JANNSENS, Decomposition of relations: A comprehensive approach, in Formal

Bases for Databases, J. Minker and H. Gallaire, ed., Plenum, New York, 1978.
[Ri] J. RISSANEN, Theory ofrelations]’or databasesmA tutorial survey, Proc. 7th Symposium on Mathemati-

cal Foundations of Computer Science, Lecture Notes in Computer Science, 64, Springer-Verlag,
New York, pp. 537-551.

[Sa] F. SADRI, Personal communication.
[SU] F. SADRI AND J. O. ULLMAN, Template dependencies: a large class of dependencies in relational

databases and its complete axiomatization, J. Assoc. Comput. Mach., 29 (1982), pp 363-372.

TOOLS FOR TEMPLATE DEPENDENCIES 59

[SW] Y. SAGIV AND S. WALECKA, Subset dependencies and a completeness resultfor a subclass ofembedded
multivalued dependencies, J. Assoc. Comput. Mach., 29 (1982), pp. 103-117.

[Val] M. Y. VARDI, The implication and finite implication problems for typed template dependencies, in
Proc. First ACM SIGACT-SIGMOD Principles of Database Systems, 1982, pp. 230-238.

[Va2], Private communication, Oct. 1981.
[YP] M. YANNAKAKIS AND C. PAPADIMITRIOU, Algebraic dependencies, Proc. 1980 IEEE Symposium

on Foundations of Computer Science, pp. 328-332.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1201-0004 $01.25/0

BOUNDS FOR MULTIFIT SCHEDULING ON UNIFORM PROCESSORS*

D. K. FRIESENt AND M. A. LANGSTON

Abstract We examine the nonpreemptive assignment of N independent tasks to a system ofM uniform
processors with the objective of reducing the makespan, or the time required from the start of execution
until all tasks are completed. Since the problem of finding a minimal makespan has been shown to be
NP-hard, and hence unlikely to permit an efficient solution procedure, near-optimal heuristic algorithms
have been studied. It is known that LPT (longest processing time first) schedules are within twice the length
of the optimum. We analyze a variation of the MULTIFIT algorithm derived from bin packing, and prove
that its worst-case performance bound is within 1.4 of the optimum.

Key words, multiprocessor scheduling, worst-case performance, heuristic algorithms, bin packing,
uniform processors, near-optimal schedules, independent tasks

1. Introduction. A well-known deterministic scheduling problem concerns the
nonpreemptive assignment of independent tasks to a set of processors in an effort to
minimize the makespan (the total elapsed time from the start of execution until all
tasks are completed). A multiprocessor system consists of a set of processors denoted
by P {P1, P2," ’, PM}. We seek to best schedule a list L {al, a.,. ., ar} of tasks
to P, each task a having a length or size s (a). We restrict our attention to nonpreemptive
scheduling, whereby a task, once assigned to a particular processor, may not be
removed until it has finished execution. It is assumed that the elements of L are
independent, i.e. do not require scheduling in accordance with any precedence con-
straints.

This problem has been demonstrated to be NP-hard, and is therefore as intractable
as those in a large class of notoriously difficult problems (see [GJ] and [U1] for a
detailed discussion). It is unlikely that there exists a polynomial-time algorithm for
producing a minimal makespan, so we consider heuristic algorithms in hope of
providing near-optimal results.

When all elements of P are exactly the same, we say that we have an identical
multiprocessor system. For this special case the LPT (Largest Processing Time first)
algorithm has been analyzed [Gr] and proved to have a "tight" worst-case performance
bound of)-1/2M. Informally, this means that the length of an LPT schedule can be
no more than about 33% longer than the optimum. Techniques derived from bin
packing are used in the MULTIFIT algorithm [CGJ]. It has been shown [Fr] that the
worst-case performance of MULTIFIT lies between 1.1818 and 1.2.

We consider here a more general model, that of a uniform multiprocessor system,
in which the elements of P may differ in speed. We associate with P a set of relative
speeds {rl, r2,’ , r,}, where ri denotes the ratio of the speed of Pi to that of P1. This
problem has drawn considerable attention [CS], [HS], ILL]. It is known from [GIS]
that the LPT algorithm can be implemented such that its worst-case bound is between
1.5 and 2 times optimal. In this paper we modify the MULTIFIT algorithm for the
uniform multiprocessor case and prove that its worst-case performance is substantially
better than the LPT algorithm, with a worst-case bound lying between 1.341 and 1.4.

Our work is organized as follows. The next section introduces the necessary
notation and discusses some implementation details and preliminary results. In 3,

Received by the editors July 17, 1980, and in final revised form April 25, 1982.

" Division of Computer Science, Department of Industrial Engineering, Texas A&M University,
College Station, Texas 77843.

Department of Computer Science, Washington State University, Pullman, Washington 99164.

60

BOUNDS FOR MULTIFIT SCHEDULING 61

we assume the existence of a counterexample to our desired bound of 1.4, and hence
the existence of a minimal counterexample whose properties we analyze. Section 4
contains the proof of our main result. We show that MULTIFIT can do no worse
than 1.4 times the optimum by establishing a contradiction based on the presumed
existence of a counterexample.

The final section of this paper contains the worst example we have found and
some remarks and suggestions for further research.

2. Notation and preliminary results. In this section we describe the notation we
use in the proof of Theorem 4.1 and some results needed to state it. To transform a
scheduling problem to a bin packing problem, we consider each processor as a bin
and, in the case of identical processors, the size of the bin corresponds to the schedule
length or deadline (see [CGJ] for more details). Extending this idea to uniform
processors, we fix the bin size corresponding to one of the processors, say P1,
the slowest one. Then for the ith processor P we let its bin size be r times that
of P1, where r is the ratio of the speed of P to the speed of P1. We assume that
rl <-r2 <-" <=rM.

The FFD bin packing algorithm arranges the list of items in nonincreasing order
of size. Then each item in the list is placed in the first bin (the Pi with smallest subscript)
in which it will fit. To change deadlines, all bin sizes are multiplied by a constant, or
expansion factor. We would like to find the smallest expansion factor, R0, such that
any list that can be packed in a set of bins of sizes {a 1, O2, aM}, will be successfully
packed by the FFD algorithm when the bin sizes are multiplied by the expansion
factor R0.

If there are M processors, we use P {P1, P2,’’", Pt} to denote the M bins of
the FFD packing and P* to denote those of the optimal packing. We let a denote
the size of P*, let R be the expansion factor (i.e. the ratio of the size of P to that of
P*), and let fl =Ra. We use FFD(fll, L) to describe the success or failure of the
packing. If the FFD packing of a list meets the deadline, then FFD(fll, L)= succeed.
If the packing fails to pack all items of L, we set FFD(/I, L)= fail. Our main result
states that FFD(/31, L) succeed if/31 >= ct 1.

To implement the algorithm MULTIFIT, we need an upper bound and a lower
bound for the FFD schedule length. Then a binary search can be used to find an
acceptable schedule. Note that the binary search is not guaranteed to find the least
FFD binsize which works for a particular list. But since any/31 greater than or equal
to Roa will suffice (see [CGJ] for a discussion of this "monotonicity" property), we
know that the binary search will converge to a binsize <_-Roa 1.

We utilize the results on LPT schedules to obtain the needed lower and upper
bounds. We know from [GIS] that LPT can do no worse than twice the optimum.
We thus first apply the LPT algorithm and then use"

lower bound max / rl+" .+r’ 2LPT
upper bound LPT.

Naturally, if each iteration of our binary search fails to produce an acceptable FFD
packing and the binsize converges on the upper bound, we select the LPT schedule
since it must already be at most R0 times the optimal schedule length.

Following the discussion in [CGJ] and using the techniques described in [Jo], k
iterations of MULTIFIT can be performed in O(N logN + kN log M) time, compar-
able to the LPT timing of O(N log N +N log M). For large N, the time required for

62 D. K. FRIESEN AND M. A. LANGSTON

both algorithms is dominated by the O(N log N) term of the initial sort. Using a
binary search scheme, no more than seven iterations of MULTIFIT are necessary to
produce a schedule whose finish time is less than or equal to (R0 +.01) times optimal.

3. Properties of a minimal counterexample. We suppose now that a-

{a l, a2,’" ", ct} is a set of optimal bin sizes and that there is a list of items L such
that FFD (/31 a 1, L) fail. To simplify our argument we assume that L is minimal--
that no set of fewer than M bin sizes can be used to provide a counterexample and
that, given M, no list with fewer than L items will fail to be packed into a by FFD.

Thus we can assume that the FFD packing with expansion factor packed all
items but the last. For convenience we normalize all bin sizes and item sizes so that
the final item has size 1. Then every bin Pi is filled to more than/3i- 1.

In this minimal counterexample, we use the concept of domination from [CGJ]
to prove our cancellation lemma, Lemma 3.1. Let I and J be ordered sets of indices
representing sets of bins in P or P*. We say that I dominates J (or alternatively, that
the bins of I dominate the bins of J) if there is a one-to-one mapping f from items
packed in the bins represented by J to items packed in the bins represented by I such
that for any in a bin of J, =f(/) if is in a bin of I and s(1) <=s(f(1)) otherwise.

LEMMA 3.1. Let I, J
0 and I <=J for 1 <- k <= n, then P cannot dominate U iJP.

Proof. Suppose we do have such domination. Consider the removal of all items
in U istPi from both packings, leaving n empty bins in the FFD packing. Next we
modify the optimal packing as follows’ (1) move each remaining element of U ijPf
to the position formerly occupied by f(l), leaving n empty bins since f(l) does not
belong to a bin of J, and (2) for k 1, 2,..., n, move all items in Pg* to Pj*. Now
delete LI itc from a. Thus we have constructed L’=L- U gP <L and M’
M-n <M such that FFD (/31, L’)= fail, contradicting the presumed minimality of L
and M.

As a simple consequence we can show that each bin P* for our minimal counter-
example must contain at least two elements.

LMMA 3.2. If P’*, is any bin in the optimal packing of L, then]P.*, ->- 2.

Proof. Suppose P* {x}. Since x would fit in Pg either the first item placed in P
is as large as x, and P dominates P/*, or x was not available when Pi was packed.
Then x e Pi,/" < and Pi dominates P*. Thus Lemma 3.1 is contradicted in either
case.

Since s(a)->_ 1 for all a, we can conclude from this lemma that O 2 for all i. For
any set A of items, let S(A) YaA S (a).

LEMMA 3.3. If levi then s(Pi)>-.
eroo[. Since
LMMA 3.4. If S (Pi) < s (e.*,), then s (Pi) < ci < -.
Proof. If), then
LZMMA 3.5. I Pg is any bin of the FFD packing such that IPl>_-2, then s(P)>=

s(e.*,).
Proof. Assume s(Pi)<s(Pi*). Then cg < by Lemma 3.4. Thus by Lemma 3.2

and the fact that any element has size __-> 1 we have IPI]P*[2. Let P* {a, b }, s (a) _->
s(b), Pi ={u, v}, s(u) >-s(v).

Suppose s (a) > s (u). Then a must have been packed before u. Thus a e pi,/" < i.
By Lemma 3.2,/3. ai =>. Moreover s (a) + s (b) < < and hence b would at in Pi.
Thus b e P, k </’, else Pi would dominate P*. But then P must also contain an item
at least as large as a since/3 <_- and a <_--. Hence P dominates P*. In either case,
we contradict Lemma 3.1.

BOUNDS FOR MULTIFIT SCHEDULING 63

Suppose now that s (a) <_- s (u). If s (b) <_- s (v), then Pi would dominate P*. Thus
s (b) > s (v) and either b Pj,/" < i, or s (u) + s (b) >/3i. Noting that s (v) _-> s (b) 1/4, since
s(b)<-_ai _-< 4s- and s (v) > 1, we then have in the latter case, s(u)+s(v)>/3i -1/4 ai 41- >
ai >- s (P.*,), contradicting our original hypothesis.

In the former case, u would have fit in Pi since s (u) < s (Pi) < s (P*) < - < _-< aj -/3i
by Lemma 3.2. Thus Pi contains both b and some item such that s(t)>-s(u) >-
s(a).Hence Pj dominates P*, again contradicting Lemma 3.1.

The bins of P will be classified by type according to the following scheme. If,
after P receives its first item, there is a total of k items in Pi when the next item is
placed in a bin that follows Pg, then Pg is called a k-bin. (Note that this excludes the
possibility of having 0-bins.) If no additional items are placed in Pi it is called a regular
k-bin, otherwise it is called a fallback k-bin and the subsequent item, or items, are
called fallback items. Items in a regular k-bin will be called items of type Xk, the first
k items in a fallback k-bin will be of type Yk and fallback items of type F.

The final step in preparation for the proof of the main result is to define a weight
function w. We do this by assigning the weight w(a) of an item, a, to be s(a) if a is
an item of type XI and s(a)<- w(a) will be s(a)--} if one of the following holds"

(1) a is a fallback item in a fallback 1- or 2-bin;
(2) a is in a regular 2-bin P, and P* contains no items of type XI;
(3) a is an item of type YI in a fallback 1-bin Pi, and P* contains no items of

type XI;
(4) a is an item of type Y2 in a fallback 2-bin Pi such that s(Pi) > s(P.*,) + .

In all other cases w (a) s (a) . This information is summarized in Table 3.1.
We extend the function w to sets of items by w(A)= YaA w(a). In the next

section we will show that w (P)>_-w (P*) for almost all bins. Using this we can prove
that the FFD algorithm will pack the items of L in bins at most the size of the
optimal packing.

TABLE 3.1
Item types and weights

Bin type Item types Restriction Weights

Regular

Fallback

Regular 2

Fallback 2

Xl s(Pi) <=!

Y1, F P/* contains no X1
P/* contains anX

--, ---oo,
X2 P* contains noX

P* contains anX s

Y2, F s(P,)<-s(P)+ S-xX6, s-
s(Pi)>s(P’*,)+- s-,s--

Other Other -N

4. Proof of the main result. In this section we prove that using the MULTIFIT
algorithm for scheduling uniform processors produces a schedule whose length is at
most times the minimal schedule length, that is, FFD (/g a 1, L)= succeed for any
list L. In a sequence of lemmas preceding the result, we narrow the possibilities that
could occur in a minimal counterexample. Using the weight function w described in
3, we show that in almost all cases, the sum of the weights of the items in an

FFD-packed bin Pi is at least as great as the sum of those in the corresponding optimal

64 D. K. FRIESEN AND M. A. LANGSTON

bin P*. Moreover, in all cases but one, if w (Pi)< w (P*) then the loss is compensated
for by a gain in an easily specified bin Pj.

LEMMA 4.1. If Ie, 1, then w (ei) >- w (P.*,).
Proof. If ai <, then by Lemmas 3.2 and 3.3, P* cannot contain an item of type

Sl. Hence w (P*) -< a, 2(). In this case w (Pi) s (Pg) => lag 1 and a, 1 => c 51-
since ag-> 2, by Lemma 3.2.

If a, >, w(P) > s(P,) 0 >s7-a 1 0. Thus all we need to show is that]a, 11
--i-6>

a. This is true for all a >, and a >- >. El
LEMMA 4.2. IfPi is a fallback 1-bin, then w (Pi) >-- w (P*i).
Proof. Suppose w (P) < w (P*). (Note that the first item of P must be larger than

half the bin size.)
Case 1. Suppose Ie, k-> 3. Since P is a fallback 1-bin, the first item placed

must be larger than the sum of the other k- 1 items. Hence s(P)> 2(k- 1) and also
s(Pi)>i-1.

Case 1A. Suppose P* contains no X1 items. Then w (Pi) -> max (57-ct 1 k,
2(k 1)-51-k) and w(P.*,)<=ai- since IP,* I_-> by Lemma 3.2. If w(P/*) > w(P,) then

and hence

c <2 +k.

Also

2(k-1)-k <oe,-

and hence

Combining these yields

implying

k < < 3, a contradiction.

Case lB. Suppose that there is exactly one X1 item in P*. Then w(Pi) >-
max (c 1-1/2(k 1)-, 2(k 1)-1/2(k 1)-) and w(P*)<-ai-o. As in Case 1A
above, we derive s9-k- < 2 + 1/2k and thus k < 3, a contradiction.

Case 1C. Suppose P* contains two or more X items. Then w(P) >-
max(57-a-l-1/2(k-1)-, 2(k-1)-51-(k-1)-)and w(P*)<=a. If w(P*)>w(P,)
thena, 1 1/2(k 1) <a, andhencea,<+-k2 Also 2(k 1) 1/2(k 1) < a and
hence k 19 83

-r6 < a. Combining these yields k < < 4. Thus k 3. From Lemma 3.3
we know that a->_ since P contains two X1 items. This implies fli >-12- Hence

63s(P) > + 2 since the first item is at least the bin size. From the table, k 3
implies w(P)>=s(P)-1/2. Thus w(P)>2-->+k >ai>w(P.*,).

Case 2. Suppose IPI 2. Let P ={/, m}, s(l)>=s(m).

BOUNDS FOR MULTIFIT SCHEDULING 65

Case 2A. Suppose P contains an item of type X1. Then according to the table,
w(P,) s(Pi) >7oi 3

r6. Since w(P) <i in any case, we are done if
(i.e. a, =>). So assume ag < Then, since 2(59-) >, P* cannot contain two items of
type X1 by Lemma 3.3. Thus w (e*) <- s (P*) . If w (Pg) < w (P*), then

7 13

and hence

ag<3.

Thus the size of the Xl-item, x, is less than 2 by Lemma 3.2.
Since Pg is a fallback 1-bin, 2s(/)> 57-ai and hence

s(l) > > s(x).

We must now have s(l)> or would be an item of type Xx packed before x since
it would fit in any bin. Hence

w(Pi) >=s(l)+ s (m) 1-3-6 >0> 3 >Oi,

Case 2B. Suppose P* contains no item of type X1. In this case, w(Pi)= s(Pi)-
and w (P*) =< s (P*) . If w (Pi) < w (P*), then

and

oi <3.

Thus IP,*I 2 and we let P* {a, b }, s (a) => s (b).
17Since Pg is a fallback 1-bin, s(1)> (sai)=ai. If s(a)> s(1), then s(a)>ai and

1 -< s (b) < 1-a6ag. From this it would follow that ag >, contradicting ag < 3. We conclude
that s(a)<=s(l). Also, we note that if s(/)>, s(Pg)> and w(Pi)>>ai > w(P*).
Thus s (l) <= and every Pk, k < i, contains an tem => in size.

If s (b) <- s (m), Pi would dominate P/*, so we assume s (b) > s (m). Suppose b s Pk,
k <i. Then P contains an item c with s(c)>=s(l)>-s(a) and Pg dominates P*. Thus
b must have been available when m was packed. Since it wasn’t used, b must not
have fit and

while

Subtracting, we obtain

and

s (l) + s (b >-oti

s(l) + s(m)-<- w(Pg) < w(P.*,)<-ag-7.

s b > -0l -[" s m >-- -,

cg > s (a) + s (b) > 2s (b) > 3, a contradiction.

LEMMA 4.3. If [P/I 2 and Pi is regular, then w (Pg) >= w (P*i).
Proof. Suppose w (Pg) < w (P.*,).
Case 1. Suppose P* contains an item of type X1. Then ai >= since s (P*) >- + 1

by Lemma 3.3. w(Pg) s(Pg)->=ag-. If ai >=3, ag->=ag so we can assume ag <3,
IP*I--2, and P* contains just one item of type X1 (by Lemma 3.3), but then

66 D. K. FRIESEN AND M. A. LANGSTON

w (P*) <-_ a o and
7 56-< Oi ?0

would imply

ag <, contradicting ag >_-
Case 2. Suppose P/* contains no item of type X1. Then

7w(Pi)>-_ai-- and w(P*i)<-ai--.

Solving for ai we get a < 3 if w(P) < w(P*i). Thus IP/*] 2. Let P* {a, b}, s(a)>=s(b)
and Pi ={u, v}, s(u)>-s(v).

Suppose s (a) > s (u). Since a < 3, s (a) < 2. Then a Pj, /" < i. If Pj does not
dominate P*, then Pi cannot contain a second item as large as b. Thus either b Pk,
k </’, or s (a) + s (b) > fl. >_- . In the former case, Pk dominates P* since Pk must contain
an item at least as large as a since a is available and would have fit in Pk. Thus
s (a) + s (b) > fli and Pi is a fallback 1-bin since a is not an X1 item by assumption. By
Lemma 3.2, [Pf[>= 2. If Pf contains an X1 item, aj >_- by Lemma 3.3 and s (a) + s (b) >
57-a > 3 >ai, which is impossible. Thus P[can contain no X1 items and w(a) s(a)-.
Hence w(P)<-a-. Since w(Pi)>=a-, if w(P)< w(P.*,) we would have ai < 1-4-.
But now s(a)+s(b)<-< and s(a)+s(b)<3i, a contradiction.

Suppose now that s (a) -< s (u). If s (b) -_< s (v), then Pi dominates P*, so we conclude
s (b) > s (v). Moreover, if b Pj, f < i, Pi would dominate P/* since P. must contain an
item at least as large as a. Thus

(i) s(u)+s(b)>i

since b was available and not used. But s(u)+s(v)-<= w(P) < w(e.*,)<ag- so

(ii) s(u + s(v) < ai + .
Subtracting (ii) from (i) we get s(b) >ag-+s(v)>= and ai => 2s(b) >> 3, a contra-
diction. U

LZMMA 4.4. If Pi is a fallback 2-bin, then w (P) >- w (P).
Proof. Assume w (Pi < w (P*).
Case 1. Suppose IP] k -> 4. Since P is a fallback 2-bin, the size of the second

item packed in P is more than the sum of the sizes of the k- 2 smallest items. Hence
s(Pi) > 3(k -2) and w(P) > 3(k -2)-k. Also, as usual, w(ei) fli- 1 --k. If w(P) >
w (Pg), then]ai 1 k <a and hence ag < - + 1/2k. Also 3(k 2)-k < ai and hence

85k 6 < a. Thusk 6 < + 1/2k. Solving this inequality for k yields k < < 4, contra-
dicting the assumption of Case 1.

Case 2. Suppose Ie, 3. Let Pi {u, v, m }, s (u) ->- s (v) >- s (m).. > , then w (Pi) >Case 2A. s(P) s(P*)<-. Then w(P)=s(P)->-_a If a--
-ai7 _>=ai >= w(P*i). Hence we may assume ai <}, Ie*l <= 3, and P/* cannot contain
more than one item of type X1, since each such item has a size exceeding 59-. Thus
W (e) o 1-, and if w (ei) < w (P) we have

s(Pi)<a,+
since w (Pi S (Pi .

7Since P is a fallback 2-bin, s(u)+2s(v)>sa. But s(u)+s(v)+s(m)<ag+.
Subtracting we get s(v) > ag + s(m) >= , since a -> 3. s(Pi) >- 2s(v) + 1 -> 4 and, since
ai < , 4 <a + <, which is impossible.

Case 2B. s(P,)-s(P*i)>-. Then w(Pi)=s(Pi)-->s(P*i)>=w(P*i). [3

BOUNDS FOR MULTIFIT SCHEDULING 67

LEMMA 4.5. If levi 4, then w (Pi) >= w (P.*,).
Proof. Lemmas 4.2 and 4.4 take care of the cases in which P may be a fallback

1- or 2-bin. Thus for any aPi, w(a)=s(a)-o>--s(a). Hence w(P)>=s(e)>=
()(57-a, 1). If w (P) < w (P/*), then

9 7i-6(-ai 1) <

and
13 9 45

45Then 57-a < < 5 and IP,
LEMMA 4.6. If w(P)<w(Pf), then P is a regular 3-bin,]P*I=2, P.*, contains

exactly one X type item, and
Proof. Suppose w (P)< w (P*). From Lemmas 4.1-4.5 we know that P must be

a regular 3-bin. Hence w(Pi) s(P)-o>a-1- and Ol. w(P)> w(Pi) implies
a--< Consequently Ie,*l -< 3, and P/* cannot contain two items of type X or one
such item and two other items. If IP*[=3, then the fact that, by Lemma 3.5,
s (P) > s (P*) implies w (P,) > w (P*) since w (P*) s (P*) . If IP/*I 2 and Pg* con-
tains no X- type item, then w (P/*) <- O 1/2 and

7
-i l < i --implies a <. But then s(P) >_- 3 implies a- 1 ->3 and hence a _>_a, and so we have

our final contradiction.
LEMMA 4.7. Let w (P,) < w (P* and P* {x, z }, x P,, i < I, x an X1 item, z not.

Then there is at most one such bin Pt for which w (P,) + w (P,) < w (P* + w (P).
Proof. From Lemma 4.6 we know that if w(Pt)< w(P*), Pt is a regular 3-bin,

9Pt* ={x, z} where x is an item of type X and az< Thus P, ={x}, s(x)<_-at- l_-<a.
65Since s(x)> 57-cq 1 we must have < and IPI 2. Let P {a, b}, s(a)>= s(b). If

65a were of type X1, , > 9- + 1 >. Hence, for each of a, b, and z, w (*)-<_ s(*)- ,lo.
If any of them satisfy w (*)= s (*)- 1-, then

w (P, + w (Pi >
2w (l"*, + w

If w(Pt)+ w(Pi) < w(P*t)+ w(P), then
19

and
19

Thus at <-2 < But az _-> + 1 , and we conclude that none of a, b, and z
satisfies w (*) s (*) k (hence all satisfy w (*) s (*)).

Let Pk be the first regular 3-bin. Then unless one of a, b, z is placed before Pk,
P U Pi would dominate P* UP since P contains the three largest available items.
Thus at least one of these three must precede the regular 3-bins. If s (a) + s (b) + s (z) _->
6, then a, + a _-> 5 by Lemma 3.3 and w
w(P*i) + w(P’). We see that the maximum size for the item preceding the regular
3-bins is 56-. If such an item were a fallback item, its weight would be less than its
size. Therefore it is a regular item. The only remaining possibilities are that the item
be in a regular 2-bin or a fallback 2-bin since if the largest item placed in a bin has
size =<, the bin cannot be a regular 1-bin, or a fallback 1-bin since the first item
packed in a fallback 1-bin must be larger than half the bin size.

68 D. K. FRIESEN AND M. A. LANGSTON

Suppose the bin, P, containing this item is a fallback 2-bin. Then since a third
item of size -<56- would not fit, while one of size -> 1 does fit, a-s(P)< and
s(P)-s(P.*,) > , causing each item in P to have weight 1/2 less than its size, a contra-
diction.

The last possibility is for P to be regular 2-bin. If P* contains no X-type item,
the items in P have weight 5

a- less than their size. Thus P* must contain an X-type
item O > 59-q- 1 and ji 2. If both items in Pi are less than in size, s (Pi) would
be less than ji- 1. Thus Pi can contain only one such item and hence there can be at
most one such 2-bin, namely the last regular 2-bin preceding P, since all later bins
have size at least 98 98and 3(56-) <

The proof of the main result is now easy.
THEOREM 4.1. FFD (/3 57-a 1, L)= succeed for any list L.
Proof. If the theorem fails we may choose L to be a minimal counterexample.

Using the weight function w, and grouping by FFD bins,

1
w(L) Y w(Pt)+ 1---

i=1 10

since the last item has size 1 and weight 1- o. Using the optimal bins,

w(L)= Y w(P).
i=1

For the exceptional bin Pt mentioned in Lemma 4.7,

w (P) s (Pt) , since P is a regular 3-bin,

and

w (Pr*) <= s (P*) , since Pt* contains exactly one X item.

Since s (P) _-> s (P*) by Lemma 3.5 we have

w(P,)>-w(P)-1/2.
For the remaining bins, w U P) -> w U tP*). Thus

M M

w(L)= Y w(P,)+l-0>_- E w(P*)-1/2+l-o>w(L),
i=1 i=1

and we have a contradiction.

5. Remarks. In the previous section we have shown that our version of MULTI-
FIT for uniform processors will produce a schedule whose length is at most 57- times
the optimum. In the arguments used, enough slack exists for the bound to be tightened.
However, the difference is very slight and even a bound of 1.39 would entail
significantly more work. The worst example we know of, Example 1, is a little more
than 1.341 times optimal. (The interested reader may note that Example 1 can be
modified to show that R0=> any r such that 2r3 +4rz- 3r-8 0.) Thus we can only
conclude that 1.341 < R0 < 1.4.

At this point, it may be appropriate to mention a few other implementation
considerations. We assume our bins are sorted in nondecreasing order initially. In
terms of worst-case performance this is preferable to the reverse ordering. As Example
2 shows, sorting the bins in nonincreasing order allows instances for which the FFD
algorithm fails for expansion factors up to 1.5, while for our ordering, Theorem 4.1
insures that R0 -< 1.4.

BOUNDS FOR MULTIFIT SCHEDULING 69

Example 1. FFD packing with nondecreasing bin size. N 12, M 6. Item sizes
are 1.683, 1.683, 1.683, 1.299, 1.299, 1, 1, 1, 1, 1, 1, 1. Optimal bin sizes are 2, 2,
2, 2.683, 2.982, 2.982.

For R in [1, 1.341], FFD fails. See Figs. 1 (a) and (b).

1.299

1.299

1

1

1 2
FIG. l(a). Attempted FFD packing with R in [1, 1.341]. Item of size left over.

3

11.683

1.299

1.683

2

FIG. l(b). Optimal packing.

Example 2. FFD packing with nonincreasing binsize. N M + 1. Item sizes are
2, 2-e, 2-2e, 2-3e,..., l+2e, l+e, 1, 1. Bin sizes are 2, 2, 2-e, 2-2e, ...,
1 +2e, 1 +e.

FFD fails for R in

{3 3-e 3-2e
1, min

2’ 2 2-e
2+e 2 } 3-e
l+2e’ l+e 2

3)which approaches as e 0

See Figs 2(a) and (b).

Fro. 2(a). Attempted FFD packing with R in [1, 1.5). Item of size 1 left over.

FIG. 2(b). Optimal packing.

70 D. K. FRIESEN AND M. A. LANGSTON

[CGJ]

[cs]

[Fr]

[GIS]

[GJ]

[Gr]

[HS]

[Jo]
[LL]

[U1]

REFERENCES

E. G. COFFMAN, JR., M. R. GAREY AND D. S. JOHNSON, An application of bin-packing to

multiprocessor scheduling, this Journal, 7 (1978), pp. 1-17.
Y. CHO AND S. SAHNI, Bounds for list schedules on uniform processors, this Journal, 9 (1980),

pp. 91-103.
D. K. FRIESEN, Tighter bounds for the MULTIFITprocessor scheduling algorithm, this Journal, to

appear.
T. GONZALES, O. H. IBARRA AND S. SAHNI, Bounds for LPT schedules on uniform processors,

this Journal, 6 (1977), p. 155-166.
M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of

NP-Completeness, Freeman, San Francisco, 1979.
R. L. GRAHAM, Bounds on multiprocessor timing anomalies, SIAM J. Appl. Math., 17 (1969),

pp. 416-429.
R. HOROWTZ AND S. SAHNI, Exact and approximate algorithms for scheduling non-identical

processors, J. Assoc. Comput. Mach., 23 (1976), pp. 317-327.
D. S. JOHNSON, Fast algorithms for bin packing, J. Comput. System Sci., 8 (1974), pp. 272-314.
J. W. S. LIU AND C. L. LIU, Bounds on scheduling algorithms for heterogeneous computing systems,

Proceedings of the 1974 IFIP Congress, 1974, pp. 349-353.
J. D. ULLMAN, Complexity ofsequencing problems, in Computer and Job-Shop Scheduling Theory,

E. G. Coftman, ed., John Wiley, New York, 1976, Chap. 4.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1201-0005 $01.25/0

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK
IN O(n log2 (n)) TIME*

JOHN H. REIFI"

Abstract. Let N be a planar undirected network with distinguished vertices s, t, a total of n vertices,
and each edge labeled with a positive real (the edge’s cost) from a set L. This paper presents an algorithm
for computing a minimum (cost) s-t cut of N. For general L, this algorithm runs in time O(n log (n)). For
the case when L contains only integers =< n <1), the algorithm runs in time O(n log(n)log log (n)). Our
algorithm also constructs a minimum s-t cut of a planar graph (i.e., for the case L {1}) in time O(n log (n)).
Our algorithm can also be used to compute a minimum cut for a general undirected planar network.

The fastest previous algorithm for computing a minimum s-t cut of a planar undirected network (Itai
and Shiloach [SI.AM J. Comput., 8 (1979), pp. 135-150]) has time O(n log (n)); the s-t cut is a byproduct
of the maximum flow computed by their algorithm. The best previous time bound for minimum s-t cut of
a planar graph (Cheston, Probert and Saxton [report, Dept. Computer Science, Univ. Saskatchewan, 1977])
was O(n2).

Key words, planar, network, minimum s-t cut, graph algorithm

1. Introduction. The importance of computing a minimum s-t cut of a network
is illustrated by Ford and Fulkerson’s [6], [7] theorem which states that the value of
the minimum s-t flow of a network is precisely the minium s-t cut. The best known
algorithm (Sleator [12] and Sleator and Tarjan [13]) for computing the maximum s-t
flow or minimum s-t cut of a sparse directed or undirected network (with n vertices
and O(n) edges) has time O(n 2 log (n)). This paper is concerned with a planar
undirected network N, which occurs in many practical applications.

Ford and Fulkerson [6], [7] have an elegant maximum s-t flow algorithm for the
case N is (s, t)-planar (both s and are on the same face) which when efficiently
implemented by priority queues as described in Itai and Shiloach [9] has time
O(n log (n)). Moreover, O(n) executions of their algorithm suffice to compute the
maximum flow of a general planar network in total time O(n log (n)). Also, Cheston,
Probert and Saxton [3] have an O(n) algorithm for the minimum s-t cut of a planar
graph and Shiloach [9] gives an O(n log (n))2 algorithm for the minimum cut of a
planar graph.

Let OL(n) be the asymptotic time complexity to maintain a priority queue of
O(n) elements with costs from a set L of nonnegative reals, and with O(n) insertions
and deletions. For the general case, OL(n) O(n log (n)) as described in Aho, Hopcroft
and Ullman [1]. For the special case when L is a set of positive integers <- n (1), Boas,
Kaas and Zijlstra [2] show OL(n) O(n log log (n)). It is obvious that if L is of constant
cardinality then O(n) O(n).

A key element of the Ford and Fulkerson [6], [7] algorithm for (s, t)-planar
networks was an efficient reduction to finding a minimum cost path between two
vertices in a sparse network. Dijkstra [4] gives an algorithm for a generalization of
this problem (to find a minimum cost path from a fixed "source" vertex s to each
other vertex). Dijkstra’s algorithm may be implemented (see Aho, Hopcroft and

* Received by the editors February 27, 1981, and in revised form February 1, 1982. This work was
supported in part by the National Science Foundation under grant NSF-MCS79-21024 and the Office of
Naval Research under contract N00014-80-C-0647.

t Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.
We assume throughout this paper that our machine model is a unit cost criteria RAM (see Aho,

Hopcroft and Ullman [1]).

71

72 JOHN H. REIF

Ullman [1]) in time O(QL(n)) for a sparse network with n vertices, and L is the set
of nonnegative reals labeling the edges.

Our algorithm for computing the minimum s-t cut of a planar undirected network
has time O(QL(n log (n)). This algorithm also utilizes an efficient reduction to
minimum cost path problems. Our fundamental innovation is a "divide and conquer"
approach for cuts on the plane.

The paper is organized as follows: The next section gives preliminary definitions
of graphs, networks, minimum cuts, maximum flows, and duals of planar networks.
Section 3 gives the Ford-Fulkerson algorithm for (s, t)-planar graphs. Section 4
describes briefly an efficient algorithm due to Itai and Shiloach [9] for finding a
minimum cut intersecting a given face of the primal network. Our divide and conquer
approach is described and proved in 5. Section 6 presents our algorithm for minimum
s-t cuts of planar networks. Finally, 7 concludes the paper.

2. Preliminary definitions
2.1. Graphs. Let a graph G (V, E) consist of a vertex set V and a collection

of edges t7.. Each edge e E connects two vertices u, v V (edge e is a loop if it
connects identical vertices). We let e {u, v} denote edge e connects u and v. Edges
e, e’ are multiple if they have the same endpoints. Let a path be a sequence of edges
p =el,’", ek such that ei ={/3i-1, vi} for 1,..., k (we say p traverses vertices
v0, ’, vk). Let p be a cycle if v0 v (cycles containing the same edges are considered
identical). A path p’ is a subpath of p if p’ is a subsequence of p. Let G be a standard
graph if G has neither multiple edges nor loops and is triconnected. Generally we let
n VI be the number of vertices of graph G. If G is planar, then by Euler’s formula
G contains at most 6n- 12 edges.

2.2. Networks. Let an undirected network N (G, c) consist of an undirected
graph G (V, E) and a mapping c from E to the positive reals. For each edge
e v, c (e) is the cost of e. For any edge set E’

_
E, let c (E’) Ye’ C (e). Let the cost

k
of path p el,""’, e be c(p)= i=1 c(ei). Let a path p from vertex u to vertex v be
minimum if c(p) <=c(p’) for all paths p’ from u to v. Let N (G, c, s, t) be a standard
network if (G, c) is an undirected network, with G (V, E) a standard graph, and s,
are distinguished vertices of V (the source, sink, respectively). Note that triconnectivity
can easily be achieved by adding O(n) edges with cost 0.

2.3. Minimum cuts and maximum flows in networks. Let N (G, c, s, t) be a
standard network with G (V, E). An edge set X

E is an s-t cut if (V, E-X) has

no paths from s to t. Let s-t cut X be minimum if c(X)<-c(X’) for each s-t cut X’.
See Fig. 1.

18 ’’1
FIG. 1. A network N with source and sink t. The heavily drawn edges indicate a minimum s-t cut

{{v2, v3}, {v3, v4}, {v4, t}, {v4, v7}, {v6, v7}} with cost 5.

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 73

Let A be the set of directed edges {(u, v)l{u, v } E}. A function f mapping A to
the nonnegative reals is a flow if

(i) For all e A, f(e <-_ c (e), and
(ii) For all v V, if v {s, t} then IN (f, v)= OUT (f, v), where

IN(f,v)= E f(u,v) and OUT(f,v)= E f(v,u).
(u,v)A (v,u)eA

The value of the flow f is OUT (f, s)- IN (f, t). The following motivates our work on
minimum s-t cuts:

THEOREM 1 (Ford and Fulkerson [7]). The maximum value of any flow is the
cost of a minimum s-t cut.

2.4. Planar networks and duals. Let G (V, E) be a planar standard graph, with
a fixed embedding on the plane. G partitions the plane into connected regions. Each
connected region is called a face and has a corresponding cycle of edges which it
borders. For each edge e E, let D (e) be the corresponding dual edge connecting the
two faces bordering e. Let D(G) (, D(E)) be the dual graph of G, with vertex set
:= the faces of G, and with edge set D(E)= UD(e). Note that the dual graph is
not necessarily standard (i.e., it may contain multiple edges and loops), but is planar.
Let a cycle q of D(G) be a cut-cycle if the region bounded by q contains exactly one
of s or t. Note that a cycle is a cut-cycle independent of the way in which the dual
graph is embedded in the plane, although a particular embedding may change which
of s or the cycle contains. See Figs. 1 and 2. The following proposition is trivial to
derive"

PROPOSITION 1. D induces a 1-1 correspondence between the s-t cuts of G and
the cut-cycles of D(G).

Let N (G, c, s, t) be a planar standard network, with G (V, E) planar. Let
the dual network D(N)= (D(G), D(c)) have edge costs D(c), where the edge cost of
each dual edge D(e) is the cost of the original edge e E. (Generally we will use just
c in place of D(c) where no confusion will result.) See Fig. 3. For each face F ,
let a cut-cycle q in D(N) be F-minimum if q contains F on (rather than inside) the
cycle q and c (q) -< c (q’) for all cut-cycles q’ containing F. The next proposition is easy
but tedious to prove.

PROPOSITION 2. A minimum s-t cut has the same cost as a minimum cost cut-cycle
olD(G).

FIG. 2. The same planar network N as in Fig. 1, with faces El,’’ ", Flo, and with a nonminimal s-t
cut X {{rE, v3}, {v2, v4}, {v4, v6}, {v6, v7}} of cost 6, indicated by heavily drawn edges.

74 JOHN H. REIF

ZO 15

FIG. 3. The dual network D(N) derived from the planar network N ofFigs. and 2. The heavily drawn
edges give an F2-minimum cut cycle D(X) {{Flo, F3}, {F3, F2}, {F2, F6}, {F6, F10}} which is the dual of the
s-t cut X given in Fig. 2.

3. Ford and Fulkerson’s minimum s-t cut algorithm for (s,t)-planar
networks. Let N=(G, c,s, t) be a planar standard network. G (as well as N) is
(s, t)-planar if there exists a face Fo containing both s and t. Let planar network N’
be derived from N by adding on edge e0 connecting s and with cost . Let eo be
embedded onto a line segment from s to in Fo, which separates Fo into two new
faces F1 and F2. Ford and Fulkerson [6] have the following elegant characterization
of the minimum s-t cut of (s, t)-planar network N.

THEOREM 2. There is a 1-1 correspondence between the s-t cuts of N and the
paths of D(N’) from F2 to FI and avoiding D(eo). Furthermore, this correspondence
preserves edge costs. Therefore, the minimum s-t cuts ofN correspond to the minimum
cost paths in D(N’) from F2 to Fa.

By use of Dijkstra’s [4] shortest path algorithm, we have"
CORbILAr 2. A minimum cut of (s, t)-planar network N with n vertices may be

computed in time O(OL)(n)), where L range (c).
Note that applications of this corollary include the O(n log (n)) time minimum

s-t cut algorithm of Itai and Shiloach [9] for (s, t)-planar undirected networks, and
the O(n) time minimum s-t cut algorithm of Cheston, Probert and Saxton [3] for
(s, t)-planar graphs.

4. An efficient algorithm for F-minimum cut cycles. Let N (G, c, s, t) be a
planar standard network, with G (V, E) and L range (c). Our algorithm for
minimum s-t cuts will require efficient construction of an F-minimum cut-cycle for a
given face F. For completeness, we very briefly describe here an algorithm for this,
due to Itai and Shiloach [9].

Let -s be the set of faces bordering s and let 5gt be the faces bordering t. Let a

tx (s, t) path be a minimum cost path in D(N) from a face of 5gs to a face of
PlOPOSrrION 3 (Itai and Shiloach [9]). Let Ix be a Ix(s, t) path traversing faces

F1, , Fa. Let D (Xi) be a Fi-minimum cut-cycle ofD (N) for 1, , d. Then Xio
is a minimum s-t cut of N, where c (Xio) min {c (Xi)li 1,. ., d}.

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 75

To compute a Ix (s, t) path in time O(QL(n)), let M be the planar network derived
from D(N) by adding new vertices vs, vt and an edge connecting v to each face in
s and an edge connecting each face in t to yr. Let the cost of each of these edges
be 1. Let p be a minimum cost path in M from v to yr. Then p, less its first and last
edges, is a Ix (s, t) path. See Fig. 4.

FIG. 4. Network M derived from the dual network D(N) given in Fig. 3. The heavily drawn edges are
the I (s, t)-paths.

Let Ix be a Ix (s, t) path in D(N) traversing faces F1,’’ ", Fd. By viewing Ix as a
horizontal line segment with s on the left and on the right for each edge D(e) of
D(N) which is not in Ix (s, t) but is connected to a face F, D(e) may be considered
to be connected to Fi from below or above (or both). Let Ix’ be a copy of Ix traversing
new vertices xl,..., Xd. Let D’ be the network derived from D(N) by reconnecting
to xi each edge entering Fi from above. See Fig. 5. If p is a path of D’, then a
corresponding path/3 in D(N) is constructed by replacing each edge and face appearing
in Ix’ with the corresponding edge or face of Ix. Clearly, c(p)= c().

THEOREM 3 (Itai and Shiloach [9]). If p is a minimum cost path connecting Fi
and xi in D’, then is an Fi-minimum cut-cycle ofD(N).

By applying Corollary 2 to Theorem 3 we have"
COROLLARY 3. This is an O(QL(n)) time algorithm to compute an Fi-minimum

cut-cycle for any face Fi of a tx (s, t) path in D(N).
Note that for restricted L this may be more efficient than the O(n log n) upper bound
given by Itai and Shiloach [9]; for example this gives an O(n) time algorithm for an
Fi-minimum cut-cycle of a planar graph.

5. A divide and conquer approach. Let Ix be a Ix(s, t) path of D(N) traversing
faces F,..., Fa as in 4. Note that any s-t cut of planar network N must contain
an edge bounding on a face in {F,..., Fd}. The algorithm of Itai and Shiloach [9]
for computing a minimum s-t cut of N is to construct an Fi-minimum cut-cycle D (Xi)
in D(N) for each i= 1,..., d. This may be done by d O(n) executions of the
O(O(n)) time algorithm of Corollary 3. Then by Proposition 3, Xio is a minimum s-t

76 JOHN H. REIF

18

FIG. 5. Network D’ derived from dual network D(N) of Fig. 3 using the/x(s, t)-path of Fig. 4. The
heavily drawn edges give the F2-minimum cut-cycle D(X) ofFig. 3.

cut where c(Xlo)=min{c(X1),...,c(Xa)}. In the worst case, this requires
O(QL(n)" n) total time. This section presents a divide and conquer approach which
utilizes recursive executions of an Fi-minimum cut algorithm.

LEMMA 1. Let Fi, F be distinct faces of tx, with <j. Let p be any Fi-minimum
cut-cycle of D(N) such that the closed region R bounded by p contains s. Then there
exists an F-minimum cut-cycle q contained entirely in R. (See Fig. 6.)

region R

/

FIG. 6. F1, F2,""" ,Fa is a /x(s, t) path in D(N). p =(F/,xl, x2,’’’ ,Xk) is a Fi-minimum cut-cycle
enclosing region R. The Fi-minimum cut-cycle q (Fi, yl, Y2, ", Y) is contained in R.

Proof. Let q be any F-minimum cut-cycle. Let q’ be the cut-cycle derived from
q by repeatedly replacing subpaths of q connecting faces traversed by /z with the
appropriate subpaths of/ (only apply replacements for which the resulting q’ is a
cut-cycle). Observe c(q’)<=c(q) (else we can show/x is not a tz(s, t) path). Let R’ be
the closed region bounded by q’. Suppose R’ R. Then there must be a subpath ql of
q’ connecting faces Fa, Fb of p such that q only intersects R’ at F and Fb. Let p
be the subpath of p connecting F and Fb in R’. We claim c(p)<=c(q). Suppose
c(pl) >c(qx). By our co.nstruction of q’, either q avoids F/, F. =F or F. =Fb. In any

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 77

case, we may derive a cut-cycle p’ from p by substituting ql for pl. But this implies
c(p’)<c(p), contradicting our assumption that p is an F-minimum cut-cycle. Now
substitute pl for q in q’. The resulting cut-cycle is no more costly than q’, since
c(pl)<=C(q). See Fig. 7. The lemma follows by repeated application, of this
process.

.oooo’.. ..o.

FIG. 7. Fa, F2, ,Fa is a i(s,t)-path, p =Pa "P2 is a cut-cycle containing Fi. q =qa q2 is a cut-cycle
containing Fi. If c(qa) < c(p), then p’ qx q2 is a cut-cycle containing Fi and with cost c(p’) < c(p).

The above lemma implies a method for dividing the planar standard network N,
given an s-t cut X. The network derived from N by deleting all edges of X can be
partitioned into two networks Ns, Nt, where no vertex of N has a path to t, and no
vertex of N has a path to s. Also, each edge e X must have connections to a vertex
of N and a vertex of Nt.

Let No DIVIDE (N, X, s) be the standard planar network consisting of N,
(i) with a new vertex to and
(ii) a new edge (u, to} with cost c ({u, v}), for each edge {u, v } s X such that u is

a vertex of N and v is a vertex of N’’
(iii) finally (to insure No is standard) merging multiple edges and setting the cost

of each resulting edge to be the sum of the costs of the multiple edges from
which it was derived. See Figs. 8 and 9.

C1

Fig. 8. The merging into a single edge of multiple edges connected to vertex x and vertex y.

Similarly, let Na DIVIDE (N, X, t) be the standard planar network consisting
Of Nt,

(i) with a new vertex s, and
(ii) for new edge (s, v} with cost c((u, v}), for each edge (u, v} X such that u

is a vertex of N and v is a vertex of Nt, and finally applying step (iii) above.
See Fig. 9.

78 JOHN H. REIF

15

12

NO
FIG. 9. The networks No DIVIDE (N, X, s) and N1 DIVIDE (N, X, t) derived from the network N

and s-t cut X given in Fig. 2. No and N1 will be further subdivided by the cuts Xo, X1 respectively, indicated
by heavily drawn edges.

Let E be the set of edges of network N and let Y be a subset of the edges of
No DIVIDE (N, X, s) or of N1 DIVIDE (N, X, t). Then let E(Y) be the set of
edges of E that were mapped into edges of Y when No or N1 was created. The next
theorem follows immediately from the above Lemma 1 and Proposition 3.

THEOREM 4. Let X be an s-t cut of a planar standard network N such that D (X)
is an F-minimum cut-cycle, for some face F in a ix(s, t) path of D(N). Let Xo be a
minimum S-to cut of No DIVIDE (N, X, s) and let Xa be a minimum s a-t cut of
Na DIVIDE (N, X, t). Then E(Xo) or E(X) is a minimum s-t cut of N.

6. The minimum s-t cut algorithm for planar networks. Theorem 4 yields a very
simple but efficient divide and conquer algorithm for computing minimum s-t cut of
a planar standard network. We assume the Ford and Fulkerson [6] algorithm given
in3"

(i) (s, t)-PLANAR-MIN-CUT(N) which computes a minimum s-t of (s, t)-
planar standard network N in time O(QL(n)).

We also assume algorithms (given in 4):
(ii) /x(s, t) PATH(D(N)) computes a/z(s, t) path of D(N) in time O(Q.(n)).
(iii) F-MIN-CUT(N, Fi,/x) computes q, where D(q) is an Fi-minimum cycle of

N (for any F in/x (s, t) path/x), in time O(Q(n)).

RECURSIVE ALGORITHM PLANAR-MIN-CUT(N, /x).
input planar standard network N (G, c, s, t), where G (V, E), and/x (s, t)
path .
begin

Let FI,""", Fd be the faces traversed by
if d 1 then return (s, t)-PLANAR-MIN-CUT (N);
else begin
X - F-MIN-CUT (N, F ld/21, tx)
No - DIVIDE (N, X, s); N1 - DIVIDE (N, X, t);
Let/xo and/x be the subpaths of/x contained in No
and N, respectively
X1 - PLANAR-MIN-CUT (N1,/x 1); Xo - PLANAR-MIN-CUT (No,
if c(E(Xo))<-_c(E(X)) then return E(Xo) else return E(X);
end;

end

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 79

Associated with this recursive algorithm we define a call tree T whose root is N
and whose descendants are the networks input to the algorithm on recursive calls.
Let d be the number of faces traversed by/z, the/z (s, t) path of N. If d 1 then root
N has no children. Otherwise, N has left child No and right child N1, as computed
in the algorithm, and so on.

For any o){0, 1}* inductively let No =(Go, co, So, to) be the planar standard
network and let/zo be the /z (so, to) path in No defined by some recursive calls to
PLANAR-MIN-CUT. Suppose PLANAR-MIN-CUT (No,/zo) is called. If/zo contains
only one face, then let No0 and No be empty networks, and let/zoo and/zo be empty
paths. Else let Xo be the set so-to cut of No computed by the call to F-MIN-CUT(.),
let No0, N, be the planar standard networks constructed by the calls to DIVIDE,
and let/zoo,/zol be the subsets of/z contained in No0, No1. Then it is easy to verify
that /zoO is a /z (so0, too) path in No0 and/zol is a/z (Sol, to1) path in No1, and the
length of/zoo and the length of/z,,1 are each =<F1/2do-n, where do is the length of/zo.
Hence there can be no more than Flog (d)n mutually recursive calls, so the call tree
T has depth at most Flog (d)-n <--Flog (n)n, where n is the number of nodes in N.

Let m be the number of edges of N and let mo be the number of edges of No.
The following theorem provides an upper bound of 2m + 2 on the number of edges
of networks of depth r in the call tree T.

THEOREM 5. For each r >- O, 2oe{0,1} Dlo 2m + 2r.
Pro@ Note that by definition of DIVIDE, the edges of No0 or No are derived

from disjoint sets of edges of No. Fix an edge e of N. Let eo be the edge (if it exists)
of No derived from a set of edges of N containing e. Let edge e contribute to No if
e {so, to} and let e)ully contribute to No if eo contains neither so nor to. For each
r _-> 0, let Br(e) {eoleo {so, to} and w {0, 1}r}. Thus [Br(e)] is the number of networks
of depth r in T to which edge e contributes.

Let the strings of {0, 1}* be ordered lexicographically. We require a technical
lemma.

LEMMA 2. [Br(e)[<=2, and furthermore if Br(e)={eo, ez} for oo <z, z {0, 1}r, then
edge eo is connected to to and edge ez is connected to sz.

This lemma states that e contributes to at most two networks of depth r in T,
and e fully contributes to no two distinct networks of depth r. For example, consider
edge e {v2, v3} of network N given in Fig. 2. Edge e fully contributes to N. In Fig.
9, edge e contributes to No by edge e0 {v2, to} and also contributes to Na by edge
el {s l, v3}. Furthermore, in Fig. 10 edge e contributes to Noo by edge eoo= {v2, too}
and in Fig. 11 edge e contributes to Naa by edge ell ={sa, v3} but e contributes to
neither N0 nor No.

100 101
FIG. 10. Networks Noo DIVIDE (No, Xo, So) and No1 DIVIDE (No, Xo, to) derived from network

No with S-to cut Xo o] Fig. 9.

80 JOHN H. REIF

FIG. 11. Networks N10- DIVIDE (N1, X1, sl) and Nil DIVIDE (N, X, tl) derived from network
Nx with -t cut X1 of Fig. 9.

Proof ofLemma 2 by induction. Suppose for some fixed r0, this lemma holds for
all r <- r0. If Bro(e) Q5 then clearly Bro+ (e) . Suppose 1 -< IBo(e)l -<- 2 and consider
any eo e Bro(e). If e,ot:Xo then by definition of DIVIDE, either eo eoo appears in
N,o0 or e,o eo,1 appears in No 1, but not both. On the other hand, if eo e Xo, then eo0
appears in No0 connected to too and also eol appears in No1 connected to Sol. In
either case, if IBo(e)l 1, then IBo/(e)l =< 2. Otherwise suppose IBro(e)l 2 so there
exists some ez e Bro(e) with to < z. By the induction hypothesis,
and ez is connected to Sz. Thus for] 0, 1 edge eoi (if it exists) is connected to toi and
edge ezi (if it exists) is connected to Szi. Hence if e,o e Xo then ezl {Szl, tzl}. In each
case, IBo+l(e)[-<- 2.

To complete the proof of Theorem 5, observe that I{{so, to,}lto e {0, 1}}l 2. Hence
Y re,o<-(., IBr(e)l)+l{{so,t}lco{o, 1}r}l<=2m+2

o{0,1} eE

by Lemma 2.
THEOREM 6. Given a planar standard network N (G, c, s, t) with L range (c),

and Ix is a Ix(s, t) path of N then PLANAR-MIN-CUT (N, tz) computes a minimum
s-t cut ofN in time O(O(n) log (n)).

Proof. The total time cost is

O(O(mo,)) O(O(2m + 2r)) by Theorem 5,
{0,1}r 0<r_<--r-log(n

O__<r =<r-log(n)-n

O(Ot.(n) log (n)) since 2m + 2lg(n) O(rt).

By known upper bounds on the cost of maintaining queues (as discussed in the
Introduction), we also have’

COROLLARY 4. A minimum s-t cut of N is computed in time O(n log2 (n)) for
general L (i.e., a set ofpositive reals), in time O(n log (n) log log (n)) for the case where
L is a set of positive integers bounded by a polynomial in n and in time O(n log (n))
]’or the case where N is a graph with identically weighted edges.

7. Conclusion. We have presented a divide and conquer method for computing
a minimum s-t cut of a planar undirected network which improves on the running
time of the algorithm of Itai and Shiloach [9] by a factor of n/log n. An additional
attractive feature of this algorithm is its simplicity, as compared to other algorithms
for computing minimum s-t cuts for sparse networks (Galil and Naamad [8], Shiloach
[10] and Sleator and Tarjan [13]).

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 81

[1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] P. VAN EMDE BOAS, R. KAAS AND E. ZIJLSTRA, Design and implementation of an efficient priority
queue, Math. Systems Theory, 10 (1977), pp. 99-127.

[3] G. CHESTON, R. PROBERT AND C. SAXTON, Fast algorithms for determination of connectivity sets

for planar graphs, Dept. Computer Science, Univ. Saskatchewan, 1977.
[4] E. DIJKSTRA, A note on two problems in connections with graphs, Numer. Math., 1 (1959), pp. 269-271.
[5] S. EVEN AND R. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.

507-518.
[6] C. FORD AND D. FULKERSON, Maximal flow through a network, Canad. J. Math., 8 (1956), pp.

399-404.
[7],Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962.
[8] Z. GALIL AND A. NAAMAD, Network flow and generalized path compression, in Proc. of Symposium

on Theory of Computing, Atlanta, Georgia, 1979.
[9] A. ITAI AND Y. SHILOACH, Maximum]tow in planar networks, this Journal, 8 (1979), pp. 135-150.

[10] Y. SHILOACH, An O(nI log I) maximum-flow algorithm, Computer Science Dept., Stanford Univ.,
Stanford, CA, 1978.

[11],A multi-terminal minimum cut algorithm for planar graphs, this Journal, 9 (1980), pp. 214-219.
[12] D. SLEATOR, An O(nm log n) algorithm for maximum network flow, Ph.D. dissertation, Stanford

Univ., Stanford, CA, 1980.
[13] D. SLEATOR AND R. TARJAN, A data structure for dynamic trees, 13th Annual ACM Symposium

on Theory of Computing, 1981, pp. 114-122.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1201-0006 $01.25/0

A TECHNIQUE FOR ESTABLISHING COMPLETENESS RESULTS IN
THEOREM PROVING WITH EQUALITY*

GERALD E. PETERSONt

Abstract. It is proved that an automatic theorem proving system consisting of resolution, paramodula-
tion, factoring, equality reversal, simplification, and subsumption removal is complete in first-order logic
with equality. When restricted to equality units, the system is similar to the Knuth-Bendix procedure for
deriving consequences from equalities. However, our proofs of completeness are restricted to the case in
which the ordering on words (terms or atoms) that is required in this type of process is order-isomorphic
to the positive integers. The completeness of resolution and paramodulation without the functionally
reflexive axioms is a simple corollary of our result. The methods used are based upon the familiar ideas
associated with semantic trees, and should be helpful in showing that other theorem proving systems with
equality are complete.

Key words, theorem proving, equality, first-order logic, semantic tree, simplification, completeness,
resolution, paramodulation, simplification ordering

1. Introduction. About fifteen years ago (see [3] for references) some quite
efficient and useful general-purpose theorem proving systems based on resolution in
first-order logic without equality were created and used to prove some theorems which
had not previously been proved automatically. Unfortunately, these systems were not
able to prove anything very complicated, and additions were sought which would
make them more powerful. Since it is awkward to express ideas involving equality in
a logical system without equality, various ways of incorporating equality into the
system were tried [9], [26], [30], [34], [35].

For example, Robinson and Wos [32] introduced paramodulation in 1969 and
proved that if the functionally reflexive axioms (axioms such as f(x, y)= f(x, y)) were
added to the set of clauses, then resolution and paramodulation constituted a complete
set of inference rules. Since that time, some effort [1], [2], [17], [18] has been expended
in considering the so-called "functionally reflexive problem," that is, the problem of
proving that resolution and paramodulation are complete without the functionally
reflexive axioms. In fact, Brand [1] provided a solution to the functionally reflexive
problem in 1975. An independent solution is contained in this paper as a corollary
to Theorem 8.

Unrestricted paramodulation is a very weak inference rule because it produces
mountains of irrelevant clauses which rapidly clog the search space. In 1970 Knuth
and Bendix [15] (see [10] for a more complete treatment of the mathematics), working
independently of Robinson and Wos, created a very effective procedure for deriving
useful consequences from equality units. Their process used paramodulation, but since
it also used simplification and subsumption removal, most of the derived equalities
were discarded and the search space remained small.

The main defects with the Knuth-Bendix procedure were that each equality had
to be construed as a reduction, so equalities such as the commutative law were
excluded, and that the process works only on equality units, so axioms such as
x O:ffxx -1= 1 in field theory were excluded. The first defect has been at least
partially removed by using specialized unification algorithms such as associative-

* Received by the editors March 17, 1980, and in final revised form February 15, 1982.
t Department of Mathematical Sciences, University of Missouri-St. Louis, St. Louis, Missouri 63121.

82

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 83

commutative unification [22], [27], [31], [36]. There has also been progress [17], [21]
in removing the second defect, but to the author’s knowledge, no one has developed
a refutation complete set of inference rules for all of first-order logic with equality
which reduces to the Knuth-Bendix procedure when restricted to equality units.

The inference system which is developed in this paper is refutation complete,
and it does reduce to a procedure which is nearly identical to the Knuth-Bendix
process when restricted to equality units, but completeness results are obtained only
when the underlying ordering of terms and atoms is order-isomorphic to the positive
integers. This is a condition which Knuth and Bendix did not impose on their ordering
and, indeed, many of the complete sets of reductions contained in their examples
used versions of their ordering which were not order-isomorphic to the positive
integers. However, our goal is somewhat different from that of Knuth and Bendix.
They were searching for complete sets of reductions; we are searching for an efficient
inference system which is complete in the logical sense. It does not matter to us (at
least not at present) whether or nor any complete sets of reductions are obtained in
the course of a proof, but only that useful consequences be derived and trivial ones
eliminated. This goal seems likely to be achieved even with the isomorphism condition
on the order. It may be possible to obtain completeness theorems without the
isomorphism condition, but the mathematics to do so might involve transfinite trees
and would be the subject of a separate paper.

The main result of this paper is that an automatic inference system consisting of
resolution, paramodulation, factoring and equality reversal is complete in first-order
logic with equality. Useful restrictions may be imposed which do not destroy the
completeness. These include: no paramodulation into variables, deletion of subsumed
or simplified clauses, and resolution only of simplified clauses.

In rough outline, these results were obtained as follows. A key idea is the
embedding of equality atoms in a simplification ordering of atoms and terms in a way
such that each equality occurs before terms or atoms which it may reduce. This is
described in 3, and it is shown how to create one such ordering by modifying that
of Knuth and Bendix. In 4 we show how to build E-interpretations inductively on
an ordered set B of atoms. This process can then be used to create E-semantic trees,
that is, trees whose branches correspond to E-interpretations. If S is an E-unsatisfiable
set of clauses, then each branch of an E-semantic tree for $ can be cut off at some
point and the remaining partial interpretation will still falsify some ground instance
of a clause in S. It is shown how a properly chosen resolvent or paramodulant can be
added to $ so that the cut-off tree for the new S is in some sense smaller than the
cut-off tree for the original $. If a sufficient number of resolvents and/or paramodulants
are added, the tree will shrink to its root and thus imply that the empty clause has
been generated. These ideas are considered in 6. A difficulty with this approach is
that initially the resolutions and paramodulations are known to be available on the
ground level and a "lifting lemma" is required to ensure that corresponding inferences
are available at the general level. Unfortunately, the paramodulation lifting lemma
does not always work. In order to ensure that the lifting lemma will work when
paramodulating from Club into C20, it is necessary to know that the replaced portion
of C20 consists of a subtree of C20 that begins in C2. We provide this assurance by
showing that it is possible to use only substitutions whose terms are not available for
paramodulations of the type necessary for the completeness theorem; that is, the
terms of the substitutions are "completely reduced." These ideas are considered at
the end of 4 and in 6 at the point where 1r is defined. In 7 we discuss deletion
strategies, and in 8 a hand example is cranked out.

84 GERALD E. PETERSON

The paper is meant to be theoretical. However, an implementation of a prover
based on these ideas will be created and experiments will be conducted to better
assess its usefulness. Some of the proofs are presented in excruciating detail. This is
felt to be necessary because intuition is of little, if any, value in these matters, and
the terrain is loaded with pitfalls.

2. Terminology. Basically we use [3] for terminology. Some differences and key
ideas are presented here. Let T be a labeled tree. The set of nodes of T will be called
the domain of T, dom T. If n dom T and the label at n is l, then we write Tn
or T(n)= 1. If n, m dom T, then n is an ancestor of m, n m, if n is on the branch
of T leading from m to the root, including the case when n m. We write n _1_ rn and
say n is independent of n if n is not an ancestor of m and m is not an ancestor of n.
The subtree of T which begins at node n is denoted by Tin. If u is another tree, then
Tin u] is the tree formed when Tin is replaced by u. When no confusion is likely,
this will be abbreviated to T[u]. Similarly, if nx_t_n, and ux and Uz are trees, then
Tin1 Ul, n2 - U2] is (T[nx Ul])[n2 - U2] and will be shortened to T[ux, U2]. When
T[ux] and T[u2] are used in the same discussion, it is to be understood that there is
n dom T such that these are T[n -ux] and T[n -u2], respectively. See [34] for a
rigorous discussion of tree terminology.

We consider terms, clauses, etc., to be labeled trees. If A is a term or a clause
and 0 is a substitution, then AO is the result of applying 0 to A; that is, each variable
of A is replaced by the term specified in 0. Let the restricted domain of A, rdom A,
be the set of all n dom A such that An is not a variable.

We work in first-order logic with equality and use as the equality symbol both
in the metalanguage and in the first-order language. To avoid confusion, equality
atoms in the first-order language will usually be enclosed in parentheses.

3. Simplification orderings. We will be concerned with a first-order logical system
with equality. Define a word to be either a term or an atom and an equality word, or
simply an equality, to be an atom whose predicate symbol is =. Let ff denote the set
of all terms and /4/" the set of all words.

We assume that the set of all non equality words has been endowed with a partial
order, <, which satisfies the following properties.

W1. The full set of non equality words is well-founded [23, p. 205], [25, p. 183],
[4, p. 203.

W2. The subset of ground non equality words is order-isomorphic [4, p. 22] to
the set of positive integers.

W3. For all non equality words w, v and every substitution 0, if w < v, then
wO < vO.

W4. For each non equality word w and each term t, if is a subterm of w, then
-<_ w. In particular, if is a strict subterm of w, then < w.

WS. For every non equality word w, every n s dom w, and all terms t, s, if < s,
then w[n t] < w[n s].

Note that Wl follows from W2 and W3. We include W1 only for emphasis.
Orderings on sets of terms which satisfy W4 and W5 (with "non equality word"

replaced by "term") were called simplification orderings by Dershowitz [5], [6]. Plaisted
[28], [29], however, uses the denotation simplification ordering for an ordering on
terms which is total on ground terms and satisfies the analogues of Wl, W3 and W5.
In either case we may consider the order < as a special kind of simplification order
which has been extended to apply to all non equality words.

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 85

The prototype of an order which satisfies Wl-W5 is the order of Knuth and
Bendix [15] in which every operator is given positive weight. Knuth and Bendix define
their order only for terms, but it is easily extended to apply to atoms as well. For
convenience we repeat their definition here. Let O be the set of operators, that is,
function (including constant) or non equality predicate symbols. Assume O is finite
and linearly ordered. Let h be a mapping from O into the positive integers which
assigns to each operator a weight. Extend h to apply to non equality words as follows.
Let w be a non equality word. If w is a variable, then h (w)= h0 where h0 is the
minimum weight of a constant. If w =f(tl,’", tk), then h is defined by structural
induction as h (w) h (f) + h (tl) +. + h (tk). If W is a word and s a symbol, let n (s, w)
denote the number of occurrences of s in w. If w and v are words, then w > v if and
only if

(1) h (w) > h (v) and n (x, w) >- n (x, v) for every variable x or
(2) h(w)=h(v) and n(x,w)=n(x,v) for every variable x and with w=

f(t, ., tk), v g(s, ., Sl) either
(2a) f > g in the order on O; or
(2b) f g and t s,.. , ti_l si_, tj > sj for some/’, 1 <-_/" -< k.

The definition in [15] is slightly more complicated than this since Knuth and Bendix
allow some of their operators to have zero weight.

That this order satisfies W1-W5 is quite easy to see. Knuth and Bendix show
that it is a well-order on ground words and that it satisfies W1 and W3. Properties
W4 and W5 are easily established and are left to the reader. Property W2 will follow
if we show that every ground word has only finitely many predecessors. Any ground
word w has some weight, h (w), and since there are only finitely many operator
symbols, each with positive weight, there are only finitely many ground words of any
given weight. Thus there are only finitely many ground words with weight less than
or equal to h(w). But, if v < w, then h (v) _-< h (w) by definition, so there are only
finitely many ground words less than w.

The author is unaware of any other easily calculable ordering which satisfies all
the properties W1-W5. Other methods of defining such an order would be welcome.

In what follows it will be necessary to have the equality (s t) precede words
which can be simplified by (s t). It is therefore necessary to imbed equalities in the
order in a special way.

DEFINITION. Suppose w is a non equality word and a, b, s, are terms. Then,
EO1. w<(s=t) meansw<sorw<t;
EO2. (s t) < w means s _-< w and <_- w;
EO3. (s t) < (a b) means

EO3a. s _-< a and -<_ b with one inequality strict, or
EO3b. s _-< b and _-< a with one inequality strict, or
EO3c. s=bandt=aandt<s, or
EO3d. s < a and < a, or
EO3e. s < b and < b.

THEOREM 1. The order < on words which has just been defined satisfies the
following properties.

O1. The set t/V is well-founded.
02. The subset of ground words is order-isomorphic to the positive integers.
03. For all w, v and every substitution O, if w < v, then wO < vO.
04. If , w 74/’, is a subterm of w and w is not an equality, then <- w.
05. If w t4/’, n dom w, t, s , and < s, then win t] < win s].
06. If t, s and < s, then (s t) and (t s) are adjacent and (t s) > (s t).

86 GERALD E. PETERSON

07. Suppose t, s, a, b 3-, w 7IF’, <= s, and s is a subterm of w. If w is not an
equality, or if w (a b) and s is a strict subterm of a or b, or if w (a s)
or (s=a) and t<a, then (t=s)<w.

Proof (excerpts). Much of the proof of this theorem consists of tedious case-by-
case analyses. Therefore, we just give an outline and some highlights. Parts 1 and 2
of the proof establish that < is indeed an order, parts 3, 4, and 5 suffice to give 02,
and the relationship of the remainder of the proof to the theorem statement is
self-explanatory.

Part 1. < is irreflexive. Suppose w < w for some word w. Then w must be an
equality, say (s t). From (s t) < (s t) it follows using EO3 that s <-- s and -< with
one inequality strict, or s and < s, or s < s and < s, or s < and < t. But none
of these is possible.

Part 2. < is transitive. We prove two representative cases and leave the rest to
the reader.

Case 1. Suppose w < (s t) and (s t) < (a b) where w is not an equality and
(s t)< (a b) via EO3b. Then from EO1 and EO3b we have w < s or w < t, and
s _-< b and =< a. It follows that w < b or w < a. Thus w < (a b).

Case 2. Suppose (s t) < (a b) and (a b) < (c d) where the first inequality
is via EO3d and the second comes via EO3a. Then s <a and <a and a-<_c and
b -<_ d. Thus s < c and < c. By EO3d, (s t) < (c d).

Part 3. < is a total order on ground words. Suppose w and v are ground words.
If neither is an equality, then from W2 it follows that w < v, w v or w > v. Suppose
one of w and v is an equality, say w (s t). If s =< v and =< v, then w < v by EO2.
Otherwise, either v < s or v < and then v < w by EO1. Finally, suppose both w and
v are equalities, w (s t) and v (a b). Then there are many cases, but each is
covered by EO3, giving w < v or w v or w > v.

Part 4. The ground words have a minimum element. Suppose this were not so
and let Wl > w2 > w3 be an infinite descending sequence of ground words. By W2,
only finitely many of these can be non equalities and we may, therefore, suppose that
for every i, We (si te). By EO3, one of the following conditions holds for each i.

(1) si > si+l and
(2) sg > Si+l and te te+,
(3) si Si/l and ti > ti+l,
(4) si > te+a and ti " Si+l,

(5) se > ti/l and ti S/+I,

(6) si ti+a and ti 3> Si+l,

(7) Si ti+l and ti Si+l and te+l <Si/l,
(8) sg > Si+l and sg >
(9) tg > si+ and ti :> ti+l.

Condition (7) cannot hold for two successive inequalities in the sequence because if
(Si-1 ti-1) > (Si ti) > (Si+ ti+l) and both inequalities are via (7), it follows that si >
and sg < ti. Therefore, there are infinitely many inequalities in the chain which obtain
for reasons other than (7). We construct two sequences of terms, A and B, as follows.
Begin with A sa and B tl. For running from 2 to co, add to the chains according
to the following rules. If condition (1) holds, apply rule (1), else if condition 2 holds,
apply rule (2), etc.

(1) A A, Si+l and B B, ti/l,
(2) A A, Si/l,

(3) B <-B, ti+l,
(4) A *-B, si+ and B <-A, ti+,

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 87

(5) B A, ti+l,
(6) A B, Si+l,

(7) AB and B A,
(8) A A, si+l and B A, ti+l,
(9) A B, si+l and B B, ti+a.

Note that at the th stage, A ends in si and B ends in ti, and that each of A and B
is a descending sequence. Let LA and LB be the length of A and the length of B,
respectively, each changing as increases. Each of conditions (1), (4), (8) and (9)
increases min (LA, LB) and no condition decreases min (LA, LB). Thus, if any combi-
nation of inequalities satisfying (1), (4), (8) or (9) occurred infinitely often, we would
have LA and LB both increasing to infinity and A and B would both be infinite
descending sequences of ground terms. Since this is impossible, we must have some
combination of (2), (3), (5) and (6) occurring infinitely often. But each of (2), (3), (5)
and (6) increases the length of one of the two chains and leave the length of the other
one alone. Therefore, both of these chains cannot remain finite in length. Again this
is impossible, and we must conclude at this point that our original hypothesis of an
infinite descending sequence of ground words was in error.

Part 5. Every ground word has only finitely many predecessors. Let w be a ground
word. If w is not an equality, then by W2, w can have only finitely many non equality
predecessors and by EO2, w can have only finitely many equality predecessors. If w
is an equality, then by EO1 and W2, w can have only finitely many non equality
predecessors. Let w (a b). If (s t)< w, then by EO3, both s and are less than
max (a, b). Thus there are at most finitely many equalities less than w.

This completes the proof of 02.
Part 6. 03. Suppose w < v and 0 is a substitution. A simple case analysis will

show that wO < vO. For example, if w (s t), then we have (s t)< v and by EO2,
s _-< v and -<_ v, then by W3, sO <-_ vO and tO <- vO, finally by EO2, (sO tO) < vO which
is the same as wO < vO.

Property O1 follows from 02 and 03.
Part 7. 04. This is W4.
Part 8. 05. This follows from W5 and EO3a.
Part 9. 06. That (t s)> (s t) follows from EO3c. That (s t) and (t s) are

adjacent requires showing that (s t)< w < (t s) leads to a contradiction for any
word w. This is not difficult, but requires a tedious case-by-case analysis and is left
to the reader.

Part 10. 07. Suppose t-< s and s is a subterm of w. If w is not an equality, then
s_-<w by 04 and (t =s)<w by EO2. If w (a =b) and s is a strict subterm of a or
b, then either t<=s<a or t<-s<b. By EO3d or EO3e, (s=t)<w. If w=(a =s) or
(s a) and < a, then (t s) < w by EO3a or EO3b. I-1

In what follows, we use only that < is a partial order on which satisfies O1
to 07.

4. Interpretations. Let be the set of ground words and Y3 the set of ground
atoms. An interpretation on a set ’

_
Y3 is a mapping I :’ {T, F}. An interpretation

is an interpretation on Y3. An E-interpretation on Y3’ is an interpretation ! on 03’
which satisfies

El. I(s s) T if (s s) ’,
E2o I(s t) I(t s) if (s t), (t s) Y3’, and
E3. if (s t), B[s] and B[t] are in ’ and I(s t) T, then I(B[s]) I(B[t]).

An E-interpretation is an E-interpretation on .

88 GERALD E. PETERSON

Note that E2 follows from E1 and E3 if ’= and that the transitive law" if
(s =t), (t=a), (s =a)’, I(s=t)=T, and I(t=a)=T, then I(s=a)=T: follows
from E3.

Since ca is order-isomorphic to the positive integers and c d, we may write
={B1, B2,’’ ’}, where Bi<Bj if and only if </’. For each k =>1, define 9k

{B l, B2,’", Bk}. A left segment of is either itself or one of the sets k. Note
that I is an E-interpretation on if and only if I is an E-interpretation on k for
all k.

Our immediate goal is to describe how an E-interpretation on k- can be
extended to an E-interpretation on k.

Suppose ! is an interpretation on a left segment ’ of . Let 9a (ca) be the power
set of c, that is, the set of all subsets of . We define a function f"- 9a() by
induction as follows. If w is the smallest element in , then fg(w) is the empty set,. If ft has been defined for every element of c which is less than w, then fg(w) is
defined as the set of all v such that either

F1. w (t s), < s, ft(s t) , and v (s t), or
F2. there is a subterm s of w, w w[s], and a term such that < s, (s t) < w,

(s t) B’, I(s t)=T, fx(s t) f and v wit].
We now define a partial order, (I), or simply if I is understood, on d by

the statement" w (I) v if and only if v ef,(w). It is clear that w >v if w v and,
therefore, is well-founded. We will say that w reduces (I) to v if w (I) v, and
that w is irreducible (I) if fx (w) . If w v and v f(w) by reason of F2, then we
write w v using (s t).

When constructing an E-interpretation, the truth values which are assigned the
various atoms cannot be chosen independently. The purpose of the reduction (I)
is to provide an explicit relationship between an atom and other atoms below it in
the < order which all must be assigned the same truth value if I is to be an
E-interpretation. Condition F1 relates to the fact that (s t) and (t s) must have
the same truth value, and F2 relates to the fact that replacing one side of a true
equality by the other, in any term, must not alter the truth value of that term.

An arbitrary partial order, R, is confluent [11] if for every x and y, if there exists
z such that zR*x and zR*y, then there exists w such that xR*w and yR*w, where
R* is the reflexive, transitive closure of R. The following example shows that is
not necessarily confluent.

Example. Suppose ’ contains the set of atoms shown in the left column of Table
1, A <B if A is above B in the table, and the interpretation I is as shown in the

TABLE

*b =a T
a=b F

*g(a)=a T
g(a)=b F

second column. We are supposing that a < b. We have marked with an asterisk those
equalities (s t) that are irreducible and satisfy I(s t)= T. That is, they are the
equalities that may be used in reducing other words. Note that

(g(a) b)+ (a b)+ (b a),

(g(a)=b)+(g(a)=a),

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 89

(b a) is irreducible, and (g(a)= a) is irreducible. Thus, is not confluent, for with
x (b a), y (g(a) a), there is a z (g(a) b), but no w.

The usefulness of (I)stems from the following two theorems. The first of these
shows that (I) does, in some cases, have a property similar to confluence.

THEOREM 2. Suppose I is an E-interpretation on k-1. IfBk C and Bk - D, then
I(C)=I(D).

Proof. The only way for f (Bk) to contain both C and D (if C D) is for Bk C
using (Sl tl) and Bk oD using (s2 t2). Let Bk/nl sl and Bk/n2 s2. The proof will
be by cases depending on the relation of n and n2 in dom Bk.

Case 1. Suppose nl+/-n2. If we write Bk[u, v]=Bk[nu, n2v], then we have
by hypothesis

I(C) I(Bk[tl, s2])= I(Bk[tl, t2])= I(Bk[s 1, t2])= I(D).

Case 2. Suppose n and n2 are not independent. Then one must be an ancestor
of the other and we assume n n2 for definiteness. Then s2 is a subterm of s. If s2
were a strict subterm of sl, then by 07, (s2 rE) < (sl tl) and it follows that (s t)
is irreducible (I). Thus s2 sl. Write s SE=Sl and Bk =Bk[S]. Since tl <s--<Bk and
t2$ <--Bk, it follows from EO2 that (tl tE)<Bk. Since I(s t) =T and I(s rE) =T,
and I is an E-interpretation on k-l, we have I(tl rE) T. Therefore

I(C) I(Bk It1]) I(Bk It2]) I(D)

since C, Bk[tl], Bk[t2] and D are all in k-1.
THEOREM 3. Suppose I is an interpretation on k which is an E-interpretation on

9k_1. Then I is an E-interpretation on k if and only if
(1) Bk is reducible (I) and for all C such that Bk C, I(Bk) I(C), or
(2) Bk is irreducible, of the form (t t) and I(Bk)= T, or
(3) Bk is irreducible and not of the form (t t).
Proof. If neither (1), (2) nor (3) holds, then it is obvious that I is not an

E-interpretation on k. Suppose that (1), (2) or (3) holds. We must show that I is
an E-interpretation on k, i.e., that El, E2 and E3 hold on k. Since I is known to
be an E-interpretation on 9k-1, it will suffice to prove the following.

P01. I(Bk) T if Bk (t t) for some term t.
P02. If Bk (t s) and < s, then I(Bk) I (s t).
P03. If Bk =(s =t), A[s]<Bk, A[t]<gk and I(Bk)=T, then I(A[s])=I(A[t]).
P04. If Bk Bk[S], (s t) < Bk, Bk[t] <Bk and I(s t) T, then I(Bk) I(Bk[t]).
P05. IfBk =Bk[t], (s t)<Bk, Bk[S]<Bk andI(s t)=T, thenI(Bk)=I(Bk[S]).
P01. If Bk (t t) is irreducible, then neither (1) nor (3) holds, so we must have

(2) and I(Bk)=T. If Bk (t t) reduces using (Sl- tl) then sl must be a subterm of
and we have

I(Bk) I(t[Sl] t[s])

=I(t[tl]= t[sl]) by (1)

I(t[tl] tit1]) by hypothesis

T by hypothesis.

P02. Suppose Bk =(t=s) and t<s. If (s=t) is irreducible, then (t=s)(s=t)
by F1 and I(Bk)=I(s t) by (1). If (s t) reduces to (s’ t’), then (t s) reduces to

90 GERALD E. PETERSON

(t’ s’). Therefore

I(Bk) =I(t’= s’) by (1)

I(s’= t’) by hypothesis

I (s t) by hypothesis.

P03. Suppose Bk =(s =t), A[s]<B, A[t]<B and I(B) =T. If s <t, then by
P02, I(s=t)=I(t=s)=T. By hypothesis, I(A[s])=I(A[t]). If s =t the result is
obvious. Suppose s > t. By 07, A[s]= (s =a) or (a s) and >a. For definiteness,
assume A[s] (s a); the other case will be similar. IfB is irreducible, then I(A[s])
I(A[t]) F. For, if otherwise, say I(A[s]) T, then I(A[s]) I(s a) I(s a’) T,
where a’ is irreducible and a * a’. This implies that Bk is reducible (). Suppose
Bg reduces using (sl tl). If s is a subterm of s, then T I(S[Sl] t)= I(S[tl] t) by
(1). So by hypothesis

I(A[s]) I(s[s] a)

=I(S[tl]=a)

=l(t=a)

=I(A[t]).

If Sl is a subterm of t, then similarly T I(s t[s1]) I(s tit1]) and

I(A[s])=I(s =a)

=I(t[t]=a)

=I(t[Sl]=a)

=I(A[t]).

P04. SupposeB B[s], (s t) <B, Bk[t] <B and I(s t) T. It follows from
B[t]<B[s] that <s.

Suppose first that s is irreducible. Let t-* t’ where t’ is irreducible. Then by
hypothesis, T I(s t) I(s t’) I(t t’). Thus

I(B[s]) I(Bk[t’]) by (1)

I(Bk[t]) byhypothesis.

Suppose now that s is reducible to s’ using (S1--tl). Write s sis1]. Then T
I(s t) I (sit1] t) and

I(B[s]) I(B[s[sl]]) I(B[s[ta]]) I(Bk[t]).

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 91

P05. This becomes the same as P04 with s and interchanged if we note that
s < and therefore I(s t)

Theorem 3 will be used to construct semantic trees whose branches correspond
to E-interpretations. Completeness results obtained using semantic trees require a
so-called lifting lemma [3, p. 84] to make them applicable to clause sets containing
variables. The lifting lemma for the paramodulation inference rule works only if the
paramodulation was done on the ground level to a term which can be "seen" at the
general level; that is, the paramodulation was not done inside a term which came
from a substitution. It is necessary, therefore, to deal only with "fully simplified"
substitutions. The purpose of the following discussion is to formalize these ideas.

Let I be an E-interpretation on a left segment ’ of . Let 0=
{xl tl,’’’, xk -tk} be a ground substitution. We write 0 (I) 0’ if 0’ is identical to
0 except that one t. has been replaced by t and t. t. We say that 0 is irreducible if
every term ti of 0 is irreducible.

Let c(,) be the set of clauses that can be formed from the atoms in ’. If I is
an interpretation on Y3’ then I can be extended to c(Y3’) in the usual manner by
defining I(---A) as ---I(A) for A YJ’ and I(LI v... v L) as I(L)v... v I(L) for
literals L,..., L whose atoms are in @’.

THEOREM 4. Suppose 0 is a ground substitution and C is a clause such that CO is
in c(,). If 0 * 0 ’, then I(CO) I(CO ’).

Proof. It will suffice to prove that if 0 0’, then I(CO)= I(CO’). Suppose 0- 0’.
Then a term ti of 0 has been replaced by t; in order to form 0’ and t. t. Since ti
occurs somewhere in CO (if it doesn’t, the result is obvious), it follows that ti <A for
some A’ and therefore (t.=ti)Y3’ Now (ti=ti)-(t =ti). Since I is an E-
interpretation on ’ and (t t}) Y3’, it follows that I(ti t})= T. But CO’ differs from
CO only in that 1 or more occurrences of t/have been replaced by t}. It follows that
I(CO) (CO’). rq. Inference rules. Let S be a set of clauses. In the next section we will deal
with proof procedures which are composed of some or all of the following rules of
inference. In those rules involving two clauses, we assume that their variables have
been standardized apart.

Factoring. If L 1, , L are literals of a clause C which are unifiable with mgu
then a factor of C is the clause C’= Ctr- (L.cr v v Lktr). The factoring rule states
that one may add to S a factor of a clause C e S.

Resolution. If C =L v C and C2=L2 v C are clauses such that L1 and
are unifiable with mgu tr, then a resolvent of C1 and C2 is the clause C Ctr v C;tr.
The resolution rule states that one may add to S a resolvent of clauses Cx, C2 6 S.

Paramodulation. If C1 and C2 are clauses such that Ca (s t)v C and C2 has
a subterm s’ at node n which is unifiable with s with mgu tr, then a paramodulant C
of C1 into node n of C2 is the clause C (C2[n - t] v C)or. The paramodulation rule
states that one may add to S a paramodulant of clauses C, C2 S.

Equality reversal. If C + (s t) v C’ is in S, then the equality reversal rule states
that one may add to S the clause +(t s) v C’.

Simplification. If C1 (s t), a clause C2 contains a subterm which is an instance
str of s, and scr > to’, then the clause C C2[ttr] is a simplification of C2 using C1.
The simplification rule states that one may replace in S a clause which has been
simplified, by its simplification.

Subsumption. If C and C2 are clauses such that Ctr
_
C2 for some substitution

tr, then C is said to be subsumed by C1. The subsumption rule states that one may
delete from S any clause which is subsumed by another clause in S.

92 GERALD E. PETERSON

Examples. Suppose S is the set of clauses
C1. P(x) v]’(g(x, a)) x,
C2. -P(g(a, x)) v Q([(x)),
C3. P(x) v P(/’(y)),
C4. f(x) x,
c5. O(x).

Then P(f(y)) is a factor of C3,

f(g(g(a, x), a)) g(a, x) v Q(f(x))

is a resolvent of C1 and C2,

.P(g(a, g(x, a))) v O(x) v P(x)

is a paramodulant of C1 into C2, P(x) v P(y) is a simplification of C3, and C5 subsumes
C2.

The following fundamental result is due to G. Robinson and L. Wos [32].
THEOREM 5 (Paramodulation lifting lemma). If C’ is a paramodulant of C10 into

node n o]’ C20 and n dom C2, then there is a paramodulant C of CI into node n of
C2 such that C’ is an instance of C.

Proof. Let C (s t) v C then CO (sO tO) v C’aO. Let b be the mgu of sO
and CzO/n, so that

C’= (C20[n <-- tO] v

Now C20/n (C2/n)O, and sOqb (C20/n)qb. Thus (C2/n)O& sOd) and it follows that
C2/n and s are unifiable. Let tr be their mgu. Then there is a substitution 4’ such
that 04 trq, and there is a paramodulant C of C1 into node n of C2 given by

Furthermore,

C (C2[n ,- t] v C)r.

CO (C.[n <-- t] v C’)trO

(Cz[n <-- t] v C’)0
(CO[n ,- to]v C’O)

6. Semantic trees. The usefulness of semantic trees in obtaining completeness
theorems for sets of clauses without equality has been considered in [16].

A truth-value tree is a binary tree such that each node other than the root is
labeled with T or F. If is a truth-value tree and N is a node of z, then z(N) denotes
the label at N, i.e., z is considered to be a function from the nodes to the labels. A
numbered truth-value tree is a finite truth-value tree such that each leaf node is labeled
with a nonnegative integer in addition to its truth value. If N is a leaf node we write
’(N) to denote the associated number. We partially order numbered truth-value trees
by writing 1 < Z2 if and only if

TO1. dom dom , or
TO2. dom ,a =dom,2 and (N)6r(N) for every leaf node N with the

inequality strict for at least one N.
It is clear that this partial order is well-founded.

Let N be a node in a truth-value tree at level k. Then I "k o{T, F} is the
interpretation on k defined by Iu(Bi)= ,(M) where M is the ancestor of N at level
]. Similarly, if b is a branch of a truth-value tree, then Ib is the interpretation (possibly

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 93

on a finite left segment of if b is finite) defined by Ib(Bj)= -(M) where M is the
node of b at level/’.

An E-semantic tree is a truth-value tree - defined inductively as follows.
T1. The root of - is unlabeled and at level 0.
T2. A node N of - at level k- 1 has one or two children according to the

following rules. (Compare with Theorem 3.)
T2a. If Bk is reducible (IN), say Bk --> C, then N has one child labeled IN(C).
T2b. If B is irreducible (IN) and of the form (t t), then N has one child

labeled T.
T2c. IfB is irreducible (IN) and not of the form (t t), then N has two children,

the left one is labeled T and the right one F.
Theorem 3 tells us that every Iv in an E-semantic tree is an E-interpretation on

3 where k is the level of N. Furthermore, the set of all interpretations Ib on the
branches of an E-semantic tree is identical to the set of all E-interpretations on .

I $ is a set of clauses, then -($) will denote an E-semantic tree over the Herbrand
base of S.

A node N of z(S) is a failure node if IN falsifies some ground instance CN of a
clause in S, but if M is an ancestor of N, then I does not falsify any ground instance
of a clause in S.

LEMMA 1. IfN is a failure node at level k then
(1) if IN (Bk) F then Bg is a literal of C,
(2) if lN(Bk) T then .--Bg is a literal of C.
Proof. Since I(C)=F, it follows that if A is an atom of Cr, then A <----Bk. If

every atom of CN were <Bk, then we could find a strict ancestor M of N for which
I(C) F and N would not be a failure node. Thus B occurs as an atom in C. If
Ir (Bk) F, then Bk occurs as a literal in Cr; otherwise, "Bk occurs as a literal in C. [3

An E-model for a set S is an E-interpretation I defined on the Herbrand base
of S such that I(CO)=T for every ground instance C0 of a clause C in S. If S has
no E-model, then every branch of -(S) will have a failure node.

We will next describe how to assign a nonnegative integer to each failure node
N which somehow measures the "reducibility" of the clauses which are falsified by
IN. For each failure node N of z(S), let SN be the set of ground instances of clauses
in S that are falsified by IN. The definition of failure node shows that SN is not empty.
If Bj is an atom in one of the clauses of S, define

if B is irreducible (IN),
otherwise.

If L is a literal in one of the clauses of SN andA is the atom of L, define AN(L) AN(A).
Finally, if C=L1 vL2v.. "VLk is a clause in Sr, define AN(C)== AN(L/). This
completes the definition of a function AN which maps the elements of C to nonnegative
integers and is such that AN(C)= 0 if and only if C is irreducible. For each failure
node N, let CN be a clause in SN at which a minimum of AN occurs. That is,
AN (CN) _--< AN (C) for every C SN. We assign to nodeN the nonnegative integer AN (CN).
Now CN is a ground instance of some clauseDN in S, that is, CN D0. This substitution
0 may and will be taken to be irreducible (IN), because if it were not, say 0 -->+ 0* where
0* is irreducible (I), we may select CN =DrO* since by Theorem 4, IN(D0)
IN(DNO*) F so DNO* SN and AN (DN0*) --<-- AN (D9).

If S has no E-model, then the closed semantic tree for S, ’.(S), will be the
numbered truth-value tree consisting of that portion of z(S) which includes all nodes

94 GERALD E. PETERSON

that are at or above the failure nodes and has each failure node N labeled with- (N)= AN(CN). An example is shown in Fig. 1.
AnRfailure node is a failure nodeN such that AN(CN) 0, that is, CN is irreducible

(IN). A P failure node is a failure node which is not an R failure node. The bottom
two leaf nodes of Fig. 1 are P failure nodes and the top one is an R failure node.

a=a T

FP(a)

g(a)=a

a =g(a)

g(a)=g(a)

P(g(a)) 6, T
{---P(g(a))}

FIG. 1. The closed semantic tree z,(S) for the set S={x g(x),P(a), --,P(g(a))}. The elements of3 are
shown in order in the left-hand column. The truth-value of each node is shown on its right and the numeric

value ", (N) is shown on the left of each failure node. Although not part of ’,(S), the clause CN is shown
in braces under each failure node N.

A reduction node is a non leaf node N of -,(S) at level k such that Bk is an
equality, -,(N)= T, and N has a brother. From this it follows that Bk is irreducible
(It) where M is the father of N, and Bk is not of the form (t t). The only reduction
node in Fig. 1 is the node on the third level which is labeled T.

A resolution inference node is a node N of r,(S) such that all the children of N
are R failure nodes. There are no resolution inference nodes in Fig. 1.

A paramodulation inference node is a P failure node N such that every reduction
node ancestor of N has a brother which is an R failure node. In Fig. 1 the node with
number label 4 is a paramodulation inference node.

LEMMA 2. If S does not contain the empty clause and has no E-model, then ’,(S)
has either a resolution or a paramodulation inference node.

Proof. Suppose -,(S) has no resolution inference nodes. Let’s start at the root
of -,(S) and take a walk down r,(S). As we walk we will obey the following rules.

A1. We will never walk on an R failure node.
A2. We will never walk on a reduction node unless its brother is an R failure node.

This walk must end at a paramodulation inference node. For, if we are not at a failure
node we can always keep walking since ’,(S) has no resolution inference nodes.
Therefore, when we stop we will be at a P failure node and it will be a paramodulation
inference node because of condition A2. V1

Let S S {x x }. Recall that numbered truth-value trees were endowed with
a partial order at the beginning of this section.

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 95

THEOREM 6. If S has no E-model and -,(S) has a resolution inference node, then
there is a resolvent C of clauses or factors of clauses in S such that z,(S C) < z,(S).

Proof. We just give an outline since this result is well known in the context of
ordinary semantic trees [see 3].

Let N be a resolution inference node in -,(S). If N has two children, let these
children be nodes L and M. Then there are ground instances CL and Ct of clauses
of S such that IL(C) F and It(Ct) F. If N is at level k 1, then L and M are at
level k. Thus IL(Bk) T and IM(Bk) 17. It follows from Lemma 1 that "Bk occurs in
C and Bk occurs in Ct. Thus C and Ct or factors of C and Ct will resolve to
produce a clause C’ which does not contain Bk and therefore IN(C’) F. This resolution
can be lifted to the general level to obtain a clause C of which C’ is a ground instance.
In -,(S tA C) node N or one of its ancestors is a failure node. Thus z,(S C)< z,(S).

If N has one child, say node M, and N is at level k- 1, then Bk is of the form
(t t). There is a ground instance Ct of a clause of S such that It(Ct) F. It follows
that Ct contains (t # t). Thus Ct or a factor of Ct resolves with (t t) to produce a
clause C’ which does not contain (t # t). This resolution can be lifted to a general
level resolution with (x x), and we proceed as above. 1

In the proof of the following theorem we will use Var (0) to denote the set of
variables {x 1,’" ,Xk} appearing on the left of elements in a substitution 0=
{Xl - tl, Xk. -- tk}.

THEOREM 7. If ’,(S) has a paramodulation inference node, then there is a para-
modulant C of clauses or factors of clauses in S, or a clause C obtained by reversing
an equality (possibly contained in an inequality) in some clause of S, such that
,(S A C) < ,(S).

Proof. Let N be a paramodulation inference node of -,(S) and let C2 be a clause
in S such that C20 CN for some irreducible (IN) substitution 0. Since N is a P failure
node, C20 is reducible (IN). Let E be a clause such that C20 E.

Case 1. Suppose C20 E by reason of F1. Then C2 contains an equality (t s)
such that tO <sO and E is identical to C20 except that (tO sO) has been reversed.
Let C be the same as C2 except that the equality (t s) occurs as (s t) in C. Then
E CO, and IN(CO) IN(C20) F. Also AN(CO) < AN(C20). It follows that z,(S C) <
,(S).

Case 2. (Refer to Fig. 2) Suppose C20-E by reason of F2. Then there is an
atom A of C20 and a ground equality (sl t) such that s is a subterm of A, t < s,
(sl t) <A, IN(S1 tx) T, (s t) is irreducible (IN) and E C20[n tl] where
n dom C20 is such that C20/n- s. Since 0 is irreducible (IN), n rdom C2. Since
(s= t)<A, IN(S tl)=T, and (s= t) is irreducible (IN), it follows that N has a
reduction node ancestorM at level k, say, and Bk (s t). Since N is a paramodula-
tion inference node, the brother K of M is an R failure node. Let C1 S be such
that CO =Cr for some irreducible (I:) substitution . Now I:(s =t)=F and it
follows from Lemma 1 that (s tl) is a literal of C:.

If (s- t) occurs twice or more in Ck, then there will be literals (s= t), ...,
(s k) in C such that (sl t) (s tO) for 1 <_- -< k. Thus (s t), ., (s)
are unifiable. Let tr be their mgu and let 4 be such that -tr4. Then

C* Cxcr-{(sZcr tzcr) v... v (sko to’)}
is a factor of C such that C* is identical to C except that C’ has only one
occurrence of (sl t). Now may be chosen such that Var ()fq Var (r) is empty
(to see this, note that the unification algorithm [3, p. 77] implies that none of the
variables in Var (o-) occur in any of the terms of r) and it follows from the definition

96 GERALD E. PETERSON

(Sl =tl)

M F

N Q

{CO)

FIG. 2. The situation in the proof of Theorem 7.

of composition of substitutions [3, p. 76] that all the terms of b are also terms of
Thus b is irreducible (Ik). We may assume, therefore, that (sa ta) occurs only once
in

Thus we have Cl=(S=t) vC where (sa=ta)=(sff=t0) and It,:(CO)=
IM(C’4) =IN(CO)= F since all the atoms in CO are less than (Sl tl), and It,
and IK have identical values on such atoms. Furthermore, C is irreducible (I,
or I:) since K is an R failure node.

Let C’ be the ground paramodulant

c CO n ,-- t,t, v C ,
of CatO into node n of CzO. If Ca and Cz have had their variables standardized apart,
and we assume they have, then we may think of C’ as a paramodulant of
into node n of Cz(O tA O). By the paramodulation lifting lemma, there is a paramodulant
C of Ca into node n of Cz such that C’ is a ground instance, say Ca, of C. Since CO
is irreducible (IN), AN(C’)=AN(C20[n-tO])<AN(C20)=AN(CN). It follows that
,(S hi C) < ,(S).

Note that in Theorems 6 and 7 all resolutions and factoring were done with
irreducible clauses and clause Ca. which was used to paramodulate into C0 was also
irreducible. Furthermore, equality reversal was only performed on an otherwise
irreducible equality.

THeOReM 8. If S has no E-model then S has a refutation by factoring, equality
reversal, resolution and paramodulation.

Proof. This follows from Lemma 2 and Theorems 6 and 7.

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 97

This theorem implies that resolution and paramodulation (including factoring) is
complete without the functionally reflexive axioms.

7. Unnecessary clauses. Suppose S has no E-model. A clause CS is
unnecessary if for every failure node N of ’,(S), there is a clause in SN with minimum
AN value which is an instance of a clause in S-{C}; that is, CN may be chosen in
S-{C}. It is clear that an unnecessary clause may be deleted from S without affecting
z,(S). We show here that subsumed clauses and most clauses which can be simplified
are unnecessary.

THEOREM 9. If C1 is subsumed by C2, then C1 is unnecessary.
Proof. Let CEo’_ C1. Let N be a failure node of ’,(S) and suppose CN CO for

some 0. Then IN(CO)=F. Since C.o’O _CO, it follows that IN(CEO’O)=F and
AN(CEO’O)<-AN(CO). Thus CN may be chosen as CEo’O, and C1 is unnecessary.

THEOREM 10. Suppose CI, C2 and (s t) are clauses in S such that for some
substitution o’, C contains an atom A which has so, as a subterm, that is, C1 Cl[So,].
Suppose C2=C[to,] and so,> to,. Suppose A is not of one of the forms (o,o, =p) or
(p so,) where p is a term such that pqb < to,qb for some ground instances, pb and to,qb,
ofp and to,. Then C is unnecessary.

Proof. Suppose there is a failure node N of z,(S) such that CN CO. Then
C10 C10Eso,0], C20 ClOEto,O and so,O > to,O. Thus AN(C20)<--_AN(CN).

If (so,O to,O)>--AO, then by 07, AO must be of one of the forms (so,O =q) or
(q so,O) where q <-_ to,O. It follows that A must be of one of the forms (so, p) or
(p so,) where pO =q <-to,O. But this was ruled out in the hypothesis. Therefore,
(srO trO < AO.

If IN(so,O to,O) were false, then since (so,O- to,O) is a ground instance of the
clause (s t)S and hN(So,O to,O)<hN(AO)<-hr(CO), it would follow that C10 is
not a clause of minimum AN value in SN. Thus IN(so,O to,O)= T.

Suppose N is at level k in -,(S). Then IN is an E-interpretation on k. Thus
IN(C20) IN(CO) F. It follows that CN may be reselected as C20 and, therefore, C1
is unnecessary. q

As a practical matter, the restriction on the form of A in Theorem 8 is probably
not needed. To see this, consider first the case in which C C v (so,-p). Then
C2=C’ v (to,-p) and a paramodulation of C2 into (s t) yields C1. Thus, if C is
discarded it can be recovered and is unnecessary in that sense. Consider also the case
in which C C v (so, p). Then C2 C v (to, p). Now let L be some literal which
can resolve with (so, p). Then LO (so,O pO) for some substitution 0. Paramodula-
tion of (s t) into LO yields (to,O pO) which resolves with (to, p). Thus no resolutions
are lost if C1 is discarded and it again appears to be unnecessary. For these reasons,
implementors would very likely retain completeness if they ignored the restrictions
on the form of A in Theorem 8.

8. Practical considerations and examples. Putting these ideas together and con-
sidering carefully the proof of Theorem 5, we find that a complete theorem prover
for first-order predicate calculus with equality could consist of resolution, paramodula-
tion, factoring, equality reversal, simplification, and subsumption removal with the
following restrictions.

P1. Simplification and subsumption are performed first, since they do not increase
the size of S.

P2. No paramodulation into variables.
P3. All paramodulations replace s by where t-s.
To be more precise (but ignoring the restrictions of Theorem 8), suppose RP(S)

98 GERALD E. PETERSON

is the set of clauses obtained from $ by resolution, paramodulation, equality reversal
and factoring with subsumed clauses and clauses which have been simplified, deleted.
Suppose further that in forming RP($) restrictions P1-P3 are obeyed. Then RP" (S)
contains the empty clause for some n, where RP"(S)= RP(RP’-I($)). This follows
from our theorems, since it is clear that ,r,(RP($))< "r,($).

If this procedure was applied to a set S consisting entirely of equality units, then
it would be very similar to the process that Knuth and Bendix [15] used for producing
new reductions from old since their process consisted of paramodulations into nonvari-
ables, simplifications, and deletion of clauses subsumed by (x x).

As a hand example, let us prove that a two-element group is commutative. We
write s--> if the equality (s t) is such that s > t. Our set of operators is O
{e, a, b, c, d, -, } ordered as listed. Let (f) 1 for every f O and use the Knuth-
Bendix order described in 3. Clauses 2 through 11 below are the complete set of
reductions found for groups by Knuth and Bendix except that clause 11 has been
reversed in order to conform to our ordering. (Thus reductions 2-11 will not be a
complete set of reductions in our order.) Clause 12 states that the group consists of
two elements and clause 13 that it is not commutative. We use the abbreviations P,
$, and R for paramodulation, simplification and resolution, respectively. The proof
has been abbreviated somewhat by omitting certain rather obvious steps.
1. X=X
2. x.ex
3. e.x-->x
4. x "x-l-e
5. x-.x->e
6. e-1.-->e
7. x-- --> x
8. (x y).z -x (y z)
9. x (x -1 y)--> y

10. x -" (x y)--> y
11. y-l" x- --> (x
12. x=avx=b
13. c.dd.c
14. a-->eve-->b P of 12.1 into 6
15. a -->e vb-->e S of 14

delete 14
16. x =e vx =b vb-->e P of 15.1 into 12
17. e d d e vc-->b vb--->e P of 16.1 into 13
18. ddvc-->bvb-.>e Sofl7

delete 17
19. c --> b v b -> e R of 18.1 and 1

delete 18 Subsumed by 19
20. b.dd.bvb-->e P of19.1into13
21. b.ee.bvd-->bvb-->e P of 16.1 into 20
22. bbvdbvbe S of21

delete 21
23. d - b v b - e R of 22.1 and 1

delete 22 Subsumed by 23
24. b.bb.bvb-e P of 23.1into 20
25. b - e R of 24.1 and 1

delete 24, 23, 20, 19, 16 and 15 Subsumed by 25.

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 99

26. x=avxe Sol12
delete 12

27. e.dd.evc-a Pof26.2into13
S of 2728. ddvca

delete 27
29. ca

delete 28
30. a.dd.a

delete 13

R of 28 and 1
Subsumed by 29
S of 13

31. a.e#e.avd-a P of 26.2 into 30
32. d a S of 31 followed by R with 1

delete 31 Subsumed by 32
33. a.a#a.a Sol30
34. U R of 33 and 1

In this example, note that the many deletions made possible by subsumption and
simplification kept the total number of clauses down to a reasonable level. This is in
contrast to previous provers for first-order logic with equality whose main difficulty
was that space would quickly be exhausted. It is therefore hoped that a prover based
on the ideas of this paper will be better than previous complete ones.

Further research into automatic theorem proving in first-order logic with equality
could proceed in many directions. One could try to remove the restriction that the
ordering of terms must be order-isomorphic to the positive integers. This could involve
both extending K/Snig’s lemma [24, p. 69] to well-ordered sets with limit ordinals and
somehow dealing with trees constructed from such sets. Many strategies for improving
the power of resolution provers for logic without equality have been developed [3].
Which of these are useful in provers which use equality? See [24] for a description
of some work in this direction. Special unification methods such as associative-
commutative unification might be incorporated and completeness results sought [8],
[12], [13], [14], [19], [22], [27], [36]. Finally, experience has shown that in implementa-
tions of the Knuth-Bendix procedure, the majority of execution time is spent in
simplification. One could consider the possibility of "compiling" the simplifiers and
producing code that will speed the simplification process.

REFERENCES

[1] D. BRAND, Proving theorems with the modification method, this Journal, 4 (1975), pp. 412-430.
[2] T. C. BROWN, JR., A structured design-method for specialized proof procedures, Ph.D. Dissertation,

California Institute of Technology, Pasadena, CA, 1975.
[3] C. L. CHANG AND R. C. T. LEE, Symbolic Logic and Mechanical Theorem Proving, Academic Press,

New York, 1973.
[4] P. M. COHN, Universal Algebra, Harper & Row, New York, 1965.
[5] N. DERSHOWITZ, A note on simplification orderings, Tech. Rep. R-79-968, Dept. of Computer

Science, Univ. Illinois at Urbana-Champaign, Urbana, IL, April, 1979.
[6], Orderings for term-rewriting systems, Tech. Rep. R-79-987, Dept. of Computer Science, Univ.

Illinois at Urbana-Champaign, Urbana, IL, August, 1979.
[7] N. DERSHOWITZ AND Z. MANNA, Proving termination with multiset orderings, Comm. ACM, 22

(1979), pp. 465-476.
[8] M. J. FAY, First-order unification in an equational theory, Presented at the Fourth Workshop on

Automated Deduction, Austin, TX, Feb. 1-3, 1979.
[9] J. R. GUARD, F. C. OGLESBY, J. H. BENNETT AND L. G. SETTLE, Semi-automated mathematics,

J. Assoc. Comput. Mach., 16 (1969), pp. 49-62.

100 GERALD E. PETERSON

[10] G. HUET, A complete proof of correctness of the Knuth-Bendix completion algorithm, INRIA and SRI
International, 1980.

[11], Confluent reductions: Abstract properties and applications to term rewriting systems, J. Assoc.
Comput. Mach., 27 (1980), pp. 797-821.

[12] G. HUET AND D. C. OPPEN, Equations and rewrite rules: A survey, Technical Report CSL-11, SRI
International, Menlo Park, CA, January, 1980.

[13] J. HULLOT, A catalogue of canonical term rewriting systems, Tech. Rep. CSL-113, SRI International,
Menlo Park, CA, April, 1980.

[14], Canonical forms and unification, Tech. Rep. CSL-114, SRI International, Menlo Park, CA,
April, 1980.

[15] D. E. KNUTH AND P. B. BENDIX, Simple word problems in universal algebras, in Computational
Problems in Abstract Algebras, J. Leech, ed., Pergamon Press, New York, 1970, pp. 263-297.

[16] R. KOWALSKI AND P. J. HAYES, Semantic trees in automatic theorem-proving, in Machine Intelligence
4, B. Meltzer and D. Michie, eds., American Elsevier, New York, 1969, pp. 87-101.

[17] D. S. LANKFORD, Canonical algebraic simplification in computational logic, Memo ATP-25, Dept.
Mathematics, Univ. Texas at Austin, Austin, TX, May, 1975.

[18], Canonical inference, Technical Report ATP-25, Dept. Mathematics, Univ. Texas at Austin,
Austin, TX, Dec., 1975.

[19], Mechanical theorem proving in field theory, Technical Report MTP-2, Dept. Mathematics,
Louisiana Tech Univ., Ruston, LA, January, 1979.

[20], On proving term rewriting systems are Noetherian, Memo MTP-3, Dept. of Mathematics,
Louisiana Tech Univ., Ruston, LA, May, 1979.

[21] D. S. LANKFORD AND A. M. BALLANTYNE, The refutation completeness of blocked permutative
narrowing and resolution, Presented at the Fourth Workshop on Automated Deduction, Austin,
TX, Feb. 1-3, 1979.

[22] ., Decision procedures for simple equational theories with commutative-associative axioms: Com-
plete sets of commutative-associative reductions, Tech. Rep., Dept. Mathematics, Univ. Texas at
Austin, Austin, TX, August, 1977.

[23] L. S. LEVY, Discrete Structures of Computer Science, John Wiley, New York, 1980.
[24] D. W. LOVELAND, Automated Theorem Proving: A Logical Basis, North-Holland, Amsterdam, 1978.
[25] Z. MANNA, Mathematical Theory of Computation, McGraw-Hill, New York, 1974.
[26] A. J. NEVINS, A human oriented logic for automatic theorem-proving, J. Assoc. Comput. Mach., 21

(1974), pp. 606-621.
[27] G. E. PETERSON AND M. E. STICKEL, Complete sets of reductions for some equational theories, J.

Assoc. Comput. Mach., 22 (1981), pp. 233-264.
[28] O. A. PLAISTED, Well-founded ordering for proving termination of systems of rewrite rules, Tech. Rep.

R-78-932, Dept. Computer Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL, July,
1978.

[29], A recursively defined ordering for proving termination of term rewriting systems, Tech. Rep.
R-78-943, Dept. Computer Science, Univ. of Illinois at Urbana-Champaign, Sept., 1978.

[30] G. D. PLOTKIN, Building-in equational theories, in Machine Intelligence 7, B. Meltzer and D. Michie,
eds., John Wiley, New York, 1972, pp. 73-89.

[31] P. RAULEFS, J. SICKMANN, P. SZABO AND E. UNVERICHT, A short survey on the state of the art
in matching and unification problems, SIGSAM Bulletin, 13 (1979), pp. 14-20.

[32] G. A. ROBINSON AND L. Wos, Paramodulation and theorem proving in first order theories with
equality, in Machine Intelligence 4, B. Meltzer and D. Michie, eds., American Elsevier, New
York, 1969, pp. 135-150.

[33] B. K. ROSEN, Tree-manipulating systems and Church-Rosser theorems, J. Assoc. Comput. Mach., 20
(1973), pp. 160-187.

[34] J. R. SLAGLE, Automatic theorem proving with built-in theories including equality, partial ordering,
and sets, J. Assoc. Comput. Mach., 19 (1972), pp. 120-135.

[35], Automated theorem-proving for theories with simplifiers, commutativity, and associativity, J.
Assoc. Comput. Mach., 21 (1974), pp. 622-642.

[36] M. E. STICKEL, A unification algorithm for associative-commutative functions, J. Assoc. Comput.
Mach., 28 (1981), pp. 423-434.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1201-0007 $01.25/0

CHARACTERIZATION OF DIVISION ALGEBRAS OF MINIMAL RANK
AND THE STRUCTURE OF THEIR ALGORITHM VARIETIES*

HANS F. DE GROOTEt

Abstract. The purpose of this paper is to show that every finite dimensional division algebra of minimal
rank, i.e., of minimal complexity with respect to the noncommutative model of computation, is a finite
simple field extension. Moreover, we investigate the structure of the variety of optimal algorithms for the
computation of the multiplication in such fields modulo the isotropy group of the problem.

Key words, algebras, minimal rank, division algebras, simple field extensions, algorithm varieties

Introduction. Let be a finite dimensional algebra.over a field k. We will assume
always that is associative and has a unit element. Let * be the dual of the
k-vectorspace . A (commutative) algorithm of length R for the multiplication in
is a tuple (U1, VI, w,. ., Un, Vn, wn), where Uo, Vo * * and wo (p
1, , R) such that for all x, y

R

xy E Uo(x, y)Vo(x, y)wo

holds. The minimal R possible in such a representation is called the complexity &’()
of . () is the number of essential multiplications needed for the computation of
xy from x and y.

In this paper we use a somewhat coarser but more feasible computational model:
we shall consider only those algorithms for which the Uo’s and Vo’s have the special
form

Then

uo (uo, o), vo (o, vo).

R

xy E uo (x)vo (y)wo
=1

for all x, y; this representation of the multiplication in is equivalent to a
representation of the tensor t e* (R)* (R) of as

R

t Y uo (R) vo (R) wo.

The minimal R possible in such a representation is called the rank of the
tensor ta or the rank of for short, denoted by rk (). This point of view goes
back to V. Strassen, and the reader who is not familiar with these notions should
compare [11] for further details. Obviously we have rk ()->(), and it is
not difficult to prove that rk ()<= 2’().

Recently, A. Alder and V. Strassen proved a general lower bound for the
complexity of algebras ([1]):

(M) -> 2 dim M # mspec (M),

where mspec (M) is the set of two-sided maximal ideals of (M itself is not considered
as an ideal). This lower bound contains almost all known lower bounds for the

* Received by the editors July 8, 1981, and in revised form March 25, 1982.
t Fachbereich Mathematik, Johann Wolfgang Goethe-Universitit, Frankfurt am Main, Germany.

lOl

102 HANS F, DE GROOTE

complexity of concrete algebras. Of course 2 dim -#mspec (M) is also a lower
bound for rk ().

Now it is quite natural to ask for which algebras this lower bound is exact, i.e.,
which are the algebras ’ that satisfy

rk (M) 2 dim g- # mspec (4).

An algebra with this property is said to have minimal rank.
The problem of classifying algebras of minimal rank has two important aspects.

The first is a mathematical one" is it possible to describe such algebras by means of
their internal structure? If the answer is positive (at least for some special classes of
algebras), then this has applications in complexity theory: we will obtain new lower
bounds for the rank of algebras whose structure differs from that which is determined
by the minimal rank condition. This is the second aspect of our problem.

This paper is a starting point for the program described above. We investigate
the structure of finite dimensional division algebras of minimal rank and show that
these are the finite simple field extensions.

Another question, intimately related to the rank problem, is that of determining
the structure of the variety of optimal algorithms for a given bilinear computational
problem. We will do this for the algorithm variety of finite simple field extensions
K/k (provided the base field k is large enough), and in particular we will determine
the orbit space of this variety under the action of the isotropy group of K/k in the
sense of [4]. Furthermore, we shall compare this with the orbit space of optimal
algorithms for polynomial multiplication.

We will now fix some of the mathematical terminology used in this paper.
An element a of an algebra is called a unit if a has a multiplicative inverse. If

M is an algebra, a , then La(Ra) denotes the operator of left (right) multiplication
with a.

Let V be a vectorspace over a field k. If x V we will write Ix for the subspace
of V generated by x. End (V) denotes the k-algebra of all endomorphisms, GI(V)
the group of all automorphisms of the vectorspace V. If : V -, W is a linear mapping,
then q*" W* V* denotes the adjoint of q.

If k and K are fields, then K/k means that K is an extension of k [K k denotes
the degree of the extension K/k, i.e., the dimension of the k-vectorspace K. f denotes
the set of primitive elements of a simple field extension K/k. yn denotes the permutation
group of n elements and #M the cardinality of the set M, and [1 marks the end of
a proof. In general the terminology is that of [4].

1. Division algebras with minimal rank.
1.1. Preliminaries. Let (I): U V-, W be a bilinear mapping between finite

dimensional vectorspaces over a field k, U* (R) V* (R) W the tensor corresponding
to . In [5] we introduced the notion "layer of t". In order to make this notion more
flexible we would like to generalize it to a coordinate-free one and show up its relation
to the left and right multiplication in case (I) is the multiplication in a finite dimensional
algebra.

If M M1 03’’" 03 Mr is a direct sum of division algebras, then M has minimal rank if and only if
all the 4o’s have [7]. However, one can derive more generally from a preliminary version of [1] that if M
is semisimple and M=M1 03 03 Mr is a decomposition of M into simple algebras, then M has minimal
rank if and only if all the Mo’s have.

DIVISION ALGEBRAS OF MINIMAL RANK 103

Let

R

(1.1.1) t= . u,, (R) vo (R) wo
O=1

be a representation of t as sum of rank-one tensors uo (R) vo (R) wo U* (R) V* (R) W.
For x e U, y e V,, e W* we define the layers of with respect to x, y, and

respectively as

R R R

tx := 2 uo(x)vo (R) wo, t" := E vo(y)uo (R) wo, t,, := E x(wo)uo (R) vo.
o=1 o=1 o=l

Note that t V*(R) W, U*(R) W, and t e U*(R) V* can be interpreted as linear
mappings

t: V-, W, t: U-, W, t,,: U--, V*.

Note further that the definition of these layers is independent of the choice of the
representation (1.1.1) of because for all (x, y)e U x V we have

t (y) (x, y), y (x) (x, y),

tx(x)(y)=x((x, y)).

This also shows that in case is the multiplication in a finite dimensional algebra
then

t L and Ry,

where L, R denote left and right multiplication in respectively. In what follows
we also need a relation between t and the left multiplication in s4. This is a somewhat
subtle question, and we will answer it for the special case of a simple algebra s4 with
unit.

PROPOSITION 1.1. Let s4 be a finite dimensional simple k-algebra with unit. Then
there is a vectorspace isomorphism S s sg* such that

(i) L* SRS- for all x

(ii) tx SLs-x for all X *.

Proof. Let 6 be any vectorspace isomorphism 6:s4 - /*. Consider the subspaces

:= {g [x
and

o8 :--. { -1 *

and End (). These are subalgebras of End (), and since x---R, and x6 L6
(x) are antiautomorphisms from onto and respectively, and are

-1 ,
simple subalgebras of End (). ’Rx6 L6 is an algebra isomorphism from
onto which leaves the center k. id of End () elementwise fixed. Hence the
classical Skolem-Noether theorem [8] applies: there is a T Gl() such that (R)
TRoT- for all x , i.e.,

8-L,6 TROT- for all x .
Hence

V L*=(ST)R,(ST)-,

104 HANS F. DE GROOTE

S := 6T is a vectorspace isomorphism from onto * and (i) holds. To prove (ii),
consider x * and x, y . Then

tx(x)(y) X(xy) (L*x)(y) (SRS-X)(y)= (S((S-X) x))(y),

hence tx (x) SLs-x,(x) for all x. [3
Remarks 1.2. (1) S is not unique: if S fulfills L* =SRS- for all x e and

a e is a unit, then also := SL gives the desired link between L* and Rx. Conversely,
if Sx, $2 are isomorphisms * such that Proposition 1.1 (i) holds, then 82
SxLss:x, where 1 denotes the unit element of . We will use this possibility of
changing S later on.

(2) Using Wedderburn’s structure theorem [8], it is not difficult to show that
Proposition 1.1 also holds for semisimple k-algebras. Proposition 1.1 however, cannot
be generalized to nonsemisimple algebras, as the example := k[X2, X3]/(X6, X7)
shows.

(3) If g is a division algebra, i.e., if L is a vector space isomorphism whenever
x O, then $ can be defined by S (x) :- L, where X is a fixed but arbitrary element
o *\{0}.

1.2. Characterization of division algebras with minimal rank. Let be a finite
dimensional k-algebra with unit element 1 and let s be the number of maximal
(two-sided) ideals of. As usual the algebra itself is not regarded as a maximal ideal.

In [1] A. Alder .and V. Strassen showed that 2 dim-s is a lower bound for
the (commutative) complexity of the multiplication in , hence also a lower bound
for the rank of , i.e., the rank of the tensor of .

If is a division algebra (also called a "skew field" sometimes) this lower bound
is simply 2 dim- 1, for (0) is the only maximal ideal of . This is a well-known
lower bound and its proof is in fact an almost trivial exercise.

The only known examples of division algebras for which 2 dim- 1 is the actual
rank are the simple algebraic field extensions of k, provided k has enough elements
[13]. Therefore we are faced with the question whether this class of examples is
exhaustive or not. We will show here that a division algebra with minimal rank
2 dim-1 is generated (as an algebra) by a single element, i.e., is a simple field
extension of k.

In what follows, is a unitary n-dimensional division algebra with minimal rank,
the tensor of its multiplication.
LEMMA 1.3. Ift

2n--1 ,5* *Y.o u, (R) v, (R) w (R) 4 (R) is an optimaldecomposition
of t, then any subset of (u,..., u2,-1}, (Vx," ’, v2,-} or (w,..., w2,-} with n
elements is linearly independent.

Proof. Let {W,l, ’, w.} {w x, ., w2,-x} be an n-element subset. Without loss
of generality we may assume that pg for 1,. ., n. Consider a non-zero x
which is orthogonal to {U,+x,’’’, U2n-X}, i.e., it satisfies the equations u(x)=0 for
p n + 1, ., 2n 1. Then the layer tx L of with respect to x is simply

L, uo (x)vo (R) wo.
0=1

Because is a division algebra, x is a unit and therefore L,, Gl(s). This implies
that {va,..., v,} and {wa,..., w,} are linearly independent subsets of * and
respectively.

If {uo,"’, uo.} is an n-element subset of {u,..., u2,-}, consider a nonzero
element y orthogonal to {v,. ., Vz,-}\{vo,," ", vo.} and argue with Ry in the same
way as above.

DIVISION ALGEBRAS OF MINIMAL RANK 105

THEOREM 1.4. A division algebra sg over k has rank 2 dim 1 if and only if
is a simple field extension of k and #k ->_ 2 dim s4 2.
Proof. The idea of the proof is to construct a primitive element for . According

to Proposition 1.1 we choose a vectorspace isomorphism $" * such that x

SLs-lx for all h’ *. Consider an optimal decomposition of into tensors of rank one"

2n--1

(1.4.1) t= uo (R) vo (R) wo.
0----’1

In order to simplify our discussion we shall use the fact that we can obtain further
optimal decompositions of by means of the transformation

uo (R) vo (R) wo -’A*uo (R) B*vo (R) Cwo (p 1,"., 2n- 1)

where

A =LaRb, B =Lb-iRc, C =La-lRc-’
and a, b, c are units of s [4, Thm. 3.1]. Hence we may assume without loss of
generality that v S 1 in decomposition (1) of t. From Lemma (1.3) we know that
{wn,’’’, w2n-1} is linearly independent, i.e., is a basis of s4. Let {Xx,"’’, Xn}S4*
be the dual basis:

X(w,-+i) 6o for i, f 1,. ., n.

Then we obtain for all 1,..., n"

(1.4.2) SLs-, tx, Y. uo (R) voxi(wo) + u,-l+i (R) v,-l+i.
0=1

Now choose yl_t_{ul,’’’, u,-1}, yl S0, and y2_L{u2,..., u,_x} such that ua(y2)= 1.
In particular this implies that {y 1, y} is linearly independent, i.e., y -1y2 e k. We conclude
from (2) that for all 1,. , n

(1.4.3) S((S-IC) Yl)= Un-l+i(Yl)Vn-+i

and

(1.4.4) $((S-lxg) Y2) Xi(wI)Sl + Un-l +i (Y2)Vn-l+i

holds. Now (3) implies

S-1Xi u_.l+i(yl)(S-lvn_x+i)y-
for 1, , n. Substituting this in (4) we can solve for S-lv,_x+. It follows that

(1.4.5) S-IUn-I+i Xi(W1)[b/n-X+(y a)(y i-y2)- Un-x +i (y2)]
-1

for i= 1,...,n. Observe that, for all i, U,_l+(yl)(y]-ly2)-Un_l+i(y2), and hence
$-1v,_1/, is contained in the subfield k(yTly2) of s4 generated by y-ly2. On the other
hand,

by Lemma 1.3, hence

s4 =link {S-11An_l+ill <--__i <-_n}

-1=k(yl y2),

and y-ly is a primitive element of the field extension s4/k.
The assertion #k _-> 2n 2 will follow from the classification of optimal algorithms

for t.

106 HANS F. DE GROOTE

Conversely, it is well known that multiplication in a simple field extension of
degree n over k has rank 2n- 1 provided that #k >-2n-2 (cf. [3], [12]).

Remark 1.5. Our proof uses Proposition 1.1, hence implicitly the Skolem-
Noether theorem. It is possible, however, to give a quite analogous proof without
using Proposition 1.1: without loss of generality assume Wl 1; let {Xl,."’, Xn}
be the basis dual to {un,’’’, u2n-1}. Then

n--1

Lx, uo(xi)vo (R) wo nt-Vn-X+i (Wn-X+ i.

Consider z+/-{v,..., v,-1}, zl 0, and z2+/-{v2,’’’, v,-1} such that vl(z2) 1. Now
it should be clear how to proceed, and we leave this as an exercise to the reader. The
reason for the proof given for Theorem 1.4 is that it gives us information on the
structure of v,,..., v2,-1 (cf. (1.4.5)). We will need this information later on for the
classification of optimal algorithms for t.

COROLLARY 1.6. (1) If Sg is a noncommutative division algebra over k, then its
rank is at least 2 dim M.

(2) Let k be an infinite field, K a finite algebraic extension of k. The extension
K/k is simple if and only ifK has rank 2[K: k 1.

Note that the assumption #k o is quite natural for the equivalence stated in
(2), for if k is a finite field, each finite algebraic extension K over k is a finite field.
The multiplicative group of a finite field is cyclic, hence the extension K/k is simple.

2. Classification of optimal algorithms for the multiplication in simple field
extensions.

2.1. Parametrization of optimal algorithms for simple field extensions. In this
subsection we will derive a parametrization of the variety of optimal algorithms for
the multiplication in a simple extension K/k of complexity 2n- 1 where n := [K:k]
is the degree of the field extension.

The result is a minor modification of that in [13]. The proof, however, is much
less computational than that of S. Winograd, thus showing the power of coordinate-free
methods in algebraic complexity theory.

In what follows we will denote by the tensor of multiplication in K.
DEFINITION 2.1. A product u (R) v is called symmetric if [u] Iv].
The next lemma shows that optimal algorithms for K must have strong sym-

metries"
2n-1LEMMA 2 2 Let z,o= uo (R) vo (R) wo be an optimal decomposition of t. If one

of the products uo (R) vo is symmetric then all of them are.

Proof. Let u (R))1 be symmetric. Without loss of generality we may assume that
Ul=Vl by scaling (cf. [4]). Consider (n-1)-element sets {uol,"’,uon_l},
{vol,"’, von_} that do not contain U l. If we can show that the products
(i- 1,..., n- 1) are symmetric, we are done. For notational convenience we will
assume that the sets above are {uE, ", U} and {v2, , v,} respectively. According
to Lemma 1.3 there are (unique) elements x, y K,

X +/- {Un+l, ’, U2n-1}, y _1_ {v.+:, ",

such that u (x) v (Y) 1. As K is commutative, we have

m:=Lz=R for allzsK.

Therefore

mx
,

uo (x)vo (R) wo,
O=I

DIVISION ALGEBRAS OF MINIMAL RANK 107

and on the other hand

my= Z vo (y)uo (R) wo.
0=1

NOW

m,,_y mx my [uo (x)vo vo (y)uo] (R) wo
0=1

[uo (x)vo vo (y)uo (R) wo,
0=2

and it follows that the multiplication operator mx-y is singular. This is possible only
if mx_y =0, i.e. x y, and from the linear independence of {w2,’’ ", wn} we then
conclude that

uo (x)vo vo (x)uo for0=2,...,n.

Thus the products u2 (R) v2, , un (R) vn are symmetric. F1
Now let S:K-K* be a k-vectorspace isomorphism with the properties (i), (ii)

2n-1of Proposition 1.1. Let Y.o=l uo (R) vo (R) wo be an optimal decomposition of t. By
means of the isotropy group we may assume that

(2.1.1) ua=va =S1.

Then Lemma 2.2 shows that we may scale the other products in such a way that

holds for all O 1, ., 2n 1. From the proof of Theorem 1.4 we see that there are
a primitive element w e K and elements a,-l+v,/3,-1+, e k such that

As {vl, v,-l+} (v 1, , n) must be linearly independent, it follows that a,-l+v 0
for all v, hence we may scale the v-l+ such that

(2.1.2)
=l,...,n

with suitable fln-l+v k. It remains to determine v2, ’, v,-1. For this we shall make
a special choice for the isomorphism S’K K*. Observe first that our primitive
element o does not depend on S.

Now choose X K* such that

There is exactly one a K with X S(a). Now S’ := Sm has the property

S’l Sa _1_ {1, o, ., o"-2}.
Finally observe that the switch from S to S’ can be achieved by applying

Ca , F0m (R) m (R) m- to our algorithm"

m *Sx Sm,,S-1Sx S’x.

Hence we may assume that S in (2) has the property

S 1 _i_ {1, o,. ., o"-2}.

108 HAS F. DE OROOTE

Now let {Xa,"’,X,}cK* be the basis dual to {wa,’", w,}cK. Then for all u

1,. ., n we have

2n--1

Sms-lx. Y vo (R) voxv(wo) + vv (R) v.
o=n+l

According to the special choice of S,

Yl := fi
v-----2

is orthogonal to {0n+l,’’’, V2n-1} and

Y2 :-" fi ((-/)--n--l+v)
=3

is orthogonal to {v/, , vn-}.
Now the very same reasoning as in the proof of Theorem 1.4 shows that

S-v=v./(y)x(w/)" S-v/
v(y)y7y v(y)"

As S-avn+a 1/(w-/3n+1) and y71y2 1/(w-ft,+l), we see that

v S(1/(Sw -fly)) (v 1,..., n),

and by suitable scaling we may assume that

v $(1/(o -fly)) (v=2,... ,n).

The products of our algorithms are now reduced to vo (R) vo (p 1,..., 2n 1) where

/)1 =S1,
(2.1.3)

vo=S(1/(ro-Bo)) (p=2,..., 2n- 1).

Since any n-element subset of {va, , van_l} must be linearly independent, it follows
that/3o # Be for p # r. Hence #k => 2n- 2.

Conversely, if any primitive element o K and any 2n 2 elements B2, ’,

k are given, the products

U1 @Vl :--" S1 (R)S1, vo (R)vo :- S(1/(o-o))(R)S(1/(o-o))
(p =2,..., 2n-l)

define an optimal algorithm for t. Indeed, observe that as before we may assume that

But then for all 3’ e {1,.. , n 1} and all O e {2, , 2n 1} we have

1 (o,/)=Sl((-O’Y) ((.0 0(-03’-1 (2
3’-1

)oo flo BO =Sl "- + =BoSl
hence

1 1
S (ov) S (1)Bo

for all 3" =0,. ., n-1.

DIVISION ALGEBRAS OF MINIMAL RANK 109

n-1 "vTherefore we have for all x -=o xo K

o /o o /o
(1)

o
x,/

and we conclude that the products vo (R) vo determine one of the well-known interpola-
tion algorithms (with one interpolation point at infinity due to the choice of S 1 (R) S l)
for the multiplication in K.

Thus we have the following result (cf. [13]):
THEOREM 2.3. Let k be a field, K/k a simple finite extension of k. Let S:K -> K*

be a k-vectorspace isomorphism such that m SmS-]or all x K. Let := [K" k] be
the degree of the extension K/k. If #k >-_2n-2 then any optimal algorithm for the
multiplication in K is determined up to equivalence modulo the isotropy group F/k by
products vo (R) vo (p 1,..., 2n 1) of the form

v=s, vo=S(/(o-o)) (o >-)

where to K is a primitive element and 2,""", 2n-1 k are pairwise different. Con-
versely, any set of products of the above form, i.e., any choice of a primitive element
to K and of pairwise different/32, ",/32n-1 k, determines an optimal algorithm for
the multiplication in K.

This description of the algorithm variety, however, is not yet satisfactory, for
some of the algorithms mentioned above are equivalent modulo the isotropy group
of K/k. There remains the task of determining the orbit space of the algorithm variety
modulo the isotropy group.

2.2. The orbit space oi the algorithm variety of a finite simple field extension
modulo its isotropy group. We recall first how the (small) isotropy group F of a
finite dimensional algebra over a field k looks.

THEOREM 2.4 [4, Thm. 3.1]. Let be a finite dimensional algebra over the field
k and A* (R) B* (R) C an automorphism of the vector space * (R) g* (R) sg. Then
A* (R) B* (R) C F if and only if there are units a, b and an automorphism q of the
algebra such that

-1A L q, B Rb qo, C q L-, Rb-1.

In our case of a finite simple field extension K/k, we have to consider

-1A m q, B mb qO, C qo m(ab)-,

where a, b e K\{0} and G, the group of automorphisms of K over k.
Our first task is to determine the adjoint A* of A ma o Gl(). Now A*--

q* m* *=q S m S-1 with a suitable isomorphism S’K --> K*, it suffices to com-
pute q*" K* --> K* from q s G.

LEMMA 2.5. Let K/k be a finite field extension, G the automorphism group o]’ K
over k. Then there is a k-vectorspace isomorphism S" K --> K* such that

(i) m * SmxS-1 for all x K and

(ii) q * s-ls-1 for all q G.

Proof. (a) We will discuss first the special case where K/k is a Galois extension,
i.e. normal and separable. In this case the trace of K over k fulfills our requirements:
Let G := Gal (K/k) be the Galois group of the extension. The trace of an element

110 I-IArS F. DE nOOTE

x K is defined as

tr (x) := o.(x).

Recall that tr (x) is always an element of k. Now define S" K K* by

Sx (y) := tr (xy).

S is a k-vectorspace isomorphism and for all x, y, z K we have

m *Sy (z) Sy (xz) tr (y (xz))

tr ((xy)z) Sxy (z) Smy (z),

hence

* SmxS-1m

Let q G. Then for all x, y K we have

o*$x (y) Sx (0 (y)) tr (x (y))

E (xu,(y))= Y ,o(-(x)y)
G G

E (-I(x)Y)=S-I(x)(Y),

hence

(b) In this part of the proof we would like to discuss conditions for the existence
of a k-vectorspace isomorphism S:K -K* with the properties (i), (ii) where K is any
finite extension of k, and G the group of automorphisms of K over k. For 0 G let

Iv := {q(x)-xlx K}. Iv is a k-vectorspace and, as leaves k elementwise fixed, of
dimension -< n 1. (n:= [K: k].) Let S:K -K* be a k-vectorspace isomorphism with
property (i). Then an easy calculation, using the fact that Sx(y)= S l(xy)(x, y K),
shows that S also satisfies property (ii) if and only if S1 +/-{xo(y)-o-X(x)ylx, y K}.
Now xo(y)-o-(x)y =(o-id)(o-(x)y)(x, y K, o G) and {q-l(x)ylx, y K}=K
imply that S satisfies (ii) if and only if S 1 +/- Iv for all G.

According to the fact that if S:K-K* has the property (i) then also S ma
(a K\{0}) has this property, we get

(,) There is a k-vectorspace isomorphism S" K -K* satisfying (i) and (ii) if and
only if there is a X K*\{0} such that X(I,) 0 for all q G.

(c) Now let F := {x Klq(x)= x for all q G} be the fixed field of G. Then a
theorem of E. Artin asserts that the extension K/F is Galois with Galois group
Gal (K/F)= G (see [10]). Observe that the spaces Iv are also vectorspaces over the
field F. Hence by (a) and (,) there is a nonzero X Hom (K, F) such that X(I,) 0
for all q G. Choose any Hom (F, k) such that X 0. Then : X K*\{0} and

ox([)=o

for all G. According to (,), the lemma is proved.
In order to find the distinct equivalence classes of the variety of optimal algorithms

for K we have, according to Theorem 2.3, to study transformations

vo (R)vo-A*vo (R)A*vo

DIVISION ALGEBRAS OF MINIMAL RANK 111

of the symmetric products vo (R)vo described in Theorem 2.3, where A
a s K\{0}, q G. From Lemma 2.5 we conclude that

-leaA* g,*m* Sq S-hence

A*Sx So-maX
for all x e K. Therefore our problem is to investigate the action of transformations

x -q (ax q (a o (x

on tuples (1/(alo) +/31), , 1/(a2n-lo) +/2n-1)) K2n-1, where o II and the points
(co"/3o) (O 1,..., 2n- 1) of the projective line P over k are pairwise distinct. In
other words, given any two such tuples (1/(alo +/1),’’’, 1/(an-lo +/,-1)) and
(1/(ao’ +/), , 1/(an_lo)’ +/3-1)), we shall look for conditions that there are
a K\{0} and q G such that

,-1 1 q(a)
(o)+/o"o=1 aoo) +/go aoq

Take O 1. Then

(a)

Substituting this for O -> 2, we obtain

because the automorphism q leaves k elementwise fixed. Notice that

and

a z +H’o" z -> ,
aoz +o

are homographies, for (a:/) (/:) is equivalent to the nonsingularity of the (2, 2)-
matrix (). On the other hand, each nonsingular (2, 2)-matrix () defines a
homography via z (z +B)/(yz +) and two matrices M, Ma Gl(k) determine
the same homography if and only ifM is a scalar multiple of M.

We will write [] for the homography defined by (). In this way the group
of homographies of K over k is isomorphic to the group PGl(2) of projectivities

of P over k.
Now we can write

H’ooo ’= qHoa
for O =2, , 2n-l, and

o’ (H)-lHoo.
Substituting this for p >-3 we get

(2.2.1) n(n)-ln2qxo Hoooo.

112 HANS F. DE GROOTE

If n > 2, the group W of homographies over k acts fixpoint-free on fl; hence

H’o Hon-ln
for all p 2,..., 2n 1. A simple calculation shows that

t-cz -[- O/10

= [El E2]
E3 E4

and

i.e., ao elao + e3o, /gro E20l0 +e4o for O 1, 2,. , 2n 1.
Therefore, using the shorthand notation

IIx p21"-a for the algorithm determined by (1/(alto+/3a),’’’, 1/(ot2-to +/32n-1)),
we have proved:

PROPOSITION 2.6. If n >2, then an algorithm (to’, (a’’’l), (an-’fl,-a))
is contained in the orbit of (w, (al:fll),..., (a2,-:/32,-)) under the isotropy group of
K if and only if there are H e and q e G such that

H-1 ,.
w qto and (ao p)=(ao o)H

for all O 1, ., 2n 1.
We will use now the fact that PGl(2) acts sharply three-fold transitive on IPl.

Therefore it is possible to transform the factors of the first three products of all
algorithms to (0: 1), (1: 1) and (1:0) respectively, and we conclude that for any two
equivalent algorithms of this form the corresponding H must be the identity.

Hence we have proved that if n > 2, the orbit space of the algorithm variety
modulo the isotropy group is given by

ft/G x (((0" 1), (1" 1), (1" 0))x Pn-4)\A2n_l,
where

A,, := {(Pl,"’", P,,)e P’[:1 Pi=Pi}
is the weak diagonal of P.

It remains to discuss the case of a quadratic extension K/k. Here all to e K\k are
primitive elements and the situation differs from the case [K" kl> 2 because each
homography has fixed points in fl=K\k" Let to el2 and let X:Z+pX+q be the
irreducible polynomial of to. If H [], then Hto (ato + b)/(cto + d) to if and
only if cto2+ (d- a)to- b 0. If c 0, then, since to k, b 0 and a d, i.e., H is the
identity. Otherwise

2 d-a b
to + to O,

C C

i.e. b --qc and d a +pc. Therefore

-qc /a,a +pc] c ek, a Oorc 0}

DIVISION ALGEBRAS OF MINIMAL RANK 113

is the subgroup of that leaves o fixed. Observe that Fix (co) Fix (q (o)) for 0 G,
because o and (o) have the same irreducible polynomial. Going back to (2.2.1), we
see that we can only conclude that there is a F., e Fix (o) such that

H’3H- H3Fo.
i.e.

(2.2.2) H; H3F.,H.

But an easy calculation shows that for every choice of (c ’/3) there exists F,o Fix (o)
such that (c; "3)= (ce3’/3)Fon holds. Hence the orbit space is simply f/G.

It is worth remarking that the orbit space in the case k R, K C looks like

g+={z C]Im z >0},

the upper half of the complex plane.
Summarizing our results, we get the following.
THEOnEM 2.7. The orbit space of the algorithm variety of simple field extensions

K/k of degree n modulo the isotropy group Fc/k is

f/G x (((0" 1), (1’ 1), (1 "0))X I21n-4)\ A2n-1
where f c__ K is the set of primitive elements of K, and A2n_l is the weak diagonal of
the (2n 1)-foM product of the profective line Pl over k.

If we consider the action of the extended isotropy group (cf. [4, p. 16]), the
situation becomes somewhat more complicated. Here we have to take into account
the effect of permutations of the products, and the equivalence class of an algorithm
modulo the permutation group is just the set of products occurring in the algorithm.

In our case the extended isotropy group is FK/k,2n_l. Let 9]c/ be the algorithm
variety of the field extension K/k. The actions of F%c and 3,2n-1 commute on
hence 3’2n-1 operates on the quotient 9./c//FK/. Let a F-orbit be represented by
(03, P1, , P-I), where 03 e f/G and the tuple (P1," ’, P.-I) e P"-I\Aa.-I is such
that P1 (1" 0), Pz (1"1), P3 (0" 1). We denote the set of such tuples by z-1o,1,o. If

022n-1 -1=(el,’" ’,P2.-1)e-o,l,oo and re3,z.-1, write zr () for (P=(1),’" ",P=(.-1)).
Observe that for every P o,l.oo and 7r e 3’n-1 there is a unique H e such that

o2n--1HTr() o,1,o. In this way 3’.-1 operates on 0,1,o, and we write T= for Her.
Now it can happen that the action of a nontrivial 7r e 3’2.-1 can also be expressed

by applying a homography (this depends on the cross ratios of the coordinate points
in)"

T’-I() H() (H(P1)," ", H(P2.-1)),

i.e. that T=()= .
2n--1

is a subgroup of , isomorphic to

2n-1() :: { T2n-l[r(): }.
If ’ mod T, i.e. if ’ T() for some w 72.-1, then the groups g and g,
are conjugate subgroups of and therefore /G /G,. Hence we have the
following

THEOREM 2.8. Let

:= {(P1, ., (1.0), (0.1)}.

114 HANS F. DE GROOTE

Then the orbit space of the algorithm variety 9.IK/k of the simple field extension K/k of
odegree n modulo the extended isotropy group FK/k’Y2,-I can be represented by the

disjoint union

U f/G
2n--16 0,1, /V2n--1

where and {H].-1Hv() }.
If n > 2 and if k is infinite, then "in general" the groupsg and 2,- () are trivial.
However, in case of quadratic extensions we obtain a quite nice structure’ here

the only to be considered is

((:0), (:), (0:)),

and we have 3()= T3. The group W =: , isomorphic to T3, is

1

Thus for quadratic extensions the orbit space N// 0F/ is represented by /GN.
We would like to make this quotient explicit in the special case K C, k N. N

is a finite subgroup of the extended modular group, and we shall exhibit a [undamental
region of GN, i.e. a maximal set of pairwise inequivalent representatives of /GN.

Here is not the place to calculate such a fundamental region explicitly; we merely
state the result:

THEOREM 2.9.

Fe/3
can be represented by the undamental region

{zeCllzlNl, lz-ll<l, 0<Im z}U {+g i}.
This fundamental region looks like the shaded set in Fig. 2.1.

FIG. 2.1

3. Optimal algorithms for the multiplication of polynomials. In this section we
would like to sketch how the space of orbits of optimal algorithms for polynomial
multiplication under the action of the isotropy group F looks, and show its close
relation to the orbit space of the algorithm variety of simple field extensions. Details
of our considerations are contained in [6].

DIVISION ALGEBRAS OF MINIMAL RANK 115

For let kl[X] be the space of polynomials f k[X] of degree deg f_-< l,

.,: k.[x] x k[x]-, k+[x],

the bilinear mapping defined by polynomial multiplication. Let "’" be the tensor
corresponding to ,,,. If we choose the ordered canonical basis (1, X,... ,X) in

’k[X], and if (Xo, X, X) is the dual basis to (1, K"" ,X), then the layers
of ’" are given by

where0 <h <m,0< <n 0 <" <m+n As m’" ’{to , t+n}is linearly independent,
we always have rk (t’) m + n + 1, and it is not difficult to show

PROPOSITION 3.1 ([9], [12]). rk (t’) m + n + 1 if and only q #k m + n.
Moreover, one has the following simple parametrization of the algorithm variety

for m,.:
PROPOSITION 3.2 (cf. [9], [12]). (i) Fora e k letu e kin[X]*, v e kn[X]* be defined

by
u() := (), v(g) := g(),

m,n and for a e k,and let u(f) := 8m,degr, v(g) := 3.,dCg g. Then P := u @v

P:=uv= 2 .
=0

(ii) If # k m + n then every optimal algorithm for the computation of, is given
by (Po, ",P+.) where ao, ", a+n are pairwise distinct elements of k U {}.
P is called the product at infinity. At first glance it may appear that there are

two different kinds of optimal algorithms for ,." those which contain the product
at infinity and those which do not ("multiplication of polynomials by interpolation").
In what follows we shall see that this distinction is not adequate.

oIt is not difficult to determine the group Fm, of all automorphisms A* @B* @ C
of k[X]* @ kn[X]* @ k+.[X] that leave ’ fixed: A* @ B* @ C ’ m’n. This
condition is equivalent to

C(A(f)B(g))=fg for all f ekm[X], g ek.[X].

Using elementary arguments on divisibility of polynomials, one obtains from this
condition the following result on the structure of the isotropy group F, of ,"

oPROPOSITION 3.3. Let k be a field, Then A* @B* @ C e Fm,n if and only if there
are linear polynomials L, M k[X] such that {L, M} is linearly independent, and for
all f e k[X], g e kn[X] and h e km+.[X],

A(f)=M(X)mH(f), B(g)=M(X)"H(g),

C-(h M(X)+nH(h

hold, where H := L/M.
If m n, then Fmn/F,n{id, v12} (12 permutes the first two factors of the

otensor product), otherwise F,n F.n.
In other words, F,. is isomorphic to the group of homographies X

(aX +)/(yX + 3), a3 fly, i.e. to the automorphism group of the field k(X) over
k. A similar result for the special case m n and a related concept of equivalence of
algorithms appear in [2].

From now on let k be large enough, say #k m for simplicity. We would like
to investigate the action of F,n on the variety N.. of scaling equivalence classes of

116 HANS F. OZ GROOTZ

optimal algorithms for ,.,.. For N , DN denotes the N-dimensional projective
space over k. Let

CON := (’o ’N) PN V =
a, k =O,...,N

It is an obvious consequence of Proposition 3.2 that the variety 9... is isomorphic
to m+"+l\A,.+.+l,m where

A.+.+I {(dl, din+n+1)e lm+n+lI{dl, dm+n+l} < m + n + 1}

is the weak diagonal of p+/l. Moreover, it is easy to see that . is an irreducible
curve in ., isomorphic to P"

(0)(0
rn-1

c);

is a bijective morphism from 1 onto . whose inverse can be defined by gluing
together the morphisms

defined on c,. {(:o ,)lsc0 0}, and

{//2:(0 m) 1-’-> (rn m-1)

defined on cg,. 71 {(:o: :,.)15,. 0}. Hence 9.I... is isomorphic to the Zariski open set

pt+n+l\Am+n+l,

and this isomorphism translates the action of F... on 92,,. into the action of PGl(2)
on P/"/l\Am/./l. (Observe that the permutational map 7r12 Fm.. operates identi-
cally on 9m,..) As PGl(2) operates sharply threefold transitive on Pl, we have therefore
proved the following.

THEOREM 3.4. 9.,/Fm,n is isomorphic to

(((0’ 1), (1"1), (1’0)) PT+n-2)\Am+n+l
Acknowledgment. The author is very much obliged to the referees for useful

suggestions concerning the presentation and for pointing out some inadvertances in
an earlier version of this paper.

Note added in proof. E. Feig (J. Algorithms, 2 (1981), pp. 261-281) has shown
that if A is a division algebra of minimal complexity, i.e., if L(A) 2 dim A- 1, then
every commutative optimal algorithm for A is already bilinear. This means that the
results of our paper also hold for division algebras of minimal complexity.

REFERENCES

A. ALDER AND V. STRASSEN, On the algorithmic complexity ofassociative algebras, Theoret. Comput.
Sci., 15 (1981), pp. 201-211.

[2] R. W. BROCKETT AND D. DOBKIN, On the optimal evaluation of a set of bilinear forms, Linear
Algebra and Appl., 19 (1978), pp. 207-235.

[3] C. M. FIDUCCIA AND I. ZALCSTEIN, Algebras having linear multiplicative complexity, J. Assoc.
Comput. Mach., 24 (1977), pp. 311-331.

[4] H. F. DE GROOTE, On varieties of optimal algorithms for the computation of bilinear mappings, I. The
isotropy group of a bilinear mapping, Theoret. Comput. Sci., 7 (1978), pp. 1-24.

[5] ., On varieties of optimal algorithms for the computation of bilinear mappings, II. Optimal
algorithms for 2x2-matrix multiplication, Theoret. Comput. Sci., 7 (1978), pp. 127-148.

[6] ., Multiplication of polynomials over infinite fields, Technical Report, Eberhard-Karls-Univer-
sitiit, Tiibingen, 1978.

DIVISION ALGEBRAS OF MINIMAL RANK 117

[7] H. F. DE GROOTE AND J. HEINTZ, Minimal complexity of finite direct sums of division algebras,
Technical Report, J. W. Goethe-Universit/it, Frankfurt am Main, 1980.

[8] I. N. HERSTEIN, Noncommutative Rings, Carus Math. Monographs, 15, Mathematical Association
of America, Washington, DC, 1973.

[9] J.-C. LAFON, Base tensorielle des matrices de Hankel (ou de Toeplitz); applications, Numer. Math.,
23 (1975), pp. 349-361.

[10] S. LANG, Algebra, Addison-Wesley, Reading, MA, 1978.
[11] V. STRASSEN, Vermeidung yon Divisionen, J. Reine Angew. Math., 264 (1973), pp. 184-202.
[12] S. WINOGRAD, Some bilinear forms whose multiplicative complexity depends on the field of constants,

Math. Systems Theory, 10 (1977), pp. 169-180.
[13] ., On multiplication in algebraic extension fields, Theoret. Comput. Sci., 8 (1979), pp. 359-377.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1201-0008 $01.25/0

DIVIDE AND CONQUER HEURISTICS FOR
MINIMUM WEIGHTED EUCLIDEAN MATCHING*

KENNETH J. SUPOWIT" AND EDWARD M. REINGOLD

Abstract. We consider the following problem: Given n points in a unit square in the Euclidean plane,
find a matching of the points such that the cost (i.e., the sum of the lengths of the edges between matched
points) is minimum. In particular, we present a class of linear time heuristic algorithms for this problem
and analyze their worst case performance. The worst case performance of an algorithm is defined as the
greatest possible cost, as a function of n, of the matching produced by the algorithm on a set of n points.
Each of the algorithms studied here divides the unit square into a few smaller regions, and then is applied
recursively to the points in each of these regions.

Key words, matching, graph algorithms, divide and conquer heuristics, computational geometry

1. Introduction. If P is a set of n points (where n is even), then a matching of
P is a set of n/2 edges such that each point of P is an endpoint of exactly one edge
of the matching. The cost of a matching is the sum of the lengths of its edges. The
Euclidean matching problem is to find minimum cost matchings when P

_
[0, 112 and

the length of an edge is the Euclidean distance.
An algorithm to solve this problem in time l(n 3) is known [5], [10]. In fact, this

algorithm works not only for the Euclidean matching problem, but also for arbitrary
weighted, undirected graphs. In this paper, we consider a class of heuristic matching
algorithms that take advantage of geometry in order to give very fast running times.
Although these heuristics do not always give minimum cost matchings, we are able
to put an upper bound on the cost, as a function of n, of the matching that they produce.

For motivation, Euclidean matching has direct applications to minimizing the
time required to draw networks on a mechanical plotter (as described in [12]). In this
application the (R)(n 3) optimizing algorithm is unacceptable since n can be very large.

Given a matching algorithm, we define its worst-case performance as a function
f: N- such that

f(n) sup {the cost of the matching produced by the algorithm on P},
P

where "sup" is the least upper bound and P ranges over all sets of n points in the
unit square. We use the supremum in the definition of worst-case performance because
it is possible (since there are infinitely many n-point sets) that there is no n-point set
for which the cost of the algorithm’s matching is maximized.

Note that this definition of worst-case performance (which is taken from [2])
measures the absolute cost of the matching in the worst case. On the other hand, for
many optimization problems (see, e.g., [6]) the absolute cost of a solution cannot be
bounded in any meaningful way, and one must settle for an analysis of the worst-case

* Received by the editors September 1, 1980, and in revised form March 1, 1982. Preliminary versions
of some of the results contained in this paper were presented at the Twelfth Annual ACM Symposium on
Theory of Computing, April, 1980. This research was supported in part by the National Science Foundation
under grants NSF MCS 77-22830 and NSF MCS 79-04897.

t Hewlett-Packard Laboratories, Computer Research Center, Palo Alto, California 94304. This
research was conducted while this author was at the Department of Computer Science, University of Illinois
at Urbana-Champaign.

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801.

118

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 119

cost of a heuristic relative to the cost of an optimal solution. Since the Euclidean
matching problem lies in a bounded region, we are able to provide a more informative
analysis of the worst-case behavior.

In support of this definition of the worst-case performance, we can consider the
following remarks due to Avis [3]: Let GRE and OPT be the costs of the greedy
heuristic solution (see [12]) and the optimal solution, respectively. A (more conven-
tional) worst-case bound of

GRE
<
4 lg 1.5n

OPT 3

was derived in [12]. However, for the plotter application cited there, the increased
plotter costs will be proportional to GRE-OPT, if the plotter works in a region of
fixed size. The example that leads to the bound on GRE/OPT is not particularly bad
in this measure because it is a constant, independent of n. This suggests that the
relative measure is not as appropriate as the absolute measure used in this paper.

The (absolute) worst-case performance of a greedy Euclidean matching heuristic
has been analyzed in [2]. The worst-caseerformance of several other heuristics, as
well as a lower bound (namely //4/12) on the worst-case performance of the
optimizing algorithm, is given in [15] (this issue, pp. 144-156).The worst-case perform-
ance of many heuristics for the Euclidean matching problem and the more general
matching problem on weighted graphs whose weights satisfy the triangle inequality
are given in [14]. The expected performance of certain Euclidean matching heuristics
is analyzed in [9].

In this paper, we present and analyze the worst-case performance of a class of
divide and conquer heuristic algorithms. Each of these algorithms operates by par-
titioning the region containing the points into subregions and recursively solving the
smaller matching problems thus obtained. If a subregion contains an odd number of
points, then all but one are matched and the odd point is then matched with an odd
point in another subregion (there must be another such point since there are an even
number of points in total). The expected cost of the matching produced by these
heuristics when the n points are randomly chosen from a uniform distribution has
been analyzed in [11].

In discussing the time required by the heuristics we intend the real RAM model
of computation as defined by [13]. This model of computation is essentially the
random-access machine as described in 1], except that each storage location can hold
a single real number, and the following operations are available at unit cost"

1. Addition, subtraction, multiplication, and division on real numbers.
2. The "<-" comparison between real numbers.
3. Trigonometric, exponential, and logarithmic functions on real numbers.
4. Indirect addressing of memory.

The real RAM has become the standard model used in computational geometry.
All of the heuristics presented in this paper can be implemented to run in

(R)(n log n) time under the real RAM model. However, they can all be implemented
to run in (R)(n) time if we make the model more powerful by also allowing the floor
function to be available at unit cost. It is, of course, more realistic to consider the
floor function as primitive on most computers. In view of this, it is fair to say that all
of the heuristics presented here are linear time.

2. The rectangle heuristic. The first of the algorithms that we consider is the
rectangle algorithm which works as follows, n points are given in the unit square
[0, 1]2. Consider the rectangle [0, x/] [0, 1], which contains the unit square. If n -> 2

120 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

then this rectangle is bisected to form two congruent subrectangles, each with ratio
/. 1 between the long and the short sides. The heuristic is applied recursively to
each of the two subrectangles. In general, when applied to a rectangle R, the heuristic
does as specified in Algorithm 1. As an example, in Fig. 1, n 4. The first split is on
the heavy solid line and the left half is then split along the dashed line. The matching
produced is shown as jagged line segments.

There is one more detail of the algorithm: the level of recursion is not allowed
to go beyond [lg n q. More precisely, define a rectangle to be either the original /
by 1 region, or one of two rectangular subregions with sides having ratio /" 1 into
which a rectangle can be split. Let R (P) denote the subset of P contained in rectangle
R. Define the level of a rectangle R, denoted level (R), as follows: level (R)= 0, if R
is the original /x 1 rectangle; otherwise, level (R)= level (R’)+ 1, where R’ is a
rectangle that was bisected to form R and its mate. The rectangle heuristic is given
in Algorithm 2.

ALGORITHM 1. The unbounded rectangle heuristic.

if R contains at least 2 points
then

1. bisect R to form rectangles R and R2, each having the ratio x/" 1 between
the long and short sides.

2. apply the heuristic to R 1.

3. apply the heuristic to R2.
4. if R and R2 each contain an odd number of points

then
add the edge (pl, p2) to the matching, where p is the point in R not matched
in Step 2, and p2 is that of R2 not matched in Step 3.

ALGORITHM 2. The rectangle heuristic.

if level (R) <_- [lg n
then

if R contains at least 2 points
then do Steps 1-4 as described in Algorithm 1.

else
arbitrarily match the points in R until
at most one is left unmatched.

This restriction on the depth of recursion enables the algorithm to run in time
O(n log n). The time is dominated by the partitioning of the points, and for each
point p R (P), we can decide in which half of R it lies by a single comparison. For
each point p, we make at most one such comparison at each level of recursion; hence
at most [lg n such comparisons are made in total per point. The total time is therefore
O(n log n).

Note that the algorithm can be implemented by unraveling the recursion; that
is, by first partitioning the n points into the 2 rg , level n rectangles and then performing
the matching in a bottom-up fashion. Since the partitioning can be accomplished with
only two divisions and one floor function per point, this version of the algorithm is
linear under the real RAM model if the floor function is available at unit cost.

In order to analyze the worst-case cost of the matching produced by the algorithm
as a function of n, we first find the worst-case cost for arbitrary sets of points in the

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 121

1/2

FIG. 1. The rectangle heuristic performed on [our points.

x/ by 1 rectangle. Later, we will use this result to derive an upper bound on the
cost for a set of points in a 1 by 1 square within the x/ by 1 rectangle.

If P is a set of points in the x/ by 1 rectangle, then let rcost (P) denote the sum
of the lengths of the edges in the matching produced by the rectangle algorithm on
P. For all n >_-O, let

sup {rcost (P): P is a set of n points}.

By "set of points" we mean, here and throughout this section, a set of points in
the x/ 1 rectangle. Note that we are not primarily interested in C, for odd n, but
they are needed for the analysis. We first show that the restriction to [lg n levels of
recursion does not affect the C,.

LEMMA 1. Let P be a set o[n points, n >= O. Then there is a set of points Q]’or
which [QI n and rcost (Q) _->rcost (P) and no level [lg n] + 1 rectangle contains more
than one point of Q.

Proof. If no level [lg n] + 1 rectangle contains more than one point of P, then
we have nothing to prove. So let R be a level [lg n + 1 rectangle such that [R I(P)[--> 2.
Then R2(P) is empty for some level [lg n] rectangle R2, since otherwise IPI >--
2 rg,1 + 1 _-> n (there are 2 level rectangles). Our strategy is to show that the points
of P can be rearranged to produce a set (2 of n points such that rcost(Q)=>rcost(P)
and IRI(Q)I=IR(P)I-2 and [R2(Q)I 2, but otherwise Q is just like P. Let p,p2E
Ra(P) be points matched to each other by the algorithm. Define Q to be just like P
except that P and P2 are not in Q, and instead Q has points p and p in diagonally
opposite corners of R2. This is illustrated in Fig. 2.

It is easily proved by induction on that the dimensions of a level rectangle
are 1/x/l- by 1//I. The length of a diagonal in a level rectangle is thus X//X/l,
so

d(pl, p2) < <=d(p ’, p).

This "moving" of the two points into R2 does not affect the way the algorithm matches
of the other points. Therefore rcost (Q)>_-rcost (P). In this manner we continue to
rearrange P until no level [lg n + 1 rectangle has more than one point in it. [l

122 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

R,(P)
(t here may also
be other points) Rz(P)

(empty)

R,(Q)
(there mav be some
points, but p and Pz
have been removed) (only p;and)

FIG. 2. Illustration of the proof ofLemma 1.

Lemma 1 tells us that we can analyze the algorithm as if there were no restriction
on the depth of recursion, because such an assumption does not affect the worst-case
costs, that is, the Cn.

Our strategy is to define a class of sets of points and then to show that these sets
are the worst-case input for the algorithm. Specifically, we say that a set of points P
is balanced if for all rectangles R such that IR (P)[->2, R splits into rectangles R1,
R2 such that

(i) if 4 divides [R (P)[then [RI(P)[1/2JR (P)i- 1 and IR2(P)[1/2JR (P)i + 1,
(ii) if 4 does not divide [R (P)[then IRx(P)[[1/2[R (P)I], IRz(P)I [IR (P)]],

(iii) if IR (P)I is even then the point pa left unmatched by the algorithm on R
and the point P2 left unmatched by R2 are in diagonally opposite corners of
R.

In other words, for a balanced set, each rectangle R with an even, nonzero
number of points splits odd-odd, with the two subrectangles having almost the same
number of points, and the edge produced at the end of the algorithm on R is along
one of the diagonals of R. Intuitively, one might suspect such a set P to be a worst
case for the algorithm; this is indeed the case, as is proved in the next two lemmas.

LEMMA 2. Let P be a set of n points, n >= O, n even. Then there is a set Q of n
points such that reost (Q)-> reost (P) and for all rectangles R such that IR(Q)[-> 1, we
have:

1. IR (Q)I even implies R is split into R a, R2 such that IRI(Q)I, IRz(Q)[are both
odd, and such that R and R2 each leave unmatched points of Q in diagonally opposite
corners of R.

2. IR (Q)I odd implies R leaves a point of Q unmatched in one of its own corners.
3. IR (Q)I >=2 implies that the two subrectangles of R each contain at least one

point of Q.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 123

Proof. We will construct Q by rearranging P (in the manner of Lemma 1). The
process of rearrangement is as follows"

First, we consider all rectangles R containing a single point. Let R be such a
rectangle, R(P)={pl}. Since n is even, the algorithm must match pl to some other
point p2EP outside of R. Define P’ to be like P except that instead of pl, P’ has
point p in the corner of R which is farthest from p2. The situation is shown in Fig.
3. Hence d(pl, P2) -< d(p’, P2). Since this "moving" of pl to p affects no other matches
made by the algorithm on P, we have rcost (P)<_-rcost (P’).

R(P) R(P’)
FIG. 3. Lemma 2, rearranging a rectangle that contains one point.

Having so rearranged, if necessary, all rectangles containing exactly one point of
P, we now consider those containing two points. Let R be such a rectangle, R (P)=
{P, P2}. Since IR (P)I is even, the arrangement of the points of P within R does not
affect the matching of any points outside of R. Therefore if p and p. are not in
diagonally opposite corners of R, then move them there by letting P’ be like P except
that instead of having p and p2, P’ has p and p in diagonally opposite corners of
R (see Fig. 4). Since d(pl, pz)<d(p’,p), we have rcost (P)<rcost (P’), as desired.

Now assume we have rearranged all rectangles R with IR (P)I--< k for some integer
k =>2. We will now rearrange each rectangle R such that IR(P)I- k + 1. Let R be
such a rectangle.

’cO

,’
R(P’)R(P)

FIG. 4. Lemma 2, rearranging a rectangle that contains two points.

Case 1. k + 1 is odd. Then R splits into rectangles R 1, R2 such that IR I(P)[is
odd and IRz(P)[is even.

Case 1.1. [Rz(P)[0. Then IR (P)[=> 3. Therefore R splits into some rectangles
$1, S2 such that IS(P)[=>2. Let px, p2 be two points in $1 matched to each other by
the algorithm (such points must exist since S leaves at most one point unmatched,
in which case we would have ISx(P)[--> 3). Now let P’ be exactly like P except that P’
has points p and p in opposite corners of Rz, and no point at p or P2 (see Fig. 5).
Moving px and pz out of S does not affect the matching of the other points in R1.
Also, d(pl, P2)<d(p’, p’2), so that rcost (P)< rcost (P’). IRI(P)I is now less than k + 1,
and we rearrange R 1, and then rearrange R, using Case 1.2.

Case 1.2. IRz(P)I>0, Then IRa(P)I, [Rz(P)I<k + 1 and hence both R and R2
have already been rearranged. In particular, R leaves an unmatched point p in one
of its corners. The algorithm matches pl to some point p2 outside of R. If p is already
in a corner of R, then we have nothing to rearrange. So, assume p is not in a corner

124 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

R R= R

Sl

R P)
FIG. 5. Lemma 2, Case 1.1.

SI

R(P’)

of R (an example of such a situation is shown in Fig. 6). Now let P’ be like P except
that the points in R have been reflected (vertically and/or horizontally) and perhaps
swapped with those in R2, so that p is now in the extreme corner from P2 (see Fig.
7). This reflecting and swapping has no effect on the cost of the matching of the points
in R(P) other than pl. Therefore rcost (P)<rcost (P’), and we continue with the
rearranging.

R Rt

R(P)
FIG. 6. Lemma 2, Case 1.2, before rearranging.

R Rt

Rt P’)
FIG. 7. Lemma 2, Case 1.2, after rearranging.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 125

Case 2. k + 1 is even. Let R 1, R2 be the subrectangles of P, and assume, without
loss of generality, that [gl(P)l _-> Igz(P)l.

Case 2.1. IRE(P)[0. Then proceed exactly as in Case 1.1.
Case 2.2. IRE(P)I>0. Then IRI(P)I, IRE(P)i<k + 1. Therefore R1 and R2 have

already been rearranged. Since]g (P)l]g :(P)] + IRE(P)[is even, we have two cases:
Case 2.2.1. [RI(P)[, [R2(P)[are both even. This is the most interesting of all the

cases, since it is the only one that depends on the shape of the rectangles. Since R 1,

RE already satisfy the desired properties, we have the situation pictured in Fig. 8.
That is, R is a rectangle of size ax/ by a for some real a > 0. R1, a subrectangle
of R, matches points p and p2 in opposite corners of R 1. RE similarly matches p3

and p4 in its opposite corners. $2 is the even subrectangle of the subrectangle of R
which leaves p2 unmatched. $1 is the odd subrectangle of the subrectangle of RE which
leaves p3 unmatched. (We say a rectangle is even if it contains an even iaumber of
points, otherwise it is odd.)

R(P)
FZG. 8. Lemma 2 Case 2.2.1, before rea’ranging.

Now rearrange P into P’ by swapping the points in $1 with those in $2, as shown
in Fig. 9. Then for some real c >_-0,

and

Now

rcost (P) d(p, pz) + d(p3, p4) + c,

rcost (P’) d(pl, p4) + d(p2, p + c.

Also,

and

d(pl, p2)= d (p3, p4) 4(a x//2)2 + a 2 a//x/.

d(pl, P4) x/’+ (ai2 a/,

d(p2, p)= 4(a/2)2 + (a/2)2 ax//2.

Therefore,

rcost (P) 2(ax//x/) + c ax/-+ c < a3x//2 + c ax/+ ax/’/2 + c rcost (P’),

and we continue to rearrange.

126 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Case 2.2.2. IR,(P)I, IR=(P)I are both odd. Since IR,(P)I, we
already have that R leaves a point P unmatched in one of its corners, and that R2
leaves a point p2 unmatched in one of its corners. If pl and p2 are not in opposite
corners of R, then the appropriate reflections of R I(P) and R2(P) will produce a set
P’ of cost greater than that of P.

Thus, we continue to rearrange P until we have rearranged the original, level 0,
rectangle. This final arrangement is Q, satisfying the properties stated in the lemma. El

The set Q constructed from P in Lemma 1 has some of the properties of a
balanced set, but not all. The next lemma rearranges this Q so as to be balanced,
without changing rcost (Q). This will complete the proof that balanced sets constitute
a worst case for the algorithm.

LEMMA 3. Let P be a set of n points, n >-O, n even. Then there is a set of n points
01 such that rcost (O1)_->rcost (P) and 01 is balanced.

Proof. Let (2 be a set satisfying the properties stated in Lemma 2. We will
rearrange (2 into a new set O1 such that for each rectangle R, if R 1, R2 are the two
subrectangles of R then [[RI(Q1)I-[R2(Q1)II<=2. Furthermore, O1 will still have the
property of Lemma 2 that even, nonempty rectangles split odd-odd leaving unmatched
points in opposite corners. Together, these properties tell us that O1 is balanced.

First, note that all rectangles R such that [R (O)[1 or 2 are already balanced,
and hence need no rearranging. Now assume that we have balanced all rectangles R
such that IR(Q)[<=k for some integer k. Let R be a rectangle such that [R (O)[k + 1.
Let R1, R2 be the subrectangles of R. Let $1, T1 be the subrectangles of R1. Let $2,
T2 be the subrectangles of R2.

Case 1. R is even. Then R1, R2 are odd, by our choice of Q. Assume, without
loss of generality, that T1 and $2 are both odd (see Fig. 10). Then swap $1(Q) with
T2(Q) to get, in the notation used in the proof of Lemma 2, what is pictured in Fig.
11. R1, R2 were balanced before this swap, since IR,(O)I, IR=(O)i<-k. Therefore,
letting sl Is,(o)l, IT (O)I, and t2 [T2(O)i, we have that Is1- tl] 1
and is2-t=l-- 1. Therefore

[IR,(O’)I- IR=(Q’)I [(tl + t2)- (sl + s2)[-< 2,

which is what we want. Now this swapping of Sl(Q) with T2(Q) may have made R1
or R2 (or both) unbalanced. Therefore we now rearrange R1 and R2 (this process

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 127

R R=

S

FIG. 10. Lemma 3, Case 1, before rearranging.

R Rt

Si

FIG. 11. Lemma 3, Case 1, after rearranging.

eventually terminates since IR I(Q’)I, IR=(Q’)I < IR (Q’)I). Thus R is now balanced, and
we continue to rearrange other rectangles.

Case 2. R is odd. Assume, without loss of generality, that R1 is even and RE is
odd. Define s, s2, t, t2 as in Case 1. By the choice of Q (in particular, property 3
of Lemma 2), we have IRx(O)l>0 and hence IR(Q)I, IRE(Q)I<-k. Therefore sl, t
are odd. Assume, without loss of generality, that s2 is odd and s _-> l. This situation
is illustrated in Fig. 12.

R R=

SI

TI

T

R(Q)
FIG. 12. Lemma 3, Case 2, be]ore rearranging.

128 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Case 2.1. S2 - t2. Then since R2 is balanced, we have S2 t2 + 1. Swap SI(Q) with
’2(Q) to get Q’, as shown in Fig. 13. Note that we also may need to rotate ’2(Q) SO

that its unmatched point is diagonally opposite that of T1. Since 0 _<- s tl 2, We have

as desired.

IR (O’)l- IR2(Q’)[I(s2 + tl)- (sl + t)l
[(s2 t2) -I- (tl s 1)[l1 + (tl s 1)1 1,

R, R

$2

TI

T2

SI

FIG. 13. Lemma 3, Case 2.1.

Case 2.2. S2 <t2. Then s2 t2-1. Swap TI(Q) with ’2(Q) to get Q’, obtaining

(after possibly rotating) the situation shown in Fig. 14. Now

IR (O’)[- IRz(O’)I [(Sl "- S2)--(tl -I-

I(s2- t2)+ (sl- t2)l
[-1 +(s1-/1)[<- 1,

as desired. Continue to rearrange other rectangles.

R R,

Sl

$2 TI

R(Q’)
FIG. 14. Lemma 3, Case 2.2.

Finally, after balancing the main, level 0 rectangle, let Q1 be the resulting
arrangement, and we are finished. Note that the rearrangement can change neither
the cost of the set, nor the assumed properties of Q.

Thus the balanced sets constitute the worst case for the algorithm. Clearly, all
balanced n-point sets have the same cost C,. We now analyze the C,:

Co=C,=O, c=4-, c=4-g/4-.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 129

A balanced set of 4n points splits into two balanced sets--one with 2n / 1 points,
and one with 2n 1--and matches two points in its diagonally opposite corners. Thus
for all n _-> 1,

1

The factor 1/x/ is to scale down the cost from the x/ 1 region to the 1 1/x/
region. Similarly, for all n _>- 1

1
C,.+ + +).

And for all n _-> O,

1
+

1

Although we have not been able to solve this recurrence for C, we show in the
Appendix that

+,/5-,/g+

1.707x/-0.717+ O(-),
and that

1.682x/- 0.717 o (1).

Furthermore, we show that the upper bound is achievable in that for ,._ afinite class
of n,

c. >- + 4- +4-g-4g-o

So far we have considered the performance of the rectangle algorithm on points
in the x/ by 1 rectangle. However, the fixed region matching problem is usually
considered on the unit square. Therefore we now adapt the rectangle algorithm to
the unit square as follows: Given a set of n points P in the unit square (i.e., for all
(x, y) P, 0-< x <- 1 and 0-<_ y <= 1), we perform the rectangle algorithm by considering
P to be in a x/ x 1 rectangle as shown in Fig. 15. In that figure, the unit square is
depicted by a solid line; the x/ 1 rectangle is shown as a dashed line.

For the analysis of this rectangle algorithm applied to the unit square, choose
some even integer k _-> 0 and let r [x/k-l] and s x/k. Note that since k is even,
each level k rectangle has vertical dimension 1/x/-k and horizontal dimension
1/v/k-1. Therefore the unit square, and hence P, lies within the leftmost set of rs
level k rectangles, as shown in Fig. 16. Let d r//-k-. Our strategy is to derive
an upper bound on the cost of the rectangle algorithm on an arbitrary set in the d by
1 rectangle. Since d _-> 1, this bound will also be an upper bound on rcost (P).

130 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

FIG. 15. Applying the rectangle algortthm to the unit square.

Let Q be a set of n points in the d 1 region, and let

kl [the sum of the lengths of all edges produced at]rcostk (Q) rcost (Q)
i--0 Lthe ith level of recursion by the algorithm onQ J’

Since there are 2 level rectan_gles, and since the length of an edge produced at the
ith of recursion is at most //x/2, we have

rcostk (O) _-> rcost (O)- 2 rcost-(x/k 1).
,=o

SXk =1

FIG. 16. Covering the unit square with level k rectangles.

Therefore

rcost (O) <- rcostk (O) +

We now derive an upper bound on rcostk (Q), the sum of the lengths of the edges
produced at levels at or beyond k. There are rs level k rectangles that compose
the d by 1 region containing Q. Call these rectangles Rj, 1 -</-<_ t, and let nj [Ri(Q)[.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 131

By the results of the Appendix the sum of the lengths of the edges produced within
R] is at most

1
Cni=

1 -2) 1

The factor 1/x/ is to scale the cost down to level k. Therefore

rcostk (0) -<-]=1
+)4n+4- 4-g

1 1 tl 4..]jr"
t-1

dt’O(t)

Define the function f" Rt-1 - by
t-- q]F/ t--1

f(x, x,..., x,-1)= E 4+ E x.
]=1 i=1

Taking partial derivatives shows that f is maximized at

n
X X2"- Xt-1-’--.

Therefore

rcostk (O) --<-- -- 1 + t,/-gT-t+ o(t)=- + ,/7s,/-+O(rs)

,/a454-5 + o(2k)

47 1+-).

Therefore

rcost (O)<=rcostk (O)+O(2k)=-- 1 + ffn+O(2k).

By the definition of d, we have that d - 1 as k oo. Thus, for all e > 0, there is a least
value of k, k(e), for which d <1 +e; the O(2k) term becomes O(2k())= O(1) as
n oo. Thus we have

rcost (0)<=(1 +e)- 1 + 4+0(1) (1 + e)1.4364+ 0(1).

Notice that the O(1) term grows unboundedly as e 0. If we take k 10, for instance,
then r 23, s 32, and d 23x//32 1.016, we get that

rcost (0) _-< ff23/32 1 + ff+O(1) 1.447ff+0(1).

132 KENNETH J. SLIPOWIT AND EDWARD M. REINGOLD

In order to show the tightness of this bound, we again choose some even k _-> 0,
but this time let r [x/k-lJ, d r/x/-k-<- 1, and s x/k as before. Thus the unit
square contains a d by 1 region. Construct a set Q’ in the d by 1 region, so that each
of the rs level k rectangles in that region contains a balanced n/rs point set. We
choose n IQ’I so that n/rs bi for some (where bi is as defined in the Appendix),
thus making C/rs asymptotic to (1 + 1/x/)x/-/rs. An analysis similar to the above
shows that

rcost(Q’) >=x/(1)1 +-- 4n- O(2k).

Hence for all e > 0, there is a set Q’ of n points in the unit square for which

roost (O’)->(1-e)--- 1+ /-0(1)(1-e)1.436/-0(1).

The reader may wonder why we did not simply choose some k such that the 1
by 1 square can be exactly tessellated by level k rectangles (i.e. we would have d 1).
Unfortunately, as is easily shown, no such k exists.

In summary,

inf {x" for all n-point sets P in the unit square, rcost (P) _-< xx// o (x/)}

where inf" denotes the greatest lower bound.

3o The dgle lgdflo A square can be partitioned into two equal-sized
45-45’-90 triangles. Also, a 45-45-90 triangle can be partitioned into two equal-
sized 45-45-90 subtriangles. This suggests a second partitioning algorithm, which
we call the triangle algorithm: given a set P of n points in the unit square, do exactly
as the rectangle algorithm, except that when a region is split, it is split into two equal-
sized 45-45-90 triangles. An example with n =4 is shown in Fig. 17; the first split
is along the main diagonal (shown as a solid line) and the second split is shown as a
dashed line. The matching produced is shown in jagged lines.

FIG. 17. The triangle algorithm executed on four points.

In analogy to the previous section, define a triangle T to be either one of the
two main 450-450-90 triangles into which the unit square is split, or one of the two
450-450-90 subtriangles into which a triangle may be split. Furthermore, level (T) is
defined as follows: level (T)- 0 if T is one of the two main triangles (i.e. if T has
hypotenuse length /); otherwise, level (T)= level (T’)+ 1, where T’ is the triangle
that was bisected to form T and its mate.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 133

Note that the level of a triangle is one less than the level of recursion on which
the triangle lies (in contrast to the level of a rectangle in the previous section, which
equals the level of recursion on which it lies). We define level in this way because our
strategy is to analyze the worst-case cost of points in a main triangle, and then use
that result to analyze the worst-case cost for points in the unit square.

If P is a set of points in the unit square, then let tcost (P) be the sum of the
lengths of the edges in the matching produced by the triangle algorithm on P. For all
n _-> 0, let

and let

sup {tcost (P): P is a set of n points in a level 0 triangle}

sup {tcost (P): P is a set of n points in the unit square}.

As mentioned above, we will first analyze the En and then use that result to analyze
the

First note that as for the rectangle algorithm, we can restrict the levels of recursion
to at most [lg n] and so enable the algorithm to run in time O(n log n), or O(n) if
the floor function is available at unit cost. This restriction does not affect the worst-case
cost, as can be proved by an argument parallel to that in Lemma 1.

Throughout the analysis of the E,, let "set of points" mean a set of points in a
main triangle. If T is a triangle, and P a set of points, then let T(P) denote the subset
of P contained in T. Define the notion of balanced exactly as in the analysis of the
rectangle algorithm, except substituting the word "triangle" for "rectangle," and
understanding the "diagonally opposite corners" of a triangle to be its two 45 corners.
In analogy to the rectangle results, balanced sets are the worst case for the triangle
algorithm.

LEMMA 2’. Let P be a set of n >-0 points, n even. Then there is a set of n points
Q such that tcost (Q) _-> tcost (P) and for all triangles T such that IT(Q)I >= 1, we have

1. [T(Q)I even implies T is split into Tx, T2 such that ITI(Q)[, IT (O)I are both
odd, and such that T1 and T2 each leave unmatched points of Q in a 45 corner of T.

2. IT(Q)[odd implies Tleaves a pointofQ unmatched in one of its own 45 corners.
3. [T(Q)I->_2 implies the two subtriangles of Teach contain at least one point of Q.
Proof. By a rearranging argument, very similar to that of Lemma 2. We will give

only the most important case of the argument, that corresponding to Case 2.2.1 of
the proof of Lemma 2; the remaining cases are left to the reader. Let T be a triangle
such that IT(P)I is even. Let TI(P) and T2(P) be the subtriangles of T, and assume
that Iz(e)l and Iz=(e)l are both even and greater than 0. Assume that both TI(P)
and T2(P) have already been rearranged to satisfy the stated properties. The situation
is as pictured in Fig. 18. Let h be the length of the hypotenuse of T. T matches
points p and p2 in its opposite corners. T2 matches points p3 and p4 in its opposite
corners. $2 is the even subtriangle of the subtriangle of Tt which leaves p2 unmatched.
$1 is the odd subtriangle of the subtriangle of T2 which leaves p3 unmatched.

Now rearrange P into P’ by swapping the points in S with those in $2, as shown
in Fig. 19. Then for some real constant c > 0,

and

Also,

tcost (P) d(pl, pa) + d(p3, p4) + c

tcost (P’) d(pl, P4) + d(p2, p)+ c.

d(p, p2) d(p3, p4) h/-, d(p, p4) h, d(p2, p h/2.

134 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

FIG. 18. Lemma 2’, before rearranging.

T(P’)
FIG. 19. Lemma 2’, after rearranging.

Thus

tcost (e) hx/+ c < 3-h2 + c tcost (P’)

as desired.
The other cases of the rearrangement are straightforward. I3
LEMMA 3’. Let P be a set of n >-0 points, n even. Then there is a set of n points

Q1 such that tcost (Q1)->tcost (P) and Q is balanced.
Proof. Identical to that for Lemma 3, substituting "triangle" for "rectangle"

throughout.
Thus for all even n >_-0, we have E, tcost (P), where P is a balanced n-point

set. The length of a level hypotenuse is x//x/3 times the length of the diagonal
in a level rectangle so that for all even n >= 0,

E. 4.+4- -4g+o

Note that for all odd n >_-0, E,, <-En-1. To see this, let P be a set of points, such n [PI
is odd. Then there is some p P such that p is not matched to any other point by
the algorithm. Then tcost (P)- tcost (P-{p}), and hence E, _-<E,_I. Therefore, for
all n >_- 0,

E,, -<_- 1 + x/n + 0(1).

We now analyze the F,, which are our primary interest. Let n -> O, and let P be
a set of n points in the unit square. The square is split into two main triangles, one

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 135

with m points and one with n-m points, for some m such that 0 <-m <_-n. Thus

tcost (P) <_- max {E, +E_}+/
O<-mn

<- max 1+ (x/+x/n m) +O(1).
O<--_m<--n -’

Treating the expression x/+x/n-m as a function of a real variable m and differen-
tiating shows that x/+x/n-m is maximized at m n/2. Therefore,

tcost (P)_-< 1+ 2x/+O(1)= 1+ x/n+O(1).

Thus for all n _-> 0,

F,, -<_- 1 + /+O(1) 1.971/+O(1).

This bound is asymptotically achievable for an infinite class of n defined by n 2b
for some r0 (b as defined in the Appendix), for which we can construct a set P
such that the unit square splits into main triangles T, T such that T(P) and T(P)
are each balanced sets of b points. Therefore, since

C 1

/- 1+ as r - o,

as shown in the Appendix, we have

1+ 1.971 asnm.

4. Te e-eegle lgd. Our third divide and conquer method, the
square-rectangle algorithm, works ust like the rectangle or triangle heuristics, except
that the regions are partitioned as follows: Starting with n points in the unit square,
the square is split vertically to form two 1 by rectangles. These rectangles are then
each split into two by squares. (As in the rectangle and triangle algorithms, we do
this splitting only if the region has at least two points in it and is at or above the
[lg n th level of recursion). In general, each square is split vertically into two rectangles
of ratio 2:1 between the vertical and horizontal sides, and each rectangle is split into
two squares.

We do not have a tight upper bound on the cost of the matching produced by
this algorithm, but a very crude upper bound can be derived by assuming that each
region (whether square or rectangular) matches two points in its diagonally opposite
corners. Thus

cost 2 + 2 2

0i[lg n] +1 0i Jig n] +1

+ + 7.304+ O(1).

Certainly the least upper bound is much lower than this; we merely wanted to show
the cost to be O(). We now construct an example for which the cost is asymptotic
to

136 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Let P be a set of points in the unit square such that each even square splits into
two even rectangles, and each even rectangle R splits into odd squares $1 and $2 such
that $1 and S2 leave unmatched points in opposite corners of R. (In analogy to the
previous sections, a region is defined as even if it contains an even number of points
of P, otherwise it is odd.) Assume that P is "full" to some level 2r + 1 in the sense
that each level 2(r- 1)+ 1 rectangle has exactly 1 or 2 points of P in it. We can so
construct P using the technique (described in the Appendix) used to construct "full"
sets for the rectangle algorithm. Thus, if R is an even rectangle of level i, for some
such that 1 =< i- 2(r- 1)+ 1, then at level + 2, R consists of two even and two odd

odd

level l+l
(a) R even.

leveli+2

odd

even

odd

evenleven

odd e.,n

!eveii level i+i level i+2
(b) R odd.

FIG. 20, Construction of a costly example for the square-rectangle algorithm.

rectangles, as shown in Fig. 20(a). If R is odd, then at level + 2 R consists of three
even and one odd rectangle as shown in Fig. 20(b). For all i, 0-<_ =< r- 1, let

Ei the number of even rectangles of level 2i + 1,
and let

O, the number of odd rectangles of level 2i + 1.

(Note that a level k consists of rectangles rather than squares if and only if k is odd.)
By the above remarks,

Eo 2, O0 0,
and for 1 _-< _-< r- 1

Ei 2Ei-1 / 30i-1,

Observing that E + Oi 2 x 4, we find that

E, 56-4 + (- 1)’,

Oi 2El- + Oi-- 1.

Oi 4)i.=4 --

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 137

Let n [P[. Then

and hence

r-1

n 2 2E 54-4 + 54-(1)r-l,
i=0

r log4 (n) + O (1).

Since the length of a level 2i + 1 diagonal is x/g/2i+ 1, we have

cost (P)= i E,=>4n-O(1)
i=0

We conjecture that the asymptotic worst-case cost for this algorithm is very close to

$. The four-square algorithm. The last divide and conquer algorithm we consider,
the four-square algorithm, works as follows, given input points in the unit square.
Each square $ (initially the unit square) that has at least two input points in it, is split
into four equal-sized subsquares. The algorithm is applied recursively to each of these
subsquares. Then the best matching of the (at most four) unmatched points is made,
the best matching of three points being the closest pair. In analogy to the above
algorithms, if a square S contains at least two points and is on the ([log4 n + 1)st
level of recursion, then we arbitrarily match up the points in S until at most one is
left. Thus this algorithm also runs in time O(n log n), or O(n) if the floor function is
available at unit cost.

As with the square-rectangle heuristic, we have no tight upper bound for this

algorithm, but we know it to be (R)(x/). For a lower bound, we now give an example
of cost

+ 4n- 0(1) 1.394x/- O(1).

Construct a set P of points in the unit square such that each even square $ splits into
S, $2, $3, $4 such that $1, $3 are odd and $2, $4 are even, and $1 and $3 leave
unmatched points in opposite corners of S; see Fig. 21(a). Also, as shown in Fig.
21(b), each odd square S splits into odd squares S, $2, $3 and an even square $4
such that each of the three points left unmatched in S, $2, $3 is in a different corner
of S. Thus at level i, each even square contributes an edge of length 1/x/i-, and
each odd square contributes an edge of length 1/2. Make P such that for some integer
r, each level r- 1 square has either 1 or 2 points of P in it. For 0_ _-< r- 1 let

and let

E the number of even level squares,

the number of odd level squares.

Then Eo 1, O0 0, and for 1 -<_ -< r- 1

Ei 2Ei- + 0i-1, Oi 2Ei-1 + 30i-.

138 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

even

(a) S even.

odd
S

even

even

odd
$3

odd

odd
S

even
$,

odd
Sz

odd
$3

(b) S odd.

FIG. 21. Construction of a costly example for the four-square algorithm.

Observing that Ei + Oi 4i, we find the solution

E,=1/24’+, Oi 4 :z

Let n IP[. Note that n Or-1 + 2Er_l, since each level r-2 square has 5 or 6
points of P, each level r- 1 square has 1 or 2 points, and each level r square has 0
or 1 points. Thus n 1/24 -32-, and hence r log4 (3n + 2). Therefore

r--I r--2

cost (P)= E Ei+ E Off2’
=0 =0

= 1+ /n+/-2+O nn =1.394/-O(1).

Incidentally, neglecting O(1/x/) terms, this expression is exactly the same as the
upper bound for the cost of the triangle algorithm on n points in a main triangle. We
have no geometric explanation for this coincidence.

6. Summary. The table summarizes the results (neglecting lower order terms) of
this paper. From the table it can be seen that, of the four partitioning strategies we
have examined, either the rectangle or the four-square gives the best worst-case
performance. We leave as an open question whether there exist any other simple
shapes that lead to better divide and conquer heuristics.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 139

TABLE 1
Summary of results]’or matching in the unit square, neglecting lower order terms. The

order given for the running time assumes that the floor function is available at unit cost. If
it were not, then the times]’or the rectangle, triangle, square-rectangle, and four-square
algorithms would be (R)(n log n).

Upper bound on
Order of Worst known worst-case

Algorithm running time example cost performance

Optimizing [5], [15] n 0.537x/ 0.707x/
Greedy [2], [4] n 15 log n 0.806x/ 1.074x/
Strip [15] n log n 0.7074 0.7074
Rectangle n 1.436x/ 1.436x/
Triangle n 1.971x/ 1.971
Square-Rectangle n 1.500x/ ?
Four-Square n 1.394x/ ?

7. Appendix. Bounds on Cn. Recall that

for all n ->_ 1,

Co=C,=O,

1

and for all n >_-0

1
c4.+ + c:,.+,)

1
c4.+ + +),

1
+

We get rather tight bounds on Cn by defining a special class of n and solving the
recurrence for those values to within an O(1/x/) term.

Given an integer r -> 0, we say that a set of points P is full to level r if
1. P is balanced, and
2. For all rectangles R

(i) if level (R) _-< r 1 then IR (P)[> 0, and
(ii) if level (R) >= r then IR (P)I <-- 1.

This definition implies that every level r rectangle has 0 or 1 points of P in it, and
that every level r- 1 rectangle has 1 or 2 points of P in it.

We say that an integer n is full to level r if there exists a set P such that IPI n
and P is full to level r. We now show by induction on r that for each r => 0 there is a
pair (n, n + 1) for which both n and n + 1 are full to level r. Clearly, 0 and 1 are both
full to level 0. Let r-> 0 and assume that n and n + 1 are both full to level r. Then
there exist sets Pn, Pn+l such that IP.I n, IP.+,i n + 1, and both P, and Pn+l are full
to level r.

Case 1. n is even. Let P2/1 be the set consisting of P, in its left subrectangle,
and P,/ in its right subrectangle (as shown in Fig. 22). Let P2n/2 be the set consisting
of P,+ as its left subrectangle and P,+ as its right subrectangle. Both P2n+ and
P2/2 are full to level r + 1.

Case 2. n is odd. Let P2, be the set with subrectangles consisting of Pn and P,.
Let P2n/l be the set with subrectangles consisting of P, and Pn/. Both P2, and P2,/
are full to level r + 1.

140 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Thus 0, 1 are full to level 0. Also, if t, + 1 are full to level r, then even implies
2t + 1, 2t + 2 are full to level r + 1, and odd implies 2t, 2t + 1 are full to level r + 1.
The sequence (0, 1, 1, 2, 2, 3, 5, 6, 10, 11, 21, 22, ...) thus consists of numbers
full to some level. In fact, it is easily proved by induction that this sequence contains
all numbers full to some level. Call the members of this sequence the full numbers.
Incidentally, it is also easy to Show that if P is a balanced set of points, then P is full
to some level if and only if for each rectangle R such that IR(P)I >0, 4 does not
divide IR (P)I.

Pn

FIG. 22. Constructing the set P2n+l in Case of the Appendix.

Now let r >_-0 and let P be a set full to level r, such that IPI n is even. We must
relate n and r. For all i->_ 0, define

Ei I{rectangle R: level (R) and IR (e l >- is even}l.
Similarly, define

O [{rectangle R: level (R) and [R (P)I is odd}i.
Since n is even, we have that Eo 1, Oo 0. Since P is balanced we have that each
nonempty even rectangle splits odd-odd, and (of course) each odd rectangle splits
odd-even. Thus, for 1 <-i _-< r- 1,

Oi Oi-a + 2El-l, Ei Oi- 1.

Note that Oi +Ei 2 because there are a total of 2 level rectangles; thus for
1 <- -< r 1 we have

Oi 2i-(-1) Ei 2i-1-(-1)

(Because P is full to level r, we have Ei 0 for all i-> r.) Since P is balanced, we can
associate with each even, nonempty rectangle R a pair of points p l, pz P such that
p and p. are in opposite corners of R and are matched by the algorithm. These n/2
pairs form a partition of P. Therefore

n= 2Ei=2 2_ 2

i=o i=o
-g (-1)i-1

3

Define, for all r > 0,

2+1 2
Or ---+-(-1

2
+-(-1)’+1.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 141

Then, as just shown, the sequence (b0, bl, b2, ’) (0, 2, 2, 6, 10, 22, 42,. .) consists
of all even full numbers. Define, for all r->_0, wr= [2r+l/3J. The sequence
(w0, w, WE,’’ ")--(0, 1, 2, 5, 10, 21,’’ ") arises in connection with merge insertion
[8, p. 187], and with an algorithm for finding the greatest common divisor of two
integers [7, Exer. 4.5.2.-27]. Knuth points out that it is curious that this sequence
arises in such different settings. We now add to this curiosity by observing that

"2+1 2
b if r is even,

3 3

2r+l 1
br-1

3 3
if r is odd.

Thus, w is the smaller of the two numbers full to level r.
Fix some r >-0, and some set P full to level r such that IPI-- n is even (i.e., n br).

We now analyze rcost (P), that is, Cb,.
r-1

rcost (P)= Y. Ei (length of a level diagonal)
i=0

-,_-0

=47(1 + 4 +/g-/g+--(2

Now, n 2r+ + 32_(_ 1)r+ 1, so that using Taylor series we have

and

Therefore,

r=lg(n)+O(),
4r 4lg (3n/Z)+O(1/n)_. x/3n/2[1 + O(1/n)] x/3n/2 + 0(1/x/-),

C =rcost (P) 1 + s/+ x/-/+

Thus we know (up to an O(1/x/) term) Cn for an infinite class of even n. Now
we consider the other even values of n. Fix some _>-0. We want to derive an u_pper
bound on C2t. For notational convenience, let c 1/x/, and let Dn =C,/43 for
n -> 0. By induction on it follows that for all -> 1,

Di+l-Di-1 Jig (3i/4)],

Let 2m be the largest integer such that 2m -< 2t and 2m bk for some k _-> 0. We can
write D2t as

D2t Dzm + (Di+I-Di-1)
odd,

2m+l<=i<=2t-1

D2m + Y’. ot
Jig (3i/4)],

odd,
2m+1<=i<=2t-1

142 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Now [8, formulas (17), (18), p. 187] imply that for all Wk <i <--_ Wk+l, [lg (3i/4)] k.
Therefore in particular, [lg (3i/4)] k for all odd such that Wk <----2m < 2m + 1 <--i <--
2t- 1 < 2t <--Wk+, SO that

E O[1g(3i/4)’1 =(t-m)a k.
odd,

2m+l<--i<--2t-1

We now express k in terms of m. Note that k is even if and only if Wk is even.
Thus if k is even then Wk 2m 1/22k+-- and hence k lg (3m + 1). If k is odd then
Wk 2m 1 1/22k+--1/2 and hence k lg (3m 1). Thus,

D2, =D2,, +(t-m)a k =D2,, +(t-m)()
k

<-D -t- (t m)()
lg (3m-1)

C21 m=-- +x/3m- 1

1[(_) (_)] t-m

+x/3m 14g + 4 m+4g 4- +o 1

4- (4-5 + 1)x/-+ 1 x/- + 0 +
t-m

x/3m- 1

LEMMA 4.

4
(4+1)x/+1-4+o 1 t-m <--(4+1)4+1-4+O 1

43m-1 x/

Proof. Let d (x/+ 1)/x/. Since either 4m-2 or 4m + 2 is a full number, we
have 2t <= 4m + 2. However, if 2t 4m + 2, then 2t would be a full number, implying
that 2t 2m, contradicting the fact that m ->_ 1. Therefore m <- <_- 2m, and hence we
have that O(1/x/) O(1/q). We need show only that

t-m

43m 1

i.e., that

dx/-t- dx/-- m
>=0.

x/3m- 1

Define the function f: [m, 2m]-, R by

[(y)=d/-}-d4-- y-m

x/3m- 1

Differentiation shows that f has no local minima in the range Ira, 2m], so its absolute
minimum on that range occurs at one of the endpoints. But f(m)= 0 and/(2m) >0,
so that f(y) -> 0 for m -< y <= 2m. [3

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 143

By Lemma 4,

Therefore,

As shown above, this bound is achievable [neglecting o(1) terms] when 2t bk for
some k->0. An argument similar to the above, using k =lg (3m + 1) instead of
lg (3m 1), shows that

1 3
C2,->

2
F 2x/)x/+x/ x/g o (1).

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] D. Avis, Worst case bounds for the Euclidean matching problem, Internat. J. Comput. Math. Appl.,
7 (1981), pp. 251-257.

[3], Personal communication.
[4] J.L. BENTLEY AND J. B. SAxE,Decomposable searchingproblems 1: Static-to-dynamic transformation,

J. Algorithms, 1 (1980), pp. 301-358.
[5] H. GABOW, An efficient implementation of Edmond’s algorithm for maximum matching on graphs,

J. Assoc. Comput. Mach., 23 (1976), pp. 221-234.
[6] M. R. GAREY AND O. S. JOHNSON, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, 1979.
[7] D. E. KNUTH, The Art ofComputerProgramming, Vol. 2: SeminumericalAlgorithms, Addison-Wesley,

Reading, MA, 2nd edition, 1981.
[8] ., The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading,

MA, 1973.
[9] C. H. PAPADIMITRIOU, The probabilistic analysis of matching heuristics, in Proc. Fifteenth Annual

Allerton Conf. on Communication, Control and Computing, 1977, pp. 368-378.
10] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization:Algorithms and Complexity,

Prentice-Hall, Englewood Cliffs, NJ, 1982.
[11] E. M. REINGOLD AND K. J. SUPOWIT, Probabilistic analysis of divide and conquer heuristics for

minimum weighted Euclidean matching, Networks, to appear.
[12] E. M. REINGOLD AND R. E. TARJAN, On a greedy heuristic for complete matching, this Journal, 10

(1981), pp. 676-681.
[13] M. I. SHAMOS, Computational geometry, Doctoral thesis, Dept. Computer Science, Yale Univ., New

Haven, CT, 1978.
[14] K. J. SuPOWIT, D. A. PLAISTED AND E. M. REINGOLD, Heuristics for weighted perfect matching,

in Proc. Twelfth Annual ACM Symposium on Theory of Computing, 1980, pp. 398-419.
[15] K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED, The traveling salesman problem and

minimum matching in the unit square, this Journal, this issue, pp. 144-156.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1201-0009 $01.25/0

THE TRAVELING SALESMAN PROBLEM AND
MINIMUM MATCHING IN THE UNIT SQUARE*

KENNETH J. SUPOWIT,t EDWARD M. REINGOLD:I: AND DAVID A. PLAISTED:I:

Abstract. We show that the cost (length) Of the shortest traveling salesman tour through n points in
the unit square is, in the worst case, aopt v/n + o (x/-n), where 1.075 atsPopt <= 1.414. The cost of the minimum

4+ O(4), wherematching of n points in the unit square is shown to be, in the worst case, a opt

0.537 mat <0.707 Furthermore, for each of these two problems there is an almost linear time heuristicopt

algorithm whose worst case cost is, neglecting lower order terms, as low as possible.

Key words, traveling salesman problem, matching, analysis of algorithms, computational geometry,
graph algorithms, heuristics

1. Introduction. Let P be a set of n points in the (Euclidean) unit square. Define
a traveling salesman tour T of P as a set of n edges such that each point of P is an
endpoint of exactly two edges, and the resulting graph (P, T) is connected. If n is
even, then define a matching M of P as a set of n/2 edges such that each point of P
is an endpoint of exactly one edge of M. If S is a tour or a matching then let cost(S)
denote the sum of the lengths of the edges of S. The (Euclidean) traveling salesman
(respectively, matching) problem is to find a minimum cost tour (respectively,
matching).

The Euclidean traveling salesman problem is known to be NP-hard [7], [11] while
the fastest known algorithm for Euclidean matching runs in time O(n 3) [6], [13]. This
paper concerns fast heuristic algorithms for these two problems. Applications for
heuristic Euclidean matching are described in [15].

In order to evaluate a heuristic, we use the following measure" the worst-case
performance of a traveling salesman heuristic A is a function fP’ N--> I such that

fP(n)= sup {the cost of A’s tour of P},
P

where P ranges over all sets of n points in the unit square. By "sup" we mean the
supremum, i.e., the least upper bound; by "inf" we mean the infimum, the greatest
lower bound. We use the supremum in the definition of worst-case performance
because it is possible (since there are infinitely many n-point sets) that there is no
n-point set P for which the cost of A’s tour is maximized. If B is a matching heuristic
then the worst case performance of B is the function/at defined analogously. The
first question that arises is how good the worst-case performance of any traveling

tspsalesman (respectively, matching) heuristic can be? Let opt denote the worst-case
performance of the exhaustive optimizing traveling salesman problem algorithm. Let
rnat
opt denote the worst-case performance of the (R)(n a) optimizing matching algorithm.

* Received by the editors September 1, 1980, and in revised form May 28, 1982. Preliminary versions
of some of the results contained in this paper were presented at the Twelfth Annual ACM Symposium on
Theory of Computing, April; 1980. This research was supported in part by the National Science Foundation
under grants NSF MCS 77-22830 and NSF MCS 79-04897.

t Hewlett-Packard Laboratories, Computer Research Center, Palo Alto, California 94304. This
research was conducted while this author was at the Department of Computer Science, University of Illinois
at Urbana-Champaign.

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801.

144

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 145

tsp matWe will show that both fopt and fopt are (R)(x/). Let
a r, inf {x’(In >= 0)[fp (n) <= x,,/+ o (x/)]},

and
tsp (xfn)]}a s inf {x (Vn ->_ 0)[f’ (n) <_- xn+ o

adopting the convention that the infimum of the empty set is infinity. The statement
tsp mat O(%/’) I, tsp matthat opt and fopt are may be rephrased as a opt and a opt are both finite and

nonzero. Thus, the answer to the question of how good the worst-case performance
t, x/+ o(x/) for the traveling salesman problemof a heuristic can_possibly be is a opt

mtn+ o (xn) for the matching problem.and a opt

There are two main results of this paper:
/47=i /47: mat < 1/x/0.707.tsp <41.414, 0.5371. 1.075 =2 O opt

2. There exists a heuristic algorithm A for the traveling salesman problem such
that A runs in time O(n log n) and a u opt. Analogously, for matching there exists

mat tspa heuristic algorithm B that runs in O(n log n) time and has a s a n
Furthermore, if the floor function is available at unit cost, then for each

unbounded, nonnegative, nondecreasing, integer-valued function f such that f(n) is
computable in time O(nf(n)), the expression "O(n log n)" can be replaced by
"O(nf(n))" in the statement of (2). Examples of such functions f are [lg lg n], lg*n,
a (n, n) [18], and so on. In other words, (2) says that for each of these two problems,
there exists an almost linear time heuristic algorithm whose worst-case performance
is asymptotically optimal.

The worst-case performance (as defined above) of various traveling salesman
problem and matching algorithms is given in Tables I and 2, respectively. For matching,
the rectangle algorithm is the best of the simple divide-and-conquer algorithms; its
worst-case behavior is analyzed in [17] (this issue, pp. 118-143)and its average-case
behavior is analyzed in [14]. The greedy algorithm for matching works by iteratively
matching the two closest unmatched points; the analysis of its worst-case performance
is in [1] and its O(nlogn) implementation is in [4]. The spiral rack matching
algorithm and its analysis are in [9].

Our results on worst-case performance should also be compared with the known
results on expected performance:

(i) The expected cost of the shortest tour of n points drawn from a uniform
distribution in the unit square is tsp4+O(4), for some Btsp satisfying 0.61 tsp
0.92 [2].

(ii) The expected cost of the minimum matching of n points drawn from a uniform
distribution in the unit square is Brnatn+o(n), for some /3m,t satisfying 0.25 _--<

/3mt -< 0.402 [12].

2. Lower bounds on opt and opto We will show that 2 --< a opt and that
mat1//T_-< a opt. Our strategy is to construct an infinite class of sets of points P such

that any tour of P has cost at least (2//lffiff- and any matching of P has cost
at least (1//)/. Let k >_-2 be an even integer. Let P be the set of points

01_-< [2/(Sx/J

When we say that (Vn)[f(n)<-xx/-+o(x/-n)], we mean that

(::lg. R)[g(n) o(x/n) and (ln)[f(n) <=x.,/n+ g(n)]].

146 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

TABLE
Summary of results]’or the traveling salesman problem in the unit square, neglecting

lower order terms, f is any unbounded, nonnegative, nondecreasing, integer-valued
function computable in O(nf(n)) time. The order given for the running time assumes
that the floor function is available at unit cost. If it were not, then the time for the
decomposition algorithm would be (R)(n log n).

Upper bound on
Order of Worst known worst-case

Algorithm running time example cost performance

Optimizing n 2" 1.075/ tsp/--
O opt/__

Strip n log n 1.414x/ 1.414x/n
tsp 4nDecomposition n[(n) 1.0754 Oop

TABLE 2
Summary of results for matching in the unit square, neglecting lower order terms, f

is any unbounded, nonnegative, nondecreasing, integer-valued function computable in
O(nf(n)) time. The order given for the running time assumes that the floor function is
available at unit cost. If it were not, then the times for the rectangle, spiral rack, and
decomposition algorithms would be (R)(n log n).

Upper bound on
Order of Worst known worst-case

Algorithm running time example cost performance

Optimizing [6], 13] n 0.537x/ mat/--
O opt _.

Greedy [1], [4] n 1"5 log n 0.806x/ 1.075x/n
Strip n log n 0.7074 0.7074
Rectangle 17] n 1.436x/ 1.436x/
Spiral rack [9] n 1.014x/ 1.014x/
Decomposition n[(n) 0.5374 mat4Oopt

where 8 1/(k- 1/2) is a factor introduced so that the points of P all lie in the unit
square. An example is shown in Fig. 1 with k 6. The points of P are vertices of a
hexagonal grid, which, incidentally, also gives the densest packing of the plane by
unit circles [16] and the worst known example for the greedy matching heuristic [1].

0 8 28 38 4 5

FIG. 1. The vertices of a hexagonal grid.

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 147

Let n IPI and let T be any tour of P. Since 6 is the distance between the closest
pair of points in P, each edge of T has length at least 6, so that

Now

Therefore

giving

cost (T) -> n6.

n (number of rows of P) (number of points per row)

[2]) 2k
=_ +a xk>

\

cost (T) => n6 >

Similarly, if M is a matching of P then M has n/2 edges, each of length at least 6,
so that

1
cost (M) >

n
6 > /.

=2
tsp and mat3. Upper bounds on Elop opt, We present a heuristic for the traveling

salesman problem that we call the strip algorithm, and show that its worst-case
performance is at most /n+ O(1). The algorithm can be used for matching, when
n is even, by taking the shorter of the two matchings contained in the tour found.
Therefore the worst-case performance of the strip algorithm for matchingis bounded
above by x/n-+ O(1). This will show that apPt -_< x/ and that a ompat 1/x/2.

The strip algorithm for the traveling salesman problem is a modification of one
analyzed for its expected performance in [2]. We are given a set of n points in the
unit square. Let r nx/-/2]. Divide the unit square into r vertical strips, each of
width 1/r. Construct a tour T of the points by starting at the lowest point in the
leftmost strip, going up that strip from point to point, over to the top point of the
next strip, then down that strip point by point, up the next, and so on, finally returning
to the starting point, as shown by the jagged line in Fig. 2. For simplicity, not all of
the input points are pictured; in order to actually have 5 strips there would have to
be between 50 and 71 points.

A second tour T2 is constructed in the same way, except that now the strip
boundaries are shifted by 1/(2r) to the right. There are r + 1 strips used in constructing
T2, each of width 1/r. In Fig. 3, the strip boundaries for T1 are shown as solid lines,
those for T2 as dashed lines. Note that the leftmost of these strips contains none of
the points in its left half. Similarly, the rightmost strip contains none of the points in
its right half.

The strip algorithm outputs the shorter of the two tours Tx and T2. The algorithm
can be implemented in time O(n log n) by appropriately sorting the points.

To derive an upper bound on the cost of the tour produced, we will bound the
sum of the horizontal and vertical components, and then use the triangle inequality.
Consider paths P and P2 defined as follows: Px starts at the bottom, on the median
of the leftmost of the strips used in constructing T. P follows the median of that

148 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

FIG. 2. The construction o] a tour, using strips.

FIG. 3. The two sets of strip boundaries.

strip up to the top, then down the median of the next strip, up the median of the
next, and so on. For each strip, for each point in that strip, the path P1 juts out to
that point and then back to the median, moving at right angles, as illustrated in Fig. 4
by the jagged line. The path P2 is defined like P1, except that P2 follows the medians
of the strips used to construct T2. It follows from the triangle inequality that
length (Tx)-<length (P), and that length (T2)=<length (P2). We now derive an upper
bound on length (Px)+ length (P2).

Consider some input point q; q must lie in some strip used for T and for P1
(shown in Fig. 5 between solid lines), and in some strip used for T2 and for P2 (shown
in Fig. 5 between dashed lines). In Fig. 5, a segment of P1 is shown as a bold line,
and a segment of P2 as a jagged line. It is clear that the total amount of horizontal
line in Px or P2 jutting out to q and back is 2x 1/(2r) 1/r. Since q was arbitrary,
there is a total of n/r units of horizontal line in Px and P2 together that juts out to
points and back. Also, P1 has r units of vertical line (that is, r strips of unit length).
P2 has r + 1 strips and hence r + 1 units of vertical line. P1 has 1-(l/r) units of
horizontal line that run from the end of one strip to the start of the next and P2 has

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 149

FIG. 4. The construction of the path P1, using strips.

FTG. 5. The paths P1 and P2 at a point q,

1 unit of such line. Finally, P1 and P2 each have a segment of length at most x/ that
joins the end of the last strip back to the starting position. Thus

length (T1) + length (T2) -< length (P1) + length (P2)

<_-+r+(r+l)+ 1
1
+ 1 +4-+4-

n
=-+2r+O(1)

n
=+2[,/nl + o(1)

24n+ 0(11.

150 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

Therefore

min {length (T1), length Tz)} -<_ x/nn+ O 1),

and if n is even, the cheaper of the two matchings contained in the shorter of {T1,
has cost at most 4/2 + O(1).

These bounds are asymptotically achievable, as is suggested by the example
pictured in Fig. 6. T is shown as a jagged line; Tz is not shown, but looks like T
shifted by 1/(2r) to the right. The points, which number n 2k z for some even integer
k, are arranged so that halfway between each solid vertical line and either of its two
neighboring dashed vertical lines there is a vertical string of n/r points; these points
are e/r apart, for some e < 1/(2r). Intuitively, these points are placed so that T and
Tz must zigzag, and hence look very much like P and Pz, respectively. This attains
the maximum amount (neglecting O(1) terms) of horizontal line for T1 and for
There is a point at the bottom of each strip, so as to attain the maximum vertical
length. To compute min {length (T1), length (Tz)}, note that by the Pythagorean
theorem, each short, almost horizontal edge of the tour has length

/rr) +{rr) >2-7
There are r((n/r)-1) of these edges. There are r long vertical pieces, each of length
1- e. Recalling that r [x/n--], we have

min {length (T), length (Tz)} >r (rn--1 1___+
2r

r(1-e)

n 1 n
----+r-re>-- r 1 ",/n 1/
2r 2 2r

FIG. 6. A set of points in the unit square for which length (Ta) length (T2) x/n.

We can easily arrange the points in this example so that each of the matchings from
Tx or T2 contains about half of the long vertical edges; hence the strip matching
algorithm produces a matching for this example of cost at least x//2- 1/2.

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 151

4. The decomposition heuristic for the traveling salesman problem. In this section
we present a decomposition heuristic for the traveling salesman problem that achieves
(asymptotically) the best possible worst-case performance. The heuristic, given in
Algorithm 1, is reminiscent of the traveling salesman problem heuristic given by Karp
in [10]. Assuming a uniform distribution, Karp’s heuristic runs in time O(n log n)
almost everywhere, and, for all e > 0, outputs a tour of cost at most 1 + e times that
of the optimal tour, almost everywhere. Karp’s heuristic requires exponential time
on some input sets. Our heuristic, on the other hand, always runs in time O(n log n)
and has the best possible worst-case performance, neglecting lower order terms. An
argument similar to the one we give below proves that Karp’s heuristic also has,
asymptotically, the best possible worst-case performance.

In order to avoid the sorting required by the strip heuristic, Algorithm 1 uses a
slightly crude approximation, the modified strip heuristic. It is essentially the serpentine
algorithm of [9]. Each column of subsquares in the grid is a strip and we traverse the
subsquares by going up the first strip, down the second, up the third, and so on. The
tour thus constructed visits the points in some arbitrary order that is consistent with
the cell order. Figure 7 shows an example of such a tour. The advantage of this
heuristic is that it requires only O(m) time for m points. It produces a tour of length
O(/) because an edge wholly contained in one of the subsquares has length at
most ",/-/c O(1//) (see Algorithm 1 for the definition of c).

ALGORITHM 1. The asymptotically optimal decomposition heuristic for the
travelingsalesmanp.roblem on a set P of n points in the unit square.

1. c ,-[2,/-/4iOgzf(n)], where z > 2 is some real, and f(n) is a nonnegative,
unbounded, nondecreasing, integer-valued function computable in O(nf(n))
time.

2. Divide the unit square into a regular grid of c 2 subsquares, each of side length
1/c.

3. For each of the subsquares, do the following"
P’ <--the subset of P inside the subsquare
while IP’[> 0 do

begin
k min {4 [rt/C2], Ie’l}
O a set of k points chosen arbitrarily from P’
Use dynamic programming to find the shortest

traveling salesman tour of O [3], [8].
Distinguish one point of O
PP’-O

end
4. Perform the modified strip heuristic to find a tour of the distinguished points.
5. T’ <--the union of all tours found in Steps 3 and 4.
6. Convert T’ to a tour T by the method of [5] (see [13])2 and output T.

We first analyze the worst-case performance of Algorithm 1. Let a be a real
number such that

tsp (F/) < 4+ O(4)].(n)[fopt
2 Since T’ is a union of tours, the degree of each vertex in T’ is even so T’ contains an Eulerian circuit.

Start at an arbitrary vertex and follow the order of the Eulerian circuit, but skip any previously encountered
point; the result is a Hamiltonian circuit. By the triangle inequality, the cost of this Hamiltonian circuit is

no more than the cost of the Eulerian circuit we started with. The cost of the Eulerian circuit is the sum
of the lengths of the edges in T’.

152 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

FIG. 7. The modified strip heuristic.

We will show that

(Vn) feP (n) --< a x/+ o (/)].
tsp tspwhere "dec" denotes the decomposition algorithm; this will prove that aOec =opt.

In fact, it will prove that

{X’ (rt >0)Iftsp (r/) < x/+o(x/)]} {x (n >0)[ftsp (r/)<xx/+o(x/)]},opt X dec

which is not implied by the equality of the infima.
Fix some input set P of n points. For notational convenience, let

(1) b

Number the subsquares from 1 to c 2. For all i, 1 < < c 2, let Bi denote the set of input
points within the ith subsquare, and let bi IBil mod 4b. Thus the number of applica-
tions of the optimizing dynamic programming algorithm (that is, the number of
executions of the body of the while loop) when working on subsquare Bi is at most

Let

4b

(2) t= Y, =(n-Z bi)/(4b);
i=1 4b i=1

thus / c 2 is the total number of executions of the body of the while loop.
Now for all r >_-1, the cost of the tour produced by the optimizing algorithm on

r points in a 1/c by 1/c square is at most [ax/-r+o(x/-r)]/c. The factor 1/c scales
down the cost from the unit square to the (1/c)x (1/c) square. Therefore the sum of
the costs of all the tours produced by the optimizing algorithm is at most

_1 t(ax/-+o(x/))+ Y =-a t4-+ ,
C i=1 C i=1

since bi < 4b and _-< C 2.

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 153

The tour produced in Step 4 by the modified strip algorithm on at most c E points
has cost O(c). In Step 5, the tour T produced by the method of [5] (see [13]) from
T’, the union of the tours found in Steps 3 and 4, has cost at most Y-er’ length(e),
by the triangle inequality. Therefore the total cost of the tour T produced by the
algorithm is at most

[c2](3) E t,,/-+ Z 4,+o(c4-) +O(c).
C i=1

Note that 4-=4[n1[:] <,/-/c + a and that c o(x/) so (3) can be rewritten as

(4) a__
C i=

Let g" Re2--> R be defined by

g(b, bE,’’’, bc)= t4+ Y, 4
i=1

Taking partial derivatives shows that g is maximized at bl b2 be2 b. In this
case n >-bc 2, but because b [rt/c2], we have bc2>= n SO that n bc E giving

t=(n-,Z b /(4b)=(n-bcE)/(4b)=O.

Therefore (4) is maximized when 0 and bl --bE be,-= b. Hence

I c2

cost (T) -_< Y. 4+ o (4) ac4+ o (4) a4+ o (4),
Ci=l

since 4<4/c + 1. Thus
tsp (n)<fdec

tsp tspso that a dec ff opt as claimed. Thus the decomposition algorithm has the asymptotically
best possible worst-case performance.

We now analyze the running time of Algorithm 1. Under the real RAM model
of computation, partitioning the n points into the c 2 subsquares can be done in
O(n log n) time, since the subsquares form a grid. If we allow the floor function at
unit cost, then this partitioning can be done in O(n) time.

There is a dynamic programming algorithm that finds the shortest tour of r points
in time O(r2r) [3], [8], hence in time O(z’) for z >2. Step 3 makes at most +c 2

calls on that algorithm, each with at most 4b points. Therefore the time quired by
Step 3 is

O((t-[-C2)z4b) O([(/I--i__ bi)/(4b)-[-c2]z 4b)
O((.q-C2)Z 4b)

(nf(n)i)O(c2z4[n/(4n/lgzf(n))] 0 \i0gf(n O(nf(n)).

154 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

There are at most

t+c2<--+c =O
logf(n

points distinguished in Step 3. Therefore Step 4 can be performed in time
O(n/logf(n)).

Thus, the total running time of Algorithm 1 is O(n log n) under the real RAM
model of computation. If the floor function is available at unit cost, the running time
is O(nf(n)).

5. The decomposition heuristic for matching. In this section we present a
decomposition heuristic for matching that, like Algorithm 1 for the traveling salesman
problem, achieves (asymptotically) the best possible worst-case behavior. The heuristic,
given in Algorithm 2, is almost an exact parallel to Algorithm 1, and its analysis is
virtually identical. In particular, we can show, with the same argument as before, that
if c is a real number such that

then
(Vn)[[o%’ (n) _-<,4+ o (4)],

(Vn’rgmat(n)< 4-+o(4-)]/LJdec O

mat matso that Cdec topt.

ALGORITHM 2. The asymptotically optimal decomposition heuristic for matching.
1. c x//x/], where f(n) is a nonnegative, unbounded, nondecreasing,

integer-valued function computable in O(nf(n)) time.
2. Divide the unit square into a regular grid of c 2 subsquares, each of side length

1/c.
3. For each of the subsquares, do the following"

P’ - the subset of P inside the subsquare
it IP’I is odd then distinguish an arbitrarily chosen point

in P’ and delete it from P’
while [P’I > 0 do

begin
k the largest even integer less than or equal to

min {4In [P’I}
Q a set of k points chosen arbitrarily from P’
Use the optimizing matching algorithm [6], [13] to

find the minimum cost matching of Q
pp’-Q

end
4. Perform the modified strip heuristic to find a tour of the distinguished points,

then find the less costly of the two matchings contained in the tour.
5. Output the union of all matchings found in Steps 3 and 4.

As for the time required, the partitioning takes O(n log n) under the real RAM
model of computation and O(nf(n)) if the floor function is available at unit cost" Let
b and be defined by (1) and (2), respectively; note that now b (R)(ff-f(n)). There
are at most + c 2 calls on the optimizing algorithm, each with at most 4b points and
hence each requiring O(b 3) time. Thus Step 3 requires time

O((t+c2)b3)=O +c b =O(c2b =O(nf(n)).

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 155

There is at most one distinguished point in each subsquare, so Step 4 can be performed
in time O(c 2) O(n/x/-f(n)). The total time for Algorithm 2 is thus O(n log n) without
the floor function and O(nf(n)) with it.

6. Open problems. Many questions remain unanswered. We know that

2 mat<

msttsp mat9 We can define Copt for the minimum spanning tree problem inDoes opt Zopt
tsp matanalogy tot and opt; the hexagonal grid example of Fig. 1 establishes that

mst mst tsp mst tsp Q HOWaopt =2/. Furthermore, it is obvious that aopt =aopt. Does aopt =aopt.
does 2mt mt9 We conjecture thatopt compare with a opt.

2tsp mst mat
opt opt 2a

Finally, our decomposition algorithms are not quite linear time; are there linear time
algorithms A and B for the traveling salesman problem and matching, respectively,

tsp mat mat 9for which a a opt and a n opt

7. Acknowledgment. We gratefully acknowledge suggestions by the referee
that helped sharpen one of the time bounds, improve the notation, and clarify the
exposition.

REFERENCES

[1] D. Avis, Worst case bounds for the Euclidean matching problem, Internat. J. Comput. Math. Appl.,
7 (1981), pp. 251-257.

[2] J. BEARDWOOD, J. H. HALTON AND J. M. HAMMERSLEY, The shortest path through many points,
Proc. Cambridge Phil. Soc., 55 (1959), pp. 299-327.

[3] R. BELLMAN, Dynamic programming treatment of the travelling salesman problem, J. Assoc. Comput.
Mach., 9 (1962), pp. 61-63.

[4] J. L. BENTLEY AND J. B. SAXE, Decomposable searching problems, 1: Static-to-dynamic transforma-
tion, J. Algorithms, 1 (1980), pp. 301-358.

[5] N. CHRISTOFIDES, Worst-case analysis ofa new heuristic for the travelling salesman problem, Technical
Report of the Graduate School of Industrial Administration, Carnegie-Mellon Univ., Pittsburgh,
PA, 1976.

[6] H. GABOW, An efficient implementation of Edmond’s algorithm for maximum matching on graphs,
J. Assoc. Comput. Mach., 23 (1976), pp. 221-234.

[7] M. R. GAREY, R. L. GRAHAM AND D. S. JOHNSON, Some NP-complete geometric problems, in
Proc. Eighth ACM Symposium on Theory of Computing, 1976, pp. 10-22.

[8] M. HELD AND R. M. KARP, A dynamic programming approach to sequencing problems, J. Soc. Indust.
Appl. Math., 10 (1962), pp. 196-210.

[9] M. IRI, K. MUROTA AND S. MATSUI, Linear-time approximation algorithms for finding the minimum-
weight perfect matching on a plane, Inform. Process. Lett., 12 (1981), pp. 206-209.

[10] R. M. KARP, The probabilistic analysis of some combinatorial search algorithms, in Algorithms and
Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic Press, New York,
1977.

[11] C. n. PAPADIMITRIOU, The Euclidean traveling salesman problem is NP-complete, Theoret. Comput.
Sci., 4 (1977), pp. 237-244.

[12], The probabilistic analysis of matching heuristics, in Proc. Fifteenth Annual Allerton Conf. on

Communication, Control and Computing, 1977, pp. 368-378.
[13] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and Complexity,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.
[14] E. M. REINGOLD AND K. J. SUPOWIT, Probabilistic analysis of divide and conquer heuristics for

minimum weighted Euclidean matching, Networks, to appear.

156 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

[15] E. M. REINGOLD AND R. E. TARJAN, On a greedy heuristic for complete matching, this Journal, 10
(1981), pp. 676-681.

[16] C. A. ROGERS, Packing and Covering, Cambridge Univ. Press, Cambridge, 1964.
[17] K. SuPOWIT AND E. M. REINGOLD, Divide and conquer heuristics for minimum weighted Euclidean

matching, this Journal, this issue, pp. 118-143.
[18] R. E. TARJAN, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach., 22

(1975), pp. 215-225.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1201-0010 $01.25/0

SIMPLE CONSTRUCTIONS FOR MULTI-TERMINAL
NETWORK FLOW SYNTHESIS*

DAN GUSFIELD-

Abstract. The multi-terminal network flow synthesis problem is one of the few nicely solved problems
in network design, and is used widely in courses and texts on combinatorial optimization as an example
of an elegantly solved problem. The solution used in these texts is due to R. E. Gomory and T. C. Hu.
We present two simpler algorithms which improve the original method in speed, simplicity of the needed
data structures and, most importantly, in the simplicity of the networks that are constructed. The networks
constructed are planar and "uniformly optimal," permit simple flow routing methods and simple solutions
to many sensitivity and postoptimality questions, and have as few edges as any networks produced by the
Gomory-Hu method. Further, one algorithm constructs networks with only one node of degree larger than
three, while the other algorithm constructs networks in which no node has degree greater than four.

Key words, network flow, graph algorithms, network synthesis, sensitivity analysis, planar graphs

1. Introduction. The multi-terminal network flow synthesis problem is one of
the few nicely solved problems in the area of network design. It is used widely in
courses and texts [2], [3], [6], [7] on network flows and combinatorial optimization
as an example of an elegantly solved combinatorial optimization problem. The solution
used in these texts is due to Gomory and Hu [5], and is also cited as an example of
a nondirect application of maximum spanning trees. In this paper we refer to the
Gomory and Hu method as Algorithm A. For examples where this problem arises,
see also Chien [1]. For NP-hard network design problems see Wong [8] or Garey and
Johnson [4].

We present two simpler algorithms which improve Algorithm A in speed, sim-
plicity of needed data structures and, most importantly, in the simplicity of the networks
constructed. The networks produced are "uniformly" optimal (defined in the next
section), planar, have low node degrees, have as few edges as any produced by
Algorithm A, and allow efficient and direct solutions to problems in sensitivity analysis.
Further, flow routing algorithms for the networks are simple and can be implemented
as rules applied locally at each node. Finally, it is shown that uniformly optimal
networks with as few edges as any produced by Algorithm A can be derived from
any triangulated polygon with the correct number of nodes.

The simplicity of the constructions suggest applications in computer networks
and data transfer problems, particularly for bursty data transfer in local networks,
where the primary costs are associated with providing sufficient channel capacity.

2. Problem set up and main result. Let R be a symmetric n n matrix, and let
r(i, j)= r(j, i)>-_ 0 be the i,/" entry in R. R is called the flow requirements matrix and
r(i, j) is the i, j flow requirement. Let e denote the number of nonzero entries in R.
In the case where e is small, we will assume that the nonzero entries of R are
represented as an undirected graph to allow more efficient algorithms.

For G an undirected network with n nodes and a flow capacity on each edge,
let f(i, j) denote the maximum achievable flow in G between nodes and j. In such
a flow, is the source,/" is the sink, there is flow conservation at every other node,
and the amount of flow sent along any edge is at most equal to the capacity of the

* Received by the editors June 22, 1981. This research was supported by the National Science
Foundation under grants MCS77-09906, MCS78-07291, MCS 81-05894.

t University of California, Berkeley, California 94720. Present address: Computer Science Department,
Yale University, New Haven, Connecticut, 06520.

157

158 DAN GUSFIELD

edge. Of course, f(i,/’) f(/’, i). Note also that when flow is sent from to j, the entire
network is available for the i,/’ flow. See [2], [3], [6], [7] for a basic discussion of flow.

A network G with n nodes is called feasible for R if f(i, j)>= r(i, j) for all node
pairs i, j.

Given R, we seek a network G with edge capacities, which is feasible for R, and
whose sum of edge capacities is minimum among all networks feasible for R. Any
such network is called optimal for R. We further seek an optimal network H with
flow function h, such that for any other optimal network G and its flow function f,
h (i, j)>=f(i, j) for all i,/" pairs. Such a network is called uniformly optimal, and always
exists [5].

2.1 Main result. We give two algorithms to solve the network synthesis problem.
The first, Algorithm A’, runs in time Max [e, n log n] and constructs a network G’
with the following desirable properties"

1. G’ is uniformly optimal.
2. G’ is planar.
3. At most one node in G’ has degree greater than three.
4. G’ has as few edges as any uniformly optimal network produced by

Algorithm A.
5. The routing of flow in G’ can be done by a distributed algorithm with each

node making independent decisions on where to send the incoming flow it receives.
6. The structure of G’ is easily expressed, and local modifications of R result in

local and easily identified modifications of G’. This is useful for purposes of sensitivity
analysis and for design problems where successive instances of the network flow
synthesis problem are solved in the inner loop of a larger algorithm.

We then give a second algorithm, Algorithm A*, which runs in the same time as
Algorithm A’, and which constructs a network G* with the same six properties except
that Property 3 is changed to:

3*. No node of G* has degree greater than four.
Of the above seven properties, only the first one is guaranteed to hold for networks

produced by Algorithm A. Further, Algorithms A’ and A* show that the use of the
maximum spanning tree, and the revision of the original requirements needed by
Algorithm A to achieve uniform optimality are unnecessary and undesirable.

3. Algorithms and constructions. We first present Algorithm A’, which construct
a planar uniformly optimal network with one node of high degree and all other nodes
of degree three or less.

ALGORITHM A’
1) For each index i, compute u(i)= Max [r(i, k)], and define u(n + 1)=0.
2) Sort the u (i) values. Assume u (i)>= u (i + 1) for 1,..., n. Note that it then

follows that u(1) u(2) Max [r(i, k)].
3) For 2 through n repeat the following:

3a) Create edge (i, i- 1) with capacity u(i)/2.
3b) Create edge (i, 1) with capacity [u(i)-u(i + 1)]/2, provided that the capacity

is nonzero.

Figure 1 shows the result of Algorithm A’. The algorithm ignores most of the
requirements, depending only on the u(i) values. Therefore R is not displayed in
Fig. 1, but the u (i) values are written next to each node.

Algorithm A’ requires time O(e) to find the u(i) in step 1), O(n log n) to sort
in step 2), and O(n) time to construct G’ in step 3). Note that the network produced
is always planar, and only node 1 has degree greater than three.

MULTI-TERMINAL NETWORK FLOW SYNTHESIS 159

u(1)= Io

u(2)=lO u(3)= I0 u(4)=9 u(5) =9 u(6)=6 u(7)=4 u(2):2

FIG. 1. G’.

We now show the correctness of Algorithm A’. Given R, let G’ be the network
produced by Algorithm A’, and let f’ be the flow function of G’.

LEMMA 3.1. f’(i, j)= Min [u (i), u(j)] for all node pairs i, f.
Proof. Let i,/" be two arbitrary nodes, and u (i) _-> u (/’). Consider the path Pi.j from

to/" along the edges (k, k + 1) for k through/"- 1. The edge with least capacity
on Pi,j is (f-1,/’), with capacity u(/’)/2. Therefore, a flow of u(/’)/2 is possible along
the P. path.

Now consider PI,, the path with edges (k, k + 1) for k 1 through i- 1. The edge
with least capacity on P,, is (i- 1, i), with capacity u (i)/2 => u (/’)/2. G’ is undirected,
and so a flow of u (/’)/2 from node to node 1 is possible along the reverse of path P,..

To complete the proof, we claim that a flow of u(/’)/2 between nodes 1 and/’ is
achievable without using any edge of Pl,i, the union of P,,i and P,i. The proof is by
backward induction on the index/’. For f n, the claim is true, since the edge (1, n)
has capacity u(n)/2. Suppose the claim is true for/’ k + 1 <n, and consider node k.
Let F(k + 1) be the flow of u(k + 1)/2 from 1 to k + 1 which avoids edges of Pl,k/l.
By definition, F(k + 1) doesn’t use edges (k + 1, k) or (k, k 1), and so F(k + 1) also
doesn’t use edge (1, k). Edge (1, k) has capacity u(k)/2-u(k + 1)/2, and edge (k +
1, k) has capacity u(k + 1)/2, for a total capacity of u(k)/2. Then to send u(k)/2
from 1 to k avoiding P,.k, send u(k + 1)/2 from k + 1 to k along edge (k + 1, k), and
send the rest along edge (1, k). The flow of u(k + 1)/2 to node k + 1 is sent via F(k + 1),
and the proof is complete. [3

THEOREM 3.1. G’ is uniformly optimal for R.
Proof. By Lemma 3.1, G’ is clearly feasible for R since u (i) >- r(i, f) and u(f) >-

r(i, f). To show optimality, note that the total capacity of the edges incident to any
node is u(i), which is the minimum capacity possible in any feasible network. Now
suppose there is an optimal network G with flow function f, such that f(i, f) >f’(i,),
for some node pair i, j. Then f(i,/’) > min [u (i), u (j)], and if u (i) _-> u (/’), node f must
be incident in G to edges with total capacity exceeding u (/’). Therefore, G can’t be
optimal, and G’ is uniformly optimal. [3

The network G’ constructed by algorithm A’ has the undesirable property that
node 1 has high degree. For applications involving ports into a computer, or wires
wrapped on pins, small node degrees are desired. We now present an algorithm A*
which requires the same time as algorithm A’ and constructs a planar, uniformly
optimal network G* with the same number of edges as G’, and with the property
that no node of G* has degree greater than four.

ALGORITHM A*
1) For each index i, compute u(i)= Maxk It(i, k)]. Call u(i) the node weight of

node i.
2) Let {w(1),..., w(t)} be the set of distinct node weights. Then for each i,

there is a unique index/" such that u(i)= w(/’). Order these distinct node

160 DAN GUSFIELD

weights so that w(1)> w(2)>... > w(t). We first construct a network G(t)
containing + 1 nodes, one for each of the distinct node weights w (2) through
w(t), and two for the node weight w(1). The former set of nodes is (2,. , t
and latter set is {0, 1. G(t) is constructed in steps 3) through 5).

3) Create an edge from node 0 to node 1 of capacity w(1)-w(2)/2, and create
an edge from node 0 to node 2 of capacity w(2)/2.

4) For 1 to t-2 do the following:
4a) Create an edge from node to node / 1 of capacity [w(i / 1)-w(i / 2)]/2.
4b) Create an edge from node to node / 2 of capacity w(i / 2)/2.
5) Create an edge from node t- 1 to node of capacity w(t)/2.
6) If the requirements R specify more than one node of weight w(i), > 1, then

insert the new nodes of weight w(i) into the (i, i-2) edge of G, creating a
path of edges between node and i-2, each with capacity w(i)/2. If R
contains more than two nodes of weight w (1), then first split the (0, 1) edge
into two parallel edges, one with capacity w (1)/2, and the other with capacity
[w(1)-w(2)]/2. Then insert the new nodes of weight w(1) into the edge
with capacity w(1)/2, creating a path of edges between nodes 0 and 1, each
with capacity w (1)/2.

7) The result of steps 1) through 6) is G*.

Figure 2 shows the result of steps 1 through 5 for 6. Figure 3 shows G* for
the u (i) values given in Fig. 1.

THEOREM 3.2. G* is uniformly optimal for R.
Proo[. We first prove the claim that in G(t), f(i,/’) Min [w(i), w(/’)]. The proof

is by induction on t. G(1) consists of a single edge of capacity w (1) between nodes 0
and 1, and G(2) is the graph shown in Fig. 4, and it is immediate that the claim is
correct for G(1) and G(2).

W(3)

FIG. 2. G(t) fort= 6.

MULTI-TERMINAL NETWORK FLOW SYNTHESIS 161

u(2) I0

u(:)-I
.5

5

u(6) 6(

,Qu(I):lO

Qu(5)=9

)u(7) 4

FIG. 3. G* Using the same requirements as in Fig. 1.

Suppose that [(i,/’) Min [w(i), w(/’)] in G(t) for >-2. G(t + 1) differs from G(t) by
the change in capacity of the (t, t- 1) edge from w(t)/2 to [w(t)-w(t + 1)]/2, and by
the addition of a node + 1 with two edges (t- 1, + 1) and (t, + 1), each with capacity
w(t + 1)/2. Then any amount of flow that can be sent along the (t, t- 1) edge in G(t)
can be sent between and t-1 in G(t + 1) via the (t, t-1) edge together with the
(t, + 1, t- 1) path. Hence the claim is proved for i,/" + 1. If + 1 and f t, then
a flow of w(t + 1) in G(t + 1) is possible by sending half via the (t + 1, t) edge, and
half via the (t + 1, t- 1, t) path. Then if + 1, a flow of w (t + 1) can be sent to any
other node/" by first sending it to node t, since w(t + 1)< w(t), and by induction a
flow of w(t) is possible from to any other node/’ in G(t). Hence the claim is proved
for G(t).

Now we can extend the claim to G*, i.e., that in G*, [(i,/’) Min [u(i), u(/’)].
The theorem will then follow as in the proof of Theorem 3.1. Suppose k is a node
of weight w(i) in R but not in G(t). Then k is inserted into the (i, i-2) edge of G(t),

w()) w,(2)
2

FIG. 4. G(2).

162 DAN GUSFIELD

and is incident with two edges of capacity w(i)/2. In G(t) the capacity of the (i, i- 2)
edge is w(i)/2, and the sum of the capacities of the other edges incident with node
is also w(i)/2. Hence flow to nodes or i-1 is unaffected by the insertion of node
k, and it is clear also that f(k,j)=f(i,f) for any node/" such that u(j)=w(i). To
complete the proof it is sufficient to show that f(i, k)= w(i)= u(k). This is done by
sending w(i)/2 from to k along the (i, i-1) path, together with a flow of w(i)/2
which is sent first from to i- 1 without using any edge of the (i, i- 1) path, and then
from i- 1 to k along the (i- 1, i) path. This completes the proof. [3

3.1 Flow routing. The regularity and simplicity of G’ and G* permit simple flow
routing algorithms which can be implemented locally at each node in the networks.
Thus there is no need to run standard flow routing algorithms, or to store large routing
tables at each node. We will give, without proof, partial routing rules for G*. The
full rules for G* and the rules for G’ are equally simple. Suppose u(i)<=u(j), and a
flow of value v(i,])<= u(i) is sent from node to node j. Then for any node k such
that u (k)=< u (i), k forwards flow using the following three rules:

1. Node k sends no flow to nodes which have sent flow to k.
2. Any edge used to send flow out of k is used to saturation if possible.
3. Node k attempts to send flow to its neighboring nodes in order of their node

weights, largest first.
For any node k such that u(k)> u(i), k forwards flow using rules 1 and 2, but

modifies rule 3 as follows:
3’. If node k is adjacent to node], then k sends all of its flow directly to node

f. Else, node k attempts to send flow to its neighbors of equal node weight, and then
to its other neighbors in order of their node weights, largest first.

To implement this routing scheme, a broadcast message is sent giving the source
and destination of the flow, before the actual flow begins. If the flow consists of
messages that can be prefixed with a header giving that information, then the broadcast
is unnecessary. It can be proven that the above scheme works under any order in
which the nodes receive flow and decide how to reroute. Hence there are no synchroni-
zation problems in the implementation.

3.2 Sensitivity analysis. Both constructions G’ and G* have the useful property
that many local modifications of R induce only local modifications in G’ or G*.
Therefore many postoptimality and sensitivity analysis questions can be answered
without rerunning the full construction algorithm. If the flow requirements of R are
changed, but no node weights are changed, then G’ and G* remain unchanged. If
node weights are changed, but their order remains unchanged, then only the capacities
and not the underlying networks change. Further, since the edge capacities in both
G’ and G* are expressed as functions of at most two node weights, the update of the
capacities is simple. If new nodes are added to R, but the set of distinct node weights
remains unchanged, then new nodes are added to G’ as in step 3) of Algorithm A’,
and to G* as in step 6) of A*. If nodes are deleted from R without changing the set
of node weights, then those nodes are deleted from G’ or G* by the obvious reversal
of steps 3) and 6). If all the nodes of a given node weight w(i) are removed from R,
then all those nodes and the edges incident to them are removed from G*, two new
edges are inserted, and one additional edge capacity is changed. In G’ the deleted
nodes and the incident edges are removed, one new edge is inserted, and one edge
capacity is changed. Further, every node in either G’ or G* that is affected by these
changes is a neighbor of a node of weight w(i). Similarly, if nodes of a new node
weight are added to R, then the updated G* differs from the previous G* by the

MULTI-TERMINAL NETWORK FLOW SYNTHESIS 163

insertion of a connected subgraph containing the new nodes, by the deletion of two
edges running between neighbors of the new nodes and by the modification of one
other edge capacity. The updated G’ differs from the previous G’ by the insertion of
a subgraph with the new nodes and the deletion of one old edge and the modification
of one capacity. If R is changed so that order of the node weights changes, then G*
and G’ can be updated by considering this change as a deletion of all nodes of a given
node weight, and the insertion of new nodes of a different node weight.

4. Number of edges. We now consider the number of edges in the network
produced by Algorithms A’ and A*. We show that there are uniformly optimal
networks with fewer edges, but that none of these networks are constructable by the
Gomory-Hu method (Algorithm A). We begin with a description of Algorithm A
and an analysis of the number of edges in the networks constructed by it.

ALGORITHM A
0) For each index in R, compute u (i) Maxk Jr(i, k)]. For every pair i,/" change

r(i, f) to Min [u(i), u (/’)], creating matrix R’. Let H be a weighted graph with
n nodes, defined by considering R’ as the weighted adjacency matrix of H.

1) Compute a maximum weight spanning tree T of H.
2) Decompose T into a sum of subtrees, each having edges of equal weight. To

do this, define the decomposition of a tree Ti recursively. If ci is the smallest
edge weight in T then Ti is decomposed into one copy of Ti with weight ci
on each edge, plus the decomposition of each subtree of Tg resulting from
deleting all edges of weight ci from Ti, and subtracting cg from the weights of
all the remaining edges.

3) For every tree T in the decomposition, create a cycle Cg containing all the
nodes of T. Set the capacity of every edge in C to ci/2, where c is the weight
of each edge in T. Superimpose all of the cycles, merging common edges and
summing the capacities. The resulting network G is uniformly optimal for R.

For further explanation of Algorithm A see one of [2], [3], [5], [6], [7].
Let H and T be as above, and let G be the network constructed by Algorithm

A. To establish the number of edges in G we first examine the structure of T.
LEMMA 4.1. Let x be any edge in T. If x has weight cx, then the removal of x from

T creates two connected components, at most one of which contains an edge of weight
greater than cx.

Proof. The lemma is trivially true if one of the endpoints of x is a leaf of T, so
suppose this is not the case. Let Gy and Gz be the two components of T-x, with
edge y of weight cy >c in Gy, and edge z of weight cz > c in G. By the definition
of H, cy u(i) for some node in Gy, and cz u(/’) for some node/" in G. Then H
contains the edge (i,/’) across the Gy, Gz cut, and (i,/’) has weight greater than c,
hence T can’t be a maximum weight spanning tree of H.

THEOREM 4.1. For a given requirements matrix R, G’ and G* contain the same
number of edges, and G contains at least that many.

Proof. We first examine the number of edges of G. Recall that w(1) >.. > w(t)
are the distinct node weights defined by R. From the definition of R’, the only edge
weights in T are w(1) through w(t), and all edges incident with any node in T have
weight less than or equal to u (i). Further since T is a maximum spanning tree, every
node is incident in T with at least one edge of weight u(i). It follows then from
Lemma 4.1 that, for any k < t, the deletion from T of all edges of weight w(k) or
less leaves one connected subtree containing all nodes with node weights greater than
w(k) and no nodes with weight w(k) or less.

164 DAN GUSFIELD

We now examine the edges generated by the synthesis step 3), ignoring the
capacities assigned. We claim that G is the superposition of cycles, C1 through Ct.
Ct connects all the n nodes of T, and for k < t, Ck contains all nodes of weight w(k)
or more and no nodes of weight w (k + 1) or less. To see this, recall that the decomposi-
tion step 2) of Algorithm A generates a sequence of subtrees of T, by beginning with
T itself and successively deleting all edges of weight w(t) down to w(1). Step 3) creates
a cycle through the nodes of every new subtree generated in this way, and the claim
follows from the structure of these subtrees, which was established above.

We can now count the number of edges of G. For k from 1 through t, let Nk be
the number of nodes of weight w(k). For k => 2, cycle C contains all nodes of weight
w (k), and at least one node of greater weight. Therefore, at least Nk + 1 edges of Ck
are incident with some node of weight w (k). None of these Nk + 1 edges can appear
in any other cycle Cj, for/" < k, and so the cycles C2 through C, must contain at least
(n -N1)+ (t- 1) distinct edges. Cycle C1 contains N1 edges, and so G contains at least
n 1 + edges if N > 2, and n -2 + edges if N 2.

We now examine the number of edges in G’ and then G*. Step 3b) of Algorithm
A’ produces the edge 1, if and only if u(i)> u(i + 1), and so produces edges in
total. Step 3a) produces n 1 edges, and so G’ contains no more than n 1 + edges.
However, u(1)= u(2), so the edge (1, 2) is counted twice if N1>2. Therefore, G’
contains n 1 + edges if N > 2 and n 2 + otherwise.

To count the number of edges in G* note that G(t) contains 2t- 1 edges. In the
case where Na 2, step 6) adds n-t-1 edges to G(t), and otherwise it adds n-t
edges. Hence G* and G’ contain the same number of edges, and G contains at least
that many. [3

COROLLAR’r 4.1. G contains the same number of edges as G’ and G* if and only
if the nodes o]’ weight w (k Corm a single subpath in Ck,]’or all k from 1 to t.

Given an n n requirements matrix R, an undirected graph K on n nodes is
called a shell of R if capacities can be assigned to the edges of K so that K is uniformly
optimal for R.

COROLLARY 4.2. Let n + 1 with NI 2, andN 1 gor all k 2,. ., t. Then
any triangulated polygon K with n nodes and 2n -3 2t- 1 edges is a shell for R.

To see this, note that in any triangulated polygon K there is always a node v of
degree two. We can assign v the node weight w(t). Then the outermost cycle of K is
Ct. Removing v from K gives another triangulated polygon with a node of degree
two. This node gets weight w(t-1) and the outermost cycle is Ct-1. In this way, K
decomposes into cycles Ck for k from to 2, and a single edge connecting the last
two nodes of K which are given node weights w(1). This last edge is given capacity
W(1)/2, and the capacity of any other edge x in K is half the sum of all w(k) such
that x is contained in cycle C. It is clear by the proof of Theorem 4.1 that this
decomposition could have been produced by Algorithm A and hence is uniformly
optimal.

In the case where there are more than two nodes of weight w(1) or more than
one node of any other weight, these additional nodes can be inserted into the shell
in a way similar to the insertion of nodes in step 6) of Algorithm A*.

Note that there are uniformly optimal networks with fewer edges than G’. See
Fig. 5. Such networks are, of course, not produced by Algorithm A, A’ or A*, and
it is an open question whether there exist fast algorithms to minimize the number of
edges in a uniformly optimal network.

5. A related problem. A related problem, also solved first in [5], is to construct,
if possible, an optimal network which exactly satisfies the requirements in R. Analogous

MULTI-TERMINAL NETWORK FLOW SYNTHESIS 165

FIG. 5. G" has the same flow function as G’ and G* of Figs. and 3, but uses one less edge.

to the results in this paper, constructions exist for this problem, which are planar,
have low average node degree, and have as few edges as any networks produced by
the algorithm in [5]. A simple algorithm to generate these constructions is the subject
of a forthcoming paper by the author.

Acknowledgment. I would like to thank L. Babai for pointing out Corollary 4.2,
and many thanks to David Lichtenstein for his helpful comments.

REFERENCES

[1] R. T. CHIEN, Synthesis of a communication net, I.B.M.J., July 1960.
[2] L. R. FORD AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton, NJ,

1962.
[3] H. FRANK AND i. T. FRISCH, Communication, Transmission and Transportation Networks, Addison-

Wesley, Reading, MA, 1972.
[4] M. GAREY AND D. JOHNSON, Computers and Intractability: A Guide to the Theory ofNP-Compteteness,

W. H. Freeman, San Francisco, 1979.
[5] R. E. GOMORY AND T. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math., 9 (1961), pp.

551-570.
[6] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.
[7] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,

New York, 1976.
[8] R. T. WONG, A Survey of Network Design Problems, Operations Research Center working paper OR

080-78, Massachusetts Institute of Technology, Cambridge, MA, August 1978.

SIAM J. COMPUT.
Vol. 12, No. 1, February 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1201-0011 $01.25/0

FORMAL SEMANTICS AND ABSTRACT PROPERTIES OF STRING
PATTERN OPERATIONS AND EXTENDED FORMAL LANGUAGE

DESCRIPTION MECHANISMS*

A. C. FLECKt AND R. S. LIMAYEt

Abstract. Two formal models of string patterns are introduced. One is based on an idealization of
patterns as systems of set equations, and the other is based on an abstract procedure model of a pattern.
Each model is then shown to yield certain insights and in particular is used to explore an operation not
commonly considered in conjunction with string patterns. These two new pattern operations are (set)
complementation and reversal of cursor direction. Each is shown to have a dramatic effect on both the
expressive power and the complexity of patterns in which they are included. These pattern operations may
in turn be regarded as extensions to the usual formal language definition mechanisms (i.e., grammars and
equation systems), and our results interpreted in terms of formal language description.

Key words, string patterns, cursor functions, cursor reversal, complementation, formal language
description

Introduction. We deal in this paper with the concept of a string pattern. This
concept is best exemplified and implemented in greatest generality in the programming
language SNOBOL4 [16]. Two things about this facility are notable for our purposes.
First of all, the pattern mechanism is widely recognized to be extremely difficult to
explain and use [15], [23], [25]. Secondly, despite these difficulties there has been
essentially no evolution of the pattern concept since the SNOBOL4 language was
first developed, an undue period in relation to progress in other areas of programming
languages. We feel that this situation has been largely brought about by two facts.
First the semantics of SNOBOL4 patterns have usually been described in terms of a
specific pattern matching algorithm (see for instance [13], [16]). This we view as akin
to defining a programming language by its compiler, a situation we feel must be
changed (i.e., augmented) before much progress is possible. Secondly, the generality
of the mechanism has been achieved by adding a great many functional pattern
elements, essentially a new function for each special purpose which occurs.

Hence our goals are two-fold. First of all we are interested in developing abstrac-
tions which allow for the specification of the complex pattern semantics without
becoming involved in the excessive detail and overspecification of a particular
algorithm. This should be of indirect benefit in such work as the search for more
efficient pattern matching algorithms (e.g., [20], [21]). Secondly, we suggest the
evolution of pattern mechanisms in the alternative direction of a few very general
pattern operations which may be adapted to numerous purposes. Furthermore our
work develops the interaction of these two goals in that we follow the naturalness of
each of the two abstractions we develop to lead us to a proposal for a specific new
operation that seems to have great promise of generality and usefulness.

While we are greatly indebted to the idea of the string pattern in the sense of
SNOBOL4 [16], we do not intend to remain faithful to any particular implementation
or semantic algorithm. Rather, our approach is to seek formalisms which fairly well
model existing structures, but then use the formalism to obtain a consistent and general

* Received by the editors April 2, 1980, and in revised form May 25, 1982. Work on this paper was
supported in part by the National Science Foundation under grants DCR75-05296 and MCS77-03902.

t Computer Science Department and Weeg Computing Center, University of Iowa, Iowa City, Iowa
52242.

t Computer Science Department, University of Iowa, Iowa City, Iowa 52242.

166

STRING PATTERN OPERATIONS 167

conceptualization which is not fraught with idiosyncracies. Our concern is thus both
for developing formal semantic models which are appropriate, and for identifying a
few operations which may be shown to have substantial effect on expressive power.

Our assumption will be that the reader is familiar with the concepts and ter-
minology of [16]. We emphasize that the models we explore here isolate the string
pattern (and the pattern matching process) and treat it in a manner apart from any
other programming features.

1. Patterns augmented with reversal: The procedure model and basic definitions.
It will be helpful in this section if the reader is familiar with Gimpel’s model of patterns
[12], [13]. The central abstraction is to view a pattern as a description of the way in
which the "cursor" is advanced in an arbitrary subject string. Thus Gimpel’s model
views a pattern as a function from a pre-cursor position (and subject string) to
post-cursor positions. Gimpel admits, in fact, arbitrary such functions regardless of
their computability (or noncomputability) attributes. This is an assumption in which
we do not concur, and we present an implementation abstraction for cursor manipula-
tion which implicitly contains computability constraints.

As the first step we define the syntax for a collection of string patterns. For a
given (nonempty) alphabet of characters C, we use the notations C* to represent the
set of all finite strings (sequences) over C, and A to denote the null sequence. For
S =CIC2"’’n C*(n >_-0) with cgC (1_-<i _-<n), we say that the length of s is n; also
we use the indexing notation s[i] c.

The following definition is phrased in terms of two binary operations alternation
and concatenation and the unary operation reversal which are all as yet unspecified;
concatenation is denoted simply by juxtaposition of its two operands, alternation is
denoted by the symbol "1". Often we will abuse this notation in writing such expressions
as a lblc. For the time being the reader can always supply leftmost association (i.e.,
(a [b)[c); we will see shortly that our specification leads to both these operations being
associative hence avoiding any actual ambiguity in these abuses.

The idea of a string scanning mechanism that can move in either a left-to-right
or a right-to-left direction with respect to any string under consideration is very well
known in automata theory (see Rabin and Scott [22] and Gray, Harrison and Ibarra
[14]). Doyle [8] has suggested ideas along these lines for patterns, with specific pattern
primitives in the form of functions controlling scan (cursor) direction. Our suggestions
differ from both these ideas in that instead of specifying an absolute direction for the
scan (i.e., left-to-right or right-to-left), we provide for the specification of a relative
change (i.e., reversal) of a direction currently in effect (the initial direction is left-to-
right). This we show leads to more natural rules of pattern calculus. Our suggestion
is closer in spirit to that of Stewart [25] (in fact we borrow his notation in the definition
below). Stewart was guided by a model with a strong algebraic orientation and was
seeking an operation which would function as a multiplicative (i.e., concatenation)
inverse. However, he found that true inverses do not exist in his model, and the
"semi-inverse" Stewart does achieve fails to exist for many patterns and is not unique
for many others. In contrast, our (cursor) reversal operation may be applied to any
pattern and, as we shall show, always yields a unique result. As reversal has a number
of formal properties in common with an inverse operation, we adopt the usual inverse
notation for it; the reader is cautioned not to be misled as this is not the appropriate
conceptualization.

DEFINITION 1. Let disjoint nonempty, finite sets C (alphabet) and I (identifiers)
be given. A pattern equation system with reversal (C, I), is defined hierarchically

168 A.C. FLECK AND R. S. LIMAYE

as follows:
a) a factor is any element from CUI{a-l[a C}{X-IIX
b) a term is either A, , a factor or any concatenation of factors;
c) an expression is either a term or any alteration of terms;
d) an equation is written X and consists of an ordered pair of elements where
X I and ff is an expression;

e) a pattern equation system 9 consists of a collection of equations where each
X I occurs exactly once as the left (i.e., first) element of an equation in

In case the only factors which occur in a pattern equation system are from C U I, we"

say the system is context-free.
Example 1. Let C {a, b} and I {X, Y}. Then

91=1X ab [a Y }
is a pattern equation system.

The usual convention for "matching a string against a pattern" consists of
advancing (i.e., moving the cursor left-to-right) across a substring which conforms to
the description of the pattern. With the addition of cursor reversal, this matching
process can in fact cause the retreating (i.e., moving the cursor right-to-left), and so
substrings can be scanned repeatedly for multiple purposes. The descriptive power of
this facility will be illustrated shortly. For the moment we give a simple example of
its use.

Example 2. Let C={a,b} and I =X. Then 5={X =aX]bb -1} is a pattern
equation system.

Note that in Example 2, the intent is for the pattern to designate a sequence of
the form a b(n _-> 0), but that after the matching process, the terminating ’b" is still
the next character to be scanned (even though its presence has been verified). Our
development below is intended to provide the machinery to enable us to make such
informal statements precise and unambiguous.

It should be noted that while we impose some superficial restrictions on the form
of equations so that the technical details can be developed more succinctly, there is
no real loss of generality. For instance, an equation such as X (a- Y)- is not
allowed (reversal can only be applied to individual characters and identifiers), but one
can simply add a new identifier, say Z, and write the equivalent system

X =Z-, Z =a-Y.
In the following we will not write the formal set notation for pattern equation

systems but will simply list the equations. As we remarked above, Definition 1 specifies
only the syntax or form of the pattern definitions we consider. The more interesting
aspect is the semantics. Our approach to this is a constructive one, and we first define
a simple programming language to be used to specify these semantics. We give only
an informal description of the syntax and semantics of this programming language.
We trust that its simplicity makes this sufficient, so that we will not be unduly diverted
from our pursuit of the string pattern ideas.

DEFINITION 2. Conventions in the programming language for pattern system
definition, PLPSD"

1) Expressions. Expressions may be either integer-valued, string-valued, or
Boolean-valued; they may involve the usual constants, variables, operations, tests and
function calls (in particular the string indexing notation described above). In addition

STRING PATTERN OPERATIONS 169

we allow the special notation 0 to occur as an expression (and interpret it as the
undefined or failure value). Also function calls are written in the usual way (i.e.,
"function-ident (argument list)") and parameters are transmitted by value.

2) Function return statement, written
return ((expression)).

The expression is evaluated and the value (if any) is returned to the point of invocation.
3) Conditional statement, written

if (Boolean-valued expression)
then (Function return statement)
else (Function return statement).

The Boolean expression is evaluated and if its value is true the statement following
then is executed (and so control is next returned to the appropriate invocation); if
the Boolean value is false the statement following the else is executed.

4) Nondeterministic selection, written
select

(Function return statement);
(Function return statement);

(Function return statement)
end.

Exactly one of the enclosed statements is executed, and in the case of any of the
choices a valid run step is said to have occurred. That is, the select plays a role
analogous to the ease-statement, except that rather than including an expression to
determine the selection, the selection is left to be made on an unspecified basis. Thus
there is a close analogy of the select semantics with that of Floyd’s "choice function"
[11] (but a statement rather than a value is chosen). Our form is rather different,
however, more like the nondeterministic control structure of Allison [2], but still
devised to suit our particular purposes.

5) Function definition, written
define (identifier)((parameter list));

(select statement)[(conditional statement)
end (identifier).

Parameters are restricted to being strings or integers (and are transmitted by
value as noted above). Recursion is allowed (in fact, relied on) in our function
definitions.

With the inclusion of the nondeterministic control structure (i.e., select), each
PLPSD program may admit a whole collection of valid runs rather than defining a
single uniquely specified execution (a run may be finite or infinite and refers to a
sequence of statement executions, where each statement in the sequence is a valid
successor to the previous). Each finite run will necessarily terminate with a value and
the resulting collection of values is regarded as the set of potential outcomes of any
single execution. Note that finite and infinite runs are not mutually exclusive, and in
particular that the existence of infinite runs (i.e., nontermination) does not preclude
the occurrence of a nonempty set of outcomes. For a formal treatment of the
interactions between recursion and nondeterminism and their influence on such issues
as program termination and equivalence, the reader may wish to consult [7]; these
are not matters which we pursue here. Our purpose here is to develop a suitable
semantic model. While this is an operationally oriented model, it definitely does not
solve all the implementation problems.

170 A.C. FLECK AND R. S. LIMAYE

Of course one could allow much greater generality in the combination of the
programming elements than we have introduced here, but this will be sufficient for
our purposes.

One last preliminary which will aid the presentation of our semantics is the idea
of a simple code generation function.

DEFINIrON 3. The function "code" is defined hierarchically to operate on
(pattern) terms and expressions (see Definition 1) to produce statements in PLPSD
as follows:

1) for a term
a) if t= , then code (t)= return (0)
b) if A, then code (t)= return (A(s, c))
c) if flf2" fp, where p -> 1 and fi (1 -< <_- p) is a factor,

then code (t)=return (fp(s, fo-l(s,’", f2(s, fl(s, c))...))) and
code (t-1) code (fpfp-l"’"/r2/71), where

and

a -1 iffi=aC,

X
-1 (1-<i-<P)

iffi =X/,
fi

if fi a with a C,

iff=X-1 withXel;

2) for an expression tilt21" Itq, where q -> 1 and t(1 -< -<q) is a term,

code () select

code (tl);
code (t2);

code (tq)
end

code ($-1) code (t-1 It,ll It).
The required preliminaries have now been completed. We now associate with

each pattern equation system a collection of function definitions (written in PLPSD)
which will serve as the semantic interpretation.

DEFINI:IOr 4. Let 6e 6(C, I) be a pattern equation system. We associate with
Se a set of function definitions ;se (each definition has two parameters, a string (the
subject) and an integer (the pre-cursor position), and returns an integer (a post-cursor
position) or 0) in PLPSD that includes exactly:

1) the function definition
define A(s, p);
/* the NULL pattern element */
if p 0 and 0-< p -< length (s)

then return (p)
else return (0)

end A
2) for each a C the definition

define a (s, p);
/* forward character-matching pattern elements *!

STRING PATTERN OPERATIONS 171

ifp # 0 and 0<=p <length (s) and s[p + 1]= ’a’
then return (p + 1)
else return (0)

end a
3) suppose I {X1, X2, Xn} and={Xi ’i}<=i<-,, for each Xi el

define Xi (s, p
/* pattern elements constructed from pattern equations */
code ()
end X

4) for each a s C the definition
define a (s, p);
/* backward character-matching pattern elements */
if p # 0 and 0 <p _-< length (s) and sip] ’a’

then return (p- 1)
else return (0)

-1end a
5) suppose [{X, X2," ", X} and {Xi i}li<_n for each Xi

define X[(s, p);
/* reversal pattern elements constructed from pattern equations */
code (’[1)
end X[1.

For each of the identifiers Xi I in the system S and string s C*, consider the
outcome of a function call such as Xi(s, p). Such a call may initiate a number of
possible valid runs, each of which may be either finite or infinite; each of the finite
runs must return a valueneither 0 or an integer p’ where 0<-p <=length (s). We think
of this collection of values as the potential outcomes for the cursor position after the
pattern expression ’i has been "applied" to string s starting at position p.

Example 3. Let C {a, b }, I {X1, X2}, 6e3 be

Xl a laX, X2
and r baab.
The function definitions which result (we omit those in clauses 1 and 2 of Definition
4) are:

defineX(s, p);
select
return (a(s, p));
return (X(s, a(s, p)))
end

end X;
Then

define X2(s, p);
select
return (b(s, X(s, p)))
end

endX2.

Xl(o-, O) {0}, Xl(o-, 1) {0, 2, 3}, X2(o-, 1) {0, 4}.

To see, for instance, that 3 s X(r, 1), we note that
(a) X(r, a(r, 1))c_X(r, 1),
(b) a(r, 1)={2} so Xa(r, a(r, 1))=Xl(O", 2),
(c) a(r, 2)_X(r, 2) and a(r, 2)={3}.

Similarly then, since X2(cr, 1)= b(r, Xl(cr, 1)) and b(r, 3)= {4}, 4 X2(o’, 1), etc.
Example 4. Let C {a, b }, I {X1, X2} and 54 be

X ab [aX1, X2 b-IX-1.

172 A.C. FLECK AND R. S. LIMAYE

Then the associated function definitions are (we omit those for clauses 1, 2 and 4):
define X, (s, p);

select
return (b(s, (s,/7)));
return (X (s, (s,/7)))
end

end X;
define X- (s, p);

select
return (a-(s, b-(s, p)));
return (a-(s, X2(s, p)))
end

end X-’
define X2(s, p);

select
return (X-((s, b-(s, p)))
end

end X2;
define X (s, p);

select
return (b (s, X(s, p)))
end

endX’.
Then, for instance, for r aabb andX(r, 0),

X-1 (O’, a(o’, 0)) X-1 (o’, 1)
_
Xx(r, 0);

X-I (0", 1)--b(o’, Xl(O’, 1));

b(r, a(r, 1)) b(r, 2) {3}_X(r, 1);

b (o-, 3) {4},

and hence 4 e X,(o’, 0).
We shall extend the natural functional equivalence of the associated pattern

functions to patterns themselves (i.e., to identifiers in the context of a pattern equation
system) in the natural way.

DEFINITION 5. Let 6 6(C, I) be a pattern equation system and X, Y e L Then
we say X is equivalent to Y in 6, X---eeY, if for the associated functions in ree we
have X(s, p)= Y(s, p) for all s e C* and 0_-<p _-<length (s) (we omit the designation
of whenever no confusion will result). We also extend the equivalence concept to
pattern expressions as follows: ’1 ’2 if for all pattern equation systems 5" which
contain the equations X g’ and Y g’2 we have X eeY.

Lastly we present the manner in which we take a pattern definition to relate to
string matching (in the sense of SNOBOL4).

DEFINITION 6. Let if’-ff’(C, I) be a pattern equation system and X /. Then
the language associated with X in S, written Lee(X), is defined with the functions ree
by Lee(X)= {sllength (s)X(s, 0)}_ C*.

In the sense of SNOBOL4, Lee(X) is the set of strings which will successfully
matchX in fully anchored mode (i.e., anchored from both left and right). Unanchored
matching would be successful for C*Lee(X)C*. From a formal languages point of view
there is little difference in the abstract properties of these two sets. We restrict our
attention to the set Lee(X).

STRING PATTERN OPERATIONS 173

Before proceeding to the statement of results, there are a number of comments
that we feel may be useful to the reader. We list these here.

Note 1. To this point the abstraction is quite faithful to SNOBOL4. That is, if
S is a context-free pattern equation system, Lse(X) is usually exactly the collection
of strings that will be successfully matched if one writes the same equations (i.e.,
assignments) in SNOBOL4; however all identifiers on the right-hand side must be
written with the unevaluated expression operator to conform to the relational view
(and the recursion) of our idealization. There are certain troublesome cases in the
standard implementations of SNOBOL4 such as left-recursion and/or various quick-
scan heuristics, but these problems are not inherent in the process and can be avoided
with the use of other algorithms (e.g., see [20], [21]).

Note 2. The conventions of Definition 1 correspond to writing patterns in a sort
of "normal form." That is, something such as (a laX) Y is not a valid pattern expression
in these conventions. However, we will permit such an abuse of notation and assume
that it represents a shorthand for the expression ZY, where Z is a new identifier,
together with the augmentation of the pattern equation system under consideration
by the equation Z a laX.

Note 3. The family of languages Lse(X) arising from the context-free pattern
equation systems of Definition 1 is precisely the family of context-free languages
(see [10]). Also if the context-free system is one-sided linear, then the language is
regular.

At the beginning of this section we pointed out that we were suggesting a model
similar in nature to Gimpel’s [12], [13] but which has essential constructability
characteristics. In fact, as our first result shows, there are some technical differences
which place our assumptions more in line with the algebraic version of Gimpel’s model
put forth by Stewart [25].

THEOREM 1. Let P, Q and R be pattern expressions with reversal. Then
(i) (PQ)R =-P(QR),
(ii) PI(QIR)= (PIQ)IR,
(iii) PIO =- olP,
(iv) P(O[R) =- PQIPR,
(v) (PIQ)R PR IQR,
(vi) PA=- AP=-P,
(vii) pdp=_p =_,
(viii) -1 _= ,
(ix) A-l--A,
(x) (PQ)-I=- Q-P-
(xi) (PIQ)-=-P-IQ
(xii) (p-)-i p.
We iarovide only the proof of selected parts, as they are representative of the

organization of details in the other parts.
Proof of (iv). This part is one of the properties which distinguishes this model

from Gimpel’s.
We first must express the identity in terms of a proper system in the way suggested

in Note 2 above. Thus we assume that we are considering a system 6e which has U,
V, W, X, Y, Z I and includes the equations

X=P, Y=Q, Z=R,

u YIz, v xu, w xYlxz,

and we wish to show that V---seW.

174 A.C. FLECK AND R. S. LIMAYE

The procedures associated with S’ will include
define X(s, p); define Y(s, p); define Z (s, p);
code (e) code (Q) code (R)

end X; end Y; end Z;
define U(s, p); define V(s, p);

select return (U(s, X(s, p)))
return Y(s, p)); end V;
return (Z (s, p))
end

end U;
define W(s, p);

select
return (Y(s,X(s, p)));
return (Z(s, X(s, p)))
end

end W.
Hence if q V(s,p), then there exists p’ X(s,p) and q U(s,p’). But if q

U(s,p’), then either q Y(s,p’) or q Z(s,p’) and so in either case q W(s,p).
Similarly for the argument in the converse direction. Hence V =- W.

We consider now the details for the identities explicitly involving reversal. Parts
(viii) and (ix) are directly due to the definitions.

Proof of (x): We suppose a system 5’ which includes the equations

V=P, W=Q, X=VW,

Y X-1, Z W-IV-1.
Then we wish to show that Y(s,p)=Z(s,p) for all s eC* and 0<-p -<length(s). For
such a system we have the function definitions:

define Y(s, p);
select
return (X- (s, p))
end

end Y;
define Z (s, p);

select
return (V-(s, W-(s, p)))
end

end Z;
define X-(s, p);

select
return (V-(s, W-(s, p)))
end

endX-and so clearly the result follows.
Proo[of (xi). We suppose a system 6e which includes the equations

v=P, w=o, x=vlw, Y=X- z=v-lw-
Then a direct application of the definition of the code function shows that Y se Z.

Proof of (xii). We suppose a system 6e which includes the equations

X=V, Y-X-1 Z Y-

STRING PATTERN OPERATIONS 175

For such a system we would have the function definitions
define X(s, p);

select
code (P)
end

endX,
define Y-l(s, p);

select
return (X(s, p))
end

end Y-1
define Z (s, p);

select
return Y- (s,/7
end

end Z.
So again we have X --eZ, and the result follows. U

The rules of pattern calculus given by parts (ix)-(xii) are strong motivation for
our choice of notation for the reversal operation. We strongly prefer this means of
specifying the direction of cursor movement and its clarity of expression over the
suggestions in Doyle [8]. However, care must be taken not to regard reversal as a
true inverse for concatenation, as our subsequent results will indicate.

As the above result illustrates, the operations we have defined behave according
to a desirable (and familiar) calculus. The ability to specify only context-free pattern
systems is much too restrictive to be used exclusively in practice. This has been
overcome in SNOBOL4 by adding a great many functional elements which are allowed
to occur as constituents. These numerous added elements serve to both expand the
set of primitives (each with its own particular properties) and to defeat a systematic
pattern calculus through special individual definition. The alternative we explore in
this section is the addition of the single reversal operation which, as we have demon-
strated, behaves nicely. Our next goal is to explore how this operation enhances the
expressive power of pattern systems.

Example 5. Let C {a, b }, I {X} and consider the pattern system with the single
equationX b lab. Then A XX-a X-aX A. This follows from the observations that
XX-a(ab, 0) {0, 0, 1} and X-X(ab, 0) {0} whereas A(s, p) {p}]’or all s C* and
0 -< p length (s).

The above example clearly contrasts the reversal operation with a multiplicative
(i.e., concatenation) inverse. It can be verified that if for a pattern expression P,
PP-a(s, p) : {0}, then A(s, p) {p}_ PP-a(s, p). Acloser connection with the multiplica-
tive identity cannot be made.

The principle working property for the reversal operation is captured in the next
theorem.

THEOREM 2. Let P be any pattern with reversal, s C*, m and n be natural
numbers with O<-_m, n <_-length (s). Then m P(s, n) if and only if n P-a(s, m).

Proof. We provide just the proof outline here. Clearly from property (xii) of
Theorem 1, we need only show that m P(s, n) implies n GP-I(s, m). This is estab-
lished by a structural induction argument as follows:

Anchor. If P is any of the atomic patterns (see Definition 1) a, a -a, A or
(where a C), then the result is clearly true.

176 A.C. FLECK AND R. S. LIMAYE

Induction. Suppose the result is true for all patterns defined with fewer than r
occurrences of the operations of alternation, concatenation and reversal and let P be
a pattern involving r occurrences.

Case 1. P Q-1. Follows by Theorem 1 (xii) and the induction assumption.
Case 2. P=QR. Then m P(s,n) if and only if there exists k with k Q(s,n)

and m e R (s, k). But then by the induction assumption, n Q-l(s, k) and k R -l(s, m)
and hence n R-IQ-(s, m). But by Theorem 1 (x), R-Q-I=P-.

Case 3. P QIR. Then m P(s, n) if and only if either m Q(s, n) or m R (s, n).
But then, respectively, either n Q-(s,m) or n R-(s,m) by induction. But by
Theorem 1 (xi), p-l= Q-IR- and hence n P-(s, m) in either case.

Note that since recursive definitions are allowed, a formalization of this outline
must be carried out by an induction on Im-n I.

For the connection of the operations with the sets of strings described we have"
THEOREM 3. Let P and Q be pattern expressions with reversal, occurring in the

pattern equation system 9. Then
(i) Lee(P[O) Lee(e) t.J Lee(O),
(ii) Lee(P). Lee(Q) c_ Lee(PQ), and

(iii) Lee(P)" Lee(Q) Lee(PQ), if S is context-free (i.e., does not contain reversal).
Proof. We again omit details which follow directly from the definitions. But to

establish that equality does not hold in part (ii), the reader can verify that for P abc
and Q (bc)-Xbcla we have L(P) {abc}, L(Q) {a}, and L(PQ) {abc, abca}.]

The main reason for the addition of the reversal operation to patterns is to gain
expressive power. This goal is indeed achieved and our next several results are intended
to show the extent of the success.

We have earlier pointed out the connection between context-free patterns (i.e.,
without reversal) and context-free grammars. Because of this connection it is natural
to categorize patterns in the same way one does grammars. In particular the facts that
two-way finite automata accept no more languages than one-way finite automata and
that these regular sets are exactly the languages defined by the right-linear grammars
(see [24] for definitions and results) might lead one to conjecture that right-linear
patterns augmented with reversal define only the regular sets. The ob-
servant reader will have noted that we have already presented a counterexample to
this conjecture in Example 4 where L(X) {anb nln >- 1}. In fact such systems can even
define non-context-free languages as we point out in the next example.

Note that for pattern systems 5e(C, I) with reversal we say that the system is
right-linear if each constituent term is of one of the forms A, , a or a/3 and that
the system is linear if it is of one of the forms A, , a, a/3,/33, or a/3y, where
a, yeCUC- and/3elUI-a.

Example 6. Let C {a, b, c, d, e} and I {S, T, U, V, W, X, Y, Z} and consider
the pattern system with equations

S=aT, W=b-lWla-IX,
T=bU-1]cV, X=aY,

U=e-IT-, y=bZ-[c,
V =c-W, Z =d-Y-,

While the details are tedious, it can be verified for this system that L(S)=
{ab ncdnenln >- 0}.

STRING PATTERN OPERATIONS 177

Note that if one does not insist on the right-linear restriction, the above system
can be written more succinctly as

S aT, T bTelcc- W,
W b-W]a-a Y, Y b Ydlc.

An equally important point we believe should be strongly made, namely, that
often patterns which could be written without the use of reversal become more clear
and more succinct when expressed using reversal. We illustrate with

Example 7. Let C { #, a, b, c} and suppose one is interested in specification of
the set of strings L- { #XIX {a, b, c}* and X contains at least one of each of the
letters a, b, c }.

We take I {o-, c,/3, 3’, R, U} and define the system

o- #

a ba Ica [aR,
J aIc IbR,

3,=avlb3,lc,
U AlaUIbUIcU,
R a-lR Ib-lR Ic-R # -.

The informal approach of this system is that each of the patterns continues to
scan right until it finds an occurrence of one of the desired letters (a searches for a,
fl for b, and /for c), failing if none is found and invoking R when it is; R "rewinds"
the cursor position back to the marker # and the next search can then be made.
Formally one can verify that length (s) tr(s, 0) if and only if s e L.

Now L is regular so that a right-linear pattern without reversal can be written.
As is pointed out in [3], this would require a variable for each of the subsets of
{a, b, c}. If one uses the full generality of context-free patterns (without reversal), a
fairly succinct pattern can be written. But one need only expand the collection of
search characters by one or two before the complexity of patterns without reversal
become overly burdensome, while the scheme given above using reversal is simply
expanded by one new equation for each additional search character; the correctness
of the description remains apparent.

We now develop our last major result for patterns with reversal. This result will
lead to a number of additional observations.

THEOREM 4. A language L
_
C* is the language associated with a pattern equation

system with reversal ifand only ilL is accepted by a two-way, nondeterministic pushdown
automata (without endmarkers).

Proof (outline). As proof we provide the constructions in both directions, but in
the tradition of formal language theory we omit the proofs of the correctness of the
constructions. This is compensated for in large part by the similarity of the constructions
to those which are standard in the identification of ordinary context-free grammars
and the ordinary (i.e., one-way) pushdown automata. We do not present the definitional
details of two-way pushdown acceptors (without endmarkers). The conventions we
follow are those of [14]. Our one departure is that we use empty stack acceptance
(i.e., machine exists from right end of the input and stack is empty) in place of final
state acceptance and thus require the luxury of null moves on input. This alternative
convention for acceptance may be shown to agree with final state acceptance by
techniques similar to those used for this demonstration in the usual one-way case.

First of all, suppose we are given a pattern definition with reversal 5(C, I), and
that X e I. We construct a two-way pushdown automata which accepts L(X) (by

178 A.C. FLECK AND R. S. LIMAYE

empty stack) as follows"
(i) the input alphabet is C;
(ii) the stack alphabet is C U I t_J C-atA 1-1 (i.e., C-a is a set of symbols written

-1a for each a C and similarly for i-1);
(iii) the initial stack symbol is X;
(iv) the state set is taken to consist of {qo, qa} (qo is initial);
(v) the transition function 8 is defined by’

(a) for each Y /, if is a term other than and A occurring in the equation
for Y, then (0, qo, t) 6(qo, h, Y) and (0, qo, -a) 6(qo, h, y-a) (where
the sequence for -a is obtained as indicated in Definition 8);

(b) for each Y /, if A is a term occurring in the equation for Y, then
(0, qo, h) 6(qo, h, Y) and (0, qo, h) 6(qo, h, y-a);

(c) for each aC, (1, qo, h)6(qo, a,a);
(d) for each a C, (-1, qa, a -a) 8(qo, h,
(e) for each a C, (0, qo, h) 8(qa, a,

Conversely suppose we are given a two-way pushdown acceptor A that accepts
the language L(A) by empty stack. The input alphabet of A is taken as the set C and
the set I is taken to consist of all triples of the form (s, % s’), where s and s’ are states
of A, together with one additional abstract symbol, say a. Then the equations of the
corresponding pattern equation system 6(C, I) are as follows:

(i) a (So, To, So)l(So, 3/0, Sl)[" "l(So, yo, Sn) where To is the initial stack symbol
of A and So, s, , s, are its states (with So initial);

(ii) for each (1, s’, 3’1 3’k) 8(S, a, 3’), where a C and /g is a stack symbol
for 1 -< -<_ k (and k -> 0), we include the following terms in the equation for
(s, % s") for each state s": for each sequence of states ta,"’, tk-a the term
a(s’, /a, ta)(t, /2, t2) (tk-a, /k, S") (note that for k 1 this term is
a (s’, /1, s") and for k 0 this term is a);

(iii) for each (0, s’, ya 3’k) 8(S, a, ,), where a C and / is a stack symbol
for 1 _-< <_- k (k -> 0), we include the following terms in the equation for (s, % s")
for each state s": for each sequence of states t,...,t_ the term
aa-l(s ’, "Ya, ta)(t, 3’2, t2)’’’ (tk-a, /k, S");

(iv) for each (-1, s’, ya Yk) 8(S, a, 3), where a C and y is a stack sym-
bol for 1 <_-i _-< k (k _-> 0), we include the following terms in the equation for
(s, %s") for each state s": for each sequence of states ta,"’, tk-x the
term aa-(c?lcl IcS1)(s ’, /, tl)(t, "ya, t)’’" (tk-a, yk, S") (where C=
{c,..., c});

(v) for each (0, s’, /... /)eS(s, , ,), where ,g is a stack symbol for 1-<_i<_-

k (k _-> 0), we include the following terms in the equation for (s, % s") for each
state s"" for each sequence of states t,...,t_a the term (s’,
(t, /, t). (t-a, /, s") (note for k 1 this term is (s’, /, s") and for k 0
this term is A).

Then in the pattern equation system we have constructed, L(a) is the set accepted
by A by empty stack.

The two-way pushdown acceptors are known to accept a considerably broader
class of languages than context-free, and so we have firm evidence of the strength of
the extension provided by the cursor reversal operation. In fact, the association of
the preceding theorem is sufficiently direct that techniques used with two-way push-
down acceptors may be translated fairly directly. Of course, simply following the
construction given in the above proof is one way to accomplish the translation, but
it is generally a very extravagant one. Usually if one uses the insight of the acceptor

STRING PATTERN OPERATIONS 179

approach and then develops the pattern, succinctness may be achieved as well. We
illustrate with two examples.

Example 8. C ={a, b, c} and K {a"b"c"ln >= 1}. This is one of the standard
examples of a non-context-free language, and the technique for accepting K with a
two-way pushdown acceptor is shown in [14]. This approach may be adapted to
patterns with the result

W aXb Y,

Y =a-lZlb-lYc,
X AlaXb,
Z aZlbZlcc -1

which has L(W) K.
Example 9. C {a, b} and K {ba :’ In >= 0}. This is another non-context-free

language whose acceptance is illustrated in [14]. Again, that approach adapts directly
to patterns with reversal, giving the succinct description

P baQ, Q AIaa-IRQ, R a-Raalb-lb,
which has L(P)= K.

It is of some significance that our identification is with two-way PDAs without
endmarkers rather than those with endmarkers, as there are technical differences. For
instance, with endmarkers one obtains closure under intersection while without
endmarkers this is unknown. This is largely a technical rather than a substantive
difference, however, as if we have b C and patterns P and Q over C, then for
R =bPbb-IQ-lb-U, where U is a pattern which matches bC*b, we have L(R)=
b(L(P) fqL(Q))b. The techniques of [14] may be adapted to deduce the closure of the
family of languages defined by context-free patterns with reversal under union and
inverse-gsm map and nonclosure under homomorphism. Also the absence of the
endmarkers has no effect on the validity of the basic undecidability results" it is
undecidable if the languages specified by these devices are empty, finite or infinite.

On the other hand there is the result of [1] that such languages can be accepted
on a random access machine in time n 3. This implies that there is a pattern matching
algorithm for this extended class of patterns whose worst case time exceeds by very
little that which is required for only the context-free case. This is an important factor
which makes reversal a very attractive extension.

Lastly we might note that most of the work on two-way pushdown acceptors has
dealt with the model which includes endmarkers./ks can be observed in the examples
we presented here, endmarkers are often very handy. In fact the concept of endmarkers
could be included in that of the pattern (in fact SNOBOL4 effectively has such
elementsmPOS(0) and RPOS(0)), but this treatment is somewhat more clumsy and
contributes no essentially different results, so we have preferred to omit them. For
the development as it would be done with endmarkers, the reader can see [19].

2. Patterns augmented with complementation: The set system model. In this
section we explore an alternative extension to the context-free pattern equation
systems. We examine the extension provided by augmenting these patterns with a
different additional operation" complementation. As is well known, the context-free
languages are not closed under complementation, so we anticipate an increase in
expressive power. However, considerable technical difficulty is encountered, and in
fact we are forced to introduce a new model to carefully account for semantic details.

DEFINITION 7. A pattern equation system with complementation, (C, I), is
defined as in Definition 1 with the sole exception that in part a) for a factor we allow
any element of the form C U I plus elements of the form -nX, where X L

180 A.C. FLECK AND R. S. LIMAYE

While it is a commonly considered operation in formal languages, the use of
complementation as a constituent in definition mechanisms has been considered
relatively little previously (see [4], [18], [21]). Making use of the procedure model
we introduced in the preceding section for semantics does not appear technically
feasible. The difficulties arise because of the nondeterminism which occurs as an
inherent aspect of that model. This trouble arises for classical models as well; for
instance the context-free languages are accepted by nondeterministic push-down
automata, and closure under complementation fails (i.e., languages defined with
complementation cannot be expressed with the push-down model), and the context-
sensitive languages are accepted by nondeterministic linear bounded automata; it is
still not known if complementation can be incorporated in this model (i.e., the question
of closure under complementation is open). In fact we have not found a way in which
to express the desired semantics of complementation in the procedure model described
earlier. Hence we abandon that approach to semantics and pursue an alternative.

Of course, as a set operation, complementation is easily understood, but things
become more complicated when it can be used in a recursive way. Nevertheless, it is
the basic set nature that leads us to explore the following approach to the precise
semantics of complementation.

DEFINITION 8. Let disjoint nonempty, finite sets C (alphabet) and I (identifiers)
be given. A set equation system Y’ Y’(C, I) is defined hierarchically as follows:

a) a factor consists of any (constant) set c

C*, identifier X I or complemented

identifier -X;
b) a term is any finite concatenation of one or more factors;
c) an expression is any finite union of one or more terms;
d) an equation is an ordered pair (X, ’) with X I and 8’ an expression, and is

written X ’;
e) a set equation system consists of a finite collection of equations where each
X ! occurs exactly once as a left element in the set.

If each of the constant sets is finite (or cofinite), the system is called finitary.
Example 10. Let C {a, b } and ! {X, Y}. Then

={X={ab}U{a}Y,}
is a (finitary) set system.

DEFINITION 9. Let S Y’(C, I) be a set equation system where I {X1, , Xn}.
A solution to 5" is an n-tuple (o’1, , o’,), where o’i - C*(1 -<_i _-<n), with the property
that if, in Y’, Xi is uniformly replaced by o’g(1 -< -< n), then each of the equations is a
valid set equality over C*. For an identifier Xi L we say o’g is a language of X,
written Le(Xg)= o’i. If 5 has no solution it is said to be inconsistent; otherwise it is
consistent. For instance, ({amb mlrn >-1}, {a"b’+lrn _->0}) is a solution of the system
of Example 10.

There is a clearly intended isomorphism between pattern equation systems and
set equation systems--pattern alternation, concatenation and complementation corres-
pond, respectively, to set union, concatenation and complementation. The set of strings
which successfully match a pattern is taken to be the language of the corresponding
set equation system. Under this isomorphism, context-free pattern equation systems
(or context-free grammars) correspond to finitary set systems not involving com-
plementation (this relation is illustrated by Examples 1 and 10). It is well known that
such set systems are consistent. One can define a partial order on solutions

STRING PATTERN OPERATIONS 181

(O’1, O’n) (O"t1, , rn) by requiring that ri c_ r (1 _-< _-< n). Then, while in gen-
eral there may be many solutions, there is always a unique smallest solution. This
gives precisely the language of the corresponding grammar or, as pointed out earlier,
of the context-free pattern equation system. These facts are well known (see [5], [6],
[24]), but this view is infrequently used in the formal languages literature. The addition
of the complementation operator does not disturb the intuition of set equations, but
it does grehtly complicate other views (e.g., grammars, acceptors, etc.), and so we are
urged towards set equations.

It may again be noticed that we impose some superficial restrictions on the form
of set system equations so that the technical details can be developed more succinctly.
However, there is no real loss of generality. For instance an equation such as X
a-q(aX) is not allowed (complementation can only be applied to identifiers), but one
can simply add a new identifier, say Y, and write the equivalent system

X=a--q Y, Y =aX.

When set equations systems are augmented to allow complementation (as in
Definition 8), two new problems do arise, however. First of all, the systems may be
inconsistent (X X is an obvious example), and a system such as

X={a}U Y, Y={b}U--qX

is just a little less obvious--more complicated instances can of course be given.
Secondly, consistent systems still may have many solutions but need not any longer
have a unique smallest solution. For instance,

Example 11.

XI- --I X2, X2 X2

has solutions (, C*) and (C*,) but not (,).
To illustrate that there does not appear to be any clear intuitive ground for

choosing among several solutions, we include one more example.
Example 12. C {a, b },

X1 --IX1 --IX2, X2 X2-IX1
has solutions (, C*) and ((a + b)*b (a + b)*, a*) and possibly others. Motivation
leading to a preference here seems missing.

In [20] and [21], Liu and Fleck show that if complementation is avoided on
recursive definition chains in the systems, a consistent system must result. Moreover,
they arrive at a preferred solution to such a system (as there still may be several) via
a rewriting scheme approach. This restriction against using complement recursively,
however, rules out some intuitively understandable systems which give very concise
descriptions in some cases. Our goal here is specifically to explore systems where
complementation is allowed to occur in a recursive way.

Example 13. C {a, b },
X -nX{a, b}.

L(X) all strings of odd length. This is quite easily surmised since clearly h :L(X)
(as all strings in L(X) end with either "a" or "b") and so h e L(X). But then
{a, b }

_
L(X). Hence L(X)f’){a, b } , etc. And this is a unique solution.

Example 14. C {a, b },

Xl {a } U {a }-qX2, X2 {b } U {b}-qX1

has a unique solution with L(X1) (ab)*a(h + a(a + b)*).

182 A. C. FLECK AND R. S. LIMAYE

Example 15. C {a, b },
X -X{ab}

has a unique solution, namely L(X)= b*aa*b((a +bb* +abb*)aa*b)*.
We will shortly present the techniques for dealing with such examples.
One of the motivations for the addition of the complementation operator was

the increase in expressive power that could be achieved. In the preceding examples
we have given an informal indication that in addition to greater expressive power we
are able to achieve much more concise descriptions for languages that could be
expressed without complementation. In fact formal results have been developed which
show that the relative conciseness that can be achieved through the use of com-
plementation is in fact remarkable [17], [26].

Our goal of allowing complementation to be used, possibly in a recursive way,
as in the last examples, while avoiding inconsistent systems or those such as Examples
11 and 12, suggests that we seek conditions under which we can be sure that a unique
solution exists. We next arrive at sufficient conditions for this desirable circumstance.

DEFINITION 10. Let 5e O(C, I) be a set equation system and I {Xa, ., X,}.
Then we define

Ao {Xi[some term in the equation for Xi is a product of constant sets and h t}
and

S-o {X [every term in the equation for Xi has as a factor a constant set c where h c },

and then inductively for k ->_ 0

Ak+l Ak I,.J {Xilsome term in the equation for X consists of only factors which are
either: 1) constant sets which include A, or 2) X. Ak, or 3) X. where

X. Ak}
and

k+l k J {Xi [every term in the equation for X contains some factor which is either:
1) a constant set which does not include h, or 2) X. Ak, or 3) -X.
where X. Ak }.

We note that A0_ A1 _... and A0
_
Al_’’" and so we must have An A,, and

n -, for all m > n. Also of course An f3 n . If An n I we shall say that 5
is h-determined.

The following result is clear from the definitions and is presented without proof.
TI-IEOREM 5. Let Y=Se(C,{Xa,.. ’,Xn}) be a set equation system and

(trl, , trn) be any solution of . Then X An implies h trg and X An implies
h r (1 <-_ <- n). Hence]’or a finitary, A-determined system, h tr (1 <- <- n) may be
algorithmically determined.

DEFINITION 11. Let St’ =5(C, I) be a h-determined set equation system and
I {Xx,. ., Xn}. Then we define

zr0 {Xlevery nonconstant term in the equation for Xg either" 1) includes some factor
which is a constant set that does not contain h, or 2) includes at least two
factors each of which is either X An or -X. with Xj

and then inductively for k _-> 0,

7rk+l 71"k t.J {X[every nonconstant term in the equation forX either: 1) includes some
factor which is a constant set that does not contain h, or 2) includes
only factors which are either constant sets, Xj or -X/with X. 7rk}.

STRING PArERN OPERATIONS 183

Again of course zr0

_
r ----" SO that zr, or,, for all rn > n. If r, I and either m 0

or zr,,-1 #/, then 6 is said to be reductive of degree m.
The next several results generalize some recent work by Leiss [18]. The systems

of Leiss allow only a very restricted form of concatenation (i.e., one-sided concatena-
tion of a single variable with a single constant set) and forbid the occurrence of the
null string in constant sets. We impose neither of these restrictions, but note that the
reductive property does put restrictions on the interactions of these phenomena.

THEOREM 6. Each reductive set equation system has at most one solution.
Proof. Suppose that 6=6(C,I) is the set equation system, where I=

{X1,’’’, X,}. We show that a solution, if one exists, must be unique. So we suppose
that (try, .., tr,) and (trY, ., tr’) are two solutions to S. We show by induction on
Izl that z etr if and only if z e tr (1 -<i _-<n).

Main anchor step ([zl 0 or Izl 1). First of all, h e tr and h e if and only if
X e A, (1 <_- <_- n) as Y is h-determined. Now for a e C suppose a e trg. Then we
show that a e tr by another induction on], the smallest index so that Xg
(since 5e is reductive there is some such index).
Anchor step (] 0). Since a e r, there is some term in the equation for X
so that a e t(r,..., tr,)(t(tr,..., tr,) denotes the set obtained by replacing
each identifier Xg in by the set try, for 1-<_ <_-n). Now if is constant then
clearly a errS. Otherwise is a product of factors, say =ff... f,, and as
X e 7to there are two possibilities"
(1) Some factor, say f(1 <_-q-<p) is a constant and h f. But then for a

t(trx, .., try) wemusthave a efq andh elk(try,. ., ft,)for k q(1 <-k <_-p)
and so a e t(r,. , r’,)

_
(2) Two factors are variables in A, or complemented variables from A,. But

this contradicts denoting a string of length i and hence is in fact impossible.
Induction step (]-] + 1). Now we assume that for a e C, a e r if and only if
a tr for all such that Xg 7ri(]->0). Then suppose that Xg 7]’/+1-7]’j(f 0)
and a trg. Hence for some term in the equation for Xg, a t(tra,..., tr,).
Now if is constant, then clearly a try. Otherwise is a product of factors,
say ffz" fp, and as X 7ri+ there are two possibilities"
(1) Some factor, say f (1-< q -< p), is a constant and f,. But then since

a et(tr,...,tr,) we must have a ef and A /k(O’l,’" ",O’n) for
q(l<-k <-p) and so a

(2) Each f(1 -<_q _-<p) is either a constant set, or Xg e ,ri or -X with X e zri.
Again we must have some fo (1 _-< q -<_ p) with a e fo (r,. , tr,) while
fi(trl,’." ,or,) for all r #q(l<-r<-_p). If fo is constant, the argument is the
same as in case (1) above. If fo Xk zri, then a e fo(trx,’’’, tr,)= r and
so by induction hypothesis a e tr , and hence a e fq (tr,. ., tr’). Also since
5e is h-determined, 3, eft(crY,..., tr’) for r # q(1 <-r-<_p) and hence a
t(tr,...,tr’,)Gr. Similarly the argument follows if fo=-Xk where
Xk e zri.

Thus we have established the anchor for our main induction on Iz [.
Main induction step (note the need for the anchor for [z[= 0, 1). We now assume
that z etr if and only if z errS(1 _-<i _-<n) for all z with [zl<-m (and m _-> 1) and
let y e tr with lY[m + 1. We show that y e tr by another induction on/’, the
smallest index so that Xg e
Anchor step (] 0). Since y e try, there is some term in the equation for X so
that y t(tr, ., tr,). Now if t is constant, then clearly y e trY. Otherwise is
a product of factors, say t ff2 f, and asX e r0 there are two possibilities:

184 A.C. FLECK AND R. S. LIMAYE

(1) Some factor, say fq (1 _-< q _-< p), is a constant and h fq. Then y y y2. Yp,
where y/(r,...,r,)(l_-<k-<_p) and [y[>0. Hence [yg[-<_m for
q (1 _-< k <_- p). Now each of the factors fk for k q (1 _-< k <_- p) is either a
constant, a variable X or a complemented variable -X(1 <-r<-n). Hence
by the main induction hypothesis for all k, 1 _-<k-<_p, Yk f(r,’’’ ,r)
and so y t(r,..., r’,)

_
(2) Two factors, say fq and f, are either variables in A, or complemented

variables from A,. Thus y=yy2"’" yp, where ykf(r,...,r,) and
lYq], [yr[>0. Hence [yk[<_--m for all 1 _-<k -<_p and so, as with case (1), we can
apply the main induction hypothesis to conclude that y

Induction step (/" =/’ + 1). Finally assume that y cri if and only if y r, for all
such that Xg zri and let X zri/- zri(/" >-0). Details here are similar to those

given in cases above and so are omitted.
This then completes the main induction argument and establishes the uniqueness

(but not the existence) of solutions to reductive systems.
The other major concern is that a solution does indeed exist. To present this

argument we will use the
Notation. For a

_
C* and each m _-> 0 we let a {w a[[w[<-_ rn }, and if ’ is an

expression of a set equation system over variables X, ,X and a 1, ", a, C*,
then c(a,..., a,) will denote the set obtained by replacing each occurrence of
variable X by set ag (1 _-< <_-n) and performing the indicated set operations.

LEMMA. LetS ={Xi i[1 <- <- n} be a reductive set equation system and suppose
that ai C*(1 <- <- n) are sets such that ai includes all constant terms of
ifandonlyifXi A,. Thenforeach w ,,i(o1, ", Oln) with Iwl m >0(1 <-i <-_n)either"

a) w belongs to a constant term of i, or
b) Xi r (k >-_ O) and w is formed by the concatenation of strictly shorter subwords

which belong to constant sets, ai or -ai(l_-</’-<_n); that is, w
:i (O- m-1

,On), or
C) X 7"’k + l(k >= O) and w ai or w -ai for some X rk (1 <--_] <--_ n).
THEOREM 7. Each ceductive set equation system has a (unique) solution. Further-

more, if the system is finitary, then each component of the solution is a recursive set.

Proof. Suppose that {Xi ’il I -< <= n }. We construct a solution inductively
by defining O" for 1 <_-i _-< n and] 0, 1, 2,.. where O’i contains only strings of length
at most/" and the solution (cry, o’,) is given by O" [_jc for 1 < <j=00"i

We first of all define

? if Xi A.,r/=
A} ifXiA,.

i+Then assuming that ri(/" >_- 0) is defined for all 1 _-< _-< n, we define ri by induction
/+1onk suchthatXiszr.ForXiszro,ri =(i(r,... ,r))i+ andforXiszr/(k >-_0),

j+l
ri is defined to be all strings of length at most] + 1 in the set obtained by the

j+levaluation of gi with respect to the sets: o,, ifX s r and r, if X,g r(l<- m <_-n).
The argument that (r, ., r,) is in fact a solution is by induction on the length

of strings. For strings of length zero, it is clear by Theorem 5 that all equations are
satisfied. The induction step follows by a direct application of the lemma above.

To see that the component sets of the solution are recursive, just note that each
of the steps in the construction of ri can be carried out algorithmically provided that
the constant sets are finite (or even if they are just computable). 71

Hence we have established, in terms of the readily determined sets A,, A, and
zri(1 _-< <_-n), a sufficient condition for the existence and uniqueness of a solution.

STRING PATTERN OPERATIONS 185

While this condition does not characterize those systems which possess a unique
solution, we would like to point out its rather considerable generality. For the
context-free case (i.e., no use of complementation) quite a number of special forms
which result in unique solutions have been investigated. The uniqueness claims in [28,
Thms. 2.1 and 2.3] can be deduced since it is easily seen that the reductive property
is implied by the hypotheses. Similar comment holds for a number of the uniqueness
results of [27, (e.g., Thms. 6.1, 9.1; Eqs. 7.1, 7.1’, 7.4, 7.4’, 7.5, 7.8]. Also the rather
general condition in [24] of the absence of the so-called "empty word property" can
be shown to imply the reductive property for the systems considered and hence the
uniqueness result there [24, Thm. 111.2, p. 121] can be deduced as well. It might also
be noted for the context-free languages, if one takes the equations in Greibach normal
form, one has a reductive system. The only work known to us which uses the
complement operator in a system of equations is [4] and 18]. However, the restrictions
assumed there lead to solutions which are always regular; moreover, it is easily verified
that these same restrictions imply the reductive property, and so the uniqueness result
presented there may also be viewed as following from our general result.

Having established some of the generality of our reductive property and having
already made the point of the necessity of dealing with systems with unique solutions,
we henceforth restrict attention to such systems. Another important aspect of our
interests are those relating to computability. For the most part we will concern ourselves
with the finitary systems. This could be relaxed somewhat by providing some construc-
tive finite description for coefficient sets, but this becomes cumbersome and as we
shall shortly see, adds no generality unless sets considerably more complex than
context-free were to be admitted as coefficients.

Our next result is motivated by the connection between equation systems without
complement and context-free grammars and the fact that the one-sided linear gram-
mars characterize the regular sets. Since the regular sets are closed under complement,
we might anticipate that the one-sided linear equation systems with complementation
have solutions which are always regular. Recall that this same line of thought failed
when applied to cursor reversal in the previous section. The problem is that the
operation (complementation in this case) can be used recursively in the definitions.
However, in this case the result holds and the proof provides the means to deal with
several of the examples given earlier in this section.

Many of the transformation techniques for formal grammars apply without essen-
tial change to the systems we consider here. For instance, if in some system 6e 6e(C, I)
a term of the form X.{sa } occurs, where X L s C* and a C, then we can consider
the system ’ =6e’(C, I {Z}) which is obtained from 6e by replacing this term by
Z{a} and adding the equation Z =X{s}. Clearly, the solution sets of ’ have not
been perturbed from those of (though of course the solutions for 6e’ have an
additional component corresponding to the new variable Z which does not occur in
solutions to 6e). We make implicit use of such techniques in proving the following:

THEOREM 8. The solution sets for each one-sided linear, reductive set equation
system (with complement) whose constant sets are finite are regular sets.

Proof. We will assume that the system is given in left-linear form (the approach
for right-linear systems is comparable), taking I {X1, , Xn}. We suppose (C, I)
consists of

X fo UX,f U UX,,f U -qX,f,,+:t U... U
for 1 -< _-< n, where each of the sets f (0 -<_/" -< 2n) is finite. By the comments preceding
the theorem we may assume without loss of generality that the sets f!j(l<i<n,=

186 A. C. FLECK AND R. S. LIMAYE

0-<_/" _-< 2n) contain strings of length at most 1. For each solution set trs(1 _-< _<-n) we
define a finite state acceptor As. The intuitive idea for the construction is that an
accepting run for a string w should end in a state which consists of exactly the variables
Xs for which w is in the solution trs. Let As (S, C, 8, So, Fs) for 1 <_- <_- n, where

S (the states)= {So} t.J (I) ((I) is the collection of all subsets of I and So
is a new abstract element not in I);

{s c= (I)[Xs s } if XiF I {So}l.J{sc=ga(I)lXs_s} if Xi e A,,

and we define the next-state function 8, 8: S x C --> S as follows: for a e C let

t(so, a)={Xpla c=fg}O{XplXp eAn anda eft}
0 {XplXp 7k. and a fPn+q}.

Then let 8(s0, a) be the smallest set r which contains t(s0, a) with the property that
qXp " and A implies Xq - and Xp z and A]’n+p implies Xq -.

For s (I) and each a C define t(s, a)={XolXo s and a f}O{XpI3Xqs
pand a f,/q}. Then let 8(s, a) be the smallest set z which contains t(s, a) and has the

property that Xo - and A]’ implies X - and Xo - and A f+p implies X
We omit the rather tedious argument of the correctness of Ai. It is another double
induction with the main induction on the length of string and a subinduction on the
smallest index of the containing ,r set, similar in many respects to the proof of the
uniqueness theorem.

COROLLARY. Each one-sided linear, reductive set equation system (with comple-
ment) whose constant sets are regular has regular solution sets.

Proof. Regard the system as a set equation system over an extended alphabet
that includes the constant sets. By the preceding result, the solution sets to the system
over this extended alphabet are regular. But the solution sets to the original system
are clearly obtained by substitution of elements from the constant sets in place of
those extended alphabet symbols, and the regular sets are closed under substitution.

Our primary interest has been in developing a useful and general condition to
guarantee unique solutions in systems utilizing complementation. Clearly this must
be in the context of some restrictions on the constant sets allowed (e.g., for arbitrary
L G C*, X L uniquely "defines" L in a trivial way). The preceding result examines
a certain combination of restrictions on the constant sets and the equation forms. As
was suggested earlier, if one is to restrict only the nature of the constant sets, the
finitary systems seem most natural to consider. We present a few results to relate the
languages which can be expressed with finitary reductive systems to the usual formal
languages hierarchy.

THEOREM 9. The finitary reductive languages properly contain the context-free
languages and are closed under union, product, complement and intersection.

Proof. For a context-free language K

C*, one takes a Greibach normal form

grammar G with K L(G). Then as we have already mentioned the naturally corre-
sponding set equation system (G) is finitary and reductive. In fact it can be verified
that A0 t3 A0 ! zr0.

The closure properties follow by the usual constructions, though there are some
additional facts to be verified. We illustrate with just one of these results.

Let 6’1 and 2 be finitary reductive systems over disjoint sets of variables, say
variables in 6es(i 1, 2). Also let Xs be a variable of s(i 1, 2). A finitary reductive

STRING PATTERN OPERATIONS 187

system o so that Lzeo(Xo)= Lsel(X1) Lze2(X2) is as follows:
the variables and equations of St0 are those of 6el together with those of St2
plus the new variables Xo and the new equation Xo X (.J X2; it may then
be verified that Xo Amax(nln2)+l if Lel(X1) (.J Lse2(X2), andXo Amax(n,na)+l
otherwise, so 6Co is h-determined; also Xo "Wmax(na,n2)-t-1 SO 0 is reductive.

The other operations may be treated similarly and the details are omitted. [3
This result also provides the justification for a very nice pattern calculus for the

reductive context-free patterns augmented with complementation. The underlying set
oriented semantics naturally provides for the usual commutative, associative, distribu-
tive and DeMorgan’s laws. These are sufficiently familiar that they do not require
restatement here. The fact that such constructions do not violate the reductive property
makes this property a relatively workable restriction.

Also with respect to decision problems, most results are negative. Since the
context-free grammars are included, all the problems which are undecidable for the
context-free case are undecidable for the finitary reductive set equation systems.
Moreover, the undecidability of equality with C* for the context-free case and the
closure of the finitary reductive systems under complementation implies the undecida-
bility of the emptiness problem for these systems. Of course, as we pointed out
previously, membership is decidable.

Conclusions. We have introduced two formal semantic models for string patterns.
Each of these models may be adopted for the context-free patterns. Each model leads
to the exploration of a significant extension to the context-free case. In both cases
the nature of the extension is to provide much greater expressive power and moreover
to add succinctness in many cases that could be treated without the extension. Each
model must be regarded as successful in treating certain aspects which do not seem
natural to the other model. It would seem desirable to explore both of the extensions
(i.e., cursor reversal and complementation) in the context of a single model. This
would allow the investigation of the interactions of the extensions and a determination
of the effect of these interactions on expressive power and complexity. It is not
apparent that either of the models presented here can be adapted to serve in this
unifying role. Nonetheless we feel that these results demonstrate the potential for
considerable benefit to be derived from the alternative approach of extending the
context-free patterns by a few very general operations instead of by a great many
rather special purpose ones. The results on expressive power are encouraging, and in
the case of the procedure model, while an actual implementation would still require
a mechanism for the efficient elimination of nondeterminism, Theorem 4 together
with the results of [1] suggest that this is indeed feasible.

REFERENCES

[1] A. V. AHO, J. H. HOPCROFT AND J. D. ULLMAN, Time and tape complexity ofpushdown automaton
languages, Inform. and Control, 13 (1968), pp. 186-206.

[2] L. ALLISON, Phrase structures, non-determinism and backtracking, Inform. Process. Lett., 7 (1978),
pp. 139-143.

[3] B. H. BARNES, A two-way automaton with fewer states than any equivalent one-way automaton, IEEE
Trans. Comput., C-20 (1971), pp. 474-475.

[4] J. A. BRZOZOWSKI AND E. LEISS, On equations for regular languages, finite automata and sequential
networks, Theoret. Comput. Sci., 10 (1980), pp. 19-35.

[5] N. CHOMSKY AND M. P. SCHIITZENBERGER, The algebraic theory of context-free languages, in
Computer Programming and Formal Systems, P. Braffort and D. Hirschberg, eds., North-Holland,
Amsterdam, 1963.

188 A. C. FLECK AND R. S. LIMAYE

[6] J. H. CONWAY, Regular Algebra and Finite Machines, Chapman and Hall, London, 1971.
[7] J. W. DE BAKKER, Semantics and termination of nondeterministic recursive programs, in Automata,

Languages, Programming, Edinburgh Univ. Press, 1976, pp. 435-477.
[8] J. N. DOYLE, A generalized facility for the analysis and synthesis of strings, and a procedure-based

model of an implementation, $4D48, Dept. of Computer Science, Univ. of Arizona, Tucson, AZ,
1975.

[9] A. C. FLECK, Towards a theory of data stuctures, J. Comput. System Sci., 5 (1971), pp. 475-488.
[10], Formal models for string patterns, in Current Trends in Programming Methodology, Vol. IV:

Data Structuring, R. Yeh, ed., Prentice-Hall, Englewood Cliffs, NJ, 1978.
[11] R. W. FLOYD, Nondeterministic algorithms, J. Assoc. Comput. Mach., 14 (1967), pp. 636-644.
[12] J. F. GIMPEL, A theory of discrete patterns and their implementation in SNOBOL4, Comm. ACM, 16

(1973), pp. 91-100.
[13] ., Algorithms in SNOBOL4, John Wiley, New York, 1976.
[14] J. N. GRAY, M. A. HARRISON AND O. H. IBARRA, Two-way pushdown automata, Inform. and

Control, 11 (1967), pp. 30-70.
[15] R. E. GRISWOLD, Extensible pattern matching in SNOBOL4, Proc. ACM Annual Conf., Minneapolis,

MN, 1975, pp. 248-252.
[16] R. E. GRISWOLD, J. F. POAGE AND I. P. POLONSKY, The SNOBOL4 Programming Language,

Prentice-Hall, Englewood Cliffs, NJ, 1971.
[17] J. HARTMANIS, On the succinctness of different representations of languages, in Automata, Languages

and Programming, Lecture Notes in Computer Science, 71, Springer-Verlag, New York, 1979.
[18] E. LEISS, On generalized language equations, Theoret. Comput. Sci., 14 (1981), pp. 63-77.
19] R. S. LIMAYE, Analysis of string patterns using a procedure-type model andformal languages, Doctoral

dissertation, Univ. of Iowa, Iowa City, 1978.
[20] K. C. Llu, On string pattern matching: A new model with a polynomial time algorithm, this Journal,

10 (1981), pp. 118-140.
[21] K. C. LIU AND A. C. FLECK, String pattern matching in polynomial time, 6th Annual ACM Symposium

on Principles of Programming Languages, San Antonio, TX, 1979, pp. 222-225.
[22] M. O. RABIN AND D. SCOTT, Finite automata and their decision problems, IBM J. Res. Develop., 3

(1959), pp. 114-125.
[23] D. G. RIPELY AND R. E. GRISWOLD, The measurement of SNOBOL4 programs, SIGPLAN Notices,

10 (1975), pp. 36-53.
[24] A. SALOMAA, Theory of Automata, Pergamon Press, New York, 1969.
[25] G. F. STEWART, An algebraic model for string patterns, in Second ACM Symposium on Principles of

Programming Languages, Palo Alto, CA, 1975.
[26] L. J. STOCKMEYER, The complexity of decision problems in automata theory and logic, Tech. Rep.

MAC TR-133, Project MAC, Massachusetts Institute of Technology, Cambridge, MA, 1974.
[27] T. URPONEN, On axiom systems for regular expressions and on equations involving languages, Ann.

Univ. Turku, Ser. A I, 145 (1971), pp. 1-51.
[28],Equations with a Dyck language solution, Inform. and Control, 30 (1976), pp. 21-37.

SIAM J. COMPUT.
Voi. 12, No. I, February 1983

)1983 Society for Industrial and Applied Mathematics
0097-5397/83/1201-0012 $01.25

ON PROVING UNIFORM TERMINATION AND RESTRICTED
TERMINATION OF REWRITING SYSTEMS*

J.V. GUTTAG,f D. KAPUR,, AND D.R. MUSSER*

Abstract. In mechanical theorem proving, particularly in proving properties of algebraically specified
data types, we frequently need a decision procedure for the theory of a given finite set of equations
(axioms). A general approach to this problem is to try to derive from the axioms a set of rewrite rules
that are "canonical," i.e., they rewrite to a canonical form all terms that are equal (according the axioms
and the equivalence and substitution properties of equality). Rewrite rules are canonical if and only if they
determine a relation that is both confluent and uniformly terminating. The difficulty of proving uniform
termination has been the major drawback of the rewrite rule approach to deciding equations.

A new method of proving uniform termination is proposed. Assuming that the rewriting relation is
globally finite (for any term there are only finitely many terms to which it can be rewritten), nontermina-
tion can occur only if there are cycles..Uniform termination is proved by showing that no cycles can occur.
A method related to the Knuth and Bendix method of proving confluence is developed and used as the
basis of such proof. In most cases, the proposed method will only prove termination for terms up to a cer-
tain size; this kind of "restricted termination" has a number of applications.

Key words, uniform termination, restricted termination, global finiteness, rewrite rules, confluence,
Knuth-Bendix algorithm, overlap closure, canonical, rewrite dominoes, equational axioms, theorem
proving

1. Introduction. Term rewriting systems, also called (sets of) rewrite rules, are
a model of computation that has the interesting and useful property of being directly
applicable to obtaining decision procedures for equational theories. A term rewriting
system is said to be uniformly terminating if for every term, every sequence of
rewrites starting from that term is of finite length. This property corresponds to the
uniform halting property of Turing machines, a fact which Huet and Lankford
(1977) used to demonstrate the undecidability of uniform termination.

In one of the main applications of term rewriting systems, the Knuth-Bendix
(1970) approach to obtaining equational decision procedures, we start with a set of
equations and attempt to derive from them a set of rewrite rules with the uniform
termination property, as well as the property of confluence (for any term all
sequences of rewrites emanating from it are extendable to a common term). If this
can be done, the rules compute a canonical form for each class of terms that are
equivalent under the original equations. Having such a canonical form yields an
efficient decision procedure for the theory of the original set of equations.

Another application of rewrite rules is to produce "direct implementations" of
abstract data types (Guttag, Horowitz, and Musser, (1978)). Such implementations
are generally not efficient enough to be used in production programs, but can be
helpful during the design of new data types and of programs that use the data types.
Direct implementations are guaranteed to terminate if and only if the rewrite rules
have the uniform termination property.

*Received by the editors December 18, 1981, and in revised form June 11, 1982. This paper was
typeset at the General Electric Research and Development Center using the Troff software developed
for the Unix operating system.

’Laboratory for Computer Science, Masachusetts Institute of Technology, Cambridge, Mas-
sachusetts 02139.

CGeneral Electric Company, Corporate Research and Development, Schenectady, New York
12301.

1More commonly called "finitely terminating" or "Noetherian."

189

190 1. V. GUTTAG, D. KAPUR AND D. R. MUSSER

Although undecidable in general, the uniform termination property can be
proved for particular term rewriting systems in a variety of ways, mostly based on
the mapping of terms into a well founded partially ordered set (see Huet and Oppen
(1980) for a survey). An unfortunate problem with attempting to prove uniform
termination this way is that, for rule sets of any significant size, an appropriate map-
ping is often very difficult to construct it may require a great deal of ingenuity. In
this paper, we present a new approach to proving termination, which, though not as
general as the previous methods, is more algorithmic. This method will usually not
yield a complete proof of uniform termination by itself. However, it can be used for
proving restricted termination (i.e., termination of a finite set of terms), which has
applications as discussed later in the paper. The method can possibly be used to sim-
plify the application of other methods of proving uniform termination.

When the original rules are not uniformly terminating, one would often like to
be able to detect this situation quickly, e.g., in order to avoid wasting time attempt-
ing to construct a proof of uniform termination. Under some reasonable restrictions
on the form of rewrite rules, our approach provides such a test. That is, we show that
if the rules are globally finite (that is to say, the number of different terms to which
any term can be rewritten is finite) and every rule is right-linear or every rule is left-
linear, our method can be used to effectively search for cycles in the rewriting rela-
tion.

In an effort to make this paper self-contained, we devote 2 to a short tutorial
on term rewriting systems. The reader familiar with the literature in this area will
need only to skim this section. We describe the basic mechanism of term rewriting
systems, and state and prove a well known result relative canonicity to uniform ter-
mination and confluence. We also relate the property of global finiteness to uniform
termination; in particular, we show that if a reduction relation is globally finite and
acyclic, it is uniformly terminating.

In 3 we address the problem of showing that a rewriting relation is globally
finite. We first prove that global finiteness is undecidable, and then develop some
syntactic conditions sufficient to ensure global finiteness.

In 4 and 5, we address the problem of showing that a rewriting relation is acy-
clic. The main problem is the size of the space of terms that must be traversed in
searching for cycles. Our main results show that the search space can be cut down
significantly. We show how to construct, from a set of rules R, another set of rules
we call the overlap closure of R, with the property that if a reflexive rule is contained
in it, then the rewriting relation of R has a cycle. The overlap closure corresponds to
a subset of the transitive closure of the rewriting relation.

Our main theorem here states that a partial converse holds, so that generation
of the overlap closure and looking for reflexive rules is sufficient to detect a cycle if
one exists. In proving this theorem in 5, we develop several lemmas of indepen-
dent interest and a new way representing rewrite rules and sequences of rewrites
using what we call rewrite dominoes and "rewrite domino layouts." We will introduce
this representation and use it in presenting the proofs of our main results about the
overlap closure. We believe that this representation also will be useful in the study
of other areas of rewrite rule theory.

The generation of the overlap closure is very similar to the way the Knuth-
Bendix process generates rules in attempting to produce a confluent rewriting rela-
tion. Its construction is based on the use of derived pairs of terms obtained from
superpositions of the right hand side of one rule with the left hand side of another.

TERMINATION OF REWRITING SYSTEMS 191

This is in contrast to the Knuth-Bendix process, which uses critical pairs obtained
from superpositions of the left hand sides of the rules.

Like the Knuth-Bendix process, the overlap closure process may fail to ter-
minate (that is, it may continue to generate new rules indefinitely). In fact, when the
original rules are uniformly terminating, it will usually happen that overlap closure
generation is nonterminating. In this case, the overlap closure process does not by
itself yield a proof of uniform termination (see Huet and Oppen (1980)). As we
show in 6, apart from showing nontermination, partial generation of the overlap
closure is useful in some applications where it suffices to have a proof of "restricted
termination" in this case termination for all "small" terms.

The overlap closure construction is more general than the forward chain con-
struction discussed by Dershowitz (1981). As discussed in 5, the overlap closure
can be used in proofs of termination of both right-linear and left-linear rewriting sys-
tems, whereas forward chains require an additional strong assumption in the case of
left-linear rewriting systems.

2. Definitions, notation, and basic theory.
2.1 Term rewriting systems. We begin with a definition of "terms." We

assume a denumerably infinite set of distinguishable symbols called variable symbols,
and a disjoint finite set of distinguishable symbols called function symbols. A term is
defined inductively as either (1)a variable symbol, or (2)a function symbol fol-
lowed by a finite sequence of terms. In the latter case, if f is the function symbol
and tl, ", tn is the sequence of terms, the term is denoted f (tl, ", n) and the ti
are called the arguments of the term. The number of arguments, n, is called the arity
(nullary, unary, binary, etc.) of the function symbol. A constant term is written as
f() and binary terms will sometimes be written in infix notation, e.g., (x+y) z for
.(+(x,y),z).

The subterms of a term are the term itself and the subterms of its arguments.
Like a variable, a term of the form f () has no subterms other than itself. A subterm
position and corresponding subterm within a term is a finite sequence of nonnegative
integers separated by "." and a related term determined as follows" to the null
sequence (denoted < >) corresponds the entire term. If f (tl, ", tn) is the subterm
at position then the subterm at position i.j is tj.

For example, the subterm positions and corresponding subterms within
f(x,g(y,k(z)),h()) are"

< > f(x,g(y,k(z)),h())
1 x
2 g(y,c(z))
2.1 y
2.2 (z)
2.2.1 z
3 h()
We write t[i] for the subterm at position within term t.
A rewrite rule is an ordered pair of terms (l,r) such that every variable that

occurs in r occurs also in l. We usually denote the rule as r. A term rewriting sys-
tem is a set (usually finite) of such rules. This is all there is to the syntax of term
rewriting systems; they also have a very simple semantics, to which we now turn.

Two terms are identical if (1) they are identical variables, or (2) they have iden-
tical function symbols and their sequences of arguments are identical. We write

tl t for this relation.

192 .1. V. GUTTAG, D. KAPUR AND D. R. MUSSER

A substitution is a mapping 0 from variable names to terms such that 0 (v)== v
for all but a finite number of variable symbols. It is denoted by an expression of the
form [tl/Vl, ,tn/Vk] where the k >/0 variable symbols Vl, ", Vk are distinct.
(The case k=0 is the identity substitution.) The domain of a substitution 0 is
extended to the set of all terms by inductively defining O(f(tl,’",tn)) to be
f (O (tl) ,0(tn)).

A set of rewrite rules, R, generates a binary relation "-*" on the set of all
terms, called the rewriting relation, as follows"

1. For every rule (/,r) in R, and every substitution 0, O(l)--*O(r) holds.
2. If u, then for every function symbol f and sequence of terms

tl,...,ti,...,tn with ti=t for some i, f(tl,’",t,’",tn)-*
f (tl, ", U, ", n) also holds.

Whenever u, we say that "t rewrites directly to u (using R)." An
equivalent way of defining the direct rewriting relation is as follows"

We say that t2 has theform oftl if there is a substitution 0 such that 0(tl)== t2;
also we say that 2 is matched by tl. Then rewrites directly to u (using R) if and
only if there is a subterm position such that t[i] is matched by the left-hand side
of some rule l--* r of R, say 0 (1)== t[i], and u can be obtained from by replacing
t[i] by O(r) at position i. We write this as [t with O(r) at i].

2.2. Reduction relations. As in Huet (1980), we now develop a number of
concepts at a more abstract level than term rewriting systems: we assume a set E and
a binary relation "-*" on E, called "reduction." When definitions or lemmas
depend on the set E being a set of terms and the reduction relation being the rewrit-
ing relation generated by a set of rewrite rules, we make explicit note of this fact.

The reflexive and irreflexive transitive closures of---, are denoted ---," and ---,+

respectively. Thus A ---," B if and only if there are elements A0, .,A n, n >/0, such
that A A0, An= B and A0---’ A1---" An; for A--*+B we require n >/ 1. The
sequence A 0-" A n is called a reduction sequence from A 0 to A n.

Let be the relation defined by A B if and only if A---* B or B---. A. The
reflexive transitive closure of .-*, denoted ", is the abstract version of "equality"
(it is an equivalence relation on E; and in the case of a term rewriting system, it is
moreover an equality relation since the substitution property holds). In order to deal
with" in terms of---, ", we will define and use canonical forms in E.

First, we define an element P of E to be terminal if there is no element Q such
that P---, Q. If A "B and B is terminal, then we call B a terminalform ofA. An
element can have many distinct terminal forms. A nonterminating reduction sequence
from A is an infinite sequence A0---* A1---" with A0 A. The reduction relation

is said to be terminating for A if there is no nonterminating reduction sequence
from A, and is said to be uniformly terminating if it is terminating for every ele-
ment of E.

We say any B and C are joinable if there exists a D such that B--. "D and
C--," D. The relation is confluentfrom A if for every B and C such that A "B
and A ----," C, B and C are joinable. We say is uniformly confluent if it is confluent
from every element of E.

LEMMA 2.2.1 (well known). If---, is uniformly confluent, the terminalform ofany
element, ifit exists, is unique.

Proof. Let .4---* "B and .4--," C, with both B and C terminal. By confluence
from A, there must be a D such that B---, "D and C---," D, but since B and C are
terminal, we must have B D C. t2

TERMINATION OF REWRITING SYSTEMS 193

Let be an equivalence relation on E. We say that is canonical with respect to

--= if it is uniformly terminating and any two elements have the same terminal form
if and only if they belong to the same equivalence class. If is canonical with
respect to ", we simply say that it is canonical

THEOREM 2.2.2 (well known). A reduction relation---* is canonical ifand only if it
is both uniformly terminating and uniformly confluent.

Proof First, suppose is canonical; then by definition it is uniformly terminat-
ing; we have to show that it is uniformly confluent. Let A be any element and sup-
pose A---, *B and A C; then B,-* *C and, since is canonical, B and C have
the same terminal form. Thus is confluent from A, for all A.

In the other direction, suppose is uniformly terminating and uniformly
confluent. Let A and B be any elements such that A ,--, B; we have to show that A
and B have the same terminal form. By definition of *--,*, there are elements
AO, "’’,An, nO, such that A A0, An= B and for 0< i< n-1 either Ai---’ Ai+l or
A i+---, A. The proof is by induction on n. If n 0, then A-- B and, by confluence
and Lemma 2.2.1, they have the same terminal form. If n>0, then by the induction
hypothesis, A 0 and An- have the same terminal form, T, say. If An- 1---’ .4 n, then by
confluence from .4n-l, T is also the terminal form of .4n. The other case is

An--" An_l: by confluence from A n and Lemma 2.2.1, T is also the terminal form of
An.[2

In the case of a term rewriting relation, Knuth and Bendix (1970) showed how
to perform the test for uniform confluence by examining how the left-hand sides of
the rules "overlap" each other, producing "critical pairs" of terms to be checked for
confluence. Out approach to proving uniform termination relies on a generalized
notion of overlapping, yielding "derived pairs." This will be discussed in 4.1.

2.3. Relating uniform termination to global finiteness and acyclicity. A
reduction relation is locally finite if for every A in E the set of elements B such
that A B is finite; and is globallyfinite if the set of B such that A B is finite.

LEMMA 2.3.1. Ifa reduction relation is globally finite and acyclic, it is uniformly ter-
minating.

Proof. Any nonterminating reduction sequence would either have to repeat
some element (hence be a cycle) or contain infinitely many distinct elements (hence
be globally infinite). Thus all reduction sequences have to terminate. [2

The converse does not hold in general but does hold for locally finite reduction
relations.

THEOREM 2.3.2. A locally finite reduction relation is uniformly terminating if and
only if it is both globallyfinite and acyclic.

Proof. The if part is immediate from the lemma. Suppose the relation is not glo-
bally finite or is cyclic. In the latter case, it is obviously not uniformly terminating. In
the former case, since the the relation is assumed to be locally finite, we can apply
Koenig’s lemma to some element which has infinitely many decendants, concluding
that there must be an infinite path of reductions from that element; thus the relation
is not uniformly terminating. [2

Since it is easily shown that the rewriting relation of a finite set of rules is locally
finite, we have the following.

COROLLARY 2.3.3. The rewriting relation of a finite set of rules is uniformly ter-
minating ifand only if it is both globallyfinite and acyclic. [2

In the next section we investigate methods of proving global finiteness, and in
4 and 5 methods for proving that a rewriting relation is acyclic.

194 3. V. GUTTAG, D. KAPUR AND D. R. MUSSER

3. Proving global finiteness. In general, we cannot decide uniform termination
algorithmically, as the following result of Huet and Lankford (Huet and Lankford
(1977, Thm. 1)) shows.

THEOREM 3.1. The uniform termination problem for rewrite rule systems is undecid-
able, evenfor terms restricted to unary and nullaryfunction symbols.

From this result we can show that the question of global finiteness for rewrite
rule systems is also undecidable.

THEOREM 3.2. There is no decision procedure for global finiteness of rewrite rule
systems.

Proof. Let R ri} be a finite set of rewrite rules in which all terms and r
are built from a finite set {fl, ,fk} U {gl, ,gin} of function symbols, where
each fi is unary and each gi is nullary, and a variable symbol x. Let h be a function
symbol distinct from any of the fi or g.

Construct a new set of rules

R’--- li h (ri) t.J {fi(h (x)) h (fi(x))’l < < k}.

Then for any to, tl, ", tn,

o--" n (using R),

if and only if

o h (tl) h n(tn) (using R’).

where h n denotes the n-fold composition of h. The set R is uniformly terminating if
and only if R’ is globally finite (because if R is not globally finite, then R is not uni-
formly terminating). By the Huet and Lankford result, this means there can be no
decision procedure for global finiteness. D

Thus we must be satisfied with finding conditions that are sufficient to guarantee
global finiteness. We begin with a simple sufficient condition that we can show is
syntactically checkable.

Define the size of a term to be the number of function and variable symbols it
contains. Denoting this Size(t), we have Size(f(g(x,f(x)))) 5, for example.

A rewrite rule, t---, u, is nonexpanding if for every substitution 0,
Size(0(t)) >/ Size(0(u)). Otherwise, a rewrite rule is called expanding.

A rewrite rule system R is said to be nonexpanding if and only if every rule in R
is nonexpanding; we also say that the rewriting relation of R is nonexpanding.

LEMMA 3.3. Ifa rewriting relation is nonexpanding, it is globallyfinite.
Proof. Since the relation is nonexpanding, if t---,*u then Size(u) < Size(t).

Also the only variables that can occur in u are those in t. Thus there are only finitely
many possibilities for u, and must be globally finite. D

The next lemma and theorem justify our claim that the nonexpanding condition
is syntactically checkable. We define Num(v, t) to be the number of occurrences of
the variable v in the term t.

LEMMA 3.4. LetO be the substitution [tl/ Vl, ,tk/ Vk]. Thenfor any term t,

Size (0 (t)) Size (t) + Num vj, t) (Size (tj) 1).
j=l

Proof. With suitable inductive definitions of Size and Num, the lemma follows
easily by induction on the structure of terms, t2

THEOREM 3.5. A rewrite rule, u, is nonexpanding ifand only if."

TERMINATION OF REWRITING SYSTEMS 195

1) Size(t) >/Size(u), and
2) for every variable v in t, Num(v, t) >/Num(v, u).
Proof. Let 0 be any substitution [tl/Vl, ,tk/vk]. By Lemma 3.3,

(*) Size(0(t)) Size(0(u))
k

Size(t)- Size(u) + (Num(vj, t)- Num(vj, u))(Size(t) 1),
j--1

from which it is obvious that if 1) and 2) hold, then (*) is always nonnegative,
implying that u is nonexpanding.

Now suppose 1) or 2) fails to hold. If 1) fails, the identity substitution would
make (*) negative. Suppose 2) fails, i.e., there is a v for which Num(v,t)<
Num(v,u). Then again (*) can be made negative: taking 0- [s/v] for some term s,
(*) simplifies to

Size(t)- Size(u) + (Num(v,t)-Num(v,u))(Size(s) 1),

which becomes negative when Size(s) is sufficiently large. Thus u fails to be
nonexpanding, t2

Requiring a rewriting relation to be nonexpanding is restrictive since there are
useful expanding but globally finite relations. For example, a set of rules for canoni-
calizing propositional formulas to their disjunctive normal form would include the
following distributive law which is expanding though the rewriting relation is glo-
bally finite.

x "(y+ z) x "y+ x "z.

This restriction does have the advantage of requiring only strictly local, rule at a
time, syntactic analysis. We have looked at relaxations of this restriction that
preserve this locality property. An approach to relaxing this restriction so that
rewrite rules using the if-then-else operator, which often arise in equational
specifications of abstract data types, can be handled is discussed in Appendix A. The
following two equations taken from a specification of the data type set specify one of
its operations, has ?, which tests for set membership.

has .9 (/,null) false,

has ? (/,insert (i’, s)) if i’ then true else has ? (i, s).

The rule, expressed using the if-then-else operator, corresponding to the second
equation is

has? (/,insert(i’,s)) if-then-else(i /’,true,has? (i,s)).

This approach can handle most rewriting systems that we have come across in
specifying abstract data types (Musser (1980)).

4. Searching for cycles. We remind the reader of our basic approach to proving
uniform termination" proving global finiteness, and proving there are no cycles in
the rewriting relation. We have dealt with global finiteness in the previous section,
and we now turn to the question of cycles. We assume we are given a term rewriting
system R- li---’ ri} whose rewriting relation is globally finite, and we wish to deter-
mine whether or not there is any cycle of terms

(*) to tl-- tn to

196 a. V. GUTTAG, D. KAPUR AND D. R. MUSSER

The following development of a method of searching for cycles is based on
some generalizations of notions that Knuth and Bendix (1970) used in testing for
uniform confluence.

4.1. Superpositions and derived pairs. The defintions of superpositions and
derived pairs depends on the important concept of "unification."

Two terms and u are said to be unifiable if there is a substitution 0 such that
O(t) O(u). 0 is called a unifier of and u, and whenever 0 is chosen so that it is a
factor of any other unifier 191 (i.e., 01 can be written as a composition 02.0 for some
02), then it is called a most general unifier (m.g.u.) of and u. It can be shown that
the m.g.u, of two terms, if it exists, is unique up to variable renaming.

Consider, for example, the terms: t= f(x,g,(y)) and u= f(h(z),w) and the
substitutions:

0= [h(g(u))/x,g(u)/z,g(y)/w] and
0= [h(z)/x,g(y)/ w].
01 unifies and u to the term f(h(g(u)),g(y)), and
0 unifies and u to the term f(h(z),g(y)).

01 is clearly not the most general unifier of and u since it is not a factor of 0 . 0 , on
the other hand, is the most general unifier of and u.

Two terms are said to overlap if one is unifiable with a nonvariable subterm of
the other. In determining whether an overlap exists, the variables of one term are
renamed, if necessary, so as not to conflict with those of the other term. Two terms
could overlap in many ways resulting in many superpositions as discussed below.

Let s and overlap. Their superposition is defined as either
a) s unifies with a nonvariable subterm t’ of t, by m.g.u. 0, in which case 0(t)

is called a superposition of s and t; or
b) unifies with a nonvariable subterm s’ of s, by m.g.u. 0, in which case O(s)

is called a superposition of s and t.
Consider, for example, the terms s x-lox and (x’oy’) The substitu-

tion 0= [x-1/x’,x/y ’] unifies x-lox with x’oy’. The resultant superposition of s
and is (x- x) z’.

Now consider ordered pairs of terms (r,s) and (t,u) such that s and overlap,
as above. (If the variables of must be renamed, the same renaming must be applied
to u.) Then along with the superposition O(t) or O(s) we obtain the derivedpair of
terms < p, q >, where

a) if s unifies with a nonvariable subterm t[i] by m.g.u. 0,

p [0 (t) with 0 (r) at i],

q=O(u);

b) if unifies with a nonvariable subterm s[i] by m.g.u. 0,

p=O(r),

q [0 (s) with 0 (u) at i].

In the case of a rewriting system R (l, r)}, the derived pairs obtained from
the pairs (ri, li) and (l, r) are called criticalpairs.

Consider, for example, obtaining a critical pair from the rewrite rules:
-1x oX e,

(X) Xoy oz o(y oz’).

TERMINATION OF REWRITING SYSTEMS 197

We begin by constructing the ordered pairs (e,x-lox) and ((x’y’)z’
x’(y’,z’)). As we saw earlier x-lox can be unified with x’oy’ using the substitution
O= [x-1/x ’, x/y’]. This leads to the derived pair < e oz’, x-l.(xz’)> which is a
critical pair of the rules.

The computation of critical pairs is central to the Knuth-Bendix test for
confluence (Knuth and Bendix (1970)). In this application, it is always the left-hand
sides that are superposed with each other. In the method of searching for cycles to be
described, we consider superpositions of the right- and left-hand sides as well.

4.2. Overlap closure. For a term rewriting system R, the overlap closure of R,
written OC (R), is the term rewriting system defined inductively as follows:

a. Every rule r s in R is also in OC (R).
b. Whenever r---* s and t---, u are in OC(R), every derived pair <p,q> of

(r,s) and (t,u) is in OC(R) (as p---’ q).
c. No other rules are in OC (R).

That each derived pair is in fact a rewrite rule is shown by the following:
LEMMA 4.2.1. Ifr, s,t,u are terms such that (r,s) and (t,u) are rewrite rules, then

every derivedpair < p,q> of(r,s) and (t,u) is also a rewrite rule.
Proof. One just has to verify that for each case in the definition of derived pair

that every variable that occurs in q occurs also in p. rn
Examples ofoverlap closures:
i. Let R--- {f(x)----, g(x)}, then Of(R)= R.

ii. Let R= {f(x)---* g(h(x)), h(x)---, k(x)}, then OC(R)-- R O {f(x)
g(k(x))}.

iii. Let R x (y z) (x y) z}, then from the superposition
(x o(x’y’)) z’ we obtain the rule

x .((x’.y’) .z’) ((x x’) .y’) .z’

and from the superposition (x o((x’oy’) oz’) we obtain

x (x’ (y’ z’)) (x (x’ y’) z’.

These rules then lead to further rules, and OC (R) is infinite.
iv. Let R= {f(x) g(x), g(h(x)) f(h(x))}. Then OC(R) consists of R

and the reflexive rules f(h(x)) f(h(x)) and g(h(x)) g(h(x)).
The name "overlap closure" comes from the fact that the rules of OC(R) are a

subset of the transitive closure of the rewriting relation of R:
LEMMA 4.2.2. Ifp"-" q is in OC(R) thenp ---,+ q (usingR).
Proof By induction on the construction of p---, q in OC(R). The basis of the

induction is the case that p---, q is included in OC (R) by virtue of being a rule of R.
Then obviously p---*+ q holds. If (p---, q) is included in OC(R) by being a derived
pair of (r,s) and (t,u) then by the induction hypothesis for the two rules (r,s) and
(t,u) we have r --,+ s and ---,+ u. By the definition of derived pair and the transi-
tivity of---,+, we then have p---*+ q. El

COROLLARY 4.2.3. IfOC(R) contains a reflexive rule, t--’* t, then the rewriting
relation fR has a cycle.

Preof Immediate from the Lemma. rn
We would like to have the converse of this corollary, that if the rewriting rela-

tion of R has a cycle, then OC(R) contains a reflexive rule. This would permit
searching for cycles by incrementally computing OC (R), looking for a reflexive rule.

198 1. V. GUTTAG, D. KAPUR AND D. R. MUSSER

While we have not been able to prove this in full generality, we will present in the
next section a restricted version and its proof. The proof is not easy, because the
overlap closure of R is in general much smaller than the full transitive closure of R.
It is this small size, relative to the transitive closure, however, that makes it feasible
to use the overlap closure as the basis of an approach to proving uniform termination
or at least, a useful notion of "restricted termination." These ideas will be discussed
in6.

5. Rewrite dominoes and overlal closure theorems. In order to be able to
develop and prove useful results about the overlap closure, we need to be able to
deal precisely with the various cases of overlap between successive applications of
rewrite rules in a rewrite sequence. We have found it useful to introduce a new
representation of rewriting that helps to make such cases clear.

The domino representation (or rewrite domino) of a rewrite rule is a rectangle
divided into left and right halves in which are inscribed tree representations of the
left and right terms of the rule. Function symbols in the terms are represented by
labelled circles in the trees. Variable symbols are represented by labeled rectangles,
called "variable boxes." For examples of some rules and their corresponding rewrite
dominoes, see Fig. 1.

RULE DOMINO

1. f(x,g(y,z)) g(f(x,y),z)

2. f(x,f(y, Z)) f(f(x,y), Z)

f(x, kO)"

4. h(x) fix)

5. h(x)""fix)

6. f(i(x),jgx))" m

FIG. 1. A set of rewrite rules and their corresponding rewrite dominoes.

TERMINATION OF REWRITING SYSTEMS 199

For each kind of domino (that is, each domino corresponding to a specific rule),
we assume there is an infinite stock of dominoes of that kind with their variable rec-
tangles filled in with all possible terms. For each such domino, we also assume an
infinite number of copies are available in the stock.

A sequence of rewrites can be represented by a domino layout, which is a two-
dimensional arrangement of dominoes that obeys the rules of matching correspond-
ing to those of term rewriting (2). Before giving the formal definition of a layout,
we refer the reader to an example of a rewrite sequence using the rules given in
Fig. 1 and its corresponding domino layout as shown in Fig. 2. Another example is in
Fig. 3, and the two layouts in Figs. 2 and 3 could be concatenated to give a single
longer layout.

We draw trees oriented sideways with the root at the left, and we will use nested
triangles to represent trees schematically. We will give a simultaneous inductive
definition of the terms layout, position ofa domino in a layout, adjacency of dominoes
in a layout, and right-end dominoes of a layout. (These definitions may seem tedious,
but are necessary to avoid dependence in proofs on intuitive geometric notions.)

The basis of the definitions is a unit layoutfrom to w: a horizontal arrangement
of a tree t, a domino, D, with trees u and v, and another tree w,

in which at some position, i, in (as defined in 2) there is a subtree t’ that is identi-
cal to u, ignoring the variable boxes that appear in u; and w is the tree
[t with v at i].

The position of D in this layout is i, and D is a right-end domino. A layout is
defined as follows: a unit layout is a layout; and if L is a layout from to to tl and L is
a unit layout from tl to t2, then the concatenation L+ of L and L 1, with tl deleted, is
a layout from to to t2. The position of the domino D1 of L1 in the new layout L+ is
the position of D1 in L 1. In L+, D1 is said to be adjacent to just those dominoes of
D and L that satisfy" D is a right-end domino of L and the position j of D is a prefix
of or is a prefix of j (recall that positions are sequences of natural numbers).
These dominoes are also said to be adjacent to D1, so that adjacency is a symmetric
relation. Finally, we say that D is a right-end domino of L+, and each domino of L
is a right-end domino of L+ if and only if it is a right-end domino of L and it is not
adjacent to D 1.

The examples in Figs. 2 and 3 illustrate a number of observations we can make
about this representation of rewriting:

1. Two dominoes that are not in the transitive closure of the adjacency rela-
tion represent rewrites of disjoint subterms. Thus in drawing layouts we
allow one of such a pair of dominoes to be placed above the other. In other
words, in a domino layout there is no distinction between different orders
of rewriting when the rules are being applied to disjoint subterms; e.g., the
layout in Fig. 3 would not be different if rule 5 had been applied before
rule 4 or before rule 3. One can think of these rules being applied in paral-
lel, since the order of application is always immaterial in this case. The lay-
out representation just makes this property especially evident.

200 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

TERMINATION OF REWRITING SYSTEMS 201

2. To the property that "the rightmost term of a rewrite sequence is terminal"
corresponds the property that "there is no way to play a domino on the lay-
out" (formally, there is no way to concatenate a unit layout onto the lay-
out). The layout is said to be blocked. (The layout in Fig. 3 is blocked.)

3. Thus the rules have the uniform termination property if and only if every
possible layout eventually is blocked. Equivalently, there are no infinite lay-
outs.

Our purpose with this representation of rewriting is to provide a conceptual tool
for finding and presenting proofs of new results about term rewriting systems. The
first result we will prove with the aid of rewrite dominoes is one that will allow us to
speed up the search for cycles by considering only those sequences of rewrites in
which a "major rewrite" occurs.

A rewrite to---* tl is called a major rewrite if it is by application of a rule, t---’ u, to
the entire term to; i.e., for some substitution 0, O(t)= t0and 0(u)= tl. When only a
proper subterm of to is matched, t0---’ is called a minor rewrite.

In a layout, a domino is called a major domino (of the layout) if it represents a
major rewrite, and a minor domino otherwise.

A major cycle is a cycle in which at least one of the rewrites is major.
THEOREM 5.1. Ifa rewriting relation has a cycle, it has a major cycle.
Proof. Let us define the corridor of a domino D in a layout to be the horizontal

rectangle containing all dominoes whose positions in the layout are equal to or
extensions of the position of D, using the definition of position as a sequence of nat-
ural numbers. (For example, in Fig. 3, the central domino has position 1.1 and its
corridor contains it and the top leftmost domino, which has the same position, but
does not contain the bottom leftmost domino, which has position 1.2, or the right-
most domino, which has position 1. The corridor of the rightmost domino contains
all of the dominoes of the layout.) If we add to a corridor of a domino D the
appropriate trees at either end, it forms a sublayout of the original layout, and D is a
major domino of this sublayout.

Any two corridors in a layout are either disjoint or one is contained in the other.
Therefore, we can determine a sublayout which has a domino that is major in it, as
follows: start with any leftmost domino and follow its corridor to the right; whenever
a domino is encountered that does not lie in the corridor, adopt its corridor. When
we reach the right end, we have a corridor containing a layout. If the whole layout is
cyclic, the sublayout corresponding to this corridor will be also, and will represent a
major cycle. El

"Major cycle" is a weaker notion than "prime cycle" introduced by Klop
(1980), i.e., every prime cycle is a major cycle but not vice versa. Consider for
example, the rewriting system, {f (x,y) f(y,x), a) b (), b) a () }. The
cycle

f(a(),b())--* f(b(),a())-- f(b(),b())

f(b(),a()) f(a(),a()) f(a(),b())

is a major cycle but is not a prime cycle because another cycle

a() b()-- a()

is contained in it. Klop also proves a result about prime cycles similar to
Theorem 5.1.

202 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

We now want to define some terminology and some manipulations of layouts
that will be useful in proving theorems about the overlap closure of a set of rules.
Consider an adjacent pair of dominoes in a layout. Let and u be the trees on the
adjacent halves, where a subtree t’ of is identical to u (possibly t’-- t):

OR

If either of t’ or u is contained entirely within a variable box, i.e., the match is
not between two nonvariable subterms, we say that the pair of dominoes is weakly
matched, and otherwise that it is strongly matched.

Examples. In Fig. 3, the domino pair

is weakly matched. Similarly the pair

that appears in the concatenation of the layouts of Figs. 2 and 3 is weakly matched,
while all the other adjacent pairs are strongly matched.

A term is said to be linear if no variable occurs in it more than once. A rewrite
rule is left-linear if its left term is linear and right-linear if its right term is linear.

Now suppose we have two weakly matched dominoes, as in Fig. 4a, where t’ is
contained in the x variable box. If the (s, t) domino is right-linear (i.e., is linear),
then the pair of dominoes can be transposed as follows: remove the (u, v) domino
from the layout and move the (s,t) domino to the right, so that copies of the (u, v)
domino can be inserted to the left of the (s, t) domino, one adjacent to each x box in
s (see Fig. 4b). Then the resulting configuration is still a layout, (the dominoes all
match, using the same set of rules) with the same end trees. This is the case also
when a symmetric kind of transposition is performed on a layout in Fig. 5a, produc-
ing the layout in Fig. 5b, where we assume that the (u, v) domino is left-linear.

Such transpositions cannot necessarily be performed on strongly matched domi-
noes, but we will define a different kind of manipulation for this case. Strong match-
ing corresponds to the concept of overlapping in the definition of derived pairs: if

TERMINATION OF REWRITING SYSTEMS 203

(a)

(b)

FIG. 4. Transposition of weakly matched dominoes, where left domino is right-linear.

(a)

(b)

FIG. 5. Transposition ofweakly matched dominoes, where right domino is left-linear.

204 .r.V. GUTTAG, D. KAPUR AND D. R. MUSSER

(r,s) and (t,u) are rules that have a derived pair <p,q>, then the dominoes
corresponding to (r,s) and (t,u) can be placed in a layout so that they are strongly
matched. The layout configuration shows just where the strong match occurs and
identifies a potential derived pair.

Suppose now that instead of our stock of dominoes corresponding to a given
rule set R, we have a stock corresponding to OC (R), the overlap closure of R. Then
for any strongly matched pair of dominoes in a layout there is a domino in our stock
which corresponds to a derived pair generated by the matching pair. By a technical
lemma proved in Appendix B, we can replace the strongly matched pair in the layout
by the "derived pair domino" thus identified, and the result will still be a layout with
the same end trees.

We are now in a position to prove:
THEOREM 5.2. Suppose the rewriting relation ofR is globallyfinite and every rule in

R is right-linear. If the rewriting relation of R has a cycle, OC(R) contains a reflexive
rule.

Proof. (By construction.) Let

(*) o n to
be a given cycle. Corresponding to (*) is a cyclic domino layout

where the dominoes correspond to rules of R. In fact since each of these rules is also
in OC (R), we may take this layout as a layout of dominoes corresponding to rules of
OC (R). We will show how to manipulate this layout to a form that shows there is a
reflexive rule t--’ in OC (R).

We describe the manipulations as an algorithm operating on the cyclic lay-
out (**).

Step 1. [Extract major cycle.] As in the proof of Theorem 5.1, extract from (**)
a sublayout representing a major cycle, making it the layout subject to the following
steps. Also replace to with its subterm matched by the layout.

Step 2. [Push major dominos to right end.] Manipulate the layout to a form in
which all of the major dominoes are together at the right end, by means of transposi-
tions or replacements by derived pair dominoes: whenever D is a major domino and
E is a minor domino adjacent to D on the right

either D and E are weakly matched, in which case they can be transposed, or they
are strongly matched, in which case they can be replaced by the derived pair domino
they define which is a major domino. This derived pair domino is also right linear,
as the lemma in Appendix C shows.

TERMINATION OF REWRITING SYSTEMS 205

Step 3. [Look for cycle among major dominoes.] There is now a nonempty
sequence of major dominoes D1, ,Dm at the right end of the layout:

These dominoes can only be strongly matched except for the case where the
right-hand side of D is just a variable, but shortly we will show that such a possibility
can be ruled out. If there is some contiguous subsequence Di, .,Dj that forms a
cyclic layout

then, since there can only be strong matches, these dominoes can be combined by
j- + 1 replacements into a single domino D that forms a cyclic layout:

Let D represent (p,q). Then there is a substitution 0 such that Uo---O(p) and
0(q)= u0, i.e., 0 unifies p and q. Furthermore, a derived pair of (p,q) and (p,q) is
the reflexive rule (O(p), O(q)). Since this is in OC(R), we terminate the algorithm.

Step 4. [Duplicate.] If no such subsequence exists, concatenate to the layout a
copy of the layout. Return to Step 2 with the resulting layout:

That concludes the statement of the algorithm. Before considering the question of
termination of the algorithm, we dispense with the detail mentioned in Step 3: the
case of adjacent major dominoes D and E where the right term u of D is just a vari-
able. We can assume the left term of D is not just a variable (if it were then it
would have to be the same variable as u and we would already have a reflexive rule).
Since the layout is cyclic, if we drop D from the layout, we obtain a layout that has as
its right end term a proper subterm identical to the left end term. From this we con-
clude that the term rewriting relation is not globally finite, contrary to assumption.
This contradiction rules out the case under discussion.

It is obvious that each step of this algorithm is effective and terminating. Overall
termination is guaranteed by the following facts:

a. At the k th execution of Step 2, the number of major dominoes, m, at the
right end is at least 2 k.

b. Let t’0k) denote the term to the left of D1 in the layout at the k th execution
of Step 3. Since each t’0) is derived from to and the rewriting relation is
globally finite, there are only finitely many distinct possibilities for t’0). By
a), then, there is one such term for which arbitrarily long layouts of major

206 ,. V. GUTTAG, D. KAPUR AND D. R. MUSSER

dominoes exist. Again by global finiteness, these layouts cannot all continue
without producing a term, u0, that is a duplicate of some term previously
obtained in the layout.

Since the algorithm always terminates, and does so with a reflexive rule in
OC (R), this proves the theorem. []

The corresponding theorem obtained by replacing "right-linear" by "left-
linear" can also be proved in a similar manner. Combining these theorems with
Corollary 4.3, we have:

THEOREM 5.3. Suppose the rewriting relation ofR is global&finite and every rule in
R is right-linear or every rule in R is left-linear. Then the rewriting relation of R is uni-
formly terminating ifand only ifOC (R) contains no reflexive rule.

In the next section we explore some applications of this theorem.
Recently, Dershowitz (1981) has proposed a "forward chain" construction for

rewriting systems and proved that a right-linear rewriting system is uniformly ter-
minating if and only if it has no infinite forward chains. However, for left-linear sys-
tems the analogous result requires that the left-hand sides of the rules be nonover-
lapping, a problem that we had independently encountered when considering the
forward chain construction and a similar backward chain construction. We were thus
led to invent the overlap closure construction. The following example from
Dershowitz (1981) illustrates the advantage of the overlap closure construction over
forward chains. Using the forward chain construction, it is not possible to determine
the nontermination of this left-linear rewrite system, as pointed out by Dershowitz.
The rewriting system is

f(a(),b(),x) f(x,x,b()),
b()---,a().

These rules have only two forward chains, both finite:

f(a(),b(),x) f(x,x,b()) f(x,x,a()), and b()---a(),

but we cannot conclude anything about the termination of the rules because they are
not right-linear and, although they are left-linear, the left-hand sides are overlap-
ping. But in the overlap closure construction, the rules have a derived pair rule

f(b(),b(),x)---* f(x,x,b()),

which, when overlapped with itself, gives the reflexive rule

f(b(),b(),b())---, f(b(),b(),b()),

as a derived pair, proving that the rules are nonterminating.
An open question about the power of the overlap closure construction is

whether the assumption of left-linearity or right-linearity is necessary. Although we
have not been able to find proofs of our results without this assumption, we have
also been unable to construct a counterexample.

6. Using the overlap closure. Theorem 5.3 implies that the uniform termina-
tion property for globally finite, right-linear (left-linear) rewrite systems is decidable
when the overlap closure is finite. Unfortunately, OC(R) will usually be infinite.

When OC (R) is infinite, Theorem 5.3 implies that nontermination is semidecid-
able. In our experience, if R is nonterminating, then there is a cycle involving terms
of size comparable to the terms in the rules. Since rules in OC (R) get very big soon,
we are likely to generate a reflexive rule very quickly.

TERMINATION OF REWRITING SYSTEMS 207

Theorem 5.3 has utility for proving "restricted termination," i.e., termination
for all terms in some set S. We describe this as termination over S. A particularly
interesting set to look at is the set of all terms of limited size.

LEMMA 6.1. Ifa rewriting relation arrow is globallyfinite and S isfinite, termination
over S is decidable.

Proof. For each element of S, we just have to follow all possible rewriting paths
until we either reach a terminal form or a cycle. By global finiteness, there can be
only finitely many such paths and each is of finite length, t

Let OC n(R)= {(/,r) in OC(R): Size(l) < n}. If R contains only nonexpanding
rules, then OCn(R) can be computed by starting with the empty set, inserting all
rules (l,r) of R such that Size(l) < n, and continuing to compute and insert derived
pairs until a set S is reached such that for any rules (r,s) and (t,u) from S any
derived pair (p,q) is either in S or has Size(p)> n. As for OC(R), checking
whether OC n(R) has a reflexive rule is better for deciding termination over set of
terms of size < n than the brute force approach suggested in the proof of the above
lemma, because the search space in the former case is reduced considerably.

LEMMA 6.2. Suppose R contains only right-linear (left-linear) and nonexpanding
rules. If OC n(R) contains no reflexive rule, R is terminating over the set ofall terms oJ
size n or less.

Proof. By contradiction. Suppose there is a cycle with terms of size less than or
equal to n; from the cycle, we will construct a reflexive rule in OC n(R) in the same
way as in the proof of Theorem 5.2.

Let the cycle be

tO-"* tm--’--’- to.

The size of ti is less than or equal to n; note that the size of each term in the cycle is
the same, as rules are restricted to be nonexpanding. Using the construction sug-
gested in the proof of Theorem 5.2, we can extract a major cycle. In Step 2, if the
rules are right-linear (left-linear), weak matches between adjacent dominoes are
transposed to the left (right). At the end of Step 2, there is a nonempty sequence of
major dominoes having terms of size k at the right (left) end of the domino layout.
If there is some contiguous subsequence that forms a cyclic layout, then there isa
reflexive rule in OC k(R). Otherwise, we do Step 4. Since all dominoes have terms of
size k, their derived pairs will be of size less than or equal to k. So, we will eventu-
ally get a reflexive rule in OC k(R). t

A reduction relation arrow is said to be canonical over S if it is terminating over
S and any two elements in S have the same terminal form if and 0nly if they belong
to the same -," equivalence class. Thus for a term rewriting relation that is canonical
over S, equations expressed using terms drawn from S are decidable by rewriting to
terminal forms and checking for identity. We have the following partial generaliza-
tion of Theorem 2.2.2.

THEOREM 6.3. Ifa reduction relation arrow is both terminating over S and uniformly
confluent, it is canonical over. S.

Remark. Uniform confluence, not just "confluence over S," is necessary here.
The following rewrite system illustrates this point.

a(x)---, h(x),

a (x) k(x).

208 J.V. GUTTAG, D. KAPUR AND D. R. MUSSER

If S= h(x),k(x)}, then clearly is both terminating over S and confluent over S,
but is not canonical over S, as h (x)--- k(x).

Proof. By contradiction. Let tl and t2 be in S for which arrow is not canonical;
i.e., tl and t2 belong to the same" equivalence class but they have different termi-
nal forms tl and t2.

where ,--* stands for either or If tl t’ 1, then t’l also has the terminal form
Otherwise, if t’l, then t’ has the terminal form by uniform confluence. Simi-
larly, for any t’i-- j, and j have the same terminal form tl. In particular, t2 has
the terminal form tl, but 2 is also the terminal form of 2 implying that tl t2.
Hence the contradiction, t3

The above theorem about restricted canonicity is useful only if it is possible to
prove uniform confluence (or more importantly to transform a given set of rules
into a uniformly confluent set of rules having the same equational theory as the orig-
inal set) in the absence of uniform termination requirement on the rule set. We have
attempted to modify the Knuth-Bendix algorithm to do this, but without success.
Peterson and Stickel (1981) remark that such an approach for establishing uniform
confluence is not likely to be successful, as it would allow one to prove the decidabil-
ity of the word equation problem over free semigroups in a simple way as follows:

Given the rule set for semigroups

x (y z) (x .y) z,

(x oy)oz---* x ,(y z);
to solve a word equation problem (i.e., for a pair of terms, tl and t2, whether there
exists a substitution of variables which make the resulting instances of and 2
equal in the theory of free semigroups), we add the following rules

h(t1) --’0,

h(t2)--* 1,

where h is a new function symbol distinct from all other function symbols appearing
in words. (0 and 1 are assumed to be distinct.) If the above set of rules is uniformly
confluent, then there does not exist any substitution 0 such that O(tl)= 0(t2) in the
theory of free semigroups; otherwise, such a substitution exists. The word equation
problem over free semigroups is a difficult problem which has been worked on for
over 20 years and only recently solved by Makanin who gives a very lengthy and
complex proof.

Proving restricted termination is useful in analyzing automatic implementation
of a data type generated from its algebraic specification as discussed in Guttag,
Horowitz, and Musser (1978). An implementation of an operation is essentially tak-
ing the expression corresponding to the operation invocation and simplifying it using
the rewrite rules specifying the operation behavior. It is possible to run such an
implementation and evaluate expressions whose termination can be proved a priori.
Analysis of the operation behavior is helpful in designing abstract data types.

Proving restricted termination is also useful in an OBJ-like system (Goguen and
Tardo (1979)) for designing specification of abstract data types and algorithms using
equational axioms. Axioms are viewed as unidirectional rewrite rules and
specifications are analyzed by interpreting expressions. OBJ has a memory mode in

TERMINATION OF REWRITING SYSTEMS 209

which during the simplification of expressions, rewriting of expressions in the pres-
ence of cycles is allowed. While rewriting a term, when a term from the set S whose
termination is proved is hit, there is no need to store the intermediate terms gen-
erated in the rewriting from that point onwards.

7. Conclusion. In rewrite rule theorem proving, as elsewhere, almost all of the
interesting questions are undecidable. A particularly interesting undecidable ques-
tion, with a number of practical ramifications, is whether or not a given set of rewrite
rules has the uniform termination property. The motivation behind the work
presented in this paper is the circumvention of this undecidability.

Our rather distinctive approach to this began with dividing the problem of prov-
ing uniform termination into the separable component problems of proving global
finiteness and proving acyclicity. We then dealt with the former by developing
sufficient conditions for establishing global finiteness. The conditions developed in
3 and Appendix A seem reasonably general, and, moreover, are computationally

easy to check. They are based on showing that every instance of each rule is nonex-
panding, a property for which we presented syntactically checkable necessary and
sufficient conditions.

Proving acyclicity, on the other hand, is not amenable to any kind of local, rule
at a time, analysis. Our approach to dealing with this problem started with the
development of a procedure that finds a cycle if one exists but may not terminate
otherwise. The obvious procedure for doing this, which is tremendously inefficient,
is based on the enumeration of all terms over the alphabet of the rewriting system.
Our procedure, which is closely related to the Knuth-Bendix procedure for con-
structing confluent sets of rewrite rules, is based on the computation of what we
called the overlap closure of the set of rewrite rules. In order to develop this pro-
cedure, we introduced in 5 a new model of term rewriting called rewrite dominoes.
The primary application of this model was to prove that a set of rewrite rules, pro-
vided they are all right-linear (or all left-linear) and globally finite, has a cycle if and
only if its overlap closure contains a reflexive rule.

This result implies that in the cases where the overlap closure computation ter-
minates we can decide uniform termination of the original set of rewrite rules.
Unfortunately the overlap closure is rarely finite. However, our procedure generates
the overlap closure in such a way that for any integer n we can generate a subset of
the overlap closure that is sufficient to decide whether or not there is a cycle in which
every term is of size n or less. This gives us a decision procedure for what we called
restricted termination. We conjecture that for certain classes of term rewriting sys-
tems, it should be possible to compute a bound, n, such that if a cycle exists, there
exists a cycle in which every term is of size n or less. For such classes, the overlap
closure would provide a decision procedure for uniform termination.

We have explored the utility of restricted termination in the application of term
rewriting with which we are most familiar, the algebraic specification of abstract data
types, and see a number of interesting ways to make use of it there. We suspect the
notion of restricted termination will be useful in other application areas, but we have
not investigated this. Investigations should also be made into the usefulness of the
overlap closure computation and the domino model of term rewriting systems for
the study of properties other than uniform or restricted termination.

210 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

Appendix A. Proving uniform termination of rules using if-then-else opera-
tor. In specifying abstract data types using equations, it is often useful to introduce
an auxiliary function if-then-else with the following semantics:

if-then-else(true,x,y) x,
if-then-else (false,x,y) y.

But the rewrite rules corresponding to the equational axioms using if-then-else are
often expanding; for example, consider the following rule:

has? i,insert(s, i’)) if-then-else(i= i’,true,has? i,s)).

We will only consider rewrite rules whose right-hand side may use if-then-else opera-
tor; their left-hand sides are assumed not to use if-then-else, except for the rules

if-then-else(true,x,y) x,
if-then-else(false,x,y) y.

The uniform termination of such rules can be proved by considering the termination
of a corresponding set of rules that do not use if-then-else operator, as the following
theorem shows. For a rule (l, r) in R, the corresponding set D ({ (l, r) }) of rules is
defined as:

D(URi) UD(Ri)

{(l,r)} if r does not use if-then-else.

D({(/,r)}) D({ (l, [r with b at i]),
(l, [r with e at i]),
(l, [r with e2at i])})

where if-then-else (b, e 1, e 2)
is a subterm of r
at position i.

A rule (l, r) expressed using if-then-else is called componentwise-nonexpanding if the
corresponding derived set of rules, D ({ (/,r)}), is nonexpanding. Similarly, the rule
set R is componentwise-nonexpanding if D (R) is nonexpanding.
6THEOREM A.1. IfR is componentwise-nonexpanding, then R is uniformly terminat-

ing ifand only ifD (R) is uniformly terminating.

Proof Since R is componentwise-nonexpanding, D(R) is nonexpanding and
hence globally finite.

(i) > (by contradiction)

Assume that D(R) is not uniformly terminating and R is. Since D(R) is globally
finite, there is a cycle to’--" tl tn=-- to, n > 0. This cycle must use a rule in
D ({ !---, r}) such that r contains the if-then-else operator, otherwise R would have a
cycle. From the above cycle, we can construct a sequence of rewrites in R such that
wherever a rule from the set corresponding to a rule in R using if-then-else is
applied in the cycle, we apply the rule in R. Let the sequence of rewrites be

t’n in that case contains to, which can be further rewritten. Thus we get an infinite
sequence of rewrites using R, implying R is not terminating, which is a contradic-
tion.

(ii) <= (by contradiction)

TERMINATION OF REWRITING SYSTEMS 211

Assume that R is not uniformly terminating and D(R) is. There are two possibili-
ties:

(a) R leads to an infinite sequence of rewrites.

to"* l"* tn’-*
Since R is componentwise-nonexpanding, there must exist i, j such that j > and
the subterm, t’i, in ti being rewritten at the + 1st step is a subterm in tj. From the
rewriting sequence

ti--" ...---tj, (*)

we can construct a finite set S of rewriting sequences in D(R) by following the
rewriting sequence (*) as follows:

(i) Initialize S to be t}.
(ii) At a rewriting step tk tk+l in which the subterm t’k at position m is

rewritten using the rule (l,r) of R,
(a) if r does not use if-then-else operator, discard sequences in S whose

last term does not have t’k at position m and extend other sequences in
S by rewriting t’k at position m using (l, r),

(b) otherwise, discard sequences in S whose last term does not have t’k at
position m and extend other sequences in S by rewriting t’k at positon
m in all possible ways using every rule in D ({ (l, r)}).

Thus S will have a sequence with its last term having t’ as a subterm. This implies
that D (R) is nonterminating.

(b) R has a finite cycle:

Using the same argument as in (a), it can be shown that D(R) also has a finite
cycle. []

The above theorem can be generalized to handle rules having the following
property: the rules use function symbols that have the following semantics and that
do not appear in the left-hand side of any rules other than the rules giving their
semantics;

f (i, Xl ,xn) xi, for 1 < i< n.

Note that if-then-else operator is a particular case of the above function symbol f
when n 2. So, for proving uniform termination of such rules, we derive from the
rules using these function symbols on their right-hand side, a corresponding set of
rules which do not use these function symbols and prove uniform termination of the
new set.

Appendix B. Proof of lemma used in Theorem 5.2.
LEMMA B.1. Suppose to-" tl using r--* s applied atposition i, tl t2 using t u

applied at i.j, and s[j] and overlap determining the derived pair <p,q>
<O(r),[O(s) withO(u) atj]>. Then to--* t2 usingp--, q applied at i. A similar result
holdsfor the case in which s unifies with a subterm oft.

Proof. Rename the variables of and u, if necessary, so that s and have no
variable in common. There is some subterm t0[i] and a substitution 01 such that
191 (r) to[i] and tl= to with 01 (S) at i].

Again, there is some subterm (i.j) and a substitution 0 such that
0(t) t[(i.j)] and t2-- [tl with O(u) at i.j].

212 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

Since the variables of s and are disjoint, we have (/91 I,.) 02) (s[j]) OI(S[j])’-
02(t) (01 I0 02) (t). That is, 01 LI 02 is a unifier of s[j] and and therefore has 0 as
a factor:

01 t.J 02 03.0, for some substitution 03.
Thus to[i]=Ol(r)= (010 02)(r)= (03oO)(r)= 03(O(r))= 03(p). That is, to is
matched by p at i. Now consider 03(q); it is

03 ([0(s) with O(u) at j])

[03(O(s)) with 03(O(u)) at j]

[01 (s) with 02(u) at j].

Thus t2 tl with 02(u) at .j]

[[towith 01(s) at i] with 02(u) at j]

[towith [01(s) with 02(u) at j] at i]

[to with 03(q) at i], showing that to t2 using p q applied at i.

We omit the proof of the case in which s unifies with a subterm of t. 2

Appendix C. Derived pair construction is (left, right) linearity preserving.
THEOREM C.1. If r-’-*s and t---’u are two right linear rules with disjoint variable

sets, then each oftheir derivedpairs, < p, q > is also right linear.
Proof. There are three cases:

(i) s unifies with the subterm t[i] of by their m.g.u. 0.

The corresponding derived pair < p, q > has

p [0 (t) with 0 (r) at i],

g---O(u).

Since s is linear, by the following lemma, substitutions for any two distinct variables
in t[i] in 0 do not have a common variable. The variables in other than the ones in
t[i] do not play any role. So O(u) is linear.

(ii) the subterm s[i] of s unifies with by their m.g.u. 0.

The corresponding derived pair < p, q > has

p=O(r),

q--- [0(s) with O(u) at i].

Since s[i] is linear, by the lemma, substitutions for any two distinct variables in in
0 do not have a common variable. So, O(s) and O(u) are linear. And, q is thus linear.

(iii) if subterms of s do not unify with or s does not unify with subterms of t,
then there are no derived pairs of r s and u. D

By a similar argument, it can also be proved that every derived pair of two left linear
rules is left linear.

LEMMA C.2. Let and u be unifiable terms with disjoint variable sets, andO be their
most general unifier. Let O* be the restriction of 0 to the variables of u, say
0 *-- [el/Vl, ,en/Vn]. Ift is linear, then all variables in el, ",en are distinct.

TERMINATION OF REWRITING SYSTEMS 213

Proof. For every variable x having k (> 1) occurrences in u, replace different
occurrences of x by distinct variables Xl, ",Xk that do not appear in and u. Let u’
be the resulting term which is linear.

By the following lemma, in the m.g.u. 0’ of and u’, substitutions for distinct
variables in and u’ do not have a common variable. Let tr x be the m.g.u, for the set
of terms O’(xi), 1 < i< k, the substitutions for the variables used to replace multiple
occurrences of x in u. If these o-x for every variable x having multiple occurrences
in u are composed with 0’, we get a unifier of and u.

In this unifier, substitutions for variables in u do not have a common variable.
From this, it is evident that the m.g.u. 0 of and u cannot have substitutions for
variables in u that share common variables. 2

LEMMA C.3. For two unifiable terms and u, if and u are linear, then the substi-
tutions in their m.g.u. 0 for any two distinct variables oft or u do not have common vari-

ables.
Proof. By induction on the structure in term t.
Basis. is a variable.
Then 0 (t)-- u and the statement trivially holds.
Inductive step. f ., n)
For and u to be unifiable, either u is a variable or u f(ul, "’’, Un). The

case of u being a variable is handled as in the basis step.
For the case u== f(ul, ",t/n) for each i, 1< i< n, ti must unify with u by

their m.g.u. 0 , say. By the inductive hypothesis, the statement holds for each of 0 .
Since and u are linear, the disjoint union of 0 , 1< i< n, is the m.g.u. 0 of and u.
It follows that the statement of the lemma holds for 0 also. D

Acknowledgments. The basic idea of conducting a search for repeated terms
(cycles) or subterms sprang from discussions in 1977 between one of the authors
(Musser) and Dallas Lankford. We thank P. Gloess, G. Huet, and J. Levy for their
interest and assistance in refuting some of our earlier conjectures, thus helping us
arrive at the notion of the overlap closure and the theorems of 5. We also thank
P. Narendran for assistance in constructing the proof of the theorems in
Appendix C, J. Goguen for discussions of the approach to term rewriting used in
OBJ, and M. O’Donnell for helpful comments and pointing out the relationship
between some of the definitions in 5 to Klop’s work.

REFERENCES

N. DERSHOWITZ, Termination oflinear rewriting systems preliminary version, in Automata, Languages, and
Programming, S. Even and O. Kariv, eds., Eighth Colloquium, Israel, Lecture Notes in Computer
Science 115, Springer-Verlag, New York, 1981.

J.A. GOGUEN AND J. TARDO, An introduction to OBJ-T, Proc. of Conference on Specification of Reliable
Software, 1979.

J.V. GUTTAG, E. HOROWITZ, AND D.R. MUSSER, Abstract data types and software validation, Comm. A.C.M.,
21 (1978), pp. 1048-1064.

G. HUET, Confluent reductions: abstract properties and applications to term rewriting systems, J. ACM, 27
(1980), pp. 797-821.

G. HUET AND D.S. LANKFORD, On the uniform halting problem for term rewriting systems, Rapport Laboria
283, INRIA, Paris, March 1978.

G. HUET AND D.C. OPPEN, Equations and rewrite rules: a survey, in Formal Languages Theory: Perspectives
and Open Problems, R. Book, ed., Academic Press, New York, 1980.

214 r. v. GUTTAG, D. KAPUR AND D. R. MUSSER

J.W. KLOP, Reduction cycles in combinatory logic, in To H.B. Curry, Essays on Combinatory Logic, Lambda
Calculus and Formalism, J.P. Seldin and R. Hendley, eds., Academic Press, New York, 1980,
pp. 193-214.

D.E. KNUTH AND P. BENDIX, Simple word problems in universal algebra, in Computational Problems in
Abstract Algebra, J. Leech, ed., Pergamon Press, New York, 1970, pp. 263-297.

D. MUSSER, Abstract data type speccation in the AFFIRM system, IEEE Trans. Software Engineering, 6
(1980), pp. 24-31.

G.E. PETERSON AND M.E. STICKEL, Complete sets of reductions for equational theories, J. ACM, 28 (1981),
pp. 233-264.

SlAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0001 $01.25/0

CONCURRENCY CONTROL BY LOCKING*

CHRISTOS H. PAPADIMITRIOUt

Abstract. We present a geometric method for studying concurrency control by locking. When there
are only two transactions, our method yields an exact characterization of safe locking policies and also of
deadlock-free locking policies. Our results can be extended to more than two transactions, but in that case
the problem becomes NP-complete.

Key words, database, concurrency control, transaction, locking, two-phase locking, geometry of
locking, serializability, safety, NP-complete problems

1. Introduction. A database consists of a set of named data objects called entities.
The values of these entities must at any time be related in some ways, prescribed by
the integrity constraints of the database. When a user accesses or updates a database,
she/he may have to violate temporarily these integrity constraints, in order to restore
them at some later time, with the specific data changed. For example, in a banking
system, there may be no way to transfer funds from an account to another in a single
atomic step, without temporarily violating the integrity constraint stating that, say,
the sum of all balances equals the total liability of the bank. For this reason, several
steps of the interaction of the same user with the database are grouped into a
transaction. Transactions are assumed to be correct, that is, they are guaranteed to
preserve consistency when run in isolation from other transactions.

When many transactions access and update the same database concurrently, the
consistency of the database may fail to be restored after all transactions have been
completed. If, for example, transaction 1 consists of the two steps

x:=x+l, x :=x-1

and transaction 2 of the single step

x := 2 x,

and the consistency requirement is simply "x-0", then executing transaction 2
between the two steps of transaction 1 turns a consistent database into an inconsistent
one. This is despite the fact that both transactions are individually correct; that is,
each preserves database consistency when run alone. We must therefore find ways to
prevent such undesirable interleaving without excessively harming the parallelism and
overall efficiency of the system. This is the database concurrency control problem,
already discussed extensively in the literature (see [Pa2], [EGLT1], [EGLT2], [SLR],
[BGRP], [Pal], [KP], [Ya], [SK]).

Since we assume that each transaction is by itself correct, a reasonable goal for
the database concurrency control mechanism would be to rearrange the steps of the
transactions so that the resulting sequence of steps is serializable. This means that its
effect is as though the transactions executed without any interleaving, one after the
other in some order. Serializability has been widely recognized as the right notion of
correctness (e.g. [EGLT1], [SLR], [Pal]). In fact, in [KP] we show that it is the most
liberal notion of correctness possible, when only syntactic information (i.e., the names
of the entities accessed at each step) is available. We denote the set of all serializable
schedules by SR.

Received by the editors December 15, 1981, and in revised form June 7, 1982.
? Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139, and National Technical University of Athens, Greece.

215

216 CHRISTOS H. PAPADIMITRIOU

A very common way for implementing concurrency control is locking. In this
method each entity is equipped with a binary semaphore--its lockmand transactions
synchronize their operation by locking and unlocking the entities that they access.
The lock-unlock steps are inserted in a transaction according to some locking policy.
A locking policy may have the property that, if all transactions are locked according
to it, then any interaction is guaranteed to be serializable. Such a locking policy is
called safe. A classical example of safe locking policies is the two-phase locking (2PL)
policy proposed in [EGLT1]. In 2PL a transaction must lock an entity before accessing
it, and must not unlock it until after the last access of the entity, and after the last
lock of the transaction is granted. Thus a transaction has two phases: the locking phase,
during which the transaction requests (but does not release) locks, and the unlocking
phase, during which locks are released but not requested. 2PL is a safe locking policy
[EGLT1]. Another safe locking policy is the tree policy of [SK], in which the entities
are arranged in a tree, typically one reflecting some logical or physical structure, and
transactions access whole subtrees. An entity may be locked only if its father entity
is currently locked. This tree policy can be further generalized to the digraph policy
and the hypergraph policy [Ya]; the latter is shown in [Ya] to be the most general
safe locking policy possible, in the sense that all safe policies can be considered as
special cases of the hypergraph policy.

In [Pall, [KP] we proposed a measure whereby the performance of concurrency
control mechanisms in general--and locking policies in particular--can be evaluated
in a uniform setting. This measure is expressed in terms of the class of all sequences
of transaction steps that can be the response of the concurrency controller to a stream
of execution requests. The richer this class, the fewer unnecessary delays and rearrange-
ments of steps will occur, and the greater the parallelism supported by the system.

In this paper we study safe locking policies in a theoretical, unifying way. In 2
we describe our model and define our terminology.

In 3 and 4 we characterize safe locking policies. We first give a characterization
of safety for the case of two transactions. To do so, we employ a geometric methodology
reminiscent of that used by Dijkstra for studying deadlocks ICES], [CD]. Here we
use it in a very different way to study incorrect completions. (We ignore deadlocks, as
seems reasonable to do in view of their limited significance in this context; see [GLPT].)

Besides its independent interest and elegance, the two-transaction solution is the
building block for resolving the general case (4). It turns out that a locking policy
defined on d > 2 transactions is safe if and only if all of its two-transaction subsystems
are safe, plus a combinatorial condition. This combinatorial condition turns out to be
NP-complete, but it is simple enough to have some interesting corollaries. For example,
all specific locking policies mentioned above can be shown to be safe as immediate
consequences of the condition.

Versions of several of the results in this paper--in particular those in 4--were
independently obtained by Mihalis Yannakakisnsee the first part of [Ya]. Both our
results and those in [Ya] were announced in a joint extended abstract [YPK].

2. Definitions. A transaction system z {T1,’’’, Ta} is a set of transactions. A
transaction Ti (Ti 1, , T,,,) is a sequence of actions or transaction steps. Each action
Tij has associated with it an entity, xij E, where E is a set of entities. The xii’s need
not be distinct.

Each action Tii is thought of as the indivisible execution of the following:

ri] ti] := Xii

Xii := fii(til, tii).

CONCURRENCY CONTROL BY LOCKING 217

The first instruction stores the current value of xij to a local variable tsj, not in E,
and the second changes xi in the most general possible way based on all available
local (to the transaction) information. The tsi’s are all distinct. A schedule (or history)
s of " is a permutation of all steps of z such that/’ < k -< ms implies s (Ti) < s (Tk). The
set of all schedules is denoted by S. s is called serial if, for all and/" < ms, s(Ti)+ 1
s(T.j/l). Two schedules are equivalent if they are equivalent as parallel program
schemata with uninterpreted/si’s; s is serializable (notation: s SR) if it is equivalent
to some serial schedule.

Deciding serializability of a schedule s is known to be an NP-complete problem
if we distinguish between reading and writing steps [Pa], [PBR], .but can be easily
done in our model of actions as follows [EGLT1]: Construct a digraph D(s) by
associating a node with each transaction T and drawing an arc (Ti, T.) whenever, in
the schedule s, Ts updates an entity before T does. Then s is serializable if and only
if D (s) is acyclic.

A locked transaction system L(z) is a special augmented version of the (ordinary)
transaction system -. The operator L performing this augmentation is called a locking
policy. A locking policy transforms each transaction of - by inserting lock x and unlock
x steps, x E, according to the following rules:

(1) For each entity x there is at most one lock x step in each transaction. If it
exists, then there is also a unique subsequent unlock x step.

(2) Every access to an entity x is surrounded by a lock-x-unlock-x pair.
Let s be a schedule of L(-). s is said to be legalmnotation: s G(L(-))--if and

only if between any two occurrences of lock x in s there is an occurrence of unlock
x. Let L-1 be the operator that removes all lock-unlock steps; the set L-(G(L(-)))
O(L) for short--is the output set of the locking policy L, and it captures the essential
amount of parallelism supported by L.

We say that a locked transaction system L(z) is safe if and only if any schedule
in O(L) is serializable. We say that it is deadlock-free if and only if for any legal prefix
p of a schedule of L(-), there is a suffix s such that p s G(L(-)).

Given a transaction system -, there are certain well-known locking policies that
can be applied to it. One is the two-phase locking (2PL) policy [EGLT1]. In it we
insert locks surrounding the accesses of all entities in each transaction, subject to the
following rule: The last entity to be locked is locked before the first entity is unlocked.
Thus, a transaction is divided into two phases: the locking phase, during which locks
are acquired but not released, and the unlocking phase, in which locks are released
but not requested. Notice that this does not uniquely define a locking policy; it is in
fact a family of locking policies. In an extremely conservative interpretation, we could
lock all entities before the first step, and unlock them after the last. More reasonably,
we could request for entities at the first step that they are accessed, and release locks
at the end of the transaction. In fact, it is shown in [KP] that the latter interpretation
of 2PL is the best possible concurrency control, when syntactic information is acquired
in an incremental, dynamic manner (best in terms of the parallelism allowed). It was
first shown in [EGLT1] that 2PL is safe (though not deadlock-free).

If the entities are unstructured (that is, transactions access them in all possible
permutations of orders and patterns) then 2PL is the best possible locking policy.
Suppose, however, that the entities form a tree, and are accessed by transactions as
follows:

(a) A transaction accesses a subtree, whose root is the first entity to be accessed
(after, of course, it is locked).

(b) After this, when an entity is locked, its parent must be locked and not yet
unlocked.

218 CHRISTOS H. PAPADIMITRIOU

Then this family of locking policies, called the tree policy, is shown in [SK] to be
both safe and deadlock-free. This holds for the more general digraph policy of [Ya].
In fact, the latter is generalized in [Ya] to the hypergraph policy which, it is proved,
is the most general possible safe policy.

In this paper we are only discussing what is known as the exclusive version of
locking. There are, however, variants of locking in which locks of different kinds are
defined (e.g., shared locks or read-locks, intention locks, etc.). Certain kinds of locks
may coexist with others, whereas certain other kinds cannot. In [Pa3] we show that
in some respects these more general kinds of locking behave in a way very similar to
ordinary exclusive locks. It appears that the results of this paper can be quite easily
generalized to these kinds of locks.

3. The geometry of locking. Consider a transaction system - consisting of two
transactions, T1 and T2. In the coordinate plane (Fig. 1) take the two axes to correspond
to T1 and T2, and the integer points 1,2, etc., on these axes to correspond to the steps
Tt, T2, etc. (respectively T2, Ta2, etc.) of the transactions. A point p may present

T TI2 TI3
lock y !ock x x y unlock x unlock y

FIG.

a possible state of progress made toward the completion of Tt and T2. T1 and T2 will
in general be locked transactions and will therefore contain properly nested lock-
unlock steps. Each entity x such that both T1 and T2 contain a lock-x-unlock-x pair,
has the effect of creating a forbidden region (a rectangle delimited by the grid lines
corresponding to the four lock x or unlock x steps), the points of which represent
unreachable states (see Fig. 1). Adding such rectangles to the plane has some con-
sequences. For example, the point u is now unreachable, yet not in any rectangle; in
contrast, point d is a state of deadlock.

What is the geometric image of a schedule? A schedule is a nondecreasing curve
from the point (0, 0) to the point (m + 1, m2 + 1), not passing through any other grid
point, nor through any rectangle (e.g., h in Fig. 1). (In fact, a schedule is more precisely

CONCURRENCY CONTROL BY LOCIING 219

a class of such curves, all of which cross the same line segments of the grid.) To read
the schedule off any such curve, we simply enumerate the grid lines that it intersects.
For example, in Fig. 1 h TllT12T13T14T15T21T22T16T23T24T25T26. The two serial
schedules are represented by the curves Sl and s2 in Fig. 1.

Let h and h’ be schedules such that h h lSlS2h2, h’= hlS2Slh2, and S, S2 are
steps not updating the same variable. We then write h--h’. Let be the transitive-
reflexive closure of -. The following fact has appeared many times in the literature
[EGLT1], [PBR], [Pal].

LEMMA 1. Let h, h’ be schedules. Then h =- h’ if and only if h *.Z.h,.
Consider the point set S [0, m + 1] [0, m2 + 1J-R, where R is the set of all

forbidden rectangles. In other words, S is the relevant nonforbidden region of the
plane. Let c be the set of all nondecreasing curves from (0, 0) to (m + 1, rn2 + 1) in
S. We can partition these curves into homotopy classes. Two curves in c4 are homotopic
if their union can be shrunk into a single point. In Figure 2, for example, hi and h2
are homotopic, whereas h and h3 are not (since they "enclose" a forbidden rectangle).
Homotopy is an equivalence relation in c4. Also, if two curves represent the same
schedule, then they are homotopic.

T2

FIG. 2

LEMMA 2. TWO schedules are equivalent if and only if any two corresponding
curves are homotopic.

Proof. We first notice that condition (a) in our definition of locking has as a
consequence that every forbidden rectangle contains a grid point (Ti, T2.) such that
Ti and T2j update the same entity x; and conversely, any such point is surrounded
by a forbidden rectangle. It follows that two curves in c4 are homotopic in [0, m + 1 x
[0, m2 + 1 R if and only if they are homotopic in [0, m + 1 [0, m2 + 1 P, where
P is the set of all points (Tli, T2j) such that TI and T2j update the same entity. Now
any two curves h, h’ c are homotopic in [0, rn + 1] x [0, rnz + 1 P if and only if h
can be transformed into h’ via a continuous transformation, avoiding all points in P.
Such a continuous transformation can be broken down into finitely many transforma-
tions of one of the following two types"

(a) transformations that do not change the schedule represented by the curve
(Fig. 3a),

(b) transformations in which the curve crosses a grid point not in P. (Fig. 3b.)
Type (a) leaves the corresponding schedule unchanged. Also, type (b) changes

the schedule h into a h’ such that h h’. Therefore, we have from the above discussion
that two curves are homotopic if and only if the corresponding schedules satisfy
h’*---h; or, by Lemma 1, if and only if h --h’. El

220 CHRISTOS H. PAPADIMITRIOU

(a) (b)

FIG. 3

Since the two serial schedules are s and $2 Of Fig. 1, we conclude from Lemma
2 that nonserializable schedules are exactly those that are homotopic to neither.

THEOREM 1. A schedule is not serializable if and only if the corresponding curve
separates two rectangles.

Thus h and hE in Fig. 2 are serializable schedules, whereas h3 is not. Hence -is unsafe.
Certain further geometric concepts help illuminate the concept of safety of

two-transaction systems. Let R be any subset of the plane, possibly disconnected. We
call two points (xl, yl) and (X2, Y2) in the plane incomparable if (Xl--X2) (y--y2)<0
(points p and q in Fig. 4). Then R is said to be closed if, for any two incomparable
points (xt, y) and (x2, Y2) that are connected in R, the points (xa, Y2) and (x2, yl) are
also in R. The closure of R is the smallest closed region that contains R. Notice that
closure (R) is always well-defined (see Fig. 4).

rectthnear region R is closed, then R is the regionLEMMA 3. If a connected
contained between two increasing curves that intersect only at their endpoints.

FIG. 4

Proof. The boundary of a rectilinear region R is not as in the lemma only if it
contains a fragment like

In both cases closedness is contradicted.
We make here the following helpful observation: The forbidden rectangles corre-

sponding to two locked transactions have the property that each of their edges has a
unique ordinate or abscissa. As a consequence, the same is true for the rectangles

region is called rectilinear if it is the union of rectangles with edges parallel to the axes.

CONCURRENCY CONTROL BY LOCKING 221

comprising the closure of the forbidden region, as the closure of a rectilinear region
has rectangles with ordinates and abscissas among those of the original rectangles. A
helpful corollary is that components of the closure may not accidentally "touch" at
a line, or just a point. If they are disconnected, they are clearly divided by corridors
of width one. Therefore, a nondecreasing curve avoiding all components can always
be turned to one that avoids all grid points (except (0, 0) and (ml + 1, m2 + 1)).

p-

(m + I, m2+l

FIG. 5

LEMMA 4. Let R be a closed (possibly disconnected) rectilinear subset of [0, m +
1] [0, mz + 1], and let p be a point in [0, m + 1] x [0, m2 + 1]-R. Then there is a
nondecreasing curve from (0, O) to p and from p to (m + 1, m2 + 1) in [0, m + 1]
[0, m2+ 1]-R.

Proof. We shall only prove the second claim, as the first is completely symmetric.
From p we first go parallel to the x-axis to increasing x’s, see Fig. 5. If we do not
"hit" a component of R, we are done; otherwise, we follow the nondecreasing curve
in the boundary of the component (Lemma 3) and when it ends we again proceed
parallel to the x-axis. It is clear that we shall eventually reach the x m + 1 line.

THEOREM 2. r is safe if and only if the closure of the union of the forbidden
rectangles is connected.

Proof. Suppose that r is unsafe. Then, by Theorem 1, there is an increasing curve
h from (0, 0) to (ma / 1, m2+ 1) which separates two rectangles rl and r2. Consider
the region that consists of all grid squares not touched by h. This region is closed,
contains all rectangles and is disconnected, and each of its components contains a
rectangle. It follows that the closure of the forbidden region is the union of two
nonempty subsets of the two components, and thus it is disconnected.

For the "if" direction, suppose that the closure is disconnected. There are two
cases. Either there is a vertical line which hits two components of the closure, or there
is not. In the second case (Fig. 6a) there is a vertical line which separates two com-
ponents-and thus a nondecreasing curve, consisting of two horizontal and one vertical

(a)

FIG. 6

(b)

222 CHRISTOS H. PAPADIMITRIOU

line segments, which also separates two components. In the first case, (Fig. 6b) consider
this line, and a point p on it that is in between the two components. By Lemma 4,
there is a nondecreasing curve from (0, 0) to p and one from p to (rn + 1, mz + 1).
Their union is a nondecreasing curve that separates the two components.

In a rectilinear region R we can define the lower-lett boundary, LLB (R), to be
the union of all horizontal segments that are lower boundaries of R, together with all
vertical segments that are left boundaries of R (that is, LLB (R) is the set of all points
(x, y) such that (x + 6, y + e) R whereas (x 6, y e) R, for all 6, e > 0). The proof
of the following result is now straight forward.

THEOREM 3. r is deadlock-free if and only if LLB (R) LLB (closure (R)), where
R is the union o] the forbidden rectangles.

Theorems 2 and 3 lead to fast algorithms for the solution of the safety and
deadlock problems for locked transaction systems [LP]. There are other insights that
are offered by this geometric viewpoint. For example, the correctness of 2PL has now
become very intuitive. 2PL says that all rectangles must contain the point p whose
projections pl and Pz mark the phase-shift points of the two transactions (see Fig. 7).
Thus the rectangles are certainly connected, so is their closure, and the correctness
of 2PL follows immediately from Theorem 2.

un!ocking
pnase

_
locking phase

lo.c king.J p [- unlocking
phase phase

FIG. 7

4. More than two transactions. Consider now a set of d > 2 locked transactions
r {T1,"’, Td}. We wish to study the problem of safety of r. If any subset of r with
two transactions is unsafe, then clearly so is r. Define the graph G(r)= (r,A) with
transactions as nodes, and with ITs, T.] A if and only if T and T update a common
entity. From our assumption above it follows that, for any ITi, T] A, the closure of
the forbidden region on the (Ti, T)-plane is connected. Therefore, any schedule h of
r will have a projection on the (T, T.)-plane that is either equivalent to TT. or
equivalent to T.Ti (see Fig. 8). In the first case we write T <h T., and in the latter
T. <h Ti.

LZMMA 5. h is serializable if and only if (r, <h) is acyclic.
Proofi The lemma follows by observing that (-, <h) is exactly the digraph con-

structed for testing the serializability of h in 2. 71.
Therefore, for r to be safe, for each directed cycle that corresponds to an

undirected cycle in G(r) there must be a reason why no h exists that has this same
cycle in the graph of <h. Intuitively, the reason is that there is a contradiction in the
order in which the curve of h intersects the prisms with bases marked
P1, P2,’’ ’,O1, O2 in Fig. 8. This is captured as follows" With each pair
([T/, T]], [T/, Tk]) of edges in A we associated a digraph Biig. The vertices of this

CONCURRENCY CONTROL BY LOCKING 223

(a) (b)

FIG. 8

digraph are the vertices p,,, qn of the P, and Qn regions (see Fig. 8). There is an arc
from u to v if and only if (a) either u is a p,, or v is a q, (or both), and (b) the
Ts-coordinate of u is smaller than the Ts-coordinate of v. The construction is illustrated
in Fig. 8b. Finally, if C is a directed cycle corresponding to a simple undirected cycle
in G(’), we let Bc be the union of all Bisk digraphs for all consecutive triples (T,., Ts, Tk)
of C. The result is the following:

THEOREM 4. " is safe if and only if
(a) the restriction of - to any two transactions is safe, and
(b) for all directed cycles C corresponding to undirected simple cycles of G(’), the

digraph Bc has a cycle.
Proof. We shall assume throughout the proof that condition (a) holds, as otherwise

both directions are easy. Suppose that - is unsafe, and yet (b) holds. Then there is a
schedule h such that < has a simple cycle C. By condition (b), Bc has a cycle.
Consider, however, the order whereby h enters (equivalently, leaves) the different
prisms Pi, Oi, etc., appearing in Bo This order must be, by the construction of Bc,
consistent with the arcs in Bo This, however, is a contradiction, since Bc was assumed
to have a cycle, and therefore to be inconsistent with any linear order.

Conversely, suppose that (b) does not hold; suppose, that is, that there is a
directed cycle C such that Bc is acyclic. Let (pl, ql,’" ’) be a linear order consistent
with Bo We construct a nonserializable schedule h of z as follows: We first arrange
all transactions not appearing in C in some serial order. We then execute the
transactions in C by starting with all program counters to 0, and by successively
considering the next point in the order. If this point lies on the (T, Ts)-plane where
(T, Ti) e C, then we proceed by arranging the steps of T and then the steps of T that
bring the state to the point considered. Since the order is consistent with Bc, this will
always be possible; after the last point we somehow schedule all remaining steps. It

224 CHRISTOS H. PAPADIMITRIOU

is easy to see that, if h is the resulting schedule, then (-, <h) contains the cycle C,
and therefore h is not serializable. 71

Based on Theorem 4, we obtain extremely easy proofs of correctness of several
locking policies:

COROLLARY 1. Any transaction system obeying 2PL is safe.
Proof. That the two-transaction subsystems of any transaction system that obeys

2PL is safe follows trivially from Theorem 2, as discussed in the end of the previous
section. Property (b) of Theorem 4 follows from the fact n 2PL the graphs Bijk are
complete bipartite.

COROLLARY 2. Any transaction system obeying TP is safe.
Proof. Since the common variables of any two transactions form a rooted tree in

TP, condition (a) of Theorem 4 is trivial. Condition (b) also follows easily from the
tree structure.

Consider now the special case in which any two transactions have at most one
variable in commonmor, equivalently, the closure of the forbidden region on all planes
is either empty or rectangular.

COROLLARY 3. Under the above assumption - is safe if and only if each of the
restrictions of " to every biconnected component of G(-) obeys 2PL.

Another consequence of Theorem 4 is an algorithm for checking a transaction
system for s.afety.

COROLLARY 4. Checking a transaction system -for safety can be done in time
polynomial in the number of minimal cycles of G(-).

In general, of course, G(z) will have an exponential number of minimal cycles,
and thus Corollary 7 does not imply a genuine polynomial-time algorithm. In fact,
such an algorithm is quite unlikely in view of the next result:

THEOREM 5. Testing a transaction system for nonsafety is NP-complete.
Proof. Recently Fortune, Hopcroft and Wyllie [FHW] showed that almost all

digraph homeomorphism problems--specifically, those whose pattern is not a rooted
tree of depth oneuare NP-complete. From their results one immediately deduces
that the following problem is NP-complete"

"Given a digraph D (V, A) and four arcs (/31, v2), (/32, v3), (Ul, u2), (//2, u3)A,
is there a simple cycle C of D such that C (vl, v2, v3, ul, u2, u3, vl)?"

We shall reduce this problem to the nonsafety problem. Given a digraph D
(V,A) and four arcs (/31, v2), (v2, v3), (u, u2), (u2, u3) we shall construct a locked
transaction system - such that C exists in D if and only if - is unsafe. - has one
transaction Tv for each node v of D. Let us assume that for no nodes u, v V, does
A contain both (u, v) and (v, u)--that is, A f’lA-1= (it is easily seen that this is
not a loss of generality, since a new node can always be placed in the middle of an
arc). We shall next describe the graphs Buvw for (u, v), (v, w) A. Unless (u, v, w)=
(U l, U2, //3) or (vl, /32, /33), Buw is the graph shown in Fig. 9a, realized as shown in
Fig. 9b. For these two triples, B,vw is as shown in Fig. 9c, realized as in Fig. 9d.

Consider now any simple cycle in D. The corresponding union of the B,vw’S will
consist of concatenations of graphs such as in Figs. 9a and 9c. It is easy to see that
such a concatenation is acyclic only if it contains at least two copies of Fig. 9c, that
is, only if C passes through (vl, v2, v3) and (u l, u2, u3). Conversely, consider any
directed cycle C, whose undirected version is a simple cycle in G(’), such that Bc is
acyclic. If, however, any arc (u, v) of C is not in ANthat is, (v, u)Amthen Bc will
contain two complete bipartite graphs corresponding to (u, v), its predecessors and
its successor edge in C (by the construction in Fig. 9b, d). It follows easily that Bc
could not be acyclic. Thus all arcs in C are also in A, and in fact, since Bc was acyclic,
all four (vl, v2), (v2, v3), (u, u2), and (u2, u3) are in C. The theorem follows. I-]

CONCURRENCY CONTROL BY LOCKING 225

p p’

(a)

T

(b)

p p’

q

(cl

TvB
(d)

FIG. 9

Consequently, we can view Corollary 3 as suggesting an efficient algorithm for a
special case of the NP-complete problem of nonsafetyunamely, the case in which
any two transactions interact by at most one entity. The result is tight, since the proof
of Theorem 5 (see Figs. 9b, d) suggests that the problem remains NP-complete when
two entities per pair of transactions are allowed.

[AHU]

[BGRP]

[CD]

[CES]

[EGLT1]

[EGLT2]
[FHW]

[GJ]

[GLPT]

[Ka]

[KM]

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

P. A. BERNSTEIN, M. GOODMAN, J. B. ROTHNIE AND C. H. PAPADIMITRIOU, Analysis

of Serializability of SSD-1: A system of distributed databases (The fully redundant case),
IEEE Trans. Software Engng, SE-4 (1978), pp. 154-168.

E. G. COFFMAN, JR. AND P. J. DENNING, Operating Systems Theory, Prentice-Hall, Engle-
wood Cliffs, NJ, 1973.

E. G. COFFMAN, JR., M. J. ELPHICK AND A. SHOSHANI, Systems deadlock, Comput.
Surveys, 3 (1971), pp. 67-68.

K. P. ESWARAN, J. N. GRAY, R. A. LORIE AND I. L. TRAIGER, The notions of consistency
and predicate locks in a database system, Comm. ACM, 19 (1976), pp. 624-633.

On the notions ofconsistency andpredicate locks, IBMResearch Report RJ 1487,1974.
S. FORTUNE, J. E. HOPCROFT AND J. WYLLIE, The directed subgraph homeomorphism

problem, Theoret. Comput. Sci. 10 (1980), pp. 111-121.
M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman, San Fransisco, 1978.
J. N. GRAY, R. A. LORIE, G. R. PUTZOLU AND I. L. TRAIGER, Granularity of locks and

degrees of consistency in a shared data base, IBM Research Report RJ 1654, 1975.
R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Compu-

tations, R. E. Miller and J. W. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.
R. M. KARP AND R. E. MILLER, Properties ofa modelfor parallel computations: Determinacy,

termination and queuing, SIAM J. Appl. Math., 14 (1966), pp. 1390-1410.

226 CHRISTOS H. PAPADIMITRIOU

[KP]

[LW]

[LP]

[Pal]

[Pa2]
[Pa3]
[PAR]

[SK]

[SLR]

[Ya]

[YPK]

H. T. KUNG AND C. H. PAPADIMITRIOU, An optimality theory of concurrency control for
databases, Proc. ACM-SIGMOD Conference, 1979,

Y. E. LIEN AND P. H. WEINBERGER Consistency, concurrency, and crash recovery, Proc.
ACM-SIGMOD Conference, 1978,

W. LIPSKI, JR. AND C. H. PAPADIMITRIOU, A fast algorithm for testing for safety and
deadlocks in locked transaction systems, J. Algorithms, 2 (1981), pp. 211-226.

C. H. PAPADIMITRIOU, Serializability of concurrent updates, J. Assoc. Comput. Mach., 26
(1979), pp. 631-653.
, The Theory ofDatabase Concurrency Control, monograph, in preparation.
, On the power of locking, Proc. 1981 SIGMOD Conference
C. H. PAPADIMITRIOU, P. A. BERNSTEIN AND J. B. ROTHNIE, Computational problems

related to database concurrency control, Conference on Theoretical Computer Science,
University of Waterloo, Ontario, 1977, pp. 275-282.

A. SILBERCHATZ AND Z. KEDEM, Consistency in hierarchical database systems, J. Assoc.
Comput. Mach., 27 (1980), pp. 72-80.

R. E. STEARNS, P. M. LEWIS AND O. J. ROSENKRANTZ, Concurrency control for database
systems, in Proc. 17th Annual Symposium on Foundations of Computer Science, 1976, pp.
19-32.

M. YANNAKAKIS, A theory of safe locking policies in database systems, J. Assoc. Comput.
Mach., to appear.

M. YANNAKAKIS, C. H. PAPADIMITRIOU AND H. Z. KUNG, Locking policies: Safety and
freedom from deadlock, Proc. 20th ACM Conference on Foundations of Computer Science,
1979, pp. 283-287.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0002 $01.25/0

DYNAMIC BIN PACKING*

E. G. COFFMAN, JR.+, M. R. GAREY’ AND D. S. JOHNSON’I"

Abstract. Motivated by potential applications to computer storage allocation, we generalize the classical
one-dimensional bin packing model to include dynamic arrivals and departures of items over time. Within
this setting, we prove close upper and lower bounds on the worst-case performance of the commonly used
First Fit packing algorithm, and, using adversary-type arguments, we show that no on-line packing algorithm
can satisfy a substantially better performance bound than that for First,Fit.

Key words, approximation algorithms, memory management, performance evaluation, storage
allocation, worst-case bounds

1. Introduction. One-dimensional bin packing plays an important role in a large
variety of combinatorial problems arising in operations research and computer science.
The classical model [4] assumes an unbounded collection of equal-capacity bins and
a given set of items, each of which has a size no larger than the common bin capacity.
The optimization problem, which is easily seen to be NP-hard [2], is to pack the given
items into as few bins as possible, subject to the requirement that the items in each
bin sum to no more than the bin capacity. Most work on this problem and its many
variants (e.g., see [3]) has concentrated on proving close bounds on the worst-case
performance of simple "approximation algorithms" that might be expected to construct
near-optimal packings.

In certain potential applications, such as those relating to computer storage
allocation, the classical model fails to be realistic in that dynamic arrivals and departures
of items are not considered; that is, a model is needed in which items arrive over
time, reside for varying amounts of time in the bins to which they are assigned, and
then depart from the packing. The contribution of this paper is the formulation of
such a "dynamic" bin packing model and the analysis of some approximation
algorithms within this context. A summary of our results can be found at the
end of 2.

As mentioned, a principal motivation for our model is dynamic storage allocation
in computer systems. Here the items are records or files, and the bins are storage
units, such as disk cylinders,, limited by the property that records cannot effectively
be "overlapped" from one unit to the next. The problem we address through our
model is that of how to distribute records among storage units so that at all times
each unit will have sufficient space to hold all the records assigned to it. We explicitly
assume that a record can always be packed in any storage unit that has sufficient total
space available for it, and hence we do not consider the related problem of how one
manages space within a storage unit in order to avoid fragmentation or "checkerboard-
ing" [5] that might prevent a record from fitting even though the total space available
would be sufficient for it.

2. The model. Our model is a natural extension of the classical static one-
dimensional bin packing model. The items to be packed will be described by a finite
sequence or list L (p l, P2,"’, Pn). Each item (or piece) Pi in L corresponds to a
triple (ai, d, s), where a is the arrival time for p, di is its departure time, and s is its
size. The item p resides in the packing for the time interval [a, d), and we assume

* Received by the editors July 29, 1981, and in revised form May 27, 1982.
Bell Laboratories, Murray Hill, New Jersey 07974.

227

228 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

that dg- a > 0 for all i. Without loss of generality, the common bin capacity will be
taken always to be 1, so we also assume that each s satisfies 0 < s <-1. Finally, we
shall assume that the items in L are ordered so that al -< a2-<" -< a,.

Motivated by applications such as dynamic storage allocation, we shall restrict
our attention to packing rules that do not move items from one bin to another once
they have been packed, and that operate on-line, i.e., that pack items as they arrive
without any knowledge of future arrivals. Thus such an algorithm will assign the items
in L to bins in order of increasing index, under the single constraint that at each time
there be no bin that contains "currently active" items whose sizes sum to more than

1. We use Lt to denote the sublist of items in L that are active at time (i.e., for
which ag -< < d).

Given this setting, it is natural that a First Fit (FF) packing rule be of central
interest. The FF rule to be analyzed maintains two lists of bins: a list of currently
empty bins and a list of currently occupied bins, with the latter ordered so that the
times of most recent transition from empty to nonempty are nondecreasing. We use
B1, B2," to denote the bins in the occupied-bin list, in this order, and l to denote
the level (sum of item sizes) for B, taking care always to ensure that the time of
definition is clear from context.

For each i, the FF rule attempts to pack p at time ai into the first occupied bin
(one with lowest index) that has sufficient available space for p (i.e., whose level lj
satisfies 1-lj->si). If no such occupied bin exists, pi is placed into an empty bin and
that bin is appended to the list of occupied bins. The departure of p at time dg simply
causes an increase by the amount s in the available space in the bin in which it was
packed, and, if the bin becomes empty at that time, it is moved to the list of empty
bins. It is readily seen that the ordering for occupied bins described above is maintained
by this procedure.

Let FF (L, t) denote the number of occupied bins in the FF packing of L at time
t. Our measure of performance for the FF rule applied to L is defined by

FF (L)= max FF (L, t).
Ot<=an

In words, FF (L) is the maximum number of occupied bins ever required .by FF in
processing L. This definition and notation can be extended to an arbitrary packing
algorithm A simply by replacing FF with A.

An example illustrating the application of FF is shown in Fig. 1. Let m be an
integer divisible by 6, and let e 1/2m. The list Lm is described as follows: First, m
items of size -e, followed by m items of size -e, followed by m items of size 2e
arrive. These are packed by FF as shown in Fig. 1 (a). Then, all the items of size -e
depart, and a sequence of rn items of sizes 1/2,] + e, 1/2, 1/2 + e,’’’, 1/2, 1/2 + e arrives. Figure
l(b) shows the FF packing at this point, with the number of nonempty bins having
increased from rn to 3m/2. Finally, all the items of size]+e and -e depart, and
5m/6 items of size 1 arrive. The final FF packing, now with 7m/3 nonempty birds, is
shown in Fig. l(c). Thus FF (L,,)= 7m/3, with the maximum being achieved when
the last item arrives.

We shall be comparing FF (L) (or, in general, A(L)) with two different measures
of how tightly the items in L can be packed. The first, OPTR (L), is the maximum
number of bins ever required in dynamically packing L when the current set of items
is repacked into the minimum possible number of bins each time a new item arrives.
The second, OPTrR (L), is the maximum number of bins ever required in dynamically
packing L when no rearrangement of items is allowed but the items are otherwise

DYNAMIC BIN PACKING 229

packed optimally, i.e., so as to achieve the least possible value of this maximum over
all such packings of L, with L assumed to be fixed and known in advance. (For
OPTR (L) it is irrelevant whether or not L is known in advance.) Clearly OPTR (L)=<
OPTvR (L) for all lists L. For the example given above, it is not difficult to see that
OPTR (L,,) m + 1 and for m divisible by 9, OPTvR (L,,) (10m/9)+ 1.

2 m m-I-I :5m/2

2 m m+l 3m/2 7m/5

FIG. 1. An illustration of the application of FF for dynamic bin packing.

As in earlier bin packing studies, our specific comparisons will focus on asymptotic
values of certain "performance ratios." For an arbitrary packing algorithm A, let

A(L)
WR, (A) sup

ILl=, OPTR (L)

where the supremum is taken over all sequences of n triples (ai, di, s) satisfying a -> 0,
d > a, 0 < si -< 1, for 1 -<_ -< n, and a -< a2 -<’ <= an. We then define

WR (A) lim sup W,n(A).

Similar definitions apply to WrR (A). Note that the lists L,, in our example show that
WR (FF) _--> 7/3 and that WNR (FF) _-> 21/10.

The above notation will be extended in a natural way to account for situations
in which there is an upper bound on maximum item size. In particular, we use WR (A, k)
to denote the asymptotic bound for algorithm A in the case that all item sizes si satisfy
si <- 1 /k, k an integer. Clearly WR (A) WR (A, 1).

A standard approach to obtaining bounds on the quantity WR has been to prove
the somewhat stronger result that for all L

A(L) <-o OPTR (L)+/3

for constants ct and/. Then WR (A) is bounded above by the multiplicative constant
a. This will also be our approach, although we shall omit the rather tedious derivations
of the less interesting additive constants/, primarily in order to keep the paper down
to manageable size.

230 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

The organization of the remainder of the paper and an outline of the main results
are as follows:

In 3 we derive upper bounds for WR (FF, k). Specifically, we show that

k+l 1 k 2

W(FF, k) < + log 2 k > 2,
k kl k-k+l’

5 3
Wa (FF, 1)<=+log2.897.

(All logarithms in this paper are to base e.) We also describe a slightly modified version
of FF for which WR is bounded above by 2.788

In 4, we derive the following lower bounds for WR (FF, k):

k+l 1
WR (FF, k) > + k > 2’ -,

WR (FF, 1) ->- 2.750.

The lower bound of 2.750 holds also for our modified version of FF.
In 5 we go beyond the analysis of the single algorithm FF and prove lower

bounds on WR that hold for arbitrary on-line packing algorithms. In particular, we
show that for any on-line algorithm A

k+l 1
WR(A, k) > WNR(A, k) > + k >-2

k k(k +1)’

5
WR(A, 1)_->,

43
WNR (A, 1) >-]- 2.388 ,

showing that the corresponding bounds for FF and our modified version of FF
are not too far from the best that one could hope for (even if comparison to the
nonrearranged optimum is more appropriate).

Section 6 then concludes the paper with a brief discussion of our results and some
directions for further research.

3. Upper bounds for First Fit. Since the proofs of the result for k 1 (the general
case) and k -> 2 differ substantially, we shall work out the results separately.

TH.ORZM 1. For k >= 2,

k+l 1 k2

WR(FF, k)=
k

+
k - l

lg k2-k + l"

Proof. We shall show for any list L (pa, P2, ’, P,) satisfying s <= I/k, 1 <=i <=n,
that

FF (L)<=a. OPTR (L)+O(1)

where c is the upper bound given in the theorem statement and the constant
represented by O(1) is independent of L and n.

DYNAMIC BIN PACKING 231

We begin by observing that we can restrict our attention to lists L satisfying two
special properties. The first property is that

FF (L FF (L, a,) > FF (L,), O <- < a,,

i.e., that the maximum number of bins is used when the last item is packed and not
before. This is justified by noting that, if is the least index such that FF (L, ai) FF (L),
then the truncated list L’ consisting of only the first items in L satisfies FF (L’) FF (L)
and OPTn (L’)=<OPTn (L), and hence must violate the desired bound whenever L
does.

The second property is that no occupied bin ever becomes empty during the
process of applying FF to L. This is justified by noting that, if some occupied bin
becomes empty during the FF packing of L, say at time t, then the list L’ formed from
L by deleting all items that were ever assigned to that bin prior to time will yield
exactly the same final packing as L, which implies by our first property that FF (L’)=
FF (L), and will satisfy OPTg (L’)-<OPTg (L). Thus again it is the case that L’ will
violate the desired bound whenever L does.

Therefore, without loss of generality, let L (Pl, P2, , Pn) be any list satisfying
the above two properties and having si <=l/k for all i, 1-<i-<n. Let m =OPTg (L).
Notice that the second of our two properties implies that the index of an occupied
bin, determined from its position on the occupied-bin list, never changes during the
FF packing of L, so there will be no confusion when we refer to bin (or Be) without
reference to a specific time. We shall proceed by deriving lower bounds on the size
of the smallest item that FF can possibly place in bin Bi and on the level li required
in Bi whenever an item of size s is packed into some bin B. with f > i. These bounds
will then be used in conjunction with the requirement that no item size exceed 1/k
and the fact that the sum of all item sizes is at most OPTR (L) m to obtain an upper
bound on FF (L).

Let h. denote the size of the smallest item that FF ever places in bin B)., and
suppose that such an item p is placed in Bi at time t. Then at that time the levels of
all lower-indexed bins must exceed 1- hi, or FF would have placed p in one of them
instead. Furthermore, since no item size exceeds Ilk, every such preceding bin Bi
must contain at least k items (or p would fit there as a k th item) and hence the level
of Bi must also be at least k hi. Thus, at the time p is packed, we must have

(1) li _->max {1-hi, k. hi}, <].

In particular, using just the fact that li > 1- hi and the fact that the sum of all item
sizes cannot exceed m, we obtain

which implies, for j > 2,

(] 1)(1 hi) + hi < m,

m-1
hi> 1-]--.

Setting/" equal to in this inequality and substituting into (1), we conclude that when
p is packed into Bi,

m-1

We now consider the situation in more detail when f > m(k + 1)/k (the theorem
holds trivially when there is no such/’). In this case, at the time a piece of size hi is

232 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

placed in Bi, we must have

m(k+l)/k 1-1
(3/ E t+ E

i=1 i=l+m(k+l)/k
li+hi <-_m.

Using (2) to bound the first summation, we obtain

"+/ "+/

(m-l)(4) Z li -> Z (1-hi)+k Y 1-
i=1 i=1 i=x+l i-2

where

(5) A [(m-1) +2-l+hi
is the dividing point between those values of for which 1- hi gives the maximum
and those values of for which k. (1-(m-1)/(i-2)) gives the maximum. Notice
that h <m(k + 1)/k, since] ->_ 1 + m(k + 1)/k implies hi > 1/(k + 1). Simplifying (4) and
using the conventional logarithmic approximation for the harmonic numbers, we have

m(k+l)/k

()Y li>-A(1-hi)+k m(k+l)_ A _k.(m_l).log(k+l)m
; k k(Z2-----3+ O(1)’

Substituting (5) into the above and applying routine manipulations, we eventually
arrive at

m(k+l)/k

(:2 k2-1)li>-_rn-kmlog k. lhi+ kg +O(1).
i=1

Substituting this expression back into (3) and replacing li, > m(k + 1)/k, by the lower
bound k hi, we finally have

(6) Y hi<-m log k lh.+..,
k

+O(1).
i=l+m(k+l)/k

Inequality (6) is the key to completing the proof. It implicitly provides a lower
bound for every hi,] > m(k + 1)/k. We shall use these lower bounds to obtain a lower
bound on the sum of the h’s for <], which in turn will be used to determine an
upper bound on the largest] for which hi can be less than or equal to l/k, the
maximum piece size allowed. That bound on] will then be our desired bound for FF (L).

To do this, let the function h(]) be defined only at integer points]>-_m(k + 1)/k
by h(m(k + 1)/k) 1/(k + 1) and for]>rn(k + 1)/k

i-1
(7)

i=m(k+l)/k

It is not difficult to see that

i-1 j-

(8)
m(k +l)/k l+m(k +l)/k

Now, replacing (7) by the continuous version

h(i) m log (k;21h(])+ k2-1)k,2

hi +0(1).

(9) F(x)=m log (kk+lf(x)+k- 1)

DYNAMIC BIN PACKING 233

where

F(x) f(y) dy
k+l)m/k

it is routine to verify that

i-1
(10) F(]) Y,

i=m(k+l)/k

and f(m(k + 1)/k)=k+l’

j-1

h(i)+O(1)<= Y’, h + O(1).
i=l+m(k+l)/k

The solution to the differential equation (9) for F(x) is readily found to be

k 2 1 (k_l)(x/m_(k+l)/k)}
-1

(11) F(x) m log k-_21 k2-- e

Hence, from (10) and (11), we have

/’-1 { k 2 1 (_)(,/m_(t+)/t)}
-1

(12) Y h _->m log -- k--- e +O(1).
i=l+m(k+l)/k k -1 -1

To complete the proof, we observe that the right-hand side of (6) is an increasing
function of hi, and thus we can use the bound h <- 1]k to obtain from (6) that

i-a k3+lY hi--<m .log 3 +O(1).
i=l+m(k+l)/k

Combining this expression with (12) evaluated at f FF (L), we have

m. log
k3+ 1 { k 2 1 (k_l)(FF(L)/m_(k+l)/k)}

-1

k3 ->m log kS-- 1 k2--e +O(1),

from which

1
FF(L)-<m +k llgk2

follows by straightforward algebra, fi
In 4 we will construct examples that come rather close to the upper bounds

given by Theorem 1. For example, we will show that

1.75 <= WR (FF, 2) -<_ + log 1.788.

We now examine the unrestricted (k 1) case. It is easy to prove that WR (FF) <= 3.
Specifically, the following two observations suffice. First, any item packed in a bin B.
with j > 2. OPTR (L) must have size larger than 1/2, since a piece of size s < could
not be packed in such a bin unless each of the first 2. OPTR (L) bins were filled to a
level of at least 1-s > 1/2, which would imply that the cumulative size of all items in
the packing was greater than OPTR (L). The bound of 3 then follows from the
observation that there can be at most OPTR (L) pieces larger than , since more than
that number could not possibly fit in OPTR (L) bins.

One might expect that a similar argument, using the fact that there can be at
most OPTR (L) pieces larger than 1/2, would allow us to conclude that WR (FF) is
bounded above by 1 + WR (FF, 2). Indeed, such an argument is easily seen to work
for the modified version of FF that segregates pieces larger than from the other
pieces, always placing such an item in a bin by itself and never placing other items
with it. In this case, we know from Theorem 1 that the items that do not exceed 21-

234 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

will never occupy more than WR (FF, 2). OPTR (L)+O(1) bins and that the items
larger than 1/2 will never occupy more than OPT (L) bins, so we have immediately that

W (FFM) <= - + log 34- 2.788,
where FFM denotes this modified version of FF.

Unfortunately, the situation with FF itself is not so simple. The difficulty arises
from the possibility of constructing lists that end up with no active items larger than, but that use items larger than 1/2 temporarily in order to force an FF packing with
more than W (FF, 2) OPT (L) bins. In particular, it is not difficult to construct such
lists that require a number of bins arbitrarily close to 2. OPTR (L). Since the type of
upper bound argument used above would still allow for an additional OPT (L) pieces
larger than 1/2 being placed beyond this point, we would have no improvement what-
soever over the trivial bound of 3 for W (FF). Using considerably more subtle
arguments, we shall reduce this somewhat to approximately 2.897.

THEOREM 2. Define the constant 0 log ((x/-- 1)/2) .397. We have

W (FF) -< - + 6 2.897.

Proof. Let W denote the set of bins with indices larger than 3m/2, where
m OPT (L). We begin with the following preliminary result.

CLAIM 2.1. Suppose a total of items has been packed by FF in the bins of W.
Let A (1) denote their cumulative size, and let gt denote the size of the/th such item.
Then there exists a constant c such ’that

(13)
m

A(I) >--[e 2(l-c)/3m 1]

and

(14) g >-1/2 e :z(-c)/3".

Proof of Claim 2.1. When the/th item, say p, is packed in W, the first [3rn/2]
bins must each be filled to a level exceeding 1- s. Thus we must have

(15) (l-g,) + E g,-<m.
i=1

Analogous to the continuous approximation made in the proof of Theorem 1, let g(x)
and G(x) be defined by

(16)
3m

(1-g(x))--+G(x)= m

and

G(x)= g(x) dx

with g(0)=1/2 (any item placed beyond bin 3rn/2 must be larger than 1/2). Then it is
easily verified that, for any integer _-> 1,

(17) G(l) <-a(1) + O(1)

and

DYNAMIC BIN PACKING 235

The solution to the differential equation (16) for G is readily found to be

(19) G(x) [e2X/3m -1].
Thus from (17) we have

(20)
m 21/3mA(1)>=-te -1]+O(1)

and, by differentiating (19) and using (18),

(21) gl > 1/2 e210-).
The claim follows from (20) and (21) by observing that

e21/3m _e 2(I-c)/3m

for any constant c.
We now show by contradiction that for all L,

FF (L) <- (- + t))m + 2c

where m OPTR (L) and c is the constant in Claim 2.1. Thus suppose that this bound
is violated during the FF packing of some list L. As in the proof of Theorem 1, we
may assume that no occupied bin ever becomes empty during the FF packing of L,
and we may assume that the bound is violated for the first (and only) time when the
last item p is packed. To simplify notation, we shall also assume that m is even;
although it should be clear that this does not affect the result in any significant way,
the arguments can be generalized essentially by replacing 3m/2 and 5m/2 by [3m/2]
and [5m/2] throughout.

The argument will concentrate on the structure of the packing beyond bin 3m/2.
Let (3m/2)+ q be the index of the rightmost (highest-indexed) bin to contain an item
of size or smaller during (0, a]. Clearly q > tom, for otherwise, since there can be
at most m items larger than 1/2, we would have

FF (L)_-<---+q +m _-< + m.

Let p, with s _-<1/2, be any such item packed in bin (3m/2)+q, and let bin (3m/2)+ r,
r >-_ q, denote the rightmost nonempty bin at time a, when p is packed. Let P be the
set of items packed in bins to the right of bin (3m/2)+ r during (0, a]. Note that each
item in P is larger than 1/2, does not depart during (0, a] (since that would create an
empty bin), and is the rightmost item at the time it is packed.

We call an item Pk that is placed in a bin of W during [a, a an a-item if there
exists some p e P such that s + Sk ----< 1 (i.e., p and Pk could fit in a single bin). Notice
that the size of each a-item is strictly between and 1/2, because each is packed to the
right of bin 3m/2 and because each fits with some item from P. We are interested in
the a-items because they are among the items that might be packed with an item
from P in an optimal packing. We now show how the existence of -items leads to
the desired contradiction; following that we shall deal with the case in which no
c-items exist.

236 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Let Pu be the rightmost item in P that is small enough to fit with some a-item,
and consider any item pi e P that FF packs to the right of pu. Since pi is too large to
fit with any a-item, by the choice of p,, it follows that s > su. Now consider the set
Zu of bins from W that contain only a single item at time au, when p is packed. The
items in bins of Z at a, are all larger than 1- s, or p, would have been packed in
such a bin, and hence they are all larger than 1- &. Furthermore, any items that are
placed in bins of Zu after time au either are larger than 1- Su > 1- s or are a-items
and hence must be larger than 1- si, since pi is too large to fit with any a-items. Thus
we-conclude that no item in a bin of Z at time an can fit in the same bin with any
item packed to the right of p by FF.

Let P’ denote the set of items packed to the right of p by FF. Each item in P’
is larger than 1/2 and thus must go in a separate bin in the optimal packing. No item
in Z, at time an can fit in any of those bins and hence, since each is larger than 1/2,
they must occupy at least z,/2 additional bins in the optimal packing, where z IZu].
We then have

Zu Zu[P’]+_-<m or [P’l<-_m--.
Therefore, if Pu is packed by FF in bin (3m/2)+ r’,

3m
r’

5m 2r’-z,
FF (L)=--+ +IP’I=<T+T.

But 2r’-z, is simply the number w of items in W at time a, so we can write

5m w
(22) FF (L)_-<-+.
We now find an upper bound for w.

From Claim 2.1, the cumulative size of items in the packing at time a is at least

3m 3m m
(1 Su)T+A(w) >_- (1 s.)T-+-[e2(’-)/3’ 1].

We know that pu is small enough to fit with some a-item. Since there are at least r >= q
occupied bins in W before any a-item is packed, we have go as a lower bound to the
size of all a-items. Hence 1- s, >= gq. Using q >m and the bound in (14) to substitute
into the above bound on cumulative item size at time a,, we obtain the bound

2(m--c)/3m _Nm[e2(W-C)/3m -1].
2 2

Since this quantity can be no larger than m, we have

m 2(- +e]-_-<m.-le
)/3m 2(w--c)/3m m

By routine algebra, this inequality leads to

3m I" 4IT- 1
---5--

which can be rewritten as

w --<_ -T- log + 2 (1--e-2C/3m)J +C.

DYNAMIC BIN PACKING 237

Using 1 e-Y -<_ y and log (x + y) -<_ log x + y, x ->_ 1, y ->_ 0, this simplifies to

+ c + c _-< 24,m + 3c.

Substituting this bound for w into (22), we obtain the desired contradiction.
It remains for us to handle the case when no a-items exist. In this case, we

consider the packing at time a., and let Z be the set of one-item bins in W at that
time. Since p. is a rightmost item of size or less, all items in bins of Z to the right
of pj at time aj are larger than 1/2. Furthermore, all items in bins of Z. to the left of p
at time a. must also be larger than 21-, or p. would have been placed in one of those
bins. Therefore, no item in P can fit with any item in Z. at time ai. Since there are
no a-items, no item placed in a bin of Zi after time a. can fit with any item in P either,
and thus no item in a bin of Z. at time an can fit with any item in P. Thus we have,
as before,

(FF(L)<---+r+ m-

where w is the number of items in W at time ai. But, since s.-< 1/2-, the cumulative size
of items in the packing at time a is at least

3m 3m m
(1 si)--+a (w) >-_ --+-[e(w-c)/’ 1].

Since this cannot exceed m, we then obtain

3m 3
w

and hence, substituting into (22), we have

FF (L) -< + log m +< + m + 2c,

as desired.

4. Lower bounds for WR (FF). In this section we again begin by considering
separately the case of WR (FF, k), k _-> 2.

THEOREM 3. For any k >-2,

k+l 1
WR (FF, k) _-> +

Proof. The proof consists of showing that for arbitrarily large integers m we can
construct lists L with OPT (L)_-< m such that

k2+k+l
FF (L)= k2 m -2.

In the following we shall construct the list L and describe its FF processing at the
same time. The sum of the sizes of the items in the FF packing after each step will
be close to the maximum of m, and hence we shall specify the steps in terms of
"removing" certain items, "forming" new items from the amount removed, and then
"packing" the newly formed items. The corresponding arrival and departure times
needed for a formal description of L in terms of triples (ai, di, s) can be inferred
directly from this description.

238 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

The construction is broken down into 3 successive stages, corresponding to the
initial packing process for bins 1 to m, bins m +1 to ((k +l)m/k)-2, and bins
((k + 1)rn/k)- 1 to ((k2+k + 1)m/k2)-2. So that all these quantities will be integers,
we shall assume that m is a multiple of k2.

Stage 1. The construction begins simply by packing the first m bins completely
full with items of size e, where e is a suitably chosen small positive number. Constraints
on the size of e will be indicated in Stages 2 and 3 below.

Stage 2. In this stage we pack bins m + 1 through ((k + 1)m/k)-2. Just before
we pack bin rn + i, 1 <= <-(m/k)- 2, the current packing will be as follows:

(a) all bins have level exactly m/(m + i- 1);
(b) each of bins 1 through rn contains only e-items;
(c) for 1 -</" -< i, bin m +f contains items of size (f/(m +f))+ A and k 1 items

of size

k-1 m +i-- -t m
where is the least nonnegative integer such that this last item size is no
larger than 1/k, and A is a suitably small positive constant.

The first step in packing bin m + is to remove an amount equal to m/(m + i)
(m + i- 1) from each of the preceding m + i- 1 bins. For bins 1 through m, we do
this simply by taking out a sufficient number of e-size items (the desired amount can
be obtained exactly if e was chosen appropriately). For bin rn +/’, 1 -<_/" < i, we remove
the k- 1 "large" items from that bin and as many of the "small" items as possible,
under the constraint that the total removed minus m/(m + i)(m + i- 1) be no larger
than (k- 1)/k. Then all but m/(m + i)(rn + i- 1) of this is formed into k- 1 identical
new large items, and these are repacked. This "shaving" process, consisting of the
removal of some items in a bin, followed by the repacking of slightly smaller items
into that same bin, is performed one bin at a time for each of the bins m +f, 1 =</" < i.
We now prove, in a slightly more general form than is needed now, that the new large
items formed in this shaving process will indeed be repacked into the same bin by FF.

CLAIM 3.1. If the current levels of all bins to the left of bin m +] are at least as
large as the new level for bin rn +] and the new level for bin rn +] is at least

m
1-+A,
(m +i)

then the new large items formed from bin m +] in the "shaving," process will be packed
back into bin m + by First Fit.

Proof of Claim 3.1. Let a (]/(m +])) + A denote the size of the small items in
bn m +/’, and let/ dnote the size of the newly formed large items. Note that the
rul used for dtermining fl ensures that

a 1
(23) fl +k_..l>,
for otherwise an additional small item would have been removed. The existence of
at least one additional small item is ensured by the lower bound on the level of bin
m +/’, since

k -1 1-k(m +])
+ h >-.

DYNAMIC BIN PACKING 239

We now show that/3 + > 1, where is the least current level among the bins to the
left of bin m +/’, so each of the large items will fail to fit in the preceding bins and
hence will be placed in bin m +] by FF, as required. The proof is divided into two cases"

Case 1. Suppose bin m +/" has more than one small item remaining. Then, since
is at least as large as the new level for bin m +/’, we have

so, using (23),
-> (k 1)/3 + 2a

[3 +l>=k +2a->_k + >k 1.

Case 2. Suppose bin m +/has exactly one small item remaining. Then we have

which implies that

Thus

m
(k- 1)/3 +a => 1--+A

k(m+])

/3 >---- 1-k(m+/’) m---t-i k(m+l)"

m (m)fl+l>+ 1-+A =I+A>I
k (m +i) k (m +.i)

The claim follows. Vl
In the present setting, Claim 3.1 implies that the large items will always be

repacked as required, since the common bin level always exceeds k/(k + 1) during
Stage 2, and for the claim to apply it need only exceed

m
1-+A__<I-

k(m+i)
+A< +A,

(m) =k+i
k m +--2 m-k+ 1

which is less than k/(k + 1) for A sufficiently small.
The second step in packing bin m + is to form new items from the total of

m/(m + i) that has been shaved off the preceding bins, so that these new items will
be packed into bin m + by FF and will have the required properties. All we do in
this step is form items of size (i/(m +i))+A until the amount remaining does not
exceed (to- 1)/k, and that remaining amount is then formed into k- 1 equal-sized
large items. Given Claim 2 to follow and the specified levels of the preceding bins, it
should be apparent that this can be done and that the items will all be placed in bin
m + by FF. Furthermore, the packing has the overall form required for us to go on
to bin m + + 1.

CLAIM 3.2. If the integer is chosen as small as possible so that

then

k-1 m

k -m+i
..+A (k 1)/3,

+i

1
->-[3 >-_+A
k- m+i

(i.e., the "large" item formed above is indeed a legal large item).

240 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Proof of Claim 3.2. The upper bound on fl is necessarily satisfied by the way in
which/3 is defined, so we need only verify that/3 is not smaller than (i/(m + i))+ A.
Note first that must be at least 1, since < m/k implies

m k k-1
m+i k+l k

We now consider two cases.
Case 1. If l<=i <(k-1)m/(k2-k +1), we have

k-1
+A<
m+i k 2

(for A suitably small). Thus/3 < (i/(m + i))+ A would imply

(k-1)fl++A<k +A <
m+i m+i

k-1
k

contradicting the minimality of t.

Case 2. If (k-1)m/(k2-k + 1)=<i <m/k, then

k-1 1
k2 <+A<m+i k+l

and

k m k2-k+l
k+l m+i= k 2

Thus

+A <
m+i +i k 2

2-k k-1
k= k

so must be equal to 1. Therefore

k-1 m+i)) 1
+A >k+l>+Am+i

as required. 71
In order to prepare for Stage 3 after packing bin ((k + 1)m/k)-2, we carry out

the "shaving" step for the next bin but do not pack any items into that bin. Thus, at
the end of Stage 2, we have items in the first ((k + 1)m/k)-2 bins, and these bins are
all at a level slightly above k/(k + 1). Specifically, the level of each of these bins is exactly

km
(k + 1)m-k

and hence the sum of all the items in the bins is

mk
m-

(k+l)m-k

Stage 3. In this stage, all bins beyond bin ((k + 1)m/k)-2 will be packed with
k items larger than 1/(k + 1), with all items going into the same bin having the same

DYNAMIC BIN PACKING 241

size and being essentially as small as possible. However, due to the "shaving" constraint
given in Claim 3.1, it will not be possible to maintain the levels of bins 1 through
((k + 1)m/k)-2 at the same value, as was done during Stage 2. In order to shave
some amount off the level of bin m +/’, it is necessary that the level of that bin (and
all preceding bins) be at least

tn
(24) 1---+A.

k(m+f)

Thus we will never reduce the level of bin m +/" below this value. This constraint has
no effect on the first m bins, since the desired amount can always be removed from
these bins simply by removing a suitable number of e-sized items (i.e., there is no
repacking involved in the shaving process).

For sequences hi, ti, and , i=((k+l)m/k)-l,...,((k2+k+l)m/k2)-2, to
be specified below, pass i-((k + 1)m/k)+2 of Stage 3 consists simply of "shaving"
6 from the levels of each of bins 1 through , forming k items of size h from the
amount removed, and then packing those k items into bin i. The shaving process is
carried out in exactly the same manner as described for Stage 2, and we shall verify
below that the lower bound (24) on bin levels is satisfied, so that the shaving can
indeed be done in this manner.

Let l(i), i>=((k + 1)m/k)-l, denote the least bin level just following pass i-
((k + 1)m/k)+ 2. From the above description, we will have

km
(25) l(i) E fi.(k + 1)m -k j=((k+l)m/k)-I

We now define the sequences he, 8i, and Ai as follows"

m

(k + 1)Zm-k2(i +2)’

mk 2

8i hi-h,-1
[(k + 1)Zm -kZ(i + 2)]. [(k + 1)Zm -kZ(i + 1)]

(where we take hi-1 1/(k + 1) for ((k + 1)m/k)-1), and hi is the largest index,
,i <=((k + 1)m/k)-2, such that l(i) is not smaller than the minimum level that we are
allowing in bin ,, which by (24) is

This choice of hi ensures that the shaving process can be carried out as required. From
(24), (25) and the definition of 8i as hi- hi-, we have hi as the largest index satisfying

(26)

m km

1-i+ A <=l(i)=
(k +l)m-k

(1)km
hi-(k + 1)m- k k + i

=1+
k 2

(k + 1)2m-k(k + 1)

242 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Hence

(27)
lk(hi (k + l)r 2 k(k + l)

m
>

k h-(k +l)m-k(k +1)

for A suitably small.
To see that hi <=l/k, we use the fact that <= ((k2+k + 1)m/k2)-2 to obtain

m
hi <=)2 2 2)(k + l m-k2((k +k + l)m/k

m m

(k + 1)2m -(k 2 + k + 1)m km
1

To show that the k items of size hi created during pass i-((k + 1)m/k)+2 of
Stage 3 will be placed into bin by FF, we need to show that hi + l(i)> 1 and that

hi > 1/(k + 1). The first of these follows directly from (26), which yields

k 2

hi + 1(i) 1 +
(k + 1)2m-k(k + 1)

> 1.

The second follows from the definition of hi and the fact that i>((k +l)m/k)-2,
since we have

m m 1

(k + 1)2m-k2((k + 1)m/k) (k + l)m k + l"

Finally, we must prove that the sum of the sizes of all the items in the packing
just following each pass of Stage 3 remains no more than m. Since we remove a total
of Ai6i and add khi during pass i-((k + 1)re it is sufficient to show that for
each

mk
m + , (khi Afi.) -<_ m,

(k + 1)m -k

or"

CLAIM 3.3.

mk (k + 1)m (k2+ k + 1)m
Y kh Afi <= 1 <= <=

k 2
=k+m/k-- (k + 1)m-k’ k

Proof of Claim 3.3. We begin by considering individual terms in the summation.
By (27), we have

!
k. hi- AiS. =< k. h.- 8. /

k(h.-
m

)(k +). k (k +)

DYNAMIC BIN PACKING 243

Using 3j k2hjhj_l/m, we obtain

kahjh_
k h Afi <= kh k 2 + 3

k(h’-(k + l)2r-k(k +li)
<- kh khj-1 + 8 (k + 1)8.

Thus

]=((k+l)m/k)-I
(kh-Afi) <= (k + 1) E

i=((k+l)m/k)-I

(k) (1) 1 mk
=(k+l) hi- =<(k+l)

k+l = <(k+l)m-k’
as required. 71

Thus the First Fit packing proceeds as described during Stages 1, 2 and 3, and
it requires ((k:+k + 1)talk:t)-2 bins. Furthermore, the sum of the sizes of the items
in the packing at any point "is no more than m. It remains for us to demonstrate that
the optimal packing at each point would not encounter "fitting" problems that would
force it to use more than m bins. However, because of the large number of e-size
items during all three stages, it is easy to see that such fitting problems do not arise.
A packing into m bins can always be obtained from the FF packing by moving the
e-size items into bins rn + 1 through 2m, filling each bin exactly to level 1 (or slightly
less, if the sum of the current item sizes is less than rn), which can be done if e is
chosen suitably small. Thus the optimum packing never needs more than m bins, and
the stated bound on WR (FF, k) follows. This completes the proof of Theorem 3. [-1

We are now ready to go on to the case of k 1. We shall first show how the
7m/4 construction just described for k 2 can be extended to an 1 lm/4 construction
for k 1, by appropriately adding on about m items larger than . Following this, we
sketch a different (and more complicated) construction that can be used to strengthen
the lower bound.

THEOREM 4.

WR (FF) 11
Proof. The construction will be described in the same format as used in the proof

of Theorem 3 and will be composed of three stages.
Stage 1. For m + 1 -<_ _-< (7m/4)-2, let ai denote the size of the smallest item in

bin at the end of the (7m/4)-2 construction. Note that

i-m 3m
=+h, m +1<i < -2"Cgi :--

7mm 3m
1<i< -2.Oli hi 9m -4(i + 2)’ ---- --Our first stage is identical with the (7m/4)-2 construction except that instead of

packing two items of size 1/2 in bin (7m/4)- 2, we only pack a single item of size

1 O (7m/4)_3

into that bin. This item will not fit in any of the preceding bins since their levels all
exceed 1/2 and this item is itself larger than -.

244 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Stage 2. For i= (7m/4)-1,..., (5m/2)-6, we pack bin with a single item
larger than 1/2 by executing the following steps, where u (i) is defined by

7m
u(i) ----4- i.

Step 1. Remove all but a single item of size cui from bin u(i) and remove items
of size e totaling

Ou(i) Ou(i)-i

from each of bins 1 through m.
Step 2. Form a new item of size 1-a,i_a from the amount removed and pack

it according to FF into bin i.
To verify that the new item will actually be packed into bin by FF, we observe

that at the conclusion of Stage 1 all bins are filled to a level greater than a(7m/4)-3.

Therefore, after applying Step 1 prior to packing bin i, bins 1 through m will all be
filled to a level greater than

19/(7m/4)-3 [0 u(i) a u(j)-i a u(i)-l.
=(7m/4)-1

Since-bins m + 1 through u(i)-1, and bins (7m/4)-2 through i-1, are all at levels
greater than , and since bins u (i) through (7m/4)-3 are all at levels of at least
it follows that the new item of size 1-i-a will not fit in any of these bins and thus
will be packed in bin by FF.

To verify that the amount removed in Step 1 is always larger than the size of the
new item formed in Step 2, we observe that the amount removed from bin u(i) is
always at least ,,, and hence it suffices to show that

m (u(i) u(i)-l) @ u(i) > 1 u(i)-l.

We do this by proving the following:
CLAIM 4.1. For m + 1 <] (7m/4)-3,

m (a a_) +a +a_ > 1.

Proof of Claim 4.1. We consider three cases.
Case 1. 3m/2f (7m/4)-3. In this case, we have

m(-_) m
9m -4(] + 2)-9m -4(] + 1)

4m 4m 4
[9m-4(j+2)][9m-4(]+l)] >[3m]. [3m] 9

Since and
_

both exceed , the result follows.
Case 2. j (3m/2)-1. In this case, we have

(m m -z.)m(-_)=m 3m_4- -m=3m_4 m

which, by itself, exceeds 1 for suciently small.
Case 3. m + 1 <j N (3m/2)-2. In this case, we have

m (oi i_l) m(] m

1 f-l-m)

DYNAMIC BIN PACKING 245

Thus
2m + 2/’(/’- 1)- m (2/’- 1)

m (aj a.-1) + c. + c.- + 2A
/(i- 1)

(m -i)(m -i + 1)
>1+ >1,

i(i-)

and the claim is proved.
It remains for us to show that, at any point during Stage 2, there exists an optimum

packing into m or fewer bins. We already know that the sum of the sizes of the items
in the FF packing is never more than m, but we still have to show that "fitting"
problems do not force an optimum packing to use more than m bins. To show this
it suffices to show that the items to the right of bin m in the FF packing can always
be packed into m bins, since any gaps in partially filled bins in such a packing can be
filled exactly using items of size e from bins 1 through m (for a suitably chosen e).
Indeed, it follows immediately from our construction that the items to the right of
bin m can always be packed into (3m/4)-2 bins. Such a packing can be formed from
the FF packing just following the placement of the item larger than 1/2 in bin i,

_-> (7m/4)- 1, simply by combining the two items in bin/" and bin u (/’)- 1 in a single
bin for each/’, (7m/4)-2_-</’ < i. By the construction, each such pair of items sums
exactly to 1 and hence fits in a single bin. Furthermore, this reduces the number of
occupied bins to the right of bin m from i-m to

as required.
Stage 3. In this stage, we first remove all but a single item of size e from each

of bins 1 through m, and we remove all but a single smallest item from bin m + 1.
Note that, since the remaining items of size e would all fit in a single bin with the
item remaining in bin m + 1, for e suitably small, there exists an optimum packing of
the current items into (3m/4)-2 bins. We now form (m/4)+2 items of size 1 and
pack them according to FF. Since these items will not fit into any of the first (5m/2)- 6
bins, they will be placed into bins (5m/2)- 5 through (11m/4)-4, and hence the First
Fit packing requires (11m/4)-4 bins. Furthermore, since the items in the packing
prior to the formation of these (m/4)+ 2 new items could be packed into (3m/4)-2
bins, the number of bins in the optimal packing is increased to at most m by the
addition of these items, and therefore the optimum packing never exceeds m bins
during Stages 1, 2, and 3. Theorem 4 follows immediately.

Note that the construction just given to prove that W (FF)_-> also suffices to
prove the same lower bound for W (FFM), where FFM is the previously described
variant of First Fit that segregates items larger than - from the other items. Thus we
have

2.75 _-< WR (FFM) _-< - + log 2.788.

Although the construction we shall sketch in a moment seems to suggest that the
worst-case bounds for FF are worse than those for FFM, it does not appear that this
should be taken to recommend FFM over FF in practice, since one would expect FF
to be generally less wasteful of space on the average.

We now sketch an alternative construction, based on a more complicated packing
strategy, that uses the possibility of mixing items larger than 1/2 with items smaller than

in a single bin to tighten the lower bound for FF. This informal presentation is

246 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

intended to illustrate some of the complications that can arise from strategies that
use such mixing, which in turn contribute to the apparent difficulty of proving a
significantly stronger upper bound for FF than that given in Theorem 2. The construc-
tion we shall give to illustrate this yields a 2.766 bound which can be improved to
2.77 by optimizing the key parameters.

Let m be some large multiple of 64. The example is constructed in the following
stages:

Stage 1. The construction begins by following the procedure described in the
proof of Theorem 3 (for k 2), but halting at the point of a 105m/64 example.

Stage 2. We now want to extend the packing by m/8 bins, i.e., to within a
constant of 113m/64 (7m/4)+ (m/64), with only items smaller than occurring in
the final packing. To do this, we first use the shaving procedures described earlier to
reduce the level of each bin i, 1-<i <(3m/2)-2, to max {1-3, +me’, 1-(m/2i)},
where e’ is chosen suitably small and /is chosen as indicated below. Next, we pack
m/8 items of size 1 -y + ie’, 1 <= < m/8, in decreasing sequence into bins (105m/64) +
1 through 113m/64. Using a standard argument on the total of all the item sizes, the
smallest value of y can be calculated such that this total does not exceed m when the
last of the m/8 items is packed. (The calculation, which we omit, yields a value for
y that is slightly less than 1/2.)

Our next step is to convert the (1-,/)-items to y-items. To do this we first pack
an item of size y-e’. Of course, we must assume that this can be done without causing
the total to exceed m. (Although this could be assured by packing only (m/8)-1
items in the previous step, we will assume for simplicity that this is not necessary since
it can only affect the additive constant in any case.) Since the minimum bin level is
1-y +e’ (in bin 113m/64) at the time the item of size y-e’ is packed, this item will
go in bin 113m/64 (recall the decreasing levels in the region of bins from (105m/64) + 1
to 113m/64). Just after packing this item in bin 113m/64, we remove from that bin
the other item, which has size 1-y + e’. This procedure is then iterated back to bin
(105m/64) + 1, with the end effect of replacing each item of size 1-y +ie’>1/2 with a
complementary item of size y-ie’< 1/2, and these new items are in increasing order
by size. Since we replaced items larger than 1/2 by items smaller than 1/2, the sum of the
item sizes remains less than m. This completes the extension to a packing using items
no larger than 1/2.

Stage 3. The next step is to remove e-items from bins 1 through m until their
levels are at y < and to apply the shaving procedures to reduce the level of each bin
i, m + 1 <-_i <= (3m/2)-2, to 1-(m/2i) (some may already be at this level). We then
use the amount removed to construct m/8 new items of size 1-, +ie’, 1 <-i <-m/8,
and we pack these in decreasing sequence into bins (105m/64)+ 1 to 113m/64. These
items will fit exactly with the corresponding complementary items. A straightforward
calculation shows that the sum of the item sizes does not exceed m, and arguments
similar to those used earlier show the continued existence of an optimal packing into
rn or fewer bins.

Stage 4. We are now in a position to execute the same procedure used in Theorem
4, to extend the 11m/4 example, for extending our 113m/64 example, repeatedly
removing all but a smallest item from a bin and packing a new item slightly larger
than the gap remaining in that bin, working backwards according to bin index. Each
of the new items will then start a new bin on the right, and the e-items remaining at
the end can be used to form additional items of size 1. It can be verified that this
yields m additional items larger than 1/2 (and rn additional bins), for a grand total of
177m/64 bins (within an additive constant). Furthermore, the pairing process described

DYNAMIC BIN PACKING 247

in the proof of Theorem 4 carries over here to show that an optimum packing has
no more than m bins. Thus we have our desired example.

The parameters 105m/64 and 113m/64 in the example were chosen for simplicity.
Maximizing over these parameters yields values of 1.63m and 1.77m, respectively,
thus providing a 2.77m-example. Further tightening of the construction can no doubt
improve this further, although significant improvements do not appear to be possible
without altering or generalizing the method we have used.

5. Lower bounds for arbitrary on-line algorithms. Given the performance bounds
that we have derived for the First Fit algorithm, it is natural to ask how these bounds
would compare to those for other on-line algorithms. In this section we address this
question, showing that FF performs essentially as well (in the worst-case sense) as
any other on-line algorithm. We also show that our use of OPTR, rather than OPTNR,
as the performance standard for our comparisons makes very little difference as to
the final outcome. Once again we begin with the cases in which all items are no more
than 1/k in size, k => 2.

THEOREM 5. If A is any on-line dynamic bin packing algorithm, then for any
integer k >-2, we have

k+l 1 k+2
Wu (A, k >-_ WNg (A, k >- --7-- 1

---:=k(k+
1 +l---:k +

Proof. Specifically, we will show that there exist lists L with OPTn (L) arbitrarily
large and all items pi satisfying si =< 1/k such that

A(L)_->(I+ k+2
k -(I -_(_ -I)] (OPTrR (L 1).

We provide a procedure for generating such examples, tailored to algorithm A, with
the nature of the later items being dependent on how A packs the earlier ones. The
input to our procedure is the algorithm A and an integer m that is divisible by k (k + 1),
where m + 1 will serve as our upper bound for OPTuR. We describe the procedure
in much the same style as we described our previous lower bound constructions, the
only significant difference being that in this case we can branch to different construc-
tions based on how A has packed the items encountered so far. The procedure, along
with a proof that it works (we initially argue only that OPTR (L) -< m + 1, leaving until
the end the proof that OPTvR (L)--<_ m + 1), proceeds as follows:

Step 1. Choose e 1/[k (k + 1)(1000)m].
Step 2. Create (m + 1)/e items of size e and have A pack them. (Note that the

list so far can be packed into m + 1 bins and in fact requires that many bins.)
Step 3. If there are fewer than (k + 2)m/(k + 1) nonempty bins in the packing,

go to Step 4. Otherwise, do the following:
3.1. Remove all but a single e-item from each of (k + 2)m/(k + 1) of the bins and

remove everything from all other nonempty bins.
3.2. Create km items of size 1/k and have A pack them. (Note that the bins

with one e-item can each receive at most k- 1 such items and the other
bins can each receive at most k, so there must be at least

2m(km-(k-1)(kk:21)m)/k=k(k+l)

248 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

new bins started, for a total of at least

m k+,,i+k(k+l----- =m l+----]k
bins, as desired. Moreover, an optimum packing could place all km items
of size 1/k in m bins, with the e-items all going in a single additional bin.)

3.3. Halt, with A(L)>=m(1 +(k +2)/k(k + 1)) for this ease.
Step 4. There are currently m’= ((k + 2)m/(k + 1))-d nonempty bins for some

d > 0. Remove as few e-items as possible from each bin so that its level has the form
(i/(k + 1))+e for some i, 0_-<i =<k. For each such i, let Ai be the set of currently
nonempty bins with level (i/(k+l))+e, and let ai=lAl. Note that we have the
following relationships:

k

(4.1) E ai m’,
i=0

(4.2) a > + dk + (k 1)ao.
1

(The latter inequality follows from the fact that, using upper bounds on the contents
of each bin at the end of Step 2, we have

ao(m -(ak+ao))+;
+ 1

and hence

k k-1)ak (k + l) m-k+i,m’+k+lao
Substituting ((k + 2)m/(k + 1))-d for m’ yields (4.2).)

Step 5. Let X --o ai(k-i). This is the maximum number of items of size
(1/(k+l))+e that would fit in the m’ currently nonempty bins. Create X+
(m/(k + 1)) +dk items of this size and have A pack them.

(Note that all the items in the packing can still be packed into m + 1 bins. The
sum of the item sizes is bounded above by

k + l
m- -k+ ke +

k + l
+ dk -+ e

[k(k +2) 1) (k(k+2)=m\-i-+(k+l)-5 +em
k+l
+ =m+em(k+l)<m+l.

Thus all we need show is that the items larger than e can be packed into m + 1 bins,
since the choice of e ensures that the remaining gaps can be filled exactly with e-items.
There are at most m’ items larger than e, since each has size (1/(k + 1))+e and no
bin had more than that amount removed in Step 4. These can be packed, k per bin,
into

m’ k+2 m
<- --<-m
k -k +1 k

bins (since k -> 2), as required.)

DYNAMIC BIN PACKING 249

Step 6. Delete all items of size (1/(k + 1))+e that were placed in the A bins,
0_-< _-< k, and remove enough additional items of that size (if necessary) from the
other bins so that exactly (m/(k + 1))/ dk such items remain. Note that this deletes
precisely X of those items. Next, for 1 _-< _-< k, delete e-items from each bin of type
Ai to reduce its level from (i/(k/l))+e to ((i-1)/k)/e, a reduction of (l/k-
i)/k(k + 1) per bin. Finally, from ao of the Ak bins (note that there are at least a0
bins of type Ak by (4.2) and the fact that k _-> 2), remove e-items totaling 1/k in size,
reducing the bin level to ((k 2)/k) + e.

The sum of the sizes of the items removed in this step is at least

(6.1)

X (+k-i) ao X (m’-ao) X-kao ao
k+l

+ a+ t+ t-
-_ (k + l k k + l k(k + l) k(k + l) k

X m
k k(k + 1)"

Step 7. So long as the sum of the sizes of all items in the packing is less than
m +e(m’ +(m/(k + 1))+dk), repeatedly create an item of size 1/k and have A pack
it. (Note that this will never cause the sum of the item sizes to exceed

m+e m’+k+.l+dk +-<m+l.
Note also that by (6.1) at least X items of size 1/k will be created.)

Step 8. Halt. We claim that if M is the number of nonempty bins in the packing
constructed by A, then

k+2
Mm l+k(k+ 1

and furthermore that for this list OPT (L)= m + 1.
We first prove that the number of bins in the packing constructed by A is as

stated. For each i, 1 N N k, let b denote the number of bins at the end of Step 6 that
contained items of size (1/(k+l))+e and no e-items. Note that 2=ib=
(m/(k + 1))+ dk. Also note that a bin with such items at the end of Step 6 has level
at most

k-i
k+++ie

at the end of Step 7. Also, at the end of Step 7 no bin of type A, 0 k, can have
level exceeding ((k- 1)/k)+e. If we let bo denote the number of nonempty bins that
contain only items of size 1/k at the end of Step 7, then we have

or

m+ m’+k+l+dk e<=m
k

+e +bo+=b k+i+----+ie

k
-[-

i=1
bi i+l) +bo+e m’+

(7.1) m<m’(,k-1) (..k m)/k
+
=o
y b + 1 + dk (k (k + 1)).

m)k+l
+dk

250 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

We also have M m’+yki=o b. Combining this with (7.1), we obtain

m’ (ml+dk)/k(k+l)M>-m+--+ k+

k+2 1) d d
m 1 +

k(k +1-----+ k(k + 1)2 --+ k +----i

=m 1+ (c+l)/+k k(k + 1) k+l

Since d ((k + 2)m/(k + 1))-m’ and m ’-> m, we have d <= m/(k + 1), and the desired
lower bound for M follows.

We next show that the items in existence at the end of Step 7 can be packed into
rn + 1 bins. By the operation of this step, we know that the sum of the item sizes is
less than m + 1. The idea of our packing is as follows" Combine each item of size
(1/(k + 1))+ e with a collection of e-items totaling (1/k(k + 1))-e in size, thus obtain-
ing an ensemble of size 1/k. These ensembles are then combined with the items of
size 1/k and packed k per bin, every bin but one being completely full. The remaining
e-items can be used to fill up the rest of the packing, and since there will be no wasted
space and the sum of the item sizes is less than m + 1, no more than m + 1 bins will
be used. This construction principle will work so long as there are enough e-items to
make all the ensembles, i.e., to mate with all the items of size (1/(k + 1))+e. Since
there are precisely (m/(k + 1))+dk items of size (1/(k + 1))+e left at this step, the
sum of the sizes of the e-items must be at least

rn 1 -e)(k + i + dk)(k(k + l)

in order for our construction to work.
The sum of the e-items in the packing can be estimated by noting that at the end

of Step 6 it must be at least

k-1 ao
k k

which, applying (4.2) and the assumption that k => 2, yields

k-1 a0

k
ag

k-
+dk +(k- 1)a0

k k

k 1 m (k 1)2 1. >
k k+l+dk +ao k =- k

m)+l+dk
Thus the number of e-items in the packing is sufficient for us to form our ensembles,
and hence we have OPTR (L)= rn + 1.

Finally we must show that OPTNR (L)= m + 1, i.e., that L can be packed into
m + 1 bins with no rearrangement. In the case where we halted in Step 3, the argument
is easy. The nonrearranged packing starts out with all the e-items packed into rn + 1
bins in such a way that the e-items which survive Step 3.1 are all in bin rn + 1. Thus,
after Step 3.1, the first m bins are completely empty, and the krn items of size 1/k
created in Step 3.2 can be packed, k per bin, into these bins.

In the case where we halted at Step 8, it is easier to describe the optimal packing
by running time "backwards." We start with the packing as it exists at the end of

DYNAMIC BIN PACKING 251

Step 7 and proceed through the steps in reverse order. When we pass the moment
of destruction (removal) for an item, we add it to the packing. When we pass the
moment of creation for an item, we delete it from the packing.

At the end of Step 7, the items of size (1/(k + 1))+ e and 1/k are packed k per
bin, with the space left over filled up with e-items. Step 7 removes all the items of
size l/k, of which there are at least X. Step 6 then puts back in precisely X items of
size (1/(k + 1))+e, plus a number of e-items. Each item of size (1/(k + 1))+e can
then be placed in a spot vacated by an item of size l/k, with the e-items filling up
the left-over space. Step 5 then deletes all the items of size (1/(k + 1))+ e, and the
e-items created in Step 4 can fill up the gaps. Step 3 does nothing in this case, and
Step 2 simply deletes everything. Thus, as required, we have OPTvR (L)= m + 1. [-I

THEOREM 6. For any on-line dynamic bin packing algorithm, A,

WR(A) >=
and

WVR (A >-- -- 2.388. .
Proof. Specifically, we show how to construct lists L and L2 with arbitrarily large

optimum packings such that

A (L 1) --> 8 (OPTNR (L 1) 1),

A(L2) >-(OPTR (L)- 1).

To do this, we modify and extend the construction procedure given in the proof of
Theorem 5, specialized to k 2.

Steps 1 and 2 are performed exactly as given, for both LI and L2. If the number
of nonempty bins at the end of Step 2 is at least (k + 2)m/(k + 1) 4m/3, the remainder
of the construction will also be the same for L and L2. In this case, we perform Steps
3.1 and 3.2 as before, obtaining a set of items of size e and size for which A uses
at least 5m/3 bins. We then complete the construction by replacing Step 3.3 by the
following steps:

3.3a. Remove all items of size 1/2 in the 4m/3 bins that contain e-items. From the
bins that contain only items of size 1/2, of which there are at least m/3,
remove items of size 1/2 until there are exactly m/3 such bins, each containing
a single item of size 1/2. Note that at this point the sum of the sizes of the
items in the packing is (m/6) + (4me)/3.

3.3b. Create 5m/6 items of size 1 and have A pack them. These must go in
5m/6 new bins, yielding a total of at least (5m/3)+ (5m/6)= 5m/2 bins.

3.3c. Halt. It is easy to see that we have OPTR (L)--OPTNR (L)= m + 1, so the
desired lists have been constructed in this case.

In the case where, for some d >0, only (4m/3)-d bins are nonempty after Step
2, the constructions for L and L2 differ. We first describe the modifications necessary
for constructing L 1. Step 3, as before, does nothing in this case, and Step 4 is executed
without change. However, we revise Step 5 as follows (with X defined as before):

5a. Create X+(m/3)+2d items of size 1/2 (instead of 1/2+e) and have A pack
them. Since the m’ bins that were nonempty after Step 4 must all be filled
at most to level + e, there will be a total of at least 4m/3 nonempty bins at
this point, at least d of which contain only items of size .

5b. Choose a set D of d bins that contain only items of size , and remove all
items of size from the packing except for one in each bin in D.

252 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

5c. Create X + (m/3)+ d items of size 1/2 + e and have A pack them.
Note that this modified Step 5 leaves a situation identical to that at the end of

the original Step 5, except for the bins in D, which have one item of size 1/2 instead of
size + e. Steps 6 and 7 are performed as before, and Step 8 is replaced by the following:

8a. There are at least 5m/3 nonempty bins, at least m/3 of which are not Ai-bins
or D-bins. Choose a set B of m/3 of these latter bins. Remove all items not
in Ai-bins, D-bins, or B-bins, and remove all but a single smallest item from
each of the D-bins and B-bins. (Note that the items deleted all have sizes
of either 1/2 or 1/2 + e.) For each item of size 1/2 + e that was deleted, remove an
additional -e in e-items from an AE-bin. There must be enough of these
in the packing since, as we argued following Step 8 in the proof of Theorem
5, there were enough e-items left in AE-bins so that every item of size 1/2+ e
in the packing after Step 7 could be matched with such a collection of e-items.
This also means that all items of size 1/2/ e remaining in the packing at this
point can still be matched with -e of e-items remaining in AE-bins. Form
such a matching and remove all other e-items from the packing, leaving a
single e-item if the bin would otherwise become empty. The sum of the sizes
of the items left in the packing at this point is no more than

d 1 m m d 4me
<--"+ -t-.m e +-4 2 3- - 3

8b. Create [(5m/6)-(d/3)] items of size 1 and have A pack them. Each requires
a new bin, so that we end up with a total of

5m [_] 5m m 43-+ ->-
2 9 18m"

(At the same time, all the items can be packed into rn + 1 bins. The items
of size 1 use up [(5m/6)-(d/3)] bins, and the items of size 2

x- and 1/2+e,
together with their associated e-items, go two per bin and hence use m/6
additional bins (recall that rn is divisible by k (k + 1)= 6). This leaves d items
of size 1/2 and at most m’ e-items. The items of size 1/2 go three per bin into
[d/3] bins, with the left-over items of size 1/2 and the remaining e-items fitting
in a single remaining bin. If we let d’-d-3 [d/3], we have that the total
number of bins used in this packing is

++ +1= -+ +-+ =re+l,

as required.)
8c.. Halt. L1 has been constructed.
It is straightforward to check that L1 can be packed into m + 1 bins, without

rearrangement, again by running the packing process backwards. At Step 8a the items
of size 1 can be replaced by ensembles of size 1/2, along with possibly some additional
e-items. (Our sum-of-sizes arguments allow for the possibility of perhaps one extra
ensemble, but if it exists there must be room for it in the bin with left-over e’s and
1/2’s.) We then continue backwards as in the proof of Theorem 1.

The construction of the list L2 in the case that there are only (4m/3) -d nonempty
bins following Step 2 proceeds exactly as the construction of L through Step 5, using
the same modification of Step 5 to ensure that there are d D-bins containing only a
single item of size 1/2. For future use, we now introduce some additional notation.

DYNAMIC BIN PACKING 253

Let E denote the set of bins that contain only items of size / e at the end of
Step 5, and let e -IEI. Partition D and E into D and DE, and E1 and E2, respectively,
where the subscript corresponds to the number of items in each bin in the set. Let
dx [D[, d2 [D2[, e [ExI, and e2 [E2[. Let A denote the subset of bins from Ao
that contain just a single e-item at the end of Step 5, and let a [A[. Figure 2
illustrates the possible contents of the bins of each of these types at the end of Step 5.

AI AO D E

FIG. 2. Types of bins at the end of Step 5.

LEMMA 6.1. The following relationships hold among the set sizes"

m
(R1) a2 >=-+ 2d + ao,

rn 3d m 2ao(R2) ao < and d=2 2 =3 3’

(R3)
m

dl+ e + 2d2 / 2e2 >-+ 2d + 2a

rn e +dx(R4) e _->+ao - 2

Proof ofLemma 6.1. (R1) is simply a restatement of (4.2) for k 2. (R2) follows
from the fact that

m <--+ a + a2 -+ ao-

(since, at the end of Step 2, each Ao bin is at most 3
x- full). (R3) follows from the fact

that at most Igl-2a items of size or larger go in ai bins during Step 5. (R4) follows
from (R3), since

m
2(d2 + e2) + (dl+ e) => if+ 2d + 2ao

implies

d+e>-_- +2d+2a6 +(el +dl)

which implies

m e+da
e >--+a +

2

Following the ccmpletion of Step 5, the construction of L2 proceeds as follows"
Step 6. Remov(e-items totaling in size from each Az-bin and totaling + e

from each A -bin if,at contains an item of size 1/2 + e, thus reducing the level of each

254 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

such bin to 1/2 + e. Then remove a single item of size] + e from each Ao-bin that contains
two such items. The types of bins are now as shown in Fig. 3. If e > [(m/3)+ (5ao/6)],
repeatedly remove all items from a single E-bin until equality is reached, set F ,
and go on to Step 8.

A2
k____..____ J ,/ k DI D2 .) LEI E2 .7

A Ao D E

FIG. 3. Types of bins at the end of Step 6.

Step 7. So long as the sum of the bin levels, with each rounded down to the
nearest multiple of , is less than m and the total number of items larger than e is
less than 2rn, do the following:

7.1. Create an item of size 1/2 and have A pack it.
7.2. If this item is placed in an A bin (in which case that bin contained only

e-items and had a level of 1/2 + e), remove from that bin all but one of the
e-items. If this item is placed in an Ao bin that contained an item of size
1/2 + e, delete the item of size 1/2 + e.

(Note that Step 7 guarantees that at all times during its execution the current set
of items can be packed into m + 1 bins. Let us denote by F the set of bins that contain
only items of size 1/2 at this point, let f IFI, and let a be the number of Ao bins that
still contain only a single item, of size e. Note that a-<_ a; <-ao. We claim that the
number M of nonempty bins, i.e., M a+ a + ao + d + e +f, satisfies

To see this, first suppose Step 7 halted because there were 2m items of size larger
than e. Then we must have

2m <-a +(ao-a’)+ 2(d +e +f)

or

d+e +f+(aa+a)>-m +ao
2 2"

Hence

a2 a2+al+aO+m+M >=--+ 2 2

1() l(4m d) ?_>- +2a+a0 +\-g-- +m+ (by (R1))

11m 2a 5rnllm d ao+ao>_ >
6 ++ 2 6 2 3

5mFa>+
3

5a rt
o

6

and, since M is an integer, the claim follows in this case.

DYNAMIC BIN PACKING 255

On the other hand, if Step 7 halted because the sum of the rounded bin levels
became too large, then we have

m <1/2(a2+al+ao=-a +-(dl + e 1) + (2d2 + e2) + f,

o1"

M-<m +(a2+al+ao)+--+ (d+
2

e) +-(d2 + e2).

Applying (R3) and a0+al+a2=(4m/3)-d, we obtain

1(4_ d) a 1()M ->m + +--+ + 2d +2a

and hence

since d <= m/3 and M is an integer.)
Step 8. Remove all but a total of 1/2 + e in e-items from each A2 bin. These are

now identical to the A bins that received neither an item of size 1/2 + e nor an item
of size 1/2. Call the joint class of such bins A. Note that a IAI->-a. Remove from
each A bin that contains an item of size - + e all items except for a single item of
size 1/2 + e and a single e-item. This makes them identical to some of the Ao bins. Call
this collection of identical bins A. Let A’ be the subset of the Ao bins that contain
a single item of size 1/2 and a single e-item, with A remaining as the set of Ao bins
that contain only a single e-item. Note that

4mag’ Iag’l <- a + ao- a’d --d a2 a.
Remove all but a single item of size] from each D bin, all but a single item of size
1/2 + e from each E bin, and all but a single item of size 1/2 from each F bin. Figure 4
illustrates the types of bins remaining at this point. If d <= 5a/6, set G and go
to Step 10.

A’ A’A2 A’) D, D2 E F

FIG. 4. Types of bins at the end of Step 8.

Step 9. Create a +d + [d-5a/6] <-d +d +a/6+ items of size and have
A pack them. They can only be placed in A bins, D1 bins, or new bins, so at least
[d- 5a/6] of them start new bins. Let G denote the set of such new bins. Note that
at this point the number of nonempty bins is at least

+ + d- =>-+d.

256 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

(We claim once again that the current collection of items can be packed into
m + 1 bins. The sum of their sizes is not too large, since it can be bounded by

2([51) l(4m) a a’ dE 5me
a+d+ d- + +e ---+-+--+ +---

2(a) 4m e a l(4rn-<- dE+2d+ + + + + -d-
-3 -g-

+dE+l 5

] (+ +--([+ e))

5m 5dE 7dl a" e+a. 5 5 5meo __+ +
-6 36 6]- 3

(by (R1) and (R2))

+-+ 1 _-<---+ +l=m+l.

The total number of bins needed to pack the items larger than e is at most

d+d,+-+ + -d-a-a’ +dz+e +

since all d items of size can go in bins with items of size 32-, and all the items of size
1/2 + e and can go two per bin. This quantity is bounded above by

2m d d2 a l(m) 1([5g] rn) 5
+3+d+ 2 3 2 +2d+a + + +

2m d 5a
2 12

5 5 2m l(m) 5 5m 5
-g+-i-<---+ +=--+<m +1.

The items of size e can then be used to fill in the remaining gaps.)
Step 10. Remove all but a single smallest item from each bin, which may be size

e, 1/2, + e, 1/2, or . Letting g [GI denote the number of items of size 32- remaining, create

2
g + --++items of size 1 and have A pack them.

(Since each item must start a new bin, we are guaranteed that there will be 5rn/2
nonempty bins at the end of this step. Moreover, the collection of items can still be
packed into rn + 1 bins. To show this, we consider two cases:

Case (i). d <= 5a/6. In this case, g 0 by Step 8. There are thus no more than
(5m/6)-(5a/6) items of size 1, each of which requires an entire bin in the packing.
The remaining

DYNAMIC BIN PACKING 257

items of size greater than e can be packed, two per bin, into at most

bins, for a total of at most m + bins. The remaining (4m/3)-d e-items can then be
packed into the space available in any one of the bins containing an item of size + e.

Case (ii). d > 5a/6. In this case g e Id 5a;/6 > 0. The items of size 1 and size
2 use up (5m/6)-(5ag/6) bins, but now all but

of the items of size in D bins will fit in a bin that contains an item of size . The
remaining items of size greater than e can go two to a bin, for a total number of bins
that is at most

5m 5a; ++ <m+ <m+l
6 6

The remaining items of size e can again be packed into the space available in some
bin containing an item of size + e.

Thus in both cases we have that at most m + 1 bins are required to pack the set
of items in the packing following Step 10.)

Step 11. Halt. The desired list L has been constructed.. Some eondnding remarks. For the cases in which all item sizes are bounded
by l/k, k N 2, our performance bounds for FF are reasonably tight and quite close
to the best that can be achieved by any on-line algorithm, even if we use the
nonrearranged optimum as our standard for comparison. For example, when k 2
we have

while

1.75 -<_ WR (FF, 2) -<_ 1.788

1.66 -<_ WNR (A, 2) _-< WR (A, 2)

for any on-line packing algorithm A.
For the unrestricted (k 1) case, our bonds are somewhat less tight, with

2.75 _-< WR (FF) <- 2.897

and

2.5 _-< WR (A), 2.38 _-< WNR(A)

for arbitrary on-line algorithms A. For practical purposes, however, it is probably
sufficient simply to know that all these algorithms have worst-case performance in
the vicinity of 21/2 to 3 times optimal.

It is interesting to note also the rather large increase in the performance bound
for FF when going from k- 2 to k 1. For dynamic bin packing the increase is
approximately 55%, from about 1.8 to about 2.8, which is to be contrasted with the
analogous increase of only 13%, from 1.5 to 1.7, for static bin packing.

Extensions on the work presented here might take any of several directions.
There is certainly room for improvements in our bounds, and methodological and
esthetic considerations provide ample justification for seeking such improvements. In

258 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

particular, the bounds for the k 1 case deserve further attention, and the general
on-line lower bound for WrR seems like an especially good candidate for additional
effort. It would also be of interest to obtain bounds on the ratio OPTrR/OPT.

More generally, having studied the worst-case performance of on-line dynamic
bin packing algorithms, it is natural to ask about the expected performance of such
algorithms, under various probabilistic assumptions about the arrival times, departure
times, and sizes of the items. Such results have been difficult to obtain even for static
bin packing (e.g., see [1]), but perhaps something useful can still be said for the
dynamic case. Finally, although we have restricted our attention to on-line algorithms
in this paper, there is no reason why analogous questions might not be asked about
arbitrary fast approximation algorithms for dynamic bin packing.

REFERENCES

[1] E. G. COFFMAN, JR., K. So, M. HOFRI AND A. C. YAO, A stochastic model of bin-packing, Inform.
and Control, 44 (1980), pp. 105-115.

[2] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

l3] M. R. GAREY AND D. S. JOHNSON, Approximation algorithms]’or bin packing problems: A survey,
in Analysis and Design of Algorithms in Combinatorial Optimization, G. Ausiello and M. Lucertini,
eds., CISM Courses and Lectures No. 266, Springer-Verlag, Vienna, 1981, pp. 147-172.

[4] D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM, Worst-case
performance bounds]:or simple one-dimensional packing algorithms, this Journal, 3 (1974), pp.
299-325.

[5] D. E. KNUTH, The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading, MA, 1968, 2.5.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0003 $01.25/0

WHETHER A SET OF MULTIVALUED DEPENDENCIES
IMPLIES A JOIN DEPENDENCY IS NP-HARD*

PATRICK C. FISCHERt AND DON-MIN TSOU

Abstract. The problem of determining, given a set of multivalued dependencies, whether or not they
logically imply a given join dependency is shown to be computationally intractable.

Key words, relational database, dependency theory, multivalued dependency, join dependency

1. Introduction. Some of the semantics of a relational database [8] can be
expressed in terms of different dependencies, of which the best known are functional
dependencies (FDs) [3], multivalued dependencies (MVDs) [6], [9], and/oin depen-
dencies (JDs) [12]. Understanding the relationships among sets of dependencies can
therefore aid in the logical design of databases.

One constraint that should be obeyed when a relation r is decomposed into
several relations r,.. , rk is that the join of the constituent relations should be equal
to the original relation r, i.e., no information is lost. The losslessness of such a
decomposition is equivalent to the existence of a JD, which is expressed as a collection
of the sets of attributes in each of the relations, viz., *[R,..., Rk]. It is well known
that an MVD is a special case of a JD with k 2.

We restrict ourselves here to the complexity of determining whether a set of
dependencies implies a given dependency. In particular, we settle the principal remain-
ing open question in this area concerning FDs, MVDs, and JDs. Specifically, we will
show that it is NP-hard to determine, given a set of MVDs (with or without the
inclusion of FDs), whether a given JD is implied, i.e., whether whenever a relational
database satisfies the given MVDs it must also satisfy the JD. We summarize the
other cases in Table 1 below.

Implies a

Set of .n
TABLE

Complexity of testing implications.

FD MVD JD

FDs In P IrtP In P
[5] [43, [10] [13

FDs and MVDs In P In P NP-hard
[4] [4], [10], [14] (this paper)

FDs and JDs In P In P NP-hard
[13] [13], [16] [13]

2. Preliminaries. We follow, as much as possible, the terminology of [15].
DEFINITION 1. A relation scheme V is a set of attributes A At, taken from a

universe U. A relation r is a collection of tuples (dl," ", do) where each component
di contains a value from the domain of values for the attribute Ai.

* Received by the editors March 15, 1982, and in revised form April 29, 1982. This research was
partially supported by the National Science Foundation under grant MCS-8007706.

" Computer Science Department, Vanderbilt University, Nashville, Tennessee 37235.
Wang Laboratories, Lowell, Massachusetts 01851.

259

260 PATRICK C. FISCHER AND DON-MIN TSOU

A functional dependency X Y, where X, Y are sets of attributes contained in
U, holds for a relation r if for any two tuples tl, t2 of r if tl and t2 agree on the
components associated with the attributes in X, i.e., on the X-components, then they
also agree on the Y-components.

A join dependency *IV1,..., Vk] holds for a relation r if whenever there are
tuples ta,..., tk of r having the property that for any i,/" (1 <=i, f <-_k), ti agrees with

t. on the components V (’1 V., then the tuple t’ (which must be well defined by the
previous condition) will also be in r, where t’ agrees with ti on the V-components for
l<=i<=k.

A multivalued dependency X-- Y is equivalent to the JD *[XY, XZ] where
Z U-XY. (XY is a customary abbreviation for X LI Y.) Hence, it holds in r if
whenever two tuples, tl, t2, agree on the X-components, a tuple which agrees with tl
of the XY-components and with t2 on the XZ-components is also present in r.

In our proof of the main theorem we shall use a reduction from the hitting set
problem [11]. We shall also use the tableau characterization of Aho, Ullman et al.
[1], [2], [12]. We state the necessary definitions and results next.

DEFINITION 2. Let S {sx, s2, , s,} be a set and T {T, , T,} be a family
of subsets of S. The hitting set problem is to determine, given S and T, whether or
not there exists a set W S such that for each i, 1-< =< m, T f-1 W contains exactly
one element of S. Without loss of generality, we assume

U T=S, nT,=(R).
i=1 i=1

THEOREM (Karp, 11]). The hitting set problem is NP-complete.
DEFINITION 3. A tableau is a table with a column corresponding to each attribute

in the universe U. Entries in a tableau are either a distinguished variable (a) or a
nondistinguished variable (b. for some/’). Note that we have dropped the column
subscripts from the tableau entries in [1] since they are unnecessary. (Comparisons
are never made between variables in different columns and entries never change
columns.)

THEOREM (Aho, Beeri, Ullman [1]). The join of relation schemes R, Rk is
lossless; i.e. *JR1,..., R] holds if and only if a row of distinguished variables (all
a ’s) is derivable in a tableau as follows:

1) The initial tableau consists o] one row for each given relation scheme. For
1 <-f <-k, row f will have an a in each attribute position corresponding to members of
Rj and will have bj in all other positions.

2) The tableau is modified by using rules corresponding to the system of given
dependencies: (The FD rule is not used in this paper because our construction produces
a system of MVDs only.) The MVD rule is: given an MVD X-- Y, whenever two
rows of the tableau agree on the positions corresponding to the attributes in X, i.e., on
the "X-positions", two new rows can be generated by interchanging all of the entries in
the Y-positions. If either of the new rows is identical to one already in the tableau it is
not listed a second time.

Note that the MVD rule for tableaux exactly parallels the MVD characterization
in Definition 1. The tableau resulting from all possible applications of the rules is
called the chase of the initial tableau.

3. The main theorem.
THEOREM. It is NP-hard to determine, given a set of MVDs and a JD, whether

the JD is implied by the MVDs.

IMPLICATION OF A JD BY MVDs IS NP-HARD 261

Pro@ We begin with an instance of the hitting set problem as given in Definition
2 and construct the following set of MVDs and a collection of 2n + 1 relation schemes.
The universe set of attributes will be

U={AoAA2"" A,BB2"" Bin} U {G;I1 -<i _-<m, 1 _-<] -<_n}.

The relation schemes to be joined are

Zo U-Ao,

Zj AoA 1" A,,CljC2

Z,+ AoX.Y.
for each], 1 -<] -< n,

for each/’, 1 =<] <-n,

where X. {Cii]s Tit and Y. {Bls Tit.
The MVDs are
(Type I) AoA AmABCIC2 Cn for each i, 1 _-<i _-<m,
(Type II) AoX.--{ABCC2... G, lsj e T/} for each], 1-<_]_-<n,
(Type III) BB2 B, --Ao.We wish to verify that a row of all a’s can be derived from the initial tableau

representing Zo, Zl,’ ’, Z2, via the rules for the given m + n + 1 MVDs if and only
if there exists a hitting set W for T. From the theorem in 1], the JD *[Zo, Z, ., Z2,
would then be implied by the MVDs if and only if there is a hitting set. Hence the
implication problem must be NP-hard.

The proof proceeds through a series of lemmas. First, however, we give an
example of a tableau derived from our construction.

Example. Let n 3, m 2, T {sl, s2}, T2 {s3}. There would be 7 rows in the
initial tableau"

Ao A1 B1 C1 Cle C3 Ae Be Ce Cee Ce3
ro bo a a a a a a a a a a

r a a b a bl bl a bl a b b
re a a be be a be a bz bz a be
r3 a a b3 b3 b3 a a b3 b3 b3 a

r4 a b4 a a b4 b4 b4 b4 b4 b4 b4
r5 a b5 a b5 a b5 b b5 bs b5 b5
r6 a b6 b6 b6 b6 b6 b6 a b6 b6 a

The MVDs would be:

(Type I)

(Type II)

AoA1A2 "->>A xB CllC12C13
AoA1A2 -’>>A2B2C21C22C23

AoCll ->>AIBIC11C12C13
AoC12 ->>AIBIC11C12C13
AOC23 -AEB2C21C22C23

(Type III) B1B2 ->> Ao.

If one applied the rule for the first MVD (Type I, 1) to rows r and r. above, the
following new rows would be produced:

r7 a a b2 b2 a b2 a b a ba ba
r8 a a bl a b ba a b2 b2 a b2

262 PATRICK C. FISCHER AND DON-MIN TSOU

Returning to the proof, we will find the following abbreviations useful:
DEFINITION 4.
a) Ro {ro, rl, ’, r2,}, the initial tableau;
b) V AiBiCilCi2" Cin for 1 _-< <- rn
c) H(f)={ils Ti} for l <-_j <=n.
We shall refer to the various Vi as "V-groups". The mnemonic for H(/’) is "hits

for/"’. Also, in the lemmas below, we shall refer to "application of an MVD" when
we mean the application of an MVD rule in a tableau.

LEMMA 1. Let tableau R 12 be generated from Ro by applying Type I and Type II
MVDs until no new rows are produced. Then in every row of R 12 except ro: 1) there is
an a in the Ao position 2) within each V-group there are at most two a entries.

Proof. By induction on the number of applications of MVDs. These properties
clearly hold for rl, r2, , r2,. Now assume the two properties hold for an intermediate
tableau and consider the application of a Type I or Type II MVD. Since ro differs in
the Ao-position from all other rows so far generated, it cannot participate in the
application. Therefore both rows to which the MVD is applied have the given
properties. Observe that both Type I and Type II MVDs have the effect of moving
entire V-groups, never any proper subsets of a V-group, nor the Ao entry. Thus both
new rows are obtained by interchanging certain V-groups and hence also have both
properties.

LEMMA 2. A row with all a’s can be derived, i.e. will be in the chase of Ro, if and
only if the Type III MVD is applied to ro and to a row in R 12 (see Lemma 1) having
a’s in all of the B1 B,,-positions.

Proof. It is obvious that an application of the Type III MVD as specified will
yield a row of all a’s. Conversely, suppose all a’s can be derived. From Lemma 1,
R 12 contains no such row. Therefore the Type III MVD must be used. If neither of
the two rows to which it is applied is ro then no new rows will be created since Ao is
a in both rows. Therefore one row must be to. Since ro has a in each of the
B B,,- positions so must the other row.

LEMMA 3. A row with all a’s will be in the chase of Ro if and only if a row with
a’s in the B B,, positions is present in the tableau R’ generated as follows:

a) Ao is removed from the universe of attributes.
b) The initial tableau R’o consists of the rows rl, , r2n given above but with the

Ao-column deleted.
c) The MVDs are the Type I and Type II MVDs previously given with Ao deleted.

Restated, in terms ofDefinition 4, they are:
Type I(i) A1 A, - V for each i, 1 <- <-_ m
Type II(j) X. -- U iH(j) Vi for each j, 1 <- j <-_ n.

d) The MVDs are applied until no new rows are produced (i.e. R’ is the chase of
R’o with respect to the MVDs given above).

Proof. Immediate from Lemmas 1 and 2.
Henceforth R and R’ will have the meanings given in Lemma 3.
DEFINITION 5. We define the following strings of length n + 2 for each j, 1 <- / _-< n’

Ei abi(bi)i-la (bi)"-i,

F. b,+ja(b,+i)J-la(b,,+j)’-j,

G (b.+)"+:

We will call these E-, F- and G-strings, respectively. In the example, the E-, F- and

IMPLICATION OF A JD BY MVDs IS NP-HARD 263

G-strings would be

E =a ba bb F ba a b4b4

E2=a b2b2a b2 F2=bsa bsa b5

E3 a b3b3b3a F3 b6a b6b6a

G1 =b4b4b4b4b4

G2=bsbsbsbsb5

G3 b6b6b6b6b6.

LEMMA 4. In every row of the tableau R’, each V-group has for its entries either
Ej for some f, F. for some , or Gj for some f.

Proof. By induction on the number of applications of MVDs. For the basis we
restate the rows of R according to the terminology of Definition 5.

For 1 =<] -< n, ri has Ei in each of the V-groups.

F. in each group V/where H(f),For 1 =</"-< n, rn/i has
[Gi, otherwise.

The inductive step is the same as in Lemma 1.
LEMMA 5. A row of all a’s will be in the chase of Ro if and only if R’ contains

a row of the form

F.IF. F., for some choice Offl, f2,

Proof. Immediate from Definition 5 and Lemmas 3 and 4, since for each i,
1 -< -< m, V will have an a in the Bi-position if and only if V contains an F-string.

LEMMA 6. Let R consist of all n rows of the form EiIEi2 Ei.]’or all possible
choices in 1 <= fi <= n, 1 <= <= m. Then R c R’.

Proof. Given/’1,/’2,""’,/’,, we begin with rows ri and ri2 and apply MVD I(/’2),
producing a row r EiEiEi.. Ei. Next we apply MVD 1(/’3) to r and ri3, producing
r’3 =EiIEi:Ei3Ei...Ej. Similarly, we apply MVD I(f4) through MVD I(/’,) in turn,

the desired row.finally producing r
To prove our main theorem it suffices by Lemma 5 to show that a row with an

F-string in each V-group exists in R’ if and only if T has a hitting set. We are now
ready to show that the existence of a hitting set will cause R’ to have such a row. The
converse will require further analysis of R’.

LEMMA 7. If T contains a hitting set, then R’ has a row of the form

F,.F,.... F,.,
i.e., each V-group contains an F-string.

Proof. Let W {Sw, Sw,’", Swp} be a hitting set for T. Then for any k k’,
H(Wk) H(Wk’)= since no T contains two distinct members of W. From Lemma
6, R’ contains r0* EIE" E,., where for each i, 1 _-< _-< m, st, T f’) W, i.e., Ew
appears in each group V where H(wk). We apply MVD II(wl) to r0* and r,+w,
producing the row r’ which has Fwl in each group V where H(wl). We now apply
MVD II(w2) to rx* and r,+w2 producing r2* which has Fw in each group V where
H(wl). Since H(w2) and H(wl) are disjoint, rE* retains Fw in each group V/where
H(wl). Similarly, we apply MVD II(w3) through MVD II(wp), in turn. The final

row r* will have Fw in each group V where iH(w) for 1-<_k _-<p. Since W is a
hitting set, [.JI<__k<__t,H(Wk)={1,2, ,m} so rp* has an F-string in each group V,
l<_i<=m.

DEFINITION 6.
a) An EF-row is a row in which:

i) Each V-group contains an E-string or an F-string.
ii) For each], 1-<]-< n, if F. appears in any of the V-groups then F is in

group V if and only if H(]).

264 PATRICK C. FISCHER AND DON-MIN TSOU

b) A G-row is a row which, for some/’, 1 <=/" =< n, satisfies:
i) For the groups Vi where H(]) either all contain E. or all contain F.
ii) All other V-groups contain

There are only 2n G-rows. Let us call them, for 1 <= j <-n, GEj or GF. depending upon
the choice of E. or F. in b)i) above.

LEMMA 8. The tableau R’ consists only ofEF-rows and G rows.
Proof. By induction on the number of applications of MVDs. In the initial tableau

R/, rows rl through rn consist only of E-strings and thus satisfy the second condition
of Definition 6a)ii) vacuously. Rows rn+l through r2, are clearly the G rows
GF,..., GF, (cf. Lemma 4).

The induction step proceeds by cases"

Case I. An MVD is applied to two EF-rows r and r’. If the MVD is Type I,
then if either row has an F-string in any group Vi, the other row must have the same
F-string in Vi. This is so because r and r’ must match in the Ai-position, and F. has
bi in this position, whereas any E-string has an a there. Thus the MVD would either
interchange two identical F-strings, creating nothing new, or interchange two E-
strings, creating two more EF-rows.

If the MVD is Type II, let us assume that it is II(j) for some j. Then r and r’
match on X. {Ciili H(/’)}. For r and r’ to agree in the Cii position for some H(]),
either group V contains Ej in one case and F. in the other or the two rows are identical
on the V-positions. From Definition 6 a)ii) and the induction hypothesis there are
only three possible subcases:

a) Both r and r’ contain F. in the V-positions for H(j). Then MVD II(/’) will
create no new rows since t.J Hi V is the portion interchanged.

b) One row contains F. in V for H(j), the other contains Ei in these V-groups.
Then the resulting rows will be EF-rows.

c) Both r and r’ contain E-strings in all Vi where H(j). Then no new rows
are obtained since the rows agree on these V.

Case II. An MVD is applied to two G-rows r and r’. First assume the MVD is
Type I. Suppose r GE for some/’. Then, for some i H(/’), V contains G, which
has b,/j in the A-position. Then r’ must also have Gi in group V, so r’ is either GEi
or GF. But Ei and F disagree in the A position. Therefore r’= r. If r GF., the same
reasoning will show r’= r.

If the MVD is Type II(j) for some j, then either r and r’ agree on all of the
V-positions for H(/’) or one of the rows is GEi and the other is GF.. In either
case, no new rows are produced.

Case III. An MVD is applied to an EF-row r, and a G-row r’. The MVD cannot
be Type I. To see this, assume r’ is GEj or GF.. Then for some : H(j) group V of
r’ contains Gi, which matches no E-string or F-string of r in the A-position. Therefore,
assume the MVD is Type II(/’) for some/’. Then r’= GEi or r’= GF. since all other
G-rows would fail to match r on X.. Thus r must have a’s in the Xi positions. From
Definition 6 a) ii) this means either r has Ei in each V where H(/’), or r has F in
each of these V-groups. The new rows will clearly be an EF-row and a G-row.

LEMMA 9. If a row in which each V-group contains an F-string exists in R’, then
T has a hitting set W.

Proof. Take any row rF in which each V-group has an F-string. Let
{w l, w2," ’, wp} be the set of indices of the F-strings in rF, i.e.

and for each i, 1 =< i-<_ m,/’i {w, W2, Wp. From Lemma 8, for 1 =< =< m, group

IMPLICATION OF A JD BY MVDs IS NP-HARD 265

V has Fwk as its entries if and only if H(wk). Since F. F., whenever f f’, it follows
that H(wk)f’lH(Wk,) if k k’. Furthermore, for 1 <-i <=m, eH(w,) for some k
since rv has only F-strings.

From the definition of H(f) we see that W {swl, sw2,’’’, swp} is a hitting set
for T.

The main theorem now follows from Lemmas 5, 7 and 9.

4. Conclusion. The main theorem plus the results in [13] show that the complexity
of the inference problem (whether a set of dependencies D logically implies a single
dependency d) depends on d more than D when all dependencies are MVDs or JDs.
The order (number oi components) of the JD produced by our construction, however,
can be arbitrarily large. Since an MVD is a JD of order 2, this raises the question for
other JDs of bounded order. In particular, what is the complexity of the inference
problem when D contains arbitrary JDs and d is an order-3 JD or a JD of any
bounded order? Does this complexity change if restrictions are also placed on the
order of the JDs in D ?

Another open question is the membership of the problem under discussion (D
is MVDs, d is a JD) in the class NP. We have not been able to settle this. In [13] it
was shown that when D is a set of FDs, no MVDs and a single JD and d is a JD,
then the implication problem is in NP. However, the authors did not show membership
in NP when D has MVDs and a JD; if this were so our case would obviously also be
in NP.

In [17], it is shown that if D is one FD and one JD, and d is a JD, then the
inference problem is NP-complete. Can an analogous result be obtained for MVDs?

REFERENCES

[1] A. V. AHO, C. BEERI AND J. D. ULLMAN, The theory of loins in relational databases, ACM Trans.
Database Systems, 4 (1979), pp. 297-314.

[2] A. V. AHO, Y. SAGIV AND J. D. ULLMAN, Efficient optimization of a class of relational expressions,
ACM Trans. Database Systems, 4 (1979), pp. 435-454.

[3] W. W. ARMSTRONG, Dependency structures of data base relationships, in Information Processing 74,
North-Holland, Amsterdam, 1974, pp. 580-583.

[4] C. BEERI, On the membership problem forfunction and multivalued dependencies in relational databases,
ACM Trans. Database Systems, 5 (1980), pp. 241-259.

[5] C. BEERI AND P. A. BERNSTEIN, Computational problems related to the design of normal form
relational schemes, ACM Trans. Database Systems, 4 (1979), pp. 30-59.

[6] C. BEERI, R. FAGIN AND J. HOWARD, A complete axiomatization for functional and multivalued
dependencies, Proc. ACM SIGMOD Conference, 1977, pp. 47-61.

[7] C. BEERI, R. FAGIN, D. MAIER, A. MENDELZON, J. ULLMAN AND M. YANNAKAKIS, Properties
of acyclic database schemes, Proc. Thirteenth Annual ACM Symposium on Theory of Computing,
1981, pp. 355-362.

[8] E. F. CODD, A relational model of data for large shared data banks, Comm. ACM, 13 (1970), pp.
377-387.

[9] R. FAGIN, Multivalued dependencies and a new normal form for relational databases, ACM Trans.
Database Systems, 2 (1977), pp. 262-278.

[10] K. HAGIHARA, M. ITO AND K. TANIGUCHI, Decision problem for multivalued dependencies in
relational databases, this Journal, 8 (1979), pp. 247-264.

[11] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations,
Plenum Press, New York, 1972, pp. 85-104.

[12] D. MAIER, A. O. MENDELZON AND Y. SAGIV, Testing implications of data dependencies, ACM
Trans. Database Systems, 4 (1979), pp. 455-469.

[13] D. MAIER, Y. SAGIV AND M. YANAKAKIS, On the complexity of testing implications of functional
and loin dependencies, J. Assoc. Comput. Mach., 28 (1981), pp. 680-695.

266 PATRICK C. FISCHER AND DON-MIN TSOU

[14] D.-M. Tsou, Analysis of the logical design in relational databases, Technical Rep. CS-80-11, Vander-
bilt University, Nashville, TN, 1980.

[15] J. D. ULLMAN, Principles ofDatabase Systems, Computer Science Press, Potomac, MD, 1979.
[16] M. Y. VARDI, Inferring multivalued dependencies from functional and join dependencies, Technical

Rep., Weizmann Institute of Science, Rehovot, Israel, 1980.
[17] C. BEER AND M. Y. VARDI, Oft the complexity of testing implications of data dependencies, Technical

Rep., Hebrew University, Jerusalem, Israel, 1980.

SlAM J. COMPUT.
Vol. 12, No. 2, May 1983

(C) 1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0004 $01.25/0

THE EQUIVALENCE OF TWO SEMANTIC DEFINITIONS:
A CASE STUDY IN LCF*

AVRA COHN-

Abstract. We present a case study in LCF of the equivalence of two semantic definitions for a small
language. The language contains recursive and nonrecursive procedure declarations, and static binding of
variables is intended. A standard semantics is proved equivalent to a closure semantics in which procedures
denote closures (textual objects). This proof is discussed abstractly in [1]. A similar equivalence is proved
by J. Stoy in [6, Chap. 13], based on work by R. Milne and C. Strachey [4]. We describe the formalization
of the problem in LCF, the informal proof by structural induction over programs of the language, and the
strategy for performing the proof mechanically. The strategy is quite general even though it involves rather
subtle handling of lemmas and induction hypotheses. A basic understanding of Scott’s theory of domains
is assumed, including the least fixed point operator and domain constructing operations such as domain
equations.

Key words, compiler correctness, semantics, theorem proving, verification

The LCF system. The LCF system [3] is designed to support interactive, goal-
oriented performance of formal proofs in a particular logic (called PPLAMBDA), by
the application of proof strategies implemented in a general purpose programming
language (ML). The aim in each proof effort is to set out a goal to be achieved, and
to design a tactic which implements a strategy for achieving or partially achieving the
goal. A goal is a triple, consisting of the PPLAMBDA formula to be proved, a set
(simpset) of representations of theorems expressing term equivalences (simprules) to
be used as left-to-right rewrite rules, and a list of assumptions current in a proof
effort. A tactic is an ML procedure which produces a list of subgoals from a goal, and
produces a justification of the step from goal to subgoals. A justification is a function
which maps theorems achieving the subgoals to a theorem achieving the original goal.
A theorem with a list of hypotheses A’ and a conclusion w’ achieves a goal (w, ss, A)
if the formulae w and w’ are the same (up to renaming of bound variables) and if all
formulae in A’ either belong to A or are hypotheses of one of the theorems represented
by some element of ss.

A tactic may simply be the inverse of a PPLAMBDA rule of inference, or it may
encode a more complex pattern of reasoning. Tactics are combined into larger tactics
by means of ML functions called tacticals, the most commonly used of which are
THEN for sequencing of tactics, THENL for selective sequencing, and REPEAT for
repeated application. For tactics T1 and T2, the tactic T1 THEN T2, when applied
to a goal, applies T1 to the goal, and applies T2 to the ensuing subgoals. For tactics
T and list of tactics IT1 Tn], T THENL IT1,..., Tn], applied to a goal, applies
T to the goal to obtain n subgoals gi, and then applies Ti to gi, for each i. When
inapplicable to a goal, a tactic raises an exception, using the ML exception-handling
mechanism. For a tactic T, the tactic REPEAT T, applied to a goal, applies T to
obtain either no, one or several subgoals, applies T to each, and continues, until (and
if) an exception is generated. A tactic may produce no subgoals, in which case the
goal has been achieved, and the justification can be evaluated (that is, the proof can
be performed).

A set of standard tactics is provided in LCF, and others are written by the user,
as needed. Both the standard and the user-defined tactics are implemented as

* Received by the editors February 17, 1981, and in revised form May 26, 1982.
t Computer Laboratory, University of Cambridge, Corn Exchange Street, Cambridge CB2 3QG,

England. This research was done while the author was at the University of Edinburgh.

267

268 AVRA COHN

procedures in ML. Tactics are combined to express complex strategies to solve various
goals; the combined justifications produce theorems achieving the goals. One of the
research aims of work in LCF is to find and implement general strategies for proving
classes of theorems.

The standard tactic SIMPTAC, applied to a goal, applies all of the simprules in
the simpset to the formula part of the goal as many times as possible, t) rewrite the
formula. As all tactics do, it also provides a justification for the step from goal to
subgoal. In addition, SIMPTAC can recognize some tautologies, and may thus produce
from a goal an empty list of subgoals.

More precisely, each simprule is derived from a theorem (since each rewriting
must be justified) of the form

A - {Vxl xn.}{w =}tl =t2
where theorems are written with a list of assumptions to the left of the turnstile and
the conclusion to the right, l t2 is a term equivalence in PPLAMBDA, w is a
formula in PPLAMBDA, and curly brackets indicate optional components. An appli-
cation of the simprule to some formula consists in a match of subterms of the formula
to 1; if a match is possible, then the corresponding instance of t2 replaces the instance
of 1 in the formula. A match cannot involve instantiation of variables free in the list,
A, of assumptions of the theorem. If an antecedent is present, the corresponding
instance of the antecedent must be reduced to a tautology by simplification before
the replacement can be made; otherwise it is not made. This is called conditional
simplification. If quantifiers are present, the theorem is specialized to arbitrary vari-
ables, which are then instantiable in matches.

SIMPTAC uses all such simprules provided as part of a goal, and some standard
ones in addition. The object, in any proof effort, is to relegate as much of the work
as possible to simplification. This methodology is based on the belief, or at least hope,
that most of the steps in most proofs are routine, and the user should only have to
guide the search over the difficult steps. At the same time, the methodology demands
some care in the choice of simprules (as we shall see).

The formalization of some problems requires the introduction of new data types,
objects, and axioms beyond those already in PPLAMBDA. To allow this, LCF includes
a facility for building (hierarchies of) logical theories. Theorems already proved can
be saved in theories for later use.

In this paper we examine the hierarchy of theories needed to formulate the syntax
of a small language and its two semantic definitions, the goal expressing the equivalence
of the semantics, and the tactics which achieve the goal. First, we consider the problem
informally.

The problem, informally. In our toy language, we allow blocks in which local
variables are declared, and procedures invoked. For simplicity, we consider blocks
with exactly one declaration apiece, and procedures without parameters. We allow
identifiers to denote only procedures.

I ranges over a domain ID of identifiers; p, p l and p2 over a domain P of
programs; and the variable a over a domain ATOM of (unspecified) atomic programs.
Programs are given by

P::= al
t

let I p 1 in p 2

letrec I p 1 in p 2
pl;p2.

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 269

The second construct specifies procedure invocation, the third and fourth, respectively,
blocks with nonrecursive and recursive procedure declaration, and the fifth,
sequencing.

A standard (direct) semanticsmin which procedures denote functions--is given
for this language. It requires a domain, ENV, of environments in which identifiers
are mapped to the meanings of programs. The meanings of programs are transforma-
tions on stores; the structure of the domain STORE is not important for our purposes.
We let cr range over STORE. Thus we have

O ENV ID STORE STORE.

We define semantic functions s for atomic programs, and ow for programs"

s4" ATOM STORE STORE,

5: P ENV STORE STORE.

The clauses for 5 are

[[a]]p

5f call I]]o

5let I p 1 in p

letrec I p 1 in p 2lip

sC[a ,

=OI,

5"p2]](p[l[p 1]]O/I]),

5p2]](FIX(Ao’. O[5"[P 1]]O’/I])),

Ao’. [[p2llO(P 1]]Oo).

(]:[x/y] denotes the function Az. if z -y then x else f z.) We assume that for all a,
s[[a]]J. +/-. The only subtle clause is the one for recursive procedure declaration, in
which I is recursively declared to denote p 1 throughout p2. In that case, we take the
meaning of the body p2 in an environment, t3, say, which is like O except on I; I is
bound to the meaning of p 1 in t3"

o[5p 1]]/I] FIX (A0’. O[5p1lip’

We now define a closure semantics, oW, for the language, which we will eventually
prove equivalent to oW. The environments in O map identifiers to closures, which are
pairs consisting of programs and (declaration time) environments. Closures are rep-
resentations of the meanings of procedures in 5, that is, representations of store
transformations. The semantics can be viewed as defining an abstract interpreter for
the language.

We let v range over CENV, a reflexive domain of closure environments’

v CENV ID -> (P x CENV).

The semantic function 5 has type

Its clauses are"

5" P - CENV STORE STORE.

a]]v

5fcall I]]v

Armlet I p 1 in p 2]Iv

5fletrec I p 1 in p2v
Af [[p l p 2]] v

s[[a]],

5p’]]v where (p’, v’) v I,

[[p2]](v[(p 1, v)/I]),

5p2]](FIX (Av’.v[(p 1, v’)/I])),

Ao-. p2]]v(Ap 1]]wr).

270 AVRA COHN

In stating the equivalence of 5 and 5, we first state the simulation relation (or
congruence condition) between the respective "contexts" of the semantic functions,
that is, between O of type ENV ID --> STORE --> STORE and v of type CENV ID ->

P x CENV. The obvious relation is

I. p I p’v’ where (p’, v’) v L
That is,

VI. p I [[call I]v.

We abbreviate this relation between p and v as p ---v.
The remainder of this section is devoted to the informal proofs, which we shall

later formalize and mechanize.
Our goal is to prove
TI4O.

The proof is facilitated by a lemma.
LEMMA.

Vpvp’v’J. p "-,v O[5"p’v’/J]---v[(p v’)/J].

Proof of lemma. We show

(VI. O I 5P[[eli I]]v) (VI. p[p’v’/J]I ellI(v[(p’, v’)/J])).

We assume that (VI. 01 5"ell Iv).
Case I J. We must show that

O I 5P [[call I]] v.

This follows from the assumption.
Case I J. Now

5fcall I(v[(p’, v’)/]])

by definition of 5. Q.E.D.
The proof of the theorem is by structural induction on programs. We use corner

brackets to map concrete to abstract syntax.
Proof of theorem.
Basis. If p .l_ or p ra, we assume that p ---v, and the proof is obvious.
Case p rcall In. We assume p v.

call I]]p p I 5f call I]]v

by the definition of 5f and the assumption.
Step. We assume the theorem for p 1 and p 2 in place of p, and we assume O v.
Case p rlet I p 1 in p 2. We must show

Olet I =pl in p2]]p =Slet / =pl in p2]]v,
that is,

p2(O[5p lo/I]) p2](v[(p 1, v)/I]).

In order to use the induction hypothesis for p2, we must show

O[5p lo/I],-v[(p l, v)/I].

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 271

This follows by a use of the induction hypothesis for p 1 on the subterm 0p 1lip, with
the assumption that p -v, and then by an application of the lemma, also with the
assumption that o v.

Case p Fletrec I p 1 in p 27. We must show

5p2]](FIX (At)’. O[5p 1]]0’/I]))= 5Ep2ll(FIX (Av’. v[(p 1, v’)/I])).

We call the two functionals and respectively, and prove

0p2]](FIX)= p2]](FIX o//.).

This requires an inner computation induction in order to prove that FIX FIX o//.,
and so complete the proof, by a use of the induction hypothesis for p2.

The basis case is trivial.
Assume. .--, for arbitrary t and
Show. F Y , that is,

o[sep/] v[(p , o)/t].

By the outer induction hypothesis for p 1, and the inner induction hypothesis, we have

[[p 1]]t5 p1]].

Hence, by applying the lemma, with the assumption that t---G the result follows.
Case p r-p 1; p 2-. We assume that t) v.

5p 1; p21]0 3‘o.. 5p2]lO(5"[[p llloo.)
3,o-. p2v(5p 1]]vo-)

SZp l; p2v

by a use of each induction hypothesis, with the assumption, in turn. Q.E.D.

The proof in LCF. To perform this proof in LCF, a certain amount of effort is
invested in (1) formalizing the problem, and (2) formulating a goal and designing a
strategy to solve it.

The proof, in all, consists of about one thousand primitive PPLAMBDA inferen-
ces, but it is generated by eight conceptually coherent tactics, three of which are
standard, and five of which are designed for this (and other) proof(s). Less subjectively,
in the proof of the lemma, simplification solves all of the cases in the case analysis.
In the proof of the main theorem, simplification solves the undefined case of both the
inner and outer inductions, as well as the call case. The role of simplification will be
made clearer on closer examination.

Notation. The logic in which the problem is expressed, PPLAMBDA, is a predi-
cate calculus whose terms are from the typed lambda calculus. PPLAMBDA
expressions (terms and formulae) are written in quotation marks thusly" "...".
PPLAMBDA constants include the selectors "FST" and "SND", where
"FST (x, y), SND (x, y)" is "(x, y)". Basic formulae are "tl t2" and "tl<< t2",
denoting equivalence or inequivalence of PPLAMBDA terms "tl" and "t2" in the
domains to which the types of the terms l and t2 correspond. A PPLAMBDA term
can be a conditional "if then tl else t2" for truth-valued "t", an application "tl t2"
or a lambda abstraction "\x. t" (which is read "3‘x. t"). An implication with an
antecedent formula "tl ==t2", say, and consequent "t2==tl", is written
"tl t2 IMP t2 ==tl". The symbol for the quantifier ’ in PPLAMBDA is "!".
PPLAMBDA types are written in quotation marks preceded by a colon; for example,

272 AVRA COHN

":tr" is the constant PPLAMBDA type for truth values. There are three PPLAMBDA
constants with this type, "TT", "FF" and "UU" for true, false and undefined,
respectively. Each PPLAMBDA type corresponds to a domain (cpo). PPLAMBDA
type operators include the binary operators sum (+), product (x), and function space
formation (-->), and the unary operator for lifting (adding a new minimum element
to) domains (u).

To help the reader, we adopt the following notation. Inference rules of
PPLAMBDA are written with a single horizontal line, with the argument(s) of the
rule above, and the theorem returned by the rule below. Goals are written sometimes
as triples, and sometimes as boxes with three horizontal components, containing, from
top to bottom, the formula to be achieved, the theorems contributing to the simpset,
and the list of current assumptions. Tactics are suggested by a double horizontal line,
above which is a goal and below which is a list of subgoals. (The justification part of
the tactic is usually obvious.) For succinctness, compound tactics are written in
horizontal columns or trees of columns, with the tactical THEN suggested by direct
adjacency in the column, and THENL by branching. The tactical REPEAT is denoted
by a * following the tactic to be repeated, and (T THEN SIMPTAC) for a tactic T
is written T+. (This informal notation could obviously be made rigorous without
difficulty.)

To illustrate, the standard inference rule GEN, which is parameterized on a term
x (so that we will sometimes call the rule GEN x) is written

Ak-w
A Ix. w

(where x is not free in A).

GEN generalizes a theorem to a given variable, if possible. The standard tactic
GENTAC, inverting the rule, is written

q’X W

SS

A

w[x’/x]

ss

A

(where x’ is a variant of x not free in A)

where ss is a simpset and A is a list of assumptions, and w[x’/x] means w with all
free occurrences of x replaced by x’. The justification of GENTAC is obviously in
terms of GEN. Again, the standard tactic CONDCASESTAC is written

(w, ss, A) where w contains a subterm "if then tl else t2"

"t TT" -"t--= TT"
ss

"t FF" "t FF"
ss

"t FF"
A

"t UU"k-"t UU"
ss

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 273

where w is some formula with a subterm which contains a conditional expression, as
indicated. The tactic finds such a term (failing if there is none). The justification is in
terms of a standard cases rule of inference. Note that each subgoal has one assumption
added to the list of assumptions, and one simprule added to the simpset. The additions
to the simpsets are constructed by the standard inference rule ASSUME, which maps
a formula w to the theorem w w.

A tactic such as (REPEAT GENTAC THEN CONDCASESTAC THEN
SIMPTAC THENL [T1, T2]) for some tactics T1 and T2, would be abbreviated to

GENTAC*
CONDCASESTAC/

T1 T2

(We might write a tactic of this sort if we expected simplification to manage to solve
the undefined-case subgoal, and T1 and T2, respectively, to advance the proofs of
the other two subgoals.) Tactics, T, which are parameterized on a theorem or other
object, t, are written applicatively as T t.

Tactics for the proof. Of those parts of the proof which are not managed by
simplification, some steps are accomplished by the standard tactics GENTAC and
CONDCASESTAC, described earlier. The rest of the proof consists in steps which
require specially designed tactics. A consideration of the informal proof suggests some
useful general strategies; for example, in proving an implication, we often assume the
antecedent and set out to prove the consequent. As the justification of this step is by
the discharging the extra assumption on which the theorem achieving the subgoal
rests, we write

DISCHTAC

wl=w2

ss

A

w2

wlwl
ss

wl
A

Note that this version of DISCHTAC uses the theorem w 1 w 1 as a simprule, as
well as an assumption; this is useful here, but not always desirable (or even possible).

The proof of the main theorem is by structural induction on programs. As the
standard rule of induction in LCF is computation induction, any other induction rule,
including the rule of structural induction for any well-founded structure, must be
derived from computation induction as a "hidden" induction on some other appropri-
ately defined function. This derivation is standard for many structures, and indeed
has been mechanized as an ML procedure by R. Milner [2, App.] as part of a general
package for constructing and working in theories of certain kinds of structures. We

274 AVRA COHN

do not elaborate further here on this derivation, except to specify the induction tactic
that we need in our proof, which we shall call PINDUCTAC, for program induction.

PINDUCTAC
(w, ss, A)

w [.L/p

ss

A

w [r-a -/pss

A

w [Fcall I-/p

ss

A

w It-let I =p 1 in p2-/p]

SS

IH1
IH2
A

w [rletrec I p 1 in p2-/p]

SS

IH1
IH2
A

w[r-p l p2-/p

ss

IH1
IH2
A

Here w is a formula with a free variable p of type P, and IH1 and IH2 are respectively,
w[p 1/p] and w[p2/p], and a, L p 1, p2 are fresh variable names. The three subgoals
on the left are basis cases, and the three on the right, induction steps. In the steps,
we add the induction hypotheses to the list of assumptions of the subgoals.

Another tactic needed (for the inner induction) must also be derived from the
rule of computation induction (a simpler tactic than the standard one, in fact). It is
parameterized on a list of subterms of the form FIX fun/.

SIMPLEINDUCTAC1 [FIX funl,..., FIX funn
w[FIX funi/fi], ss, A

SS

A

w[funi fi’/fi

w[fi’/ji] - w[li’/]
ss

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 275

The tactic produces the basis and step subgoals for simulataneous computation induc-
tion. (The standard induction tactic does not expect subterms of the form FIX fun/
to occur in the formula, but rather, subterms Fi, and takes as parameters theorems
of the form I-Fi FIX fun/.) This is used by a tactic (SIMPLEINDUCTAC) which
finds the terms FIX fun/in the formula of the goal.

For various reasons, a theorem may be useful at some point in a proof effort,
but not as a simplification rule; for example, it may simply be of the wrong form to
be used as a simprule. In these cases, we may wish to introduce the conclusion of the
theorem into the list of assumptions, planning to apply it in the proof effort (by
methods to be discussed presently). The tactic we have in mind is

USELEMMATAC (A’- w’)
(w, ss, A)

w

ss

(This is useful when A’_A U Hypo (ss), where Hypo (ss) is the set of hypotheses of
theorems on which the simprules in ss are based.) The justification discharges w’ from
a theorem given it, and evaluates Modus Ponens on the result, and the theorem A’ w’.

Another common reason that a theorem may be useful in a proof, but not as a
simplification rule (although it may even be otherwise admissible as a simprule), is
that simplification matches only to the left-hand side of the equivalence. This match
does not necessarily determine an instantiation for all of the variables free in the
right-hand side (or in the antecedent, if there is one). For example, consider a simprule
based on

A {Vx y .}w[x, y]t[x]=t[y]

where x and y are not free in A, and where w is a formula, is a term, and w Ix 1,..., xn
indicates that exactly x 1,..., xn are free in w (and likewise t[x 1,..., xn]). In using
this theorem to simplify some formula t[x’] t[y’], for example, x will be instantiated
to x’, but y will not be instantiated. The replacement of t[x’] by t[y] will be made if
w[x’, y], the instantiated antecedent, can be simplified to a tautology. This can happen
only by coincidence, since the variable y is not related to the formula being proved.
Even if the antecedent is proved by coincidence of variable names, the replacement
of t[x’] by t[y] will introduce the arbitrary variable y into the proof (it will occur in
the formula of the subgoal produced by the simplification: t[x’] t[y]). Nothing false
can be proved in LCF, since theorems can only be the results of applying PPLAMBDA
rules of inference, but some tactics can give unsolvable subgoals. That is likely to be
the case if a conditional simprule is applied by coincidence. (The new subgoal involving
y may also be solvable, but again only by coincidence.) To avoid this sort of
simplification, we will assume that theorems of the form discussed (i.e. in which the
antecedent or the right-hand side of the consequent contain instantiable variables not
in the left-hand side of the consequent) cannot be engaged as simprules. In the proof
of the equivalence of Se and Se, both of the induction hypotheses and the lemma have
this form, so we must consider other ways to use such facts.

276 AVRA COHN

To use a theorem of this form in a proof, we suppose it has had its conclusion
added to the assumption list of our goal by USELEMMATAC. Two methods for
using the theorem are adequate for our purposes.

In the simpler situation, an instance of the antecedent, say w[x’, y’]" is already an
assumption. (It must also be" the case that in the theorem in question, all variables
free in the consequent are free in the antecedent; that is true in our example.) Then
matching the assumption w[x’, y’] to the antecedent w[x, y], determines an instanti-
ation [x’/x, y’/y]. We assume the first formula to get

w Ix’, y’] - w Ix’, y’],

and evaluate Modus Ponens with the theorem we are trying to use and the new one
to prove

A, w Ix’, y’] t[x’] t[y’],

which does make sense, and can reasonably be used as a simprule, as it involves only
the particular x’ and y’ which occur in the assumption w Ix’, y’].

To accomplish this step in proofs, we wish to search the list of assumptions for
a pair of formulae which satisfy the above constraints, and for any we find, we assume
the two formulae, evaluate Modus Ponens, and use the new theorem as a simprule if
possible. As this is a very primitive form of resolution [5], we call the tactic which
does it RESTAC.

RESTAC

wl

SS

x l xn w
/y l ym z l zp w’ = w"
A

where w matches w’ by instantiating
yi to yi’
but not instantiating zi
(the y and z can be in any order)

wl

[Vxl ...xn. w,’qyl zl zp. w
as above

w"] t-- Vz 1... zp. w "Eyi’/yi]

Vz 1... zp w"[yi’/yi]
as above

That is, RESTAC partitions the assumption list into formulae whose bodies are and
are not implications, and for each pair in the cartesian product of the lists attempts
to match the nonimplication with the antecedent of the implication, proving a new
theorem if possible, adding it to the simpset (if possible), and its conclusion to the
assumption list.

RESTAC is potentially useful whenever an assumption is added to the assumption
list of a goal. This allows the new assumption to "resolve" with other assumptions
(which may have been added by DISCHTAC, PINDUCTAC, CONDCASESTAC,
or other tactics).

There are obviously much more sophisticated procedures which one could apply
to a list of assumptions to derive new, possibly useful theorems, but this simple one
is sufficient for the current proof, and probably many others.

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 277

Of course, it may be the case that one wishes to use a theorem, an instance of
whose antecedent is not already in the list of assumptions. (Suppose that all free
variables of the antecedent also appear free in the consequent.) During a proof effort,
when we eventually arrive at a subgoal whose formula is an instance of the consequent,
(i.e. when we are ready to use the theorem), we can generate the correct instance of
the antecedent as a subgoal.

A tactic which clearly reflects this reasoning must search the assumption list of
a goal for a formula whose consequent is matched by the formula of the goal, and
use the instantiation determined by the match to produce a subgoal whose formula
is the correct instance of the antecedent. To use implicative assumptions in this way,
we write

USEIMPASSUMPTAC

w2’, ss, [...,/xl ...xn. y l ym w l = w 2, .]
where w2’ matches w2 with xi instantiated to xi’,
yi are not instantiated;
the x and y may be in any order, and
all free variables of w 1 occur free in w2

(Vy 1 ym w l[xi’/xi], ss, as above)

The justification part of the tactic obviously uses Modus Ponens.
Having written DISCHTAC, USELEMMATAC, RESTAC and USEIMP-

ASSUMPTAC, we are now prepared to do the proof in LCF.
The tactical proof. The goal which the lemma achieves has formula component

o v = o[.p’v’/]--- v[(p’, v’)/].

In the simpset, we include an axiom defining function extension, and the following
pair of (easy) theorems’

/Iv. 6call Iv ffp’]v’ where (p’, v’) v L

The compound tactic which solves the lemma is"

DISCHTAC
GENTAC/

CONDCASESTAC/.

The correspondence to the informal proof is clear; DISCHTAC accomplishes the step
of proving the consequent under the assumption of the antecedent; GENTAC does
the step of proving for arbitrary values; the following SIMPTAC rewrites terms
involving function extension according to the axiom defining it, so that conditional
terms such as (if I =J then ff’p’v’ else p I) appear in the formula, and it applies
the assumption of the antecedent to the subterm p I; CONDCASESTAC performs
cases analysis on the conditional terms, and the following SIMPTAC solves all three
cases. Applied to a goal with the appropriate formula and simpset, the compound
tactic produces an empty list of subgoals, and a justification which when applied to
an empty list of theorems (respectively achieving the empty list of subgoals) yields a
theorem achieving the original goal.

278 AVRA COHN

The goal which the main theorem achieves has the formula

The simpset includes six theorems, which are the clauses for 6e, and the five theorems,
which are the clauses for St’; the theorem

S[[call I]]v= p’]]v’ where (p’, v’) v I

is not necessary in this proof. The compound tactic which solves the main theorem is

USELEMMATAC lemma
PINDUCTAC/

GENTAC*
DISCHTAC
RESTAC/

USEIMPASSUMPTAC

RESTAC/ SIMPLEINDUCTAC+

RESTAC+

The formalization in LCF. The new types, constants and axioms required to state
the problem are arranged in a hierarchy of LCF theories.
SYNT: The syntax of the language, for which the types "’ID", ":ATOM" and "’P"

are introduced;
SHASEM’ those aspects shared by both semantic definitions;
SSEM: The semantic function "S" (for) is defined;
SSSEM: The semantic function "SS" (for) is defined;

Again, the correspondence to the informal proof is quite clear. USELEMMATAC
adds the lemma to the assumptions of the goal to be achieved. PINDUCTAC produces
the undefined and the other five cases, and the following SIMPTAC solves the
undefined case. GENTAC* accomplishes the step of proving for arbitrary values;
DISCHTAC, as before, does the step of proving the consequent under the assumption
of the antecedent. RESTAC resolves the assumption introduced by DISCHTAC with
the induction assumptions introduced by PINDUCTAC, to yield the correct con-
sequents (as simprules). The following SIMPTAC solves the sequencing case by
applying the induction hypotheses, and solves the call case by applying the assumption
introduced by DISCHTAC. It also simplifies the subterm AC[[pl]]p which occurs in
the let case to [[pl]]v. This leaves the modified let and the letrec case. USEIMP-
ASSUMPTAC is invoked to use the induction hypothesis for p2 on each of the
remaining two subgoals, producing subgoals whose formulae are the required instances
of the antecedents of the induction hypotheses. In the letrec case, SIMPLEINDUC-
TAC does the inner induction, and the following SIMPTAC solves the undefined
case. In both remaining cases, the lemma, carried along as an assumption thus far, is
resolved (respectively) by RESTAC with the assumption contributed by DISCHTAC,
and the new (inner) induction assumption, to produce new theorems useful as
simprules. In each case, SIMPTAC then produces the empty list of subgoals.

Again, the compound tactic solves the goal in one application. Further, it reflects
a general strategy for proving implicative formulae by structural induction. The strategy
copes with induction hypotheses which cannot necessarily be engaged as rewrite rules,
and with previously proved lemmas which also cannot be used thusly. Only the inner
computation induction is in any way special to this proof.

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 279

EQUIV: The theory in which the equivalence of "S" and "SS" is stated and proved.
In addition, we construct a theory FUNEXT, of function extension, used in both
semantic definitions. This depends on a general theory of EQUALITY in which we
introduce a constant "EQ" of type ":,,tr", for any type ":,". In the theory
of function extension, we need a constant "extend" of type ":(,**)-
(** - (, (, **)))", governed by the axiom

-"!f val vary. extend f val var y if EQ y var
then val
else f y".

Writing "ro" for p, we can then write "extend ro(S p 1 ro)I" for p[ff’p 1]]p/I].
The theories are connected in a network as shown below, in which, for theories

T1 and T2,

T1

T2

means that all types, constants, axioms and theorems of T1 are accessible within T2.
PPLAMBDA is the pure logic of LCF’

PPLAMBDA

SYNT EQUALITY

SHASEM FUNCTION
EXTENSION

SSEM SSSEM

EQUIV

For the sake of computer printing, the following conventions apply:

cr is written as "sig"
"ro"

5 "SS"

[[P]]O "S p ro".

Both the type ":P" for the programs and ":CENV" for closure environments are
recursive types. In SYNT, the theory of syntax, we introduce the new type ":P", and
represent programs as separated sums of the five possible types of constructs, three
of which involve ":P". to this end, we define some abbreviations’

":CALL" for ":ID"
":LET" for ":ID P P"
":LETREC" for ":ID x P P"
":SEQ" for ":P P".

280 AVRA COHN

We represent "’P" by defining an isomorphism between the type and the rep-
resentation"

p /REPHP
’ABSHP (ATOM u +CALL u +LET u +LETREC u + SEQ u).

The two new function constants needed are’

"ABSHP" (ATOM u + CALL u + LET u +LETREC u +SEQ u)P"
"REPHP" P (ATOM u + CALL u + LET u +LETREC u +SEO u)"

where u is the PPLAMBDA type operator corresponding to lifting of domains. These
are governed by the axioms:

"!p. ABSHP(REPHP p) p"
"!x. REPHP(ABSHP x) x".

Likewise, in SSSEM, we introduce a new type "’CENV" and define an isomorphism:

CENvREPCENV----’’ABSCENV (ID - (P x CENV))

using

and the axioms

"ABSCENV. (ID (P x CENV)) CENV"
"REPCENV" CENV--> (ID --> (P x CENV))"- "!v. ABSCENV(REPCENV v) v",

"!x. REPCENV(ABSCENV x) x".

Thus the expression (p’]]v’ where (p’,v’)=vI) is written as "SS(FST
(REPCENV v I))(SND(REPCENV v I))". In both cases, it is a simple matter to prove
in LCF that the abstraction and representation functions are strict.

Typical new constants of the theory SYNT are "mkcall:CALLP" and
"mkseq: SEQ-P" to construct call and sequencing programs, respectively; we then
write "SS(mkcall I)v" and "SS(mkseq(p 1, p2))v" for 6callI]]v and 6p 1; p2]]v.
Likewise, we have the other constructors "mkatom", "mklet" and "mkletrec". (The
axioms defining these constructors can be generated in a uniform way, given the
relevant type definitions; this is in fact done by R. Milner’s structural induction
generating package discussed earlier. The current proof was done before that package
was written, and there are some inconsistencies between the present treatment and
the uniform treatment, but in principle, the package could have been used here to
build the theory SYNT.)

In the theory of 6,(SSEM), a fixed point definition is given of "S", since "S" is
recursively defined, from which it is easy to derive in LCF the separate semantic clauses:

"!ro. S UU ro UU",- "!a ro. S(mkatom a)ro A a",
"!I ro. S(mkcall I)ro ro I",
"!Ip 1 p2 ro. S(mklet(/, p 1, p2))ro S p2(extend ro(S p 1 ro)I)",- "!Ip 1 p2 ro. S(mkletrec (L p 1, p2))ro

S p 2(FIX(\ro’. extend ro(S p 1 ro’)I))",
"!p 1 p2 ro. S(mkseq (p 1, p2))ro \sig. S p2 ro(S p I ro sig)".

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 281

Likewise, in SSSEM, we define "SS" as a least fixed point, and prove

"!v. SS UU v UU",
"!a v. SS(mkatom a)v A a",
"!Iv. SS(mkcall I)v

SS(FST(REPCENV v I))(SND(REPCENV v I))",
"!Ip 1 p2 v. SS(mklet (L p 1, p2))v

SS p2(ABSCENV(extend(REPCENV v)(p 1, v)I))",
"!Ip 1 p2 v. SS(mkletrec (L p 1, p2))v

SS p 2(FIX(\v’. ABSCENV(extend(REPCENV v)(p 1, v’)I)))",
"!p 1 p2 v. SS(mkseq (p 1, p2))v \sig. SS p2 v(SS p 1 v sig)"

as well as the useful theorems

"SS UU UU UU",
"!I. SS(mkcall I)UU UU".

All twelve clauses depend on the strictness of "ABSHP", "REPHP", "ABSCENV"
and "REPCENV". The proofs in LCF are accomplished mainly by simplification.

Details of the proo of the theorem in LCF. Readers wishing to know no more
about the proof may skip this section!

The tactical proofs correspond quite closely to the informal proofs; this can be
seen by inspecting the tactics which solve the two goals.

Since one cannot use predicate constants or variables within PPLAMBDA (as
one can use function constants and variables) the relation must appear as the
formula it abbreviates. To prevent this being cumbersome in the definition of goals,
we define an ML function rel with type (term term formula), which constructs the
formula given two terms of appropriate type (that is, type ":ENV" and ":CENV").
The procedure rel is analogous to the standard ML function mkimp of type (formula
formula- formula) which constructs implications from pairs of formulae.

The formula of the goal for the lemma is

mkimp (tel "to ",
tel "extend ro (S p’ ’)J",

"ABSCENV (extend (REPCENV)(p’, ’)J)").

The simpset for this goal contains the axiom from FUNEXT defining "extend", the
axioms from SSEM relating "ABSCENV" and "REPCENV", and the two theorems
(easily) proved in SSSEM:

"!I v. SS (mkcall I)v
SS (FST (REPCENV v I))(SND (REPCENV v I))",- "SS UU UU UU".

The compound tactic shown earlier solves the goal. When it is stored, under the name
lemma, say, in EQUIV theory, free variables are automatically quantified to give:- "!ro v p’ v’ J. (!I. ro I SS (mkcall I)v) IMP

(!I. extend ro (SS p’ v’)J!
SS (mkcall I)(ABSCENV (extend (REPCENV v)(p’, v’)J)))".

The goal which the main formula achieves is constructed similarly, using rel. Its simpset
includes the thirteen theorems mentioned earlier, as well as the (easily proved) facts
asserting the strictness of "ABSCENV" and "REPCENV".

282 AVRA COHN

We begin the proof by applying to the goal

PINDUCTAC+

GENTAC*
DISCHTAC.

PINDUCTAC returns six subgoals, of which SIMPTAC subsequently solves two, the
atomic and undefined cases. After the rest of the compound tactics, the remaining
four subgoals have the following formulae:

call case: "ro I’ SS (mkcall I’)v"
let case: "S p 2 (extend ro (S p 1 ro)I’)

SS p 2 (ABSCENV (extend (REPCENV v)(p 1, v)I’))"
letrec case: "S p2 (FIX (\ro’. extend ro (S p 1 ro’)I’))

SS p2 (FIX (\v’. ABSCENV (extend (REPCENV v)(p 1, v’)I’)))"
sequencing case: "\sig. S p 2 ro (S p 1 ro sig)

\sig. SS p2 v (SS p 1 v sig)"

and the following assumption and corresponding simprule, in each case, contributed
by DISCHTAC:

"!I ro. ro I SS (mkcall I)v".

In addition, all but the call case have the two induction hypotheses as assumptions,
which we shall call IH2 and IH2:

"!ro v. (!I. ro I SS (mkcall I)v) IMP S p 1 ro SS p 1 v",
"!ro v. (!I. ro I SS (mkcall I)v) IMP S p2 ro SS p2 v".

We then apply RESTAC; the assumption added by DISCHTAC is resolved with IH1
and IH2, in turn, to give two new simprules"

"Splro SSpl v",
"Sp2 ro SSp2 v".

Next we apply SIMPTAC. In the call case, the assumption- "!I. ro I SS (mkcall I)v"

in the simpset is applied, and the subgoal is solved. The sequencing subgoal is also
solved, using the two new elements of the simpset, and the let subgoal has a rewritten
formula

"S p2 (extend ro (SS p 1 v)I’)
SS p2 (ABSCENV (extend (REPCENV v)(p 1, v)I’))".

Not all uses of the induction hypotheses can be applied in this fashion. For
example, the letree and modified let subgoals cannot be solved by an application of
RESTAC, because the corresponding antecedents,

"!I. extend ro (SS p 1 v)I’ I
SS (mkcall I) (ABSCENV (extend (REPCENV v)(p 1, v)I’))",

"!I. FIX (\ro’. extend ro (S p 1 ro’)I’)I
SS (mkcall 1) (FIX (\v’. ABSCENV (extend (REPCENV v)(p 1, v’)I’)".

do not appear as assumptions (as they did, say, in the sequencing case). Instead, we
apply the tactic USEIMPASSUMPTAC to produce subgoals whose formulae are the
correctly instantiated antecedents.

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 283

Some care is needed here to use the correct induction hypothesis; we wish to use
IH2 at this point, not IH1, although the conclusion of IH1 does match either of the
current subgoals’ formulae. We wish, that is, to respect the induction variables "p 1"
and "p2" as induction variables by never instantiating them. In the uses of IH1 and
IH2 by RESTAC--in solving the sequene|lag case, for example--the induction vari-
ables are respected simply because they are free in IH1 and IH2. In USEIM-
PASSUMPTAC, we can achieve this effect by allowing a match only when variables
to be instantiated in a formula are not free in that formula.

This problem would occur in any structural induction proof in which a property
is assumed of more than one substructure (and in which simplification does not handle
all uses of the induction hypotheses).

The lemma we wish to bring to bear, at this point, is the one we have already
proved, and called lemma:

"! rov p’ v’ J. (!I. ro I SS (mkcall I)v) IMP
(!I. extend ro (SS p’ v’)JI

SS (mkcall I)(ABSCENV (extend (REPCENV v)(p’, v’)J)))".

We could not, first of all, use the lemma as a simprule without first putting it in a
canonical form (with no quantifiers in the consequent), but that can easily be done.
However, we cannot even use the variant of the lemma as a conditional simprule,
again because it has a variable (v) instantiable in the antecedent but not occurring in
the left-hand side of the consequent. Instead, we introduce it into the list of assump-
tions, using USELEMMATAC; this can be inserted at any point in the sequence of
tactics thus far, but we adopt a convention of adding lemmas at the beginning.

To the letrec subgoal, we then apply SIMPLEINDUCTAC, to correspond to
induction on Y and in the informal proof, to obtain a subgoal with formula

"!I. extend ro (S p 1 indvar1)I’ I
SS (mkcall I)(ABSCENV (extend (REPCENV v)(p 1, indvar2)I’))"

for fresh variables "indvar1" and "indvar2", corresponding to fi and in the informal
proof. SIMPLEINDUCTAC adds the simprule (the new induction hypothesis)- "!I. indvarl I SS (mkcall I) indvar2".

The letrec subgoal’s formula now contains a subterm "S p 1 indvarl", which we wish
to rewrite as "SSpl indvar2", based on IH1. To do this, we have to resolve (by
applying RESTAC) the assumption of "!I. indvarl ! =SS (mkcall I) indvar2" with
the assumption of IH1 to prove

"S p 1 indvarl SS p 1 indvar2"

(with the two assumptions as hypotheses) and to use that as a simprule. In both
subgoals, then, we also wish to resolve the assumption of "!I. ro I SS (mkcall I)v"
with the lemma, to prove

"!p’ v’ JI. extend ro (SS p’ v’)JI
SS (mkcall I)(ABSCENV (extend (REPCENV v)(p’, v’)J))".

With this new theorem as a simprule, both cases are solved, and the proof can be
evaluated.

Conlus|ons. We have shown how the equivalence of two semantic definitions
has been stated and proved in the LCF system. In the formalization we use:

284 AVRA COHN

an ML procedure rel to construct the formula expressing a relation between
PPLAMBDA objects (namely, the simulation relation between contexts), since
PPLAMBDA does not support predicate constants;

an ML procedure, due to R. Milner, for deriving a tactic for performing structural
induction on suitable well-founded structures;

definitions of circular types via isomorphisms between the types and their representa-
tions.

At several points in the proof effort we observed that the use of certain implicative
theorems as left-to-right rewrite rules did not produce the desired effect; in each case,
the problem was that the match of a subterm to the left-hand side of the consequent
of the conclusion of the theorem did not necessarily instantiate all of the variables
occurring in the antecedent, or in the right-hand side of the consequent. This applied
to both uses of the lemma, and to all uses of the two induction hypotheses.

In the simpler cases, the desired instance of the antecedent of the theorem was
already an assumption of the goal (and there were no variables free in the consequent
not also free in the antecedent). This situation pertained to all uses of the induction
hypotheses aside from those of IH2 in the let and letre cases, as well as to both uses
of the lemma. For these cases, the simplest solution seemed to be to apply a very
simple resolution tactic which checked all assumptions for matches to the antecedent
in question, proving the desired instance of the conclusion by Modus Ponens.

When the desired instance of the antecedent was not already in the simpset and
could not have been anticipated, (and when all variables free in the antecedent were
also free in the consequent) we used a tactic which attempted a match of the current
subgoal’s formula to the consequents of all implicative assumptions. This produced
the desired instance of the antecedent as the formula of the subgoal (as simplification
could not). In addition, this tactic respected the induction variables by only instantiating
bound variable in matching, so that if the assumption in question was an induction
hypothesis, the (free) induction variables were not instantiated.

Some thought was required about the contents of the simplification sets of goals,
to facilitate the automatic parts of the proof effort. For example, as observed, by
designing a version of DISCHTAC which did not add a simprule, we would have
prevented SIMPTAC from solving the call call of the main theorem. By excluding
the theorem- "!I v. SS (mkcall I)v SS(FST(REPCENV v I))(SND(REPCENV v I))

from the simpset of the goal for the main theorem, we made the proof simpler by
never having to make and justify that particular rewriting; but realizing that that
theorem is not needed for the ell case (whereas the corresponding ones were needed
for the other cases) required a certain prior understanding of the proof. The point is
that while simplification does large parts of the proof automaticallyat least in the
sense that only a small proportion of the primitive inference steps in the actual proofs
performed are generated by tactics other than SIMPTACthe selection of simprules
is a delicate matter requiring thought and planning. The structuring of the proof effort
into the lemma and the main theorem also required thought.

In general, all case studies of this sort are feasibility studies. The mechanical
generation of a fairly long and (even informally) nontrivial proof such as this is an
encouraging result. The tactics designed for the purpose seem to apply in quite general
proof situations, and the compound tactic that solved the main goal also reflects (apart
from the inner induction) a quite general strategy, for proving implications by structural
induction. Finally, while LCF is only a framework in which proof strategies can be

EQUIVALENCE OF TWO SEMANTIC DEFINITIONS 285

expressed, and makes no claim to being an automatic theorem prover, the simple
resolution tactic described here gives some indication of how more automatic theorem-
proving strategies might be implemented as tactics in ML.

REFERENCES

[1] AVRA JEAN COHN, Machine assisted proofs of recursion implementation, Ph.D. Thesis, Dept. of
Computer Science, Edinburgh University, Edinburgh, 1979.

[2] AVRA COHN AND ROBIN MILNER, On using Edinburgh LCF to prove the correctness of a parsing
algorithm, Edinburgh University Computer Science Department Report CSR-113-82, 1982; and
Cambridge University Computer Laboratory Technical Report 20, 1982.

[3] MICHAEL J. C. GORDON, ROBIN MILNER AND CHRISTOPHER P. WADSWORTH, Edinburgh LCF,
Lecture Notes in Computer Science 78, Springer-Verlag, Berlin, 1979.

[4] R. E. MILNE AND C. STRACHEY, A Theory ofProgramming Language Semantics, Chapman and Hall,
London, 1976.

[5] J. A. ROBINSON, Logic: Form and Function, Edinburgh University Press, Edinburgh, 1979.
[6] JOSEPH E. STOY, Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory, MIT Press, Cambridge, MA, 1977.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics
0097-5397 83 1202-0005 $01.25/0

COMPUTING RATIONAL ZEROS OF INTEGRAL POLYNOMIALS
BY p-ADIC EXPANSION*

RIDIGER LOOS

Abstract. We design, analyze and measure several algorithms for finding the rational zeros of univariate

polynomials with integral coefficients of any size. The quadratic Newton-Hensel type algorithm behaves
best in theory and practice. It has a maximum computing time of O(naL(d)2), where n is the degree and
d measures the coefficient size of the given squarefree polynomial using classical arithmetic. We extend
the method to Gaussian rational numbers.

Key words, rational zeros of univariate polynomials, polynomial factorization, Newton-Hensel
algorithm, p-adic expansion

1. The problem. Given a polynomial A(x)= --0 ax of degree n with integer
coefficients of arbitrary size, we search for rational numbers s/t, O, such that
A (s/t) 0. Obviously the problem is equivalent to finding all linear factors of A, since

sit being a rational zero implies (tx-s) being a linear factor of A. The problem can
be considered as a special instance of the problem of finding real zeros of A or of
the problem of factorizing A into irreducible factors.

In order to measure the complexity of a polynomial A =o ax we use the
degree n in its only indeterminate and the length L0 (d) [logo]d]J + 1 of the seminorm
d --0 lal. Here,/3 is the basis of the classical integer arithemtic and is of the order
of the largest integer fitting in a single word. Since/ is a constant we write L(a)
instead of Lo(a) and simplify the analysis by assuming n <fl and d </, i.e., we
consider the degree and the length of the integers to be single precision numbers.

The maximum computing time of our best algorithm for finding all rational zeros
is O(n3L(d)2). The strongest competing algorithm tests for integral zeros of a related
polynomial using the modified Uspensky real root isolation method and refinement
to intervals of length less than 1 and achieves an upper bound of O(n4L(d)2) [1].
Surprisingly, the specialization of Musser’s [2] polynomial factorization algorithm
based on Berlekamp’s and Hensel’s algorithms achieves also a bound of O(naL(d)2);
however, the constants involved are higher.

The applications of rational zero findings are numerous. Working in algebraic
extensions Q(a) one would like to be sure that a is a true irrational number. So, the
defining polynomial for a should be square free and, in addition, rational zero free.
In Gosper’s [3] algorithm for indefinite summation one needs the positive integral
zeros of a certain resultant, which tends to have large coefficients even for small
problems. A similar problem arises if one searches for quadratic factors, or in general,
for factors of any fixed degree. Therefore, one needs rational zero finding methods
which are efficient for large coefficients.

2. Exhaustive search. The idea, which comes first to mind and which goes back
to Newton, is an exhaustive search among the factors of the trailing coefficient tc (A)
of A and the leading coefficient lc(A). Assuming s/t, O, reduced to lowest terms,

n-1A(s/t) 0 implies a.s + a._s +. + ast + aot" 0 from which s[ao and t[a.
follows. Hence the exhaustive search algorithm is:

ALGORITHM L IPRZEH(A).
[Integral polynomial rational zero exhaustive search. A is a univariate integral
polynomial. L is a list of its rational zeros.]

Received by the editors April 19, 1979, and in final revised form March 1, 1982.

" Institut fiir Informatik I, Universitit Karlsruhe, D-7500 Karlsruhe, West Germany.

286

COMPUTING RATIONAL ZEROS BY p-ADIC EXPANSION 287

11081

(1) [Initialize.] Set a, [lc (A)[, ao [tc (A)I, L (), the empty list.
(2) [Exhaustive search.]

for s =-a0, ’, a0 do
if s 0 v s la0 then
for -an, an do

if # 0 & tlan then {reduce s/t; if A (s/t) 0
then augment L by s/t}.

The computing time of step 1 is dominated (see [4] for a definition of dominance)
by L(ao)+L(an). Evaluation of A(s/t) by Horner’s method needs O(nE{L(s)/L(t)}2 /
nEL(d){L(s)/L(t)}) or, using L(ao), L(an)<-L(d) and s<-Iaol, t<-Ia.l, O(n=L(d))
steps. Therefore the total computing time is O(laollanlnEL(d)2), which makes the
algorithm exponential in d; the obvious method is only useful for very small a0 and

We ran the examples in Table 1 from the collection [5] with Collins’
SAC2/ALDES system on a Burroughs 7700.

TABLE

Polynomial Rational zeros Seconds

1. 6x4-1 lx x2-4
2. 2x + 12x + 13x + 15
3. 2x4-4x 3x2- 5x 2
4. 6x5+11x4-x3-5x-6
5. xS-5x4+2xa-25xE-21x +270
6. 2x6+xS-9x4-6xa-5xE-7x-6

-,2 0.54
-5 0.29
2 0.17

3, - 0.80
-2,3,5 0.70, -2 0.45

3. The linear Newton-Hensei algorithm. The main drawback of the exhaustive
search method is the size of the search space, which depends on ao and an. Exponential
computing times in the size of numerical coefficients can be eliminated by mapping
the problem into an image domain with elements of fixed size. Here we take the
complete residue system 0, 1,.. , p 1 representing Zp, the integers modulo p, where
p is a prime. The algorithm starts with picking a small prime, maps A to A*=-A modp
with coefficients in Zp and applies the exhaustive search to the p elements of Zp,
resulting in a list L* of zeros of A* over Z.

In order to simplify the discussion, we assume for the moment that an 1, in
which case A is called monic. As a consequence tlan restricts the rational zeros of A
to integral zeros of A. The map A*-h(A) is a homomorphism leaving 0, 1 and
addition and multiplication invariant, the only operations involved in testing A(s)- 0.
Hence, if L* is empty, A has no integral zeros. On the other hand, A* must have at
least as many zeros as A has integral zeros, multiplicities counted. However, in general
A* will have more zeros than A has integral ones. For example, x4-1 has no integral
zero over Z but 1 over Z2. If the integral zeros of ,4 lie in the range of Zp, then they
form a subset of L*, which must be found by testing. The important problem remains,
how to come back to Z having the zeros of A* in Zp, if the integral zeros of A lie
not in the range of Zp.
There are two answers. The first one uses the Chinese remainder theorem after

having constructed L* for several primes. Each cross section of the lists L* consisting
of at most one element from each list forms a modular representation of a possible
integral root of A. Since there is no indication which components of the modular
representation belong to each other, the combinatorial problem arises to try all possible
cross sections. This leads again to a computing time exponential in n and L(d).

288 RODIGER LOOS

A better solution is based on a special version of a Newton-Hensel type theorem
as given by Lewis [6].

THEOREM 1. LetA (x be an integralpolynomial and let a be a zero ofA (x mod p,
which is not a zero of the derivative A’(x)=-0 mod p, p a prime. Then for each r >-_ 1
the congruence A (x =- 0 mod pr has a solution mod p.

Proof. For r 1 the result is the hypothesis. Suppose the theorem holds for r N.
Set bN A(aN)/pN, where the division is exact by the induction hypothesis. Further
set aN+ aN +pNy, with indeterminate y. Then

A
N N+I--p (bN + yA’(a)) mod p

Since A’(a)O mod p by assumption, y can be set to (-bN/A’(o)) mod p, soA(aN+)----
0 rood pN/ holds.

Note the similarity in a.+l=ON-(((A(oN)/p)/A’(a.))modp)pN to the usual
linear Newton approximation. The successive c are p-adic expansions of c to order
i. In a computational context this expansion is called lifting.

The constructive proof allows us to fill the gap in our algorithm by using the
p-adic expansion of the zeros of A* up to an order N such that the integral zeros of
A lie in the range -[pN/2],’’’, [pN/2]. In order to satisfy the hypothesis that the
elements in L* are not zeros of A’(x) mod p we require A to be squarefree and choose
p as the smallest prime such that A modp is also squarefree, which means that p
does not divide the (nonzero) discriminant of A. That p remains small enough to
allow the exhaustive search in Z, is established by:

THEOREM 2. Let A (x be a squarefree integral polynomial of degree n and semi-
norm d and let p:, the k-th prime, be the first prime not dividing the discriminant of A.
Then k O(nL(nd)) andp O(nL(nd)).

Proof. Since A is squarefree, its discriminant D 0. Let p, p2,"’, Pk-1 be
the first primes dividing D and let pk 4D. Hence 2_-<p <pE<’’’<Pk_l <-ID[and
2k- <--P "Pk-I--<--[DI and k =O(L(D)). The discriminant D is the resultant of A
and A’ which is the determinant of Sylvester’s matrix. By Hadamard’s inequality
[7, 4.6.1 (24)] [D[O((x/-d)"-(ndx/- 1)"), L(D)= O(nL(nd)) and k O(nL(nd)),
proving the first part. The second part is stated and proved in [7, 2nd ed.,
4.6.2 Ex. 23].

Theorem 2 bounds the number of primes which must be tested before the
hypothesis in the Newton-Hensel construction becomes true, and also the size of the
search space Z.

Finally, we remove the restriction that A is monic. The textbooks apply the
transformation B (x) a-A(x/a) which associates with every rational zero c sit
of A the integral zero
/a reduced to lowest term. Computationally, this method is not attractive since

the coefficient norm of B is O(d) which makes the lifting algorithm slow.
Suppose we start with A and p

with A(c) 0 and lift a to a, A to An for some positive integer N such that
AN(aN)=--O mod pN. How is the integer an related to a s/t, the zero of A over the
integers? Following Musser [2], the answer is given by:

THEOREM 3. LetA be an integral polynomial with leading coefficient a, p a prime
with p X a, and N a positive integer. If A has a rational zero
A/a, mod ply has a zero ar over Zp, and N----S a, a- mod pN, where t is the
integer a,/ t.

COMPUTING RATIONAL ZEROS BY p-ADIC EXPANSION 289

Proof. A(s/t)=O implies an=tnt. Since otherwise p Xan, we have p Xt and
therefore an and have inverses in Zp, for everyN > 0. Hence an =- st-1 =- st-lana-

-1 Nsanan modp isazeroofAn=A/a2modpr.
Since the converse of Theorem 3 does not hold, we have to test whether sit

corresponding to an is a rational zero. Given an we get the trial zero a sit by
reducing the integers g and to lowest terms, where according to the theorem we
have to set g asan mod pNand an mod pN.

Finally, we need a bound on N. We require that for all possible rational zeros
s/t of A the integers a,s and have to lie in the range -[pN/2J,’’’, + [pU/2], i.e.,
N is the smallest integer such that -[p-X/2] [a,[la0[< [pU/2].

ALGORITHM L IPRZL(A).
[Integral polynomial rational zeros by linear lifting. A is a squarefree integral poly.-
nomial, L is a list of its rational zeros.]

(1) [Suitable prime.] Let p be the smallest prime, such that A mod p is squarefree.
(2) [Bound.] Set b 21anlla01 and choose the smallest N with b <pN.
(3) [Zeros over Zp.] Compute a list L* of the zeros (Aa-1) mod p by exhaustive

search.
(4) [Linear lifting.] According to Theorem 1 lift the zeros in L* of (Aa-) mod p

to zeros (of Aa-) mod pN.
(5) [Adjust for leading coefficient and test.] For each a* in L* reduce

(a’an mod pN)/(a mod pN) to lowest terms sit and, ifA(s/t) =0, include sit
in L.

4. Analysis of the linear Newton-Hensel algorithm.
THEOREM 4. The maximum computing time of IPRZL is O(n3L(d)3).
Proof. In step 1 we compute A mod p and A’ mod p in O(nL(d)) steps and form

the gcd(A, A’) over Zp using O(n 2) steps at most. By Theorem 2 at most O(nL(nd))
O(nL(d)) primes have to be tested, n considered single precision. Hence t
O({nL(d) + n2}nL(d)) O(n3L(d) + n2L(d)2).

In step 2 L(pN) is bounded by L(b) and N=O(L(d)). Hence t2
O(L(d)2 +N2L(p)2) O(L(d)2) for a single precision prime p.

In step 3 we form A mod p at O(nL(d)) cost, A* =- (Aa-)/mod p at O(n) cost.
Then for the prime p O(n(L(d)) according to Theorem 2 we test p field elements
a* of Zp for A*(a*) -= 0 mod p at O(n) cost. Therefore t3 O(n2L(d)) at most.

In step 4 a* is bounded during all lifting steps by O(L(d)). A*=-Aa -In mod pN
is computed N times at O(nL(d)) cost. Then A*(a*) is N times evaluated at
O(n2L(d)2) cost and there are at most n a *’s. Therefore t4 O(n N. n2L(d)2L(d)2)
O(n3L(d)3).

In step 5 for at most n a*’s sit is computed with O(L(d)2) cost and then
A(s/t) is tested with O(n2L(d)2) cost. Therefore t5 O(n3L(d)2).

Clearly, the computing time of the lifting step dominates the overall computing
time.

Empirically it turns out that improvements in step 1, 2, 3 or 5 are rather marginal
since by far the most time is spent in the linear lifting process in step 4. In order to
compare the asymptotic analysis with the actual computing time used we made a time
profile tl,"’, t5 for steps 1-5 of the algorithm. We used polynomials of degree 4
having 1 rational zero with maximum bit length of the random coefficients of 9 and
116, corresponding approximately to 3 and 35 decimal digits. The results are given
in Table 2 in seconds.

290 RODIGER LOOS

TABLE 2
Time profile of steps 1-5 of the linear Newton-Hensel algorithm.

Bits tl t2 t3 t4 t5 Total time Is]

9 .068 .002 .0072 .125 .033 .300
9 22% 1% 24% 42% 11% 100%

116 .056 .131 .072 20.228 .290 20.78
116 0% 1% 0% 97% 2% 100%

Table 2 verifies the theoretical computing time analysis and indicates that an
improvement can only be expected if the lifting process can be improved.

5. The quadratic Newton-Hensel algorithm. The results of the empirical and
theoretical analyses suggest reconsideration of Theorem 1 for improvement. In the
real Newton approximation method there is a quadratic version besides the linear
version, of which Theorem 5 states the p-adic analogue.

THEOREM 5. LetA (x be an integral polynomial and let a be a zero ofA (x mod p
which is not a zero of the derivative A’(x)=-0 mod p, p a prime. Then for each r >--
the congruence A(x)--O mod p2, has a solution c2 =--a mod p.

Proof. The proof of Theorem 1 carries over. Set c2N cN +py, with indetermin-
ate y and bN A(aN)/pN. Then

A(a2N)=-A(ar)+pryA’(ar) mod p2V
=--pN (bN + yA’(ctr)) mod pEN.

Since A’(ar)Omodp holds, if A’(a)Omodp by assumption, y can be set to
(-bN/A’)(ctr)) mod pV and A(aEr)--- 0 mod pEN holds.

The quadratic Newton-Hensel algorithm IPRZ differs from IPRZL only in step
4 by expanding the monic A modp to A modp2, A mod p2, and the monic
derivative A’ mod p to A’ mod p2,..., A’ mod p2’, where is the smallest integer
such that 2 ->_N. In fact, if N is not a power of 2 the last modulus can be replaced
by pN, resulting in a nontrivial improvement in the most expensive last step of the
expansion. We have now fewer expansion steps, but expand A’ in addition to A.
Nevertheless the net effect is a gain as shown by:

THEOREM 6. The maximum computing time of the quadratic Newton-Hensel
algorithm for finding all rational zeros is O(n3L(d)2), where n is the degree and d the
seminorm of the polynomial A.

Proof. The only change compared to the linear algorithm occurs in step 4. The
expansion of the derivative changes the constants involved, but not the asymptotic
time. However, we have only -<_ log2 N + 1 expansion steps compared to N in IPRZL,
where N O(L(d)). Since L(L(d))- O(1) t4 drops to O(n3L(d)2), as does also the
total time.

In Table 3 the time profiles of Table 2 are repeated with the same polynomials
for the new algorithm.

TABLE 3
Time profile of steps 1-5 of the quadratic Newton-Hensel algorithm.

Bits tl t2 t3 t4 t5 Total time Is]

9 .068 .002 .072 .116 .033 .291
9 23% 1% 25% 40% 11% 100%

116 .055 .130 .072 4.163 .327 4.474
116 1% 3% 2% 88% 6% 100%

COMPUTING RATIONAL ZEROS BY p-ADIC EXPANSION 291

The gain for the polynomial with the small coefficients is small, but increases to a
factor of 4-5 for the larger coefficients.

Since the gain occurs asymptotically in L(d) in Table 4 we compare polynomials
with one rational zero of degree 4 for varying coefficient size, indicating that the
quadratic version is always preferable also from a practical point of view.

TABLE 4
Comparison of computing times of the linear and quadratic
Newton-Hensel algorithms on a Burroughs 7700 for varying

coefficient size L(d).

Time Time Is
Bits Linear lifting Quadratic lifting

9 .30 .29
19 .46 .38
29 1.62 .92
38 2.68 .96
48 2.67 .78
58 3.62 1.00
67 4.69 1.07
77 10.7 1.72
87 6.74 1.36
96 9.93 2.10
106 17.3 4.73
116 20.8 4.74

Finally, in Table 5 we study the influence of the degree on the empirical times of
both algorithms for polynomials with one rational zero and random coefficients of 29
bits.

TABLE 5
Comparison of computing times of the linear and quadratic
Newton-Hensel algorithms on a Burroughs 7700 for varying

degree n.

Time Time Is]
Degree Linear lifting Quadratic lifting

4 1.86 .86
8 2.93 .92

16 5.43 1.77
32 16.4 5.13
64 29.1 10.7

6. Generalizations. Let us call the field {r + silr, s Q} the Gaussian rational
numbers. The subring of Gaussian integers is a unique factorization domain. Let A (z)
be a squarefree polynomial with Gaussian integer coefficients. In order to find a
Gaussian rational zero of A (z) we generalize the previous algorithm. We choose a
rational prime p which is also a Gaussian prime and does not divide the resultant of
A and A’. The exhaustive search is performed with r + si, 0 <-_ r, s <p, yielding p2_
O(n2L(d)2) tests, each of cost O(n), therefore with O(naL(d)2) total cost.

Theorem 1 has been generalized by Lauer [10] (this issue, pp. 395-410) and can
be applied to the Gaussian case, and the same bounds hold if we replace the absolute
value by the norm operation. During the quadratic lifting process, polynomial

292 RODIGER LOOS

arithmetic with Gaussian integer coefficients is performed with computing times
codominant to the integer coefficient case. We arrive therefore at

THEOREM 7. LetA (z) Y.j=0 (rj + si)z be a squarefree polynomial with Gaussian
integer coefficients. Let d =Y--0 (Ir;l/ls l) be the seminorm of A. Then all Gaussian
rational zeros ofA can be computed in O(n3L(d)2) time.

Another generalization consists in computing the pk test factors x k + a_lX k-1 +
’+a0 over GF(p)[x] with 1 _-<k-< [n/2J. However, if p > n, a situation which is

possible since p O(nL(d)), then it is preferable to compute a complete factorization
with Berlekamp’s algorithm, which results in at most n polynomials of degree k to
be lifted and tested. In this way we arrive at O(nk+nL(d)2) as maximum computing
time to compute all factors of degree k of an integral polynomial.

7. Common shifted factors. Let A (x) A l(x)A2(x) be an integral polynomial
with nontrivial factors A1 and A2, and similarly B(x)= B(x)B2(x). If there exists a
rational number r such that B(x)=A(x +r) then B (or A1) is called a common
shifted factor of A and B with shift r. In Gosper’s [3] and Karr’s [9] algorithms for
indefinite summation it is necessary to compute all common shifted factors of two
polynomials. The following algorithm computes all common shifted factors of two
polynomials A and B.

ALGORITHM
(1) [Resultant.] Compute C(x) resy (A (y), B (x + y)).
(2) [Rational zeros.] Let (rl r) be a list of all rational zeros of C.
(3) [Common shifted factors.] For each ri compute Di(x)= gcd(A(x +ri), B(x)).

The Di are the common shifted factors of A and B.

THEOREM 8. The algorithm computes all common shifted factors ofA and B.
Proof. In order to prove the correctness of the algorithm, we apply the resultant

identity resx (A(x), B(x))= a 1-Ii= B(a), where a, is the leading coefficient of the
polynomial A with m complex zeros ai and n is the degree of B. If B has leading
coefficient bn we get C(x) anl-Imi=l B(x+a)i a nm 1-Iim=lbn l’-[]=ln (X-[- O j)
"ba, I-[,i(x-(j-ai)). Therefore, C(x) has the zeros j-ai, l<=]<=n, l<-_i<-m.

Now, let rg r fl-ai be a rational zero of C(x) as it is computed in step (2).
ThereforeA (ai) A (fit + rii) B (/.) 0 and fli is a common zero ofA (x + ri) andB (x)
which implies a nontrivial greatest common divisor Di of A (x + rij) and B (x). [3

THEOREM 9. The maximum computing time for Algorithm 7.1 is O(n+
nSL(d)2), where n max (deg A, deg B) and d max (dA, dB).

Proof. To compute B(x + y) by Taylor’s expansion needs O(n2(n +L(d))) steps,
B(x + y) has at most degree n in x and y and L(dB(x/y) O(n +L(d)). The computa-
tion of C can be done in O(n2"2/(n +L(d))2)=O(n6+nSL(d)+nnL(d)2) steps. C is
of degree n 2 at most and L(dc)= O(n(n +L(d))).

In step (2) we again use Theorem 6 and get O(n2"3(n(n+L(d))2)=
O(n+nSL(d)2). We have at most n 2 rational zeros, each r=s/t has a length
L(r)=L(s)+L(t) of at most O(n(n +L(d))).

In step (3) we compute A(x +r) by Taylor’s expansion and evaluation with
Horner’s rule. This needs

2LO(nZL(r)2 + n (d)L(r))

O(n(n (n +L(d))) + n2L(d)n (n + L(d)))

=O(n6+n4L(d)2)

COMPUTING RATIONAL ZEROS BY p-ADIC EXPANSION 293

steps. A(x+r) has a degree n at most and L(da(x+r))=O(L(d)+nL(r))
O(n2(n +L(d))). The cost of a gcd calculation of two polynomials of maximum degree
m and seminorm e is O(m3L(e) + mZL(e)z) using a modular algorithm [4]. To compute
D(x) costs at most O(n3(n2(n +L(d))) + nZ(n(n +L(d)))) O(n6 + n4L(d)2). Finally,
the total cost of step 4 is t4 n20(n 6 + n4L(d)2) O(n 8 + n6L(d)2).

The maximum computing time is dominated by the time for the rational zero
calculation in step 2. [3

By another resultant calculation in step (1), also "rotated" factors of A and B
can be detected such that ci rfl., for some rational r, and in general, for any Gaussian
rationals a, b, c, d factors with ai (aj + b)/(ci + d) can be found.

Acknowledgment. The author thanks G. Collins and G. Goos for improvements
of an earlier draft of this paper.

REFERENCES

1 G. E. COLLINS, Infallible calculation ofpolynomial zeros to specified precision, in Proc. Math. Software
Conference, Madison, WI, March 19"77.

[2] D. R. MUSSER, Multivariate polynomial factorization, J. Assoc. Comput. Mach., 22 (1975), pp.
291-308.

[3] R. W. GOSPER, JR., Decision procedure for indefinite hypergeometric summation, Proc. Nat. Acad.
Sci. U.S.A., 75 (1978), pp. 40-42.

[4] G. E. COLLINS, Computer algebra of polynomials and rational functions, Amer. Math. Monthly, 80
(1973), pp. 725-755.

[5] N. M. GONTER AND R. O. KUSMIN, Aufgabensammlung zur Hb’heren Mathematik, I, Translation
from the Russian, Berlin, 1968.

[6] D. J. LEWIS, Diophantine equations: p-adic methods in Studies in Number Theory, W. J. LeVeque,
ed., Math. Assoc. Amer., 1969, pp. 25-75.

[7] D. E. KNUTH, The Art ofComputerProgramming, Vol. II, SeminumericalAlgorithms, Addison-Wesley,
Reading, MA, 1969.

[8] R. Loos, Computing rational zeros of integral polynomials by p-adic expansion, Bericht 11/78,
Fakultit fiir Informatik, Universitit Karlsruhe, Dec. 1978.

[9] M. KARR, Summation in finite terms, J. Assoc. Comput. Mach., 28 (1981), pp. 305-350.
[10] M. LAUER, Generalized p-adic constructions, this Journal, this issue, pp. 395-410.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0006 $01.25/0

MULTIPROCESSOR SCHEDULING OF UNIT-TIME JOBS WITH
ARBITRARY RELEASE TIMES AND DEADLINES*

BARBARA SIMONSS

Abstract. We present a polynomial time algorithm for constructing an optimal schedule, if a feasible
schedule exists, for tthe following multimachine scheduling problem. There are n unit-time jobs, with
arbitrary release times and deadlines, and m identical parallel machines. A feasible schedule is one in
which no job is started before it is released, each job is completed by its deadline, and no job is interrupted
once it begins to run.

Key words, scheduling, release time, deadline, computational complexity

1. Introduction. The problem we shall discuss is that of scheduling n unit-time
jobs, with release times and deadlines which are arbitrary rational numbers, on rn
identical parallel machines. If we relax the constraints by allowing different jobs to
have different running times, then the problem becomes strongly NP-complete, even
in the one-machine case [7]. The problem remains NP-complete even if only two
different values for the release times and two different values for the deadlines are
allowed [3].

In general we shall assume that there is no partial order. If. however, there is
only one machine, then by modifying the release times and deadlines to reflect the
partial order it is possible to produce a feasible schedule with minimum completion
time which does not violate the partial order, if one exists [5]. For the two-machine
case with integer release times, arbitrary deadlines and a partial order, there is a
polynomial time algorithm [4], and for an arbitrary number of machines the problem
is NP-complete even with all r(i) 0 and all d(i)=D [10].

A polynomial time algorithm with time complexity O(n 2 log n) was first obtained
for the single machine unit-running-time case by Simons [9]. An alternative algorithm
with the same time complexity was subsequently obtained by Carlier [2]. Finally, an
algorithm with time complexity O(n log n) for the single machine case was presented
by Garey, Johnson, Simons and Tarjan [5]. Since the problem of sorting can be reduced
to the problem of producing a feasible schedule, this algorithm is optimal to within
a constant factor in the order of the number of comparisons.

In the multimachine case, the best previously known result was produced by
Carlier, whose algorithm runs in O(n "/2 log n), where m is the number of machines
[2]. However, the question of whether an algorithm exists which solves the problem
in time and which is polynomial in both m and n remained unanswered and was
presented as an open problem in the paper by Garey, Johnson, Simons and Tarjan [5].
We describe below an algorithm with running O(n 3 log log n) which schedules all the
jobs while minimizing both the maximum completion time and the sum of all the
completion times.

2. Definitions. We shall assume that there is a set of n fobs: J(1), J(2), ,J(n)
and rn processors or machines" M(0), M(1), ,M(m 1). Each job J(i) has a release
time, r(i), a deadline, d(i) and unit processing time. When we speak of a job J(i)
being released by time t, we mean that r(i)<= t. The start time, s(i) of job J(i) is the
time at which J(i) is scheduled to begin in a given schedule. If at some time there
is no job scheduled to be running on a given processor, then we say that the time
between the completion of the last job to be scheduled bdfore and the first job to
be scheduled after on that processor is called idle time.

* Received by the editors January 4, 1982, and in revised form June 24, 1982.
t IBM Research K51-1BN, San Jose, California 95193.

294

MULTIPROCESSOR SCHEDULING OF UNIT-TIME JOBS 295

One normally thinks of a schedule as being an assignment for each job J(i) of a
start time, s(i) and a machine, h(i). More formally, a feasible schedule is a mapping
g {1, , n}- Q/ {1, ,m }, where Q/

is the nonnegative rationals, and where
g(i) (s(i), h (i)), 1 <= <= n, such that:

1. r(i)<=s(i)<=d(i)- 1 (every job is run between its release time and its deadline),
2. if h(i)=h(]) for /’, then s(i)<=s([) s(j)-s(i)>=l (each machine can run

at most one job at a time).
If there are some jobs which have not been assigned start times, then we have a

partial schedule. Finally, in none of the problems will preemption be allowed, that is,
once a job has begun execution it cannot be interrupted and consequently must run
until it is completed.

The scheduling techniques used in the following lemma is the basis for the
approach we use in scheduling on parallel machines. It is also interesting to note the
correspondence between schedules and permutations.

LEMMA 1. An arbitrary feasible schedule for a set of n fobs with release times,
deadlines, and unit processing times can be mapped into a unique permutation. Con-
versely, given a permutation obtained as described below from a feasible schedule, a
unique feasible schedule can be constructed. Futhermore, each fob in the constructed
schedule will finish no later than it did in the original schedule.

Proof. Suppose we are given a feasible schedule for a set of n jobs as in the
lemma. From this schedule we derive a permutation by representing the job with the
minimum start time as the first element in the permutation, the job with the next
smallest start time as the second, and so on. In the case of a tie, the job
on the machine with the smallest index is chosen first.

From a permutation so obtained we construct a feasible schedule in the following
circular fashion. The ith job is scheduled on the machine mod m and has as its start
time either the completion time of the job most recently scheduled on machine
mod m or its release time, whichever is larger. Clearly the first job to be scheduled
in the permutation schedule starts no later than the time at which the first job in the
original feasible schedule was started. By induction, the ith job scheduled in the
permutation schedule starts no later than the ith job in the original schedule. Since
all of the jobs are completed by their deadlines in the original schedule, they will all
be completed by their deadlines in .the permutation schedule. By definition, none of
the jobs in the permutation schedule is begun before its release time. So the schedule
obtained from the permutation is indeed a feasible schedule.

3. Strategy. Given that the algorithm already has constructed a partial feasible
schedule, the schedule is extended as follows. The earliest time, say t, at which a new
job can be scheduled is determined and the next job to be scheduled is selected. The
job selection is done by choosing the unscheduled job with the earliest deadline which
has been released by time t. This technique was first described in [6].

If a job, say J(i), is discovered which cannot be completed by its deadline, then
a call is made to the crisis subroutine. The crisis subroutine determines a point in the
schedule, say t, at which it is necessary to delay scheduling some job if J(i) is to be
completed by its deadline. Then all the jobs which have been examined by the crisis
subroutine are removed from the partial schedule. The information obtained from
the crisis subroutine is incorporated into the partial schedule, and the process continues
from the smaller partial schedule.

The algorithm creates a schedule with the minimum possible completion time if
one exists, or determines that the problem instance has no feasible schedule otherwise.

296 BARBARA SIMONS

Note that the problem in which all the jobs have the same running time, say p, can
be made into a version of our problem by dividing all release times, deadlines and
running times by p.

We shall first illustrate the algorithm by example, beginning with the following
two machine examples. The release time is the first number in the ordered pair and
the deadline is the second. So A has a release time of 0 and a deadline of 2:

A: (0,2), B: (0.2, 3), C: (0.5,2), D: (0.5, 3).

In the example, which is illustrated in Fig. la, we begin scheduling starting at
time 0 on machine 0. Since A is the only job which has been released at time 0, A
is scheduled to begin at time 0. Machine 1 is available to run a job at time 0, but
there are no remaining unscheduled jobs which have been released by time 0. The
algorithm then determines the job with the minimum release time from among the
unscheduled jobs. In our example, this results in job B being scheduled at its release
time of 0.2 on machine 1. Now, machine 0 is available to run a job at time 1, by
which time jobs C and D have both been released. Again selecting the job with the
earlier deadline, C is started on machine 0 at time 1. Machine 1 is available at time
1.2, and therefore D is scheduled on machine 1 at time 1.2.

In the above example, the jobs were scheduled in one iteration with no complica-
tions. Suppose, however, that we change C’s deadline from 2 to 1.9. In this case, C
could not be scheduled to ber,n at time 1, since it could not be completed by its
deadline. But if, instead of scheduling B to begin at time 0.2, we were to wait until
C was released at time 0.5 and schedule C on machine 1, then we could construct
a feasible schedule. This schedule is shown in Fig. lb.

Machine 0 A C Machine 0 A B
0 2 0 2

Machinel B 0 Machine1 C 0
0.2 1.2 2.:2 0.5 1.5 2.5

a b

FIG. 1. A 2-machine example.

The basic idea behind the algorithm is that there are times when it is necessary to
wait for a crucial job to be released, even though there may be other jobs which are
available to be run. But if we do start a job, it should be the available job with the
earliest deadline. This theme also appears in the single machine algorithms, although
in the case of the recursive O(n log n) algorithm of Simons [9], the enforced waiting
time is only implicit in the algorithm.

4. The barriers algorithm. We define a v- partial schedule to be a feasible schedule
of a set of v jobs, v-< n. (When the size of the v-partial schedule is not of interest,
we may speak simply of the partial schedule.) The algorithm proceeds by trying to
increase the current v-partial schedule to a (v + 1)-partial schedule. The next job to
be scheduled is said to occupy slot v + 1. In fact, given any partial schedule obtained
by any algorithm, we say that the job occupying the (v + 1)st slot is the job which is
the (v + 1)st job scheduled to begin running. So the first job to be scheduled by the
algorithm occupies slot 1, the second occupies slot 2, and so forth. A v-partial schedule
can be viewed as a permutation of v elements and a slot as a location in that
permutation. If at some point in the running of the algorithm the jobs are all removed

MULTIPROCESSOR SCHEDULING OF UNIT-TIME JOBS 297

from the partial schedule, then we begin again with scheduling the first job in slot 1.
Note that the job occupying a particular slot can vary from partial schedule to partial
schedule. But there will be at most n slots in any partial schedule, and if the nth slot
is ever filled in a feasible schedule, then we have succeeded in scheduling the entire
set of jobs.

The fundamental notion making this algorithm polynomial is that of "barriers."
A barrier is an ordered pair (], r), where] is a slot number and r is a release time.
(The manner in which barriers are created is described below.) A barrier (], r),
represents the constraint that the]th slot can begin no earlier than time r.

The earliest deadline with barriers (EDB) subroutine is called to create a (v +
1)-partial schedule from the current v-partial schedule. It first computes h, the number
of the machine on which the job in slot v + 1 is to be scheduled, by setting h-
(v + 1) mod m. It then determines the "earliest allowed time" at which slot v + 1 can
begin as follows. The function f mapping slots to start times in the current v-partial
schedule is defined by setting f(i) to be the start time of slot i, 1 <_- <_- v. To determine
the earliest possible start time for the next slot, we set tl to be 0 if v + 1 <_-rn or
f(v + l-m)+ 1 otherwise. (Slot v + 1-m is the slot most recently scheduled on
machine M(h)). Set tz to be the minimum release time of the unscheduled jobs, and
set t3 to be max{{r: (],r) is a barrier, 1-<]_-<v +I}U{0}}. Let t=max {tl, t2, t3}. We
say that is the earliest allowed time respecting barriers (for slot v + 1).

The subroutine calls the earliest deadline algorithm to schedule the job to occupy
slot v + 1 with a start time of t. Suppose job J(i) has been so selected. If d(i) >= + 1,
then J(i) is scheduled in slot v + 1, and the subroutine returns to the main routine.
Note that if > t, there will be idle time preceding slot v + 1.

The subroutine will]ail if d(i) < + 1. In this case we say that a crisis has occurred
and that J(i) is a crisis job. The crisis subroutine is then called.

The crisis subroutine backtracks over the current partial schedule, searching for
the job with the highest slot number that has a deadline greater than that of the crisis
job. If it does not find such a job, it concludes that there is no feasible schedule and
halts. Otherwise, the first such job which it encounters is called the pull fob. Let f be
the slot number of the pull job. The set of all jobs in the v-partial schedule with slot
number/" + 1 or greater together with the crisis job called a restricted set. (The pull
job is not a member of the restricted set.) The subroutine then determines the minimum
release time of all the jobs in the restricted set, call this time r, creates a new barrier
defined to be the order pair (], r) and returns.

The main routine adds the new barrier to the previous list of barriers, removes
all jobs occupying slots /" through v in the partial schedule, and calls the EDB
subroutine, starting with a (/’-1)-partial schedule. The algorithm halts when either
it has succeeded in creating an n-partial schedule or it discovers a crisis job for which
there is no pull job. In the former case the output consists of a feasible schedule, and
in the latter, a statement that there is no feasible schedule.

5. Correctness proof. A barrier (], r) is correct for a problem instance if in all
feasible schedules the fth slot can start no earlier than r. To demonstrate correctness
of the algorithm we shall prove that each barrier is correct and that if the algorithm
does not produce a feasible schedule, then none exists.

First consider the more general problem of "scheduling with barriers." This
problem is identical to the originally stated problem except that it has the additional
constraint of a (possibly empty) set of barriers. For each barrier (j, r) we require that
slot/" be started no earlier than time r.

298 BARBARA SIMONS

LEMMA 2. Assume we are given a problem instance of "scheduling with barriers"
and that successive calls to the EDB subroutine, starting with an empty partial schedule,
produce a v-partial schedule without requiring any calls to the crisis subroutine. Then
there is no feasible schedule in which any of the v slots has an earh’er start time.
Furthermore, slot v + 1 can be started no earlier (in any feasible schedule) than the
earliest allowed time respecting barriers as computed by the algorithm.

Proo]. Assume we are given a v-partial schedule obtained as in the statement of
the lemma and assume by induction that the lemma is true for all slots up to and
including slot v. Let earliest allowed time respecting barriers for slot v + 1. If tl,
then either 0 or =f(v + 1-m)+ 1. The former case is trivially optimal. In the
latter case [(v + 1- m) is by the induction assumption the earliest possible time at
which slot v + 1-m can start. Since none of the slots in the partial schedule with
numbers greater than v + 1-m can start earlier than the time at which slot v + 1-m
starts, and since every machine has scheduled on it a slot which is numbered between
v + 1-m and v, there is no machine available for running the (v + 1)st slot any earlier
than the machine on which slot v + 1 m had been scheduled. Therefore, f(v + 1 m) +
1 is the earliest possible time for starting slot v + 1. If tz, then slot v + 1 is started
at the minimum release time of the unscheduled jobs. Consequently, there are only
v jobs with release times less than or equal to t2. So there is no feasible schedule in
which slot v + 1 can start earlier than t2. If t3 and 0, then a barrier constraint
is preventing slot v + 1 from beginning earlier. I-I

LEMMA 3. The fobs in the restricted set all have release times strictly greater than
the start time of the pull fob.

Proof. The pull job has a deadline strictly greater than that of any of the jobs in
the restricted set. Therefore, if any of them had been released by the time at which
the pull job was scheduled, it would have been scheduled at that time. [3

THEORZM 1. Each barrier that the algorithm creates is correct.

Proof. Assume the first k 1 barriers are correct, that the algorithm has construc-
ted a v-partial schedule at the time of the kth crisis, and that (/’, r) is the kth barrier
to be created. Suppose to the contrary that there is a feasible schedule in which the
[th slot is scheduled before time r. Since r is the minimum release time of all the jobs
in the restricted set, by the pigeon-hole principle some job in the restricted set must
occupy a slot -> v + 1. By applying Lemma 2 to the "scheduling with barriers" problem
obtained using the first k 1 barriers, it follows that slot v + 1 can be started no earlier
than the earliest allowed time respecting barriers computed by the EDB subroutine.
Since all of the jobs in the restricted set have deadlines less than or equal to that of
the crisis job, and since the completion time of slot v + 1 must exceed the deadline
of the crisis job in any feasible schedule, none of the jobs in the restricted set can be
scheduled in slot v + 1. Hence in no feasible schedule can slot/" begin before time r. 1

LEMMA 4. If the crisis subroutine does not find a pull fob, then there is no feasible
schedule.

Proof. Let J(i) be a crisis job for which no pull job is found. It follows from the
definition of a pull job that all jobs occupying slots 1 through v in the current v-partial
schedule have deadlines no greater than d(i), the deadline of the current crisis job.
Therefore, they must all be completed by d(i). Using the same argument as in Lemma
2, slot v + 1 can begin no earlier than the time computed by the EDB subroutine.
Consequently, any job occupying slot v + 1 will have a completion time greater than
d(i). So either the crisis job or some job which had been scheduled in the v-partial
schedule will fail to meet its deadline. [-1

MULTIPROCESSOR SCHEDULING OF UNIT-TIME JOBS 299

Since the only way in which the barriers algorithm fails to produce a schedule is
if the crisis subroutine does not find a pull job, we have the following theorem.

THEROREM 2. If the barriers algorithm fails to produce a schedule, then there is
no feasible schedule.

We also note that by Lemma 2 if the algorithm produces a schedule, then each
slot in the schedule, in particular the last, is started at the earliest possible time.

THEOREM 3. ffthe barriers algorithm produces a schedule, then no feasible schedule
has an earlier completion time. Furthermore, the schedule produced by the barriers
algorithm minimizes the sum of the completion times.

6. Complexity.
THEOREM 4. The algorithm runs in time O(n 3 log log n).
Proof. There are at most n distinct release times and n slots. So rt

2 is an upper
bound on the number of barriers which the algorithm can create. If one uses a standard
priority queue, the cost of scheduling each job is O(log n), but by using a stratified
binary tree the cost is only O(log log n) [1]. Since at most n jobs can be scheduled
before a new barrier is created, we get the running time of 0(/’/3 log log n). [3

Acknowledgment. I would like to thank Ron Fagin for having generously given
of his time as I struggled through the details of the correctness proof.

REFERENCES

[1] P. V. E. BOAS, Preserving order in a forest in less than logarithmic time, 16th Annual Symposium of
Foundations of Computer Science, IEEE Computer Society, Long Beach, CA, 1978, pp. 75-84.

[2] J. CARLIER, Problme fi une machine dans le cas off les tdches ont des durges ggales, Technical Report,
Institut de Programmation, Universit6 Paris VI, 1979.

[3] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1978.

[4] Two-processor scheduling with start-times and deadlines, this Journal, 6 (1977), pp. 416-426.
[5] M. R. GAREY, D. S. JOHNSON, n. B. SIMONS AND R. E. TARJAN, Scheduling unit-time tasks with

arbitrary release times and deadlines, this Journal, 10 (1981), pp. 256-269.
[6] J. R. JACKSON, Scheduling a production line to minimize maximum tardiness, Research Report 43,

Management Science Research Project, Univ. of California, Los Angeles, 1955.
[7] J. K. LENSTRA, A. G. H. RINNOOY KAN AND P. BRUCKER, Complexity of machine scheduling

problems, Ann. Discrete Math., (1977), pp. 343-362.
[8] B. B. SIMONS, A fast algorithm for multiprocessor scheduling, 21st Annual Symposium of Foundations

of Computer Science, IEEE Computer Society, Long Beach, CA, 1980, pp. 50-53.
[9] A fast algorithm for single processor scheduling, 19th Annual Symposium on Foundations of

Computer Science, IEEE Computer Society, Long Beach, CA, 1978, pp. 246-252.
[10] J. D. ULLMAN, NP-complete scheduling problems, J. Comput. System Sci., 10 (1975), pp. 384-393.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

(C) 1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0007 $01.25/0

PROPERTIES OF FINITE AND PUSHDOWN TRANSDUCERS*

CHRISTIAN CHOFFRUT AND KAREL CULIK II:

Abstract. We consider the subfamilies of rational and pushdown transducers and corresponding
translations (relations) which are most frequently encountered in the literature. We survey some of the
known results on the characterization, factorization, closure properties, decision problems and comparisons
of classes and give new results on these properties using either direct proofs or results from other theories
such as homomorphic equivalence.

Key words, classes of transducers, rational relations, pushdown translations, generalized sequential
machines, sequential transducers, subsequential functions, equivalence problem

1. Introduction. One of the most natural ways of defining a relation, or translation,
or transduction, of a free monoid E* into another free monoid A* is to use some type
of transducer, i.e. some type of automaton provided with outputs. At each step of the
recognition procedure of a word w s E*, one of the available outputs in A* is chosen.
The concatenation of these outputs in the order they are produced during the computa-
tion defines a word z s A* which is in relation with w. Thus, finite automata yield the
notion of rational relation (also known as rational transduction or finite translation),
while more generally, pushdown automata define pushdown translations (relations)
(cf. e.g. [1, p. 228]).

Rational relations are definitely the best known family of relations, due to their
nice properties and to the role they play in the AFL theory where they prove to be
a useful tool for studying context-free languages (cf. e.g. [3] and [14]). Unfortunately,
this very success has probably caused the cessation of their study for their own sake
(with some very few exceptions, see e.g. [18] and [19]). In our opinion, the next step
towards a better knowledge of rational relations should be a systematical study of the
"simplest" subfamilies of rational relations" rational partial functions, sequential and
su.bsequential partial functions.

As far as pushdown translations are concerned, they have received less attention
than they deserve. Indeed, since their general properties have been established, very
little work has been done. Yet, apart from providing a model of compilation (cf. [1]),
and, from a strictly mathematical point of view, posing some challenging problems,
ignoring these translations would exclude some natural functions such as the function
which reverses words, and the characteristic function of context-free languages.

In this paper we consider the subfamilies of pushdown relations which are most
frequently encountered in the literature. Since the authors assume the reader is familiar
with rational relations, the emphasis will be put on other subfamilies of relations. We
shall survey the properties which are known so far--characterizations, factorizations,
closure properties, equivalence decision problemsmand give some new properties
using either direct proofs or results from other theories, such as homomorphic
equivalence (cf. [8]).

The definitions of the different families are given in the preliminaries in terms
of transducers. Yet, when it comes to proving results, one wishes to use an alternative
more algebraic definition. Such a characterization was first stated for rational relations

* Received by the editors February 18, 1981, and in revised form May 28, 1982. This research was
supported by the Natural Sciences and Engineering Research Council of Canada under the grant No. A7403.

t Laboratoire d’Informatique Th6orique et Programmation, Universit6 Paris VII, Paris, France.
5/Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

300

PROPERTIES OF FINITE AND PUSHDOWN TRANSDUCERS 301

by Nivat [17], and is easily extended to pushdown relations (translations). It uses the
notion of "bimorphism" and has given way to what in Eilenberg’s terminology [9] is
called "the first factorization theorem". In 3, we establish a similar characterization
for unambiguous pushdown functions, which helps in proving results in the following
sections.

Section 4 is concerned with properties of the closure under composition. We
consider more specifically subfamilies of pushdown functions. Our results enable us
to define a hierarchy of these subfamilies.

Finally, equivalence decision problems are considered in 5. qome new results
are shown.

2. Preliminaries.
2.1. Free monoid relations. We denote by Z* the free monoid generated by the

finite nonempty set (or alphabet) , by e its unit or empty word and by += E*\{e}
the free semigroup. The length of a word w 6 E* is denoted by Iwlo Let w a a,
be a word, where n >0 and a a,...,a, Y_.. Then the reverse of w is the word
Rw a, a . We define the reverse of the empty word to be the empty word.

In order to simplify notation, all relations considered in this paper, unless other-
wise stated, are from the fixed free monoid 5;* into the fixed free monoid A*. We
write such a relation as f" E*- A* and view it as a function of E* into the power set
2*. It is length-preserving if v f(u) implies [u[Iv[. If f(u) possesses at most one
element for each u E*, we say that f is a partial function.

The domain of a relation f" E* A*, denoted by Dom f is the subset of E* defined
by" {u E*lf(u) b}. Its image is the subset Im f {v A*lv f(u) for some u E*}.
Its graph is the subset #f {(u, v) E* A*lv f(u)}. Finally the reverse of f is the
relation fR "E*’- A* whose graph is #fR __{(U R, vR),, A,](U, V) #f}.

Given a family of relations, n denotes the family of all fR where f -.
The union of a family of relations fi’E*- A*(i e I) is the relation f’E* A*

defined by" #f= Lli #fi.

2.2. Pushdown relations. We refer to [1, p. 228] for all notions not explicitly
defined in the sequel. We recall that a pushdown transducer, abbreviated a PDT, is
an 8-tuple (Q, E, A, X, , q0, Z0, F) where"

Q is the set of states, qo Q is the initial state and F
_
Q is the subset of final

states;
E is the input alphabet;
A is the output alphabet;
X is the pushdown alphabet and Z0 X is the start symbol;
6 is a function which maps Q x (X U {e }) xX into finite subsets of Q xX* x A*.

A relation f’ E* - A* is a pushdown relation (translation), abbreviated PD relation,
if it is defined by some PDT.

We denote by PDR the family of all pushdown relations and by PDF the family
of all pushdown partial functions.

Let f" X* A* be a partial function. Then it is unambiguous if it can be defined
by some PDT whose underlying pushdown automaton is unambiguous (cf. e.g. [15,
p. 142]). It is left deterministic (or simply deterministic) if it can be defined by some
PDT whose underlying pushdown automaton is deterministic (cf. e.g. [15, p. 139]). It
is right deterministic if the partial function fR is deterministic. Finally it is bideterministic
if it is both left and right deterministic.

We denote by UPDF, DET, DETr and BIDET respectively, the families of
unambiguous, deterministic, right deterministic and bideterministic partial functions.

302 CHRISTIAN CHOFFRUT AND KAREL CULIK II

Let L
_
Z* be a context-free language recognized by the pushdown automaton

A (Q, Z, X, 6, qo, Zo, F). We denote by IL :* * the restriction of identity to L,
i.e., the relation whose graph is {(u, u)*Z*lu L}. The restriction of identity to
L is a pushdown function since it is defined by the PDT z (Q, E, E, X, 6’, q0, Zo, F)
where: (p,u,a)6’(q,a, v) iff (p, u)6(q,a, v).

An important subfamily of PDR is the family RAT of all rational relations, i.e.
of all relations f:Z* A* whose graph is a rational subset of the product monoid

* A* (cf. e.g. [9, p. 236]). The family of rational partial functions is denoted by
RATF. The well-known facts that rational relations are particular pushdown relations
and that PDR=PDRR, PDF=PDFR, UPDF=UPDFR, RAT=RATR, RATF=
RATFR, follows from Theorem 3.1.

2.3. Sequential and subsequential partial functions. We now turn to the crucial
notion of sequential partial functions. Since there exist in the literature all kinds of
"sequential" functions, we will present in detail the notion we will use which corres-
ponds to Eilenberg’s generalized sequential partial functions (cf. [9, Chap. XI]).

We will make use of the following convention. All partial functions f of a set X
into the free monoid Z* shall be considered as a total (i.e. everywhere defined) function
of X into the semiring 2*. Therefore we have f(u)= whenever f is undefined for
the value u X. Further, the product f(u)f(v) equals Q, i.e. is undefined if and only
if f(u) or f(v) is equal to .

A sequential transducer is a sextuple 0 (Q, Z, A, A, 0, q0) where Q, Z, A and q0

are the same as in the definition of a pushdown transducer, and where A :Q x Z-> Q
is a partial function, called the transition function, and 0:Q x Z--> A* is a partial
function, called the output function.

It is assumed that A and 0 have the same domain.
The partial functions A and 0 are extended to Q Z* in the usual way (see e.g.

[9, p. 297]). For all q Q and u Z* we write q u and q u instead of A (q, u) and
0(q, u) respectively. This enables us, as long as no confusion arises, to denote 5 by
the quadruple (Q, Z, A, o), the partial functions , and 0 being understood.

A partial function/:Z* A* is left sequential or simply sequential if there exists
some sequential transducer 5 (Q, Y_,, A, q0) satisfying for all u Z*: f(u) =q0 * u. It
is right sequential if the reverse partial function f is left sequential. It is bisequential
if it is both left and right sequential.

We shall denote by SEQ, SEQa and BISEQ respectively the families of sequential,
right sequential and bisequential partial functions.

Sequential partial functions are particular rational partial functions as it is easily
seen (cf. e.g. [9, Prop. XI, 3.1]). More precisely we have the following crucial result
due to Elgot and Mezei (cf. e.g. [3, Thin. IV.5.2]):

THEOREM 2.1. A partial function f:Z* A* is rational, if and only if there exist
a finite set F, a left (resp. right) sequential partial function g: E*- F* and a right
(resp. left) sequential pa’rtial function h F* z* such that f(u) h(g(u)) holds for all
u+.

Now, we compare several different "sequential" functions" Ginsburg’s generalized
sequential machine mappings--or GSM mappings--as defined in [13, p. 93], are
sequential partial functions which are total, i.e. everywhere defined. DGSM mappings,
considered by several authors (cf. e.g. [16, p. 172]), are restrictions of "Ginsburg’s
GSM mappings" to some arbitrary rational subset (not just the complement of a
rational right ideal as for our sequential partial functions). DGSM are thus sequential
transducers with a distinguished subset of "final" states.

PROPERTIES OF FINITE AND PUSHDOWN TRANSDUCERS 303

We will show (Corollary 2.3): Assuming that every word has an endmarker,
DGSM mappings are exactly the subsequential functions [5]. The latter have a simple
algebraic characterization [19].

We turn now to the notion of subsequential partial function.
A subsequential transducer is a pair (, q) where 5e=(Q, , A,A, 0, qo) is a

sequential transducer and q (2 A* is a partial function (see [5, p. 109]).
A partial function f"*-* is left subsequential or simply subsequential if there

exists a subsequential transducer (, o) such that f(u)= qo * u o (qo" u) holds for all
u + (notice that there exists no condition on f(e)). It is right subsequential if the
reversed partial function f"*A* is left subsequential. It is bisubsequential if it is
both left and right subsequential. Subsequential partial functions have been considered
in 11] where they are called "augmented versions of DGSM mappings".

Intuitively a subsequential transducer is a sequential transducer capable of guess-
ing the end of the input word. Formally we have the following connection between
sequential and subsequential partial functions:

THEOREM 2.2. Letf" Z* A* be a partial function. Then f is a subsequential if and
only if its domain R =f-l(A*) is a rational set and if there exist a new symbol $: , and
a sequential total function g" (EU{$})*- A* such that f(u)= g(u$) holds for all u
R\Ie}.

Proof. Only if. Let (Se,), where 5e= (Q, E, A, qo) be a subsequential transducer
defining the subsequential partial function f" Z*- A*. Let F Dom 0

_
Q, Q’=

Q{qt} where qteQ is a new symbol and E’=ZLI{$}. The domain R =f-l(A*) is
rational since it consists in all words u E* such that q0" u F. Define the sequential
transducer 5e’= (Q’, y_,’, A, h, 0, qo) where h and 0 satisfy:

q.a ifaE,qQandq.u,
(q, a

qt otherwise;

q,a ifaeandqO,
O(q, a)= o(q) if a $ andq sF,

e otherwise.

Let g" E’* A* be the sequential total function defined by ’. Then for all u e R
we have:

f(u) (qo * u)o(qo u) O(qo, u)o(qo u) O(qo, u)O(qo u, $) O(qo, uS) g(u$).

If. Let g’ (Z LI {$})* A* be a sequential total function defined by the sequential
transducer ’= (Q’, ,E’, A, qo) where E’= Y_, LI {$}. Without loss of generality we may
assume that the automaton underlying recognizes the rational subset R, i.e. that
there exists a subset F

_
Q such that R {u *lqo u f}. Denote by q "Q - A* the

partial function defined by:

o (q) { $ ifqF,
otherwise.

Let 5 (Q, E, A, qo) be the sequential transducer obtained by restriction to E of
the transition and output functions of 5’. For all u E* we have"

f(u) g(u$)= (qo * u)(qo u * $)= (qo * u)qg(qo u),

which proves that f is subsequential. Iq

304 CHRISTIAN CHOFFRUT AND KAREL CULIK II

COROLLARY 2.3. Let $: E* and f:E*$ - A*. Then f is a DGSM mapping if and
only iff is a subsequential function.

COROLLARY 2.4. The family of DGSM mappings is properly between the families
of total sequential functions and subsequential functions.

We refer to [5] for a systematic study of subsequential partial functions. We shall
denote by SUBSEQ, SUBSEQR and BISUBSEQ respectively, the families of sub-
sequential, right subsequential and bisubsequential partial functions.

The diagram in Fig. 1 shows the various strict inclusions among the families
considered in this section.

PDR

PDF
RAT

UPDF \
DETR /

DET / SUBSEQ SUBSEQR

FIG.

3. Factorization properties.
3.1. A useful factorization of unambiguous functions. Many proofs on relations

involving constructions of transducers are intricate and therefore unreliable. It is
desirable to use, as much as possible, an alternative, more manageable definition.
This is luckily the case for rational relations which, according to what in Eilenberg’s
terminology is the "First Factorization Theorem", can be obtained as a composition
of simpler relations" morphisms, inverse morphisms and intersections with a rational
language. A similar result is true for pushdown relations, where "context-free
language" has to be substituted for "rational language". We summarize in a single
statement these two well-known results (for the "rational" part of Theorem 3.1 see
for instance [17] or [9, Thm. IX, 2.2], and for the "pushdown" part see [12, p. 122]
or [1, Thm. 3.4]). We recall that a morphism/:E*- A* is alphabetic if the image of
every letter of Z by f, is either a letter of A or the empty word:/(E)_ A {e}. It is
strictly alphabetic if f(Y_,)

_
A.

THEOREM 3.1. Let f E*- A* be a relation. Then it is a rational (resp. pushdown)
relation if and only if there exist a finite set F, a rational (resp. context-free) language
R
_
F* and two alphabetic morphisms h :F* - E* and g :F* - A* such thatfor all u Z*,

f(u)- g(h-(u)f3R) holds.
Whenf: Z* A* is a partial functionnot any relationthe preceding proposition

can be made more precise (see e.g. [9, Thm. IX, 8.1]):
THEOREM 3.2. Let/:* A* be a partial function. Then it is rational if and only

if there exist a finite set F, a rational subset R
_

F*, an alphabetic morphism h :F* Z*
which maps bi]ectively R onto h (R), and an alphabetic morphism g F*- A* such that
f(u)= g(h-a(u)ClR) holds for all u ,E*.

PROPERTIES OF FINITE AND PUSHDOWN TRANSDUCERS 305

As a consequence, all rational partial functions are unambiguous. This is not the
case for all pushdown partial functions, since the restriction of identity to an inherently
ambiguous context-free language is clearly not unambiguous. However, unambiguous
pushdown partial functions can be characterized in a similar way:

THEOREM 3.3. Let f" E* A* be a partial function. Then it is unambiguous if and
only if there exist a finite set E, a bideterministic context-free language L

_
*, an

alphabetic morphism g" E* A*, and an alphabetic morphism h" ..* - ,* which maps
bi[ectively L onto h(L) such that]or all u E*, f(u)= g(h-l(u) fqL) holds.

Proof. Only ifi Assume we have proved that f admits the factorization

(3.1) f g lL h -
where g and h are as in Theorem 3.3 and where L is a deterministic (not necessarily
bideterministic) context-free language. By Chomsky-Sch/itzenberger’s theorem (see
e.g. [3, Thm. 3.10]), since L is a deterministic, and therefore an unambiguous language,
there exist a bideterministic languageD (actually the intersection of a rational language
with .a Dyck language over n letters, for some integer n >0) and an alphabetic
morphism k which bijectively maps D over k(D)= L. Therefore the equality IL
k Io k -1 holds. Substituting in (3.1) we have:

f g k ID k- h- (g k) ID (h k)-l.
The conditions of the theorem are thus satisfied.

Assume now we have proved that f admits the factorization

(3.2) f go Io h -1

where L is deterministic, h is as in the theorem, but there is no assumption on the
morphism g. We will show that f admits a factorization of the type (3.1).

First, the morphism g" ..*- A* can be factorized as g g2 g, where g is an
injective morphism of ..* into a new free monoid F*, and g2" I* - A* is an alphabetic
morphism. Indeed letting"

F={(a, i)..NIl <=i_<-Ig(a)l or g(a)= e andi=O},

it suffices to define gx and g2 by the following conditions" for all a , if g(a)= e
then gl(a)=(a, O) and g2(a, O)=e; otherwise, if g(a)=bl,." ,b,, (where n >0 and
b,... ,b, cA) then g(a)=(a, 1)... (a,n) and g2(a,i)=b (l=<i-<n).

Substituting g g2 ga in (2) and observing that gl I =Ig1) gl, we obtain:
-1f g I h -1

g2 g IL h- g2 Ig(L) g h -. Since g is a DGSM
mapping, then according to [16, Thm. 12.3], g(L)=(g-iX)-(L) is a deterministic
language. It suffices to verify that the partial function h g is the restriction to its
domain D (gx(E))*

_
F* of an alphabetic morphism g" F* - E* which is injective

on gl(L) D.
Let g’ be the morphism defined, for all (a, i) F by"

[e if 1,
g’(a, i)

h (a otherwise.

Clearly, g’ is alphabetic and for all a .., we have: g’ gl(a) h(a). Therefore,
for all u g(al a,,)D, we obtain’ h g-(u) h(a a,,) g’(u), which
shows that h g-I is the restriction of g’ to D. Furthermore, if u, v gx(L) verify
h g- (u) h g-X (v) then g- (u) g- (v), i.e., u v, which completes the
verification.

306 CHRISTIAN CHOFFRUT AND KAREL CULIK II

Therefore, given any unambiguous partial function , it suffices to prove that f
admits a factorization of type (3.2), which we do.

Let z ((2, , A, X, 8, q0, Z0, F) be an unambiguous pushdown transducer
defining f. For each (q, a, x, q’, x’, u) O x (E [_J {e }) xX x O xX* < A* such that
(q’, x’, u) 8(q, a, x) we define a new symbol [q, a, x, q’, x’, u] and we denote by W
the finite set thus obtained. Let M=(Q, W,X,$’,qo, Zo, F) be the pushdown
automaton defined for all w =[q,a,x,q’,x’u] W, pQ and yX by: (q’,x’)
t$’(p, [q, a, x, q’, x’, u], y) if and only if p =q and y x. Then the language L recognized
by M is deterministic, and the morphism h W* E* which to each [q, a, x, q’, x’, u
assigns its second component a F_. t.J {e} is alphabetic and injective on L since two
distinct w, w2 L such that h (w) h (w2) would correspond to two distinct computa-
tions of w Dom fi Then it suffices to define g W*- A* as the morphism which to
[q, a, x, q’, x’, u W assigns its last component u.

If. Since the relations g I h- and I h- can be defined by two PDT
having the same underlying automaton, it suffices to show that I h- is an unam-
biguous relation.

Let M (, .., X, d;, qo, Zo, F) be a bideterministic pushdown automaton accept-
ing L. Define a PDT -= (O, E, .., X, d;’, qo, Zo, F) as follows. For all (q, a, x, q’, x’)
Ox(U{e})xXxOX* we have: (q’,x’,a)8’(q,h(a),x) iff (q’,x’)i$(q,a,x).

Clearly, I h-X:E*-, E* is the relation defined by z. Finally, the pushdown
automaton underlying - is unambiguous since to each w E* corresponds a unique
factorization h (a a,) w (n > 0 and a .. for 1 =< =< n) and for such a word
a. a, there is a unique computation in . This completes the proof of Theorem
3.3.

3.2. A |actorization using length-preserving partial functions. The following is
equivalent, for a certain family of deterministic partial functions, to Eilenberg’s [9,
Thm. IX, 8.4], which states that every rational partial function is the composition of
a length-preserving rational partial function and a morphism. We think it is quite
unlikely that there exists a result of this type for many reasonable families of pushdown
partial functions. We recall that a subset X_* is prefix-free if for all u, v * we
have: u, uv X implies v e.

TI-IEOREM 3.4. Let f:* -, A* be a deterministic partial function whose domain is
prefix-free. Then there exist a finite set l’l, a length-preserving deterministic partial
function g :E* -, fl* and a morphism h :ll* -, A* such that: f h g.

Notice that the assumptions of our theorem cannot be weakened. Indeed let
E A {a, b } and consider the deterministic partial function f:E* -, A* defined by:

forallr>0, n>m>0, f(ba"b")={ba"b" ifm <n,
b ra"b mar if m n

otherwise f(u
Assume f h g where g :5;* ll* is a length-preserving deterministic partial

function and h’ f* A* is a morphism. Set M =max {Ih(x)llx g(ba2b)= u and
g(ba2b 2) uv where by the hypothesis lul =M+ 3 and [v[1. We obtain:

f(b IVta 2b 2) h (uv h (u)h (v f(bMa2b)h (v).

Since f(ba2b2)=bMa2b2a and f(ba2b)=ba2b, we have Ih(v)l=M+l, which
yields a contradiction.

Proof of Theorem 3.4. Let us note that it suffices to prove that f hog where
h is a morphism and g is a deterministic partial function such that Ig(u)l-- 21ul whenever

PROPERTIES OF PINITE AND PUSHDOWN TRANSDUCERS 307

u Dom]’. Indeed, denote by F a copy of ,2 and by [wlw2] the copy of WIW2 t -2.
Let 3’ :F*- II* be the monomorphism defined by y([wlw2])= WlW2. Then 7

-1 is a
DGSM mapping and 3’ 7

-1 is the identity over (1)2)* _Im g. Therefore we have
the factorization f= hy (y-lg) where hy is a morphism and y-lg is, by Theorem
4.3, a length-preserving deterministic partial function.

Let -= (Q, E, A, X, 6, q0, 30) be a deterministic PDT defining fi Without loss of
generality, we may assume that the underlying pushdown automaton recognizes Dom f
by empty stack (cf. [15, Thm. 11.5.2]). Furthermore, we may suppose that z satisfies
the following conditions:

1) All e-moves are erasing moves (cf. [15, Exer. 5.6.6]).
2) Forallq, pQ, aZ,xX, y6X* and u A* we have: 6(q, a, x)= (p, y, u)

implies [y[<_-2 (cf. [15, Thm. 5.4.2]).
3) For all a +, q Q, u X* andxX we have: (qo, a, Zo) - (q, e, ux) implies

q q0 and x Z0 (this can be done, if necessary, by creating a new initial
state q, and a new start symbol Z). Furthermore, for all a ,, 6(qo, a, Zo)
is of the form (q, x, u) where x is a letter.

Let II be the set consisting of a copy of Dom 6 and of a new element tr. We shall
denote by [q, a, x the copy of the element (q, a, x) Dom 6. The morphism h I)* A*
of the factorization we seek is defined by

h (tr) e,

and for all q, p Q, a {e }, x X, and u A*,

h([q,a,x])=u iff 6(q,a,x)=(p, y,u)

for some y in X*.
We now give an informal explanation of how the deterministic partial function

g :;* lq* assigns to each word u Dom f
_
E* a word of length 21u[containing all

information about f(u). A deterministic transducer z’ defining g will be obtained by
modifying z.

Assume that, at a given moment of the computation for a word u Dom f by
the PDT z, the current letter is a E. If this occurrence preserves the height of the
stack, then the output assigned to the move in the PDT z’ will be a word of length
2. If it increases the height of the stack (by 1 according to assumption 2) then the
output in z’ is a word of length 1, i.e. a letter. In this latter case, the new stack symbol
will eventually be removed either by an e-move to which an output of length 1 will
be assigned, or by a non-e-move, i.e. a move involving a letter b Z, to which an
output of length 3 will be assigned. In all cases the average length of an output assigned
to one letter is (1 + 3)/2 or 1 / 1 that is 2.

Formally -’= (Q, ;, A, X, 6’, q0, Z0) is a deterministic PDT recognizing Dom g
Dom f by empty stack, and defined by:

i) For all q, p Q, x X we have

6’(q, e, x) (p, e, [q, e, x]) iff d;(q, e, x) (p, e, u) for some u A*;

ii) For all p, q qo Q, a , x X and y X* we have

6’(q, a, x) (p, y, [q, a, x])tr2-1yl itt 6(q, a, x)= (p, y, u) for some u A*;

iii) For all q Q, a e E and y X* we have:

6’(qo, a, Zo) (p, y, [qo, a, Zo]) iff 6(qo, a, Zo) (p, y, u) for some u A*.

It is left to the reader to verify that -’ works as claimed.

308 CHRISTIAN CHOFFRUT AND KAREL CULIK II

4. Closure under composition.
4.1. General results. It is well known that rational relations are closed under

composition (see e.g. [9, Thm. IX, 4.1]), while pushdown relations are not (if L, M
_

are two context-free languages, then IL and It are pushdown relations, but IL It
ILnt might not be). Yet we have (see e.g. [12, p. 115]):

TI4EOREM 4.1. Letf" Z*a E’ be a pushdown relation and g" A* A be a rational
relation. If E1 A2 (resp. E2 A1) then f g (resp. g f) is a pushdown relation.

Obviously, Theorem 4.1 holds when f and g are partial functions. Using the
factorization properties established in the preceding section, we will see that it still
holds in the following case’

THEOREM 4.2. Letf" E - ,’ be an unambiguous partial function and g" A*
a rational partial function, ff Ex= A2 (l’esp. 2--A1), then f g (resp. g of) is an
unambiguous partial function.

Proof. By Theorems 3.3 and 3.2, we have the factorizations

f fE lL f- and g gE lR g-

where L
_
E* is a bideterministic language, R

_
A* is a rational language, fi"

1, 2 and gi" A*- A* 1, 2 are alphabetic morphisms such that fl and gl are
injective on L and R respectively.

Case 1. E A2. Consider the relation h =f-i gE:A* E*. By [9, Lemma IX,
4.2], there exist a finite set F, a rational subset K

_
F* and two alphabetic morphisms

hl:F*-A* and hE:F*E* such that h=hEoI:oh-1. Furthermore for all (u,v)
h, there exists exactly one element w eK such that hi(w) U and hE(W)

We have"

-1
gl

where M=h-I(R)fqKf’)h(L) is, according to [16, Thms 12.2 and 12.3], a
bideterministic language.

It now suffices to show that h is injective on M. Consider z, M such that
ha(z)=hl(t). Since h2oItoh-=Iof-log2olR is a partial function, we have
h2(z) hz(t) and therefore z t, which proves that h is injective on M as claimed.

Case 2. E2 A1. We have g f g2 IR g f2 IL f. Since IR g f2"
E* A* is a rational partial function, there exist a finite set F, a rational language

F* E*K c F*, an alphabetic morphism h -. which is injective on K and an alphabetic
morphism hE" l"* - A* such that IR gl f2 hE IK h -1. Thus we obtain

g f g2 (h2 It h -1 I
(g2 h2) I: Ih;l() h -1 f-
(g2 h2) IKOh-iI(L) (fl hi)-1.

Since K f3 hi-1 (L) is bideterministic, the proof is complete. El
The families of (left) deterministic partial functions and of right sequential partial

functions are incomparable. Therefore, if we compose a deterministic partial function
with a right sequential partial function (or more generally with a rational partial

PROPERTIES OF FINITE AND PUSHDOWN TRANSDUCERS 309

function), the result is not necessarily a deterministic partial function. However, we
have:

THEOREM 4.3. Let " --> ,’2 be a deterministic partial function and g" A’ --> A
a DGSM mapping. If E1 A2 (resp. E2 A1), then og (resp. g) is a deterministic
partial function.

Proof. Let (Q, El, E2, X, ;, qo, Zo, F) be a deterministic pushdown transducer
defining]’, and 6e (P, A1, A2, A, 0, Po, H) a DGSM (sequential transducer with final
states) defining g. We recall our convention from 3.3 that for all q P and u A a*
we write q u and q u instead of A (q, u) and O(q, u), respectively.

Case 1. E2 A1. It suffices to notice that the partial function g f’ E’ A2* is
defined by the deterministic pushdown "= (Q P, El, A2, X, t’, (qo, Po), Zo, F H)
where d;’ is defined, for all q, q’ Q, p P, a E1 {e }, u A2*, x X and x’ X* by"

((q’,p u),x’,p.u)’((q,p),a,x) iff(q’,x’,u)(q,a,x).

Case 2. E1 A2. We shall first consider three particular subcases.
Subcase i. g is length preserving (which is equivalent to saying that for all p P

and a A1, we have p a A2). Then f g is defined by the deterministic pushdown
transducer ’ (Q P, Ax, E2, X, t’, (qo, Po), Zo, F H) where for all q, q’ Q, p P,
a A1 (_J {e }, x X, x’X* and u Y_, we have"

((q’,p a),x’,u)8’((q,p),a,x) iff(q’,x’,u)8(q,p .a,x).

Subcase ii. For all a A1, we have g(a)= (a, 1)... (a, n) for some integer n >0
(in particular Ig(a)l- n). Consider the set R {(q, a, i) Q A Nil -<i -< Ig(a)l) and
define the pushdown transducer

-’= (R, A, E2, X, 8’, (qo, ao, Ig(ao)l), Zo, F)

(where ao is a fixed arbitrary letter) in the following way:
For all q, q’ Q, a, b A1, x X, x’ X* and u E2* we have

((q’,a, 1),x’,u)8’((q,b, lg(b)l),a,x) itt (q’,x’,u)8(q,(a, 1),x);

For all q, q’ Q, a, b A, x X, x’ X*, u E2* and 1 < < Ig(a)l we have

((q’,a,i+l),x’,u)6’((q,a,i),e,x) iff (q’,x’,u)s3(q,(a,i),x);

For all q, q’ Q, a s Ax, x sX, x’ sX*, u s’ and 1 -<i -< [g(a)[we have

((q’,a,i),x’,u)s6’((q,a,i),e,x) iff (q’,x’,u)6(q,e,x).

It suffices to note that -’ is deterministic and defines]" g.
Subcase iii. g is an alphabetic morphism. Let Q’_ Q be the subset of all states

defining e-moves. Define the pushdown transducer -’= (Q, A1, E2, X, 6’, qo, Zo, F) in
the following way"

For all q Q’, q’ Q, x X,. x’ X* and u 2" we have

(q’,x’,u)8’(q,e,x) iff (q’,x’,u)t(q,e,x);

For all q Q’, q’ Q, a A, x X, x’X* and u A2* we have

if g(a) e, then (q’, x’, u) 8’(q, a,x)iff (q’, x’, u) d;(q, g(a), x),

if g(a)=e, then (q,x,e)8’(q,a,x).

It.s easy to check that -’ is deterministic and that it defines f g.

310 CHRISTIAN CHOFFRUT AND KAREL CULIK II

To complete the proof, it suffices to note that every sequential partial function
g can be factorized as g g2 gl, where gl is a length-preserving sequential partial
function and g2 is a morphism. But g2 can be factorized as g2 g{ g., where g is
as in Subcase ii and g is alphabetic.

Let R __c E* be a rational subset and/: ;* A* an unambiguous partial function.
Since IR :;* ;* is a rational partial function, by Theorem 4.2, the restriction
of/ to the subset R is an unambiguous partial function. We can deduce, from the
next theorem, a similar result for deterministic partial functions.

We recall that a subset R _c ;*x A* is recognizable (cf. [9, p. 68]) if there exist a
morphism q of E*xA* into a finite monoid M and a subset N c__M such that
R 0-1(N).

THEOREM 4.4. For each unambiguous (resp. deterministic) partialfunction f :E*
A* and each recognizable subset R c__ E* A*, the partial function g :* A*, whose
graph is # g #f f’l R, is an unambiguous (resp. deterministic) partial function.

Proof. Let (Q, E, A, X, 8, qo, Z0, F) be an unambiguous (resp. deterministic)
PDT defining f and let R 0-1(N) be as in the above definition. Then it suffices to
observe that g is defined by the unambiguous (resp. deterministic) PDT "= (Q xM,
E, A, X, 8’, qo {1}, Z0, F N) where we have denoted by 1 the unit of the monoid
M and where 8’ is defined by:

For all q, q’ e Q, m M, a e U {e }, x e X, y X* and u A*, we have:

((q’,m.(,o(a,u)),y,u)eS’((q,m),a,x) iff (q’,y,u)eS(q,a,x).

As a consequence we have:
COROLLARY 4.5. For each unambiguous (resp. deterministic) partial function

f:E* A* and each rational subset R E*, the restriction off to R is an unambiguous
(resp. deterministic) partial function.

Proof. Indeed we have # (f I) #f f’) (R x A*).
COROLLARY 4.6. For each unambiguous (resp. deterministic) partial function

f:Z* - A* and each rational subsetR
_

A*, f-a(R is an unambiguous (resp. determinis-
tic) context-free language.

Proofi Indeed,]’-t(R) is the domain of the partial function g :5;* A* whose
graph is: #g= #]’(E*xR). U

Finally, we recall that sequential and subsequential partial functions are closed
under composition (see e.g. [3, Prop. IV, 2.5]).

4.2. A hierarchy of pushdown partial functions. Given two families of partial
functions r and 2, we shall use the customary notation 72 "1 to indicate the
family of all partial functions of the form f2 fa with fl x and f2 r2.

Theorem 4.2 shows that: UPDF RATF-- RATF UPDF- UPDF. This im-
plies in particular, that DET, DET RATF, RATF DET and RAT DET RAT
are subfamilies of UPDF. We will see that all inclusions among these families are strict.

THEOREM 4.7. The strict inclusions in Fig. 2 hold.
Proof. For obvious reasons of symmetry it suffices to consider the left part of the

diagram.
Strict inclusions (1) and (7) can be established arguing on the domain of the

different partial functions. The same holds for strict inclusion (2). Indeed, by Theorems
2.1 and 4.3, we have RATF DET RATF SEQR DET SEQl which shows
that the domain of a partial function f e RATF DET RATF is the inverse image
of a (left) deterministic language by a right sequential partial function. But we do not
in this way get all unambiguous languages (cf. e.g. [21, p. 40]).

PROPERTIES OF FINITE AND PUSHDOWN TRANSDUCERS 311

PDF

(11[
UPDF

RAToDEToRAT

DEToRAT RAToDET

(5)" J(6)
DET

RAToDETRoRAT

BIDET

DEToRATr RAToDETr

DETR

FIG. 2

Strict inclusions (5) and (6) are consequences of the fact that RATF and DET
are incomparable.

Strict inclusions (3) and (4) follow from the fact that RATFoDET and
DET RATF are incomparable, which we will now prove.

In order to show that DET RATFg RATF DET, let E {a, b, c, d} and set
L {a"b"c In > 0} U {a"b 2"din > 0}. Then [L * ")* belongs to DET RATF as is
easily seen, but does.not belong to RATF DET, since its domain is not a determinis-
tic context free language.

We are now left with proving RATF DETgDET RATF. This is done in
two steps.

LEMMA 4.8. Let E {a, b } and A {c, d}. The partial function f: E* -) A*, defined
by:

c" if n >=m,
for all m, n >= O, f(a"ba rob)

d otherwise,
and

f(u) ifuC:a*ba*b,
is not deterministic.

Proof. Assume f is defined by a deterministic pushdown transducer 3-=
(O, E, 5, 6, qo, Zo, F). We shall assign to 3" a deterministic pushdown automaton M
recognizing a language

_
(U A)* consisting of words belonging to the shuffle of a

word u Z* with its image f(u) A*.
Formally, we consider the pushdown automaton (Q (.J Q’,

E (.J A, X, 8’, qo, Z0, F) where the set Q’ of new states disjoint from Q and 8’ is defined
by replacing each relation (q’, y, u) di(q, a, x) by a set of relations according to the
following rules:

i) If u e, then the collection is reduced to:

(q’, y) 8’(q, a, x);

ii) If u u up (ui A, 1 <_-- --< p) then the collection is’

(q’l, X). 8’(q, a, x),

(q i+l,X)8’(qi, ui, x), 1 <-i <p,

(q’, y)e 8’(ql, uv, x),

where q ,..., qv are new states.

312 CHRISTIAN CHOFFRUT AND KAREL CULIK II

If we denote by .t’ the (deterministic) context-free language recognized by
then fq{a,b,c}* {a,b}*c* since the occurrence of c cannot be output before
knows for sure that n->m, i.e., before it reads the second occurrence of b. More
precisely .o fq {a, b, c}* {a"ba’bc’ln >= m}, which contradicts the context-freeness of

LZMMA 4.9. Let E {a, b }, A {c, d} and consider the partial function f:E* A*

defined by

and

f(u) ifuea*b*

{ Cd" fn >= m =>0,
f(a"b ")

otherwise.

Then f (RATF DET)\(DET RATF).
Proof. i) f RATF DET. Let g :X*- A* be the deterministic partial function

defined by

g(u) ifugga*b*,

’c" if n >-m >0,
g(a"b ")

c"d otherwise.

Now consider the right sequential partial function h :A* A* satisfying for all
u A*, h (uc) uc and h (ud) d. Then it suffices to note that f h g.

ii) [DET RATF. By Theorems 2.1 and 4.3, it suffices to verify that f cannot
be factorized as f h g where g :X*- F* is a right sequential partial function and
h :F* A* is a deterministic partial function.

Assume this is the case and let r be the canonical morphism of X* onto the
transition monoid of a sequential transducer defining g (cf. e.g. [10, p. 157]).

Choose an integer n > 0 satisfying the conditions:

(4.1) rp(a) rp(a 2") and rp(b) q(bi).

Then there exist four words u, v, w, zF* such that for all r, s->0 we have
g(a"(r/lb"(S/l) urvwSz. This implies the following:

C
n(r+l) ifr >_-s,

h (u rvw z)
d otherwise.

Consider the sequential partial functions h :* F* and hi:A* A* defined by:

UrVWZ if arbab, r, s >- O,
h l(t)

otherwise,

and

if =c
h2(t)

otherwise.

Then by Theorem 4.3, the partial function h2 h o h :E* A* is deterministic.
But this contradicts Lemma 4.8, since this partial function is precisely the one defined
in that lemma.

$. Decision problems. Let -x and r2 be two subfamilies of pushdown relations
and considerf e andf2 2. We are concerned in this section with the two following

PROPERTIES OF FINITE AND PUSHDOWN TRANSDUCERS 313

decision problems"

Problem 1. f 27
Problem 2. f f2?

Problem 1 is known to be undecidable in case ’ 2 RAT (see e.g. [3, Thm.
III, 8.4]. Several authors have independently proved that Problem 1 is decidable when
1 RAT and ’2 RATF (cf. [4] and [20]).

THEOREM 5.1. Given an arbitrary rational relation f:E* A*, it is decidable
whether or not it is a partial function, i.e., whether f(u contains at most one element
for all u ,*.

In particular this proves that Problem 2, under the same assumption, is decidable.
Indeed, fx 2 if and only if the two rational languages Domf and Dom f2 are equal
and if the union of fl and f2 is again a partial function. Therefore we have (cf. the
same references):

THEOREM 5.2. Given two arbitrary rational partial functions fi :E* A*, 1, 2,
it is decidable whether f f2, i.e., whether f (u f2(u holds for all u ,*.

Assume 1 RAT and 2 is any of the families SEQ, SEQR, BISEQ, SUBSEQ,
SUBSEQR, BISUBSEQ. For each of these cases Problem 1 can be decided (cf. [6]):

THEOREM 5.3. Given an arbitrary rational relation f ,* A*, each ofthefollowing
problems is decidable:

(5.1) fe SEQ?

(5.2) f e SEQR?

(5.3) fe BISEQ?

(5.4) f e SUBSEQ?

(5.5) f e SUBSEQR?

(5.6) f e BISUBSEQ?
A stronger result than Theorem 5.2 has been shown in [7, Thm. 7], namely that

Problem 2 is decidable for rl RATF and 2 UPDT. We will further strengthen
this result in two ways.

THEOREM 5.4. Given an arbitrary rational relation f" ,*--> A* and an unam-
biguous pushdown function f2 E* -> A*, it is decidable whether f rE.

Proof. By [7, Thms. 1 and 7]. [-1

THEOREM 5.5. Let f :E* A* be a pushdown relation and f2 :E* A* a rational
partial function such that Dom f2 - Domf. Then it is decidable whether f and f2 are
equal.

Proof. Observe that under the assumptions of the theorem, Dom f2 Dom fl if
and only if the context-free language Dom fl\Dom f2 is empty. This is known to be
decidable. We shall from now on assume that Domf -Dom rE.

Let A and A2 be two disjoint copies of A such that A1 fqE AE’)E--. The
idea of the proof is to define a pushdown relation f:E* --> (A [.J A2)* with the following
property. For each u e E*, every word in f(u) belongs to the shuffle of the copy (in
A l*) of some word of f(u) with the copy (in A’) of some word of rE(U). In particular,
if pl and P2 are the canonical projections of (A [.J A2)* over A*, we will have for all
u eE*: f(u)=pof(u) and fE(u)=pEof(u). Therefore the initial decision problem
will be reduced to testing whether the two homomorphisms p and p2 agree over the
context-free language Im f =]’(E*).

314 CHRISTIAN CHOFFRUT AND KAREL CULIK iI

Denote by jl" A* --A and f2" A "-) A the canonical isomorphisms. By Theorem
3.1 the pushdown relation /’of’E*-A* and the rational partial function
/’2 f2" * A2* admit the factorizations:

h Ofl=golt. oh- and f2of2=g2OlRoh

where L
_

..* is a context-free and R ..’ a rational language, and where h" ..* - E*,
g...’ - A*, h"-2* -* E* and g" E2* - A’ are alphabetic morphisms. We will assume,
without loss of generality, that Ex, .., E, Ax and A. are pairwise disjoint.

Let g’..*-(,Et.J)* be the morphism defined for all xE by g(x)=
hl(x)g(x,), and let f’ g’l IL h-.

Consider next the rational subset R’
_

(..2 t3 A)* which is the shuffle of R
with A* (cf. e.g. [9, Prop. II, 3.4]). Define the alphabetic morphisms h (" (-2 t.J A)*
(X O A1)* and g "(---,2 .J A1)* " (A2 A1)* by letting

{x ifxA,
g’E(X)= {x ifxAl,

h (x)
h2(x) if x E2, g2(x) if x ..2.

Then f g IR, h "(E U A1)* (A2 I,.J A1)* is a rational relation, and we
leave it to the reader to verify that the pushdown relation f f f E* - (A t3 A2)*
satisfies the condition: fl pl f and f2 p2 f as claimed.

Assume fl =f2 and consider x f(E*). Then we have x f(u) for some u *.
This yields:

px(x)plf(u)=f(u) and p2(x)p2f(u)=f2(u).

Since f(u) and f2(u) are two equal singletons, we obtain p(x)=p2(x).
Conversely, assume that pl(x)=p2(x) holds for all x f(X*). Then for all u

we obtain:

f (u pf(u p2f(u f2(u).

In other words, f f2 if and only if the two morphisms are equivalent over the
subset f(E*). Since this subset is context-free (el. e.g. [12, p. 116]), this last problem
is decidable, by [8] or [2].

REFERENCES

[1] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation and Compiling, Vol. 1,
Prentice-Hall, Englewood Cliffs, NJ, 1972.

[2] J. ALBERT AND K. CULIK II, Test sets for homomorphism equivalence on context-free languages, in
Proc. of the 7th ICALP, Lecture Notes in Computer Science, 85, Springer, New York, 1980,
pp. 12-18.

[3] J. BERSTEL, Transductions of Context-Free Language, Teubner Verlag, Berlin, 1979.
[4] M. BLATTNER AND T. HEAD, Single valued a-transducers, J. Comput. System Sci., 15 (1977),

pp. 310-327.
[5] C. CHOFFRUT, Contribution a l’tude de quelques families remarquables de fonctions rationnelles,

Th/se de Doctorat d’Etat, Universit6 Paris 7, Paris, 1978.
[6] ., Une caractgrisation des fonctions squentielles et des fonctions sous-squentielles en tant que

relations rationnelles, Theoret. Comput. Sci., 5 (1977), pp. 325-337.
[7] K. CULIK II, Some decidability results about regular and pushdown translations, Inform. Process. Lett.,

8 (1979), pp. 5-8.
[8] K. CULIK II AND A. SALOMAA, On the decidability of homomorphism equivalence for languages, J.

Comput. System Sci., 17 (1978), pp. 43-51.
[9] S. EILENBERG, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.

[10] Automata, Languages and Machines, Vol. B, Academic Press, New York, 1976.

PROPERTIES OF FINITE AND PUSHI)OWN TRANSDUCERS 315

[11] J. ENGELFRIET AND G. ROZENBERG, Equality languages and fixed point languages, Inform. and
Control, 39 (1978), pp. 20-49.

[12] M. FLIESS, Transductions alg.briques, R.A.I.R.O., R1, (1970), pp. 109-125.
[13] S. GINSBURG, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.
[14] S. GINSBURG, S. GREIBACH AND J. HOPCROFT, Studies in abstract families of languages, Mem.

Amer. Math. Soc., 113 (1966), pp. 285-296.
[15] M. A. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
16] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and Their Relations to Automata, Addison-

Wesley, Reading, MA, 1969.
[17] M. NIVAT, Transductions des langages de Chomsky, Ann. Inst. Fourier, 18 (1968), pp. 339-456.
[18] M. P. SCHI[ITZENBERGER, Sur les relations fonctionnelles entre monoides libres, Theoret. Comput.

Sci., 3 (1976), pp. 243-260.
[19] ., Sur une variante des fonctions squentielles, Theoret. Comput. Sci., 4 (1977), pp. 47-57.
[20] ., Sur les relations rationnelles, in Automata Theory and Formal Languages, H. Brakhage, ed.,

2nd GI Conference, Lecture Notes in Computer Science, 33, Springer, Berlin, 1975, pp. 209-213.
[21] M. SO,iA, Langages quasidterministes, ThEse de 3/me Cycle, Universit6 Paris VII, Paris, France,

1978.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202--0008 $01.25/0

QUADRATIC ALGORITHMS FOR MINIMIZING JOINS
IN RESTRICTED RELATIONAL EXPRESSIONS*

YEHOSHUA SAGIV’t"

Abstract. An important step in the optimization of queries in relational databases is minimizing the
number of join operations in the evaluation of a query. It is shown that three subclasses of tableaux
(including the subclass of simple tableaux) have O(n 2) time equivalence and minimization algorithms. Since
tableaux are nonprocedural representations of relational expressions over select, project and join, these
minimization algorithms can be used to minimize the number of join operators in expressions whose
tableaux belong to one of these subclasses.

Key words, relational database, relational algebra, query optimization, equivalence of queries, conjunc-
tive query, tableau, NP-complete

CR categories. 4.33, 5.25

1. Introduction. The relational model for databases features two high-level query
languages: the relational algebra and the relational calculus [9], [10]. The relational
algebra is a procedural language that uses operators defined on relations, and a query
is usually translated to a relational expression before being evaluated. However, the
efficiency with which a query can be answered depends on the relational expression
that has been chosen to represent this query. Consequently, a number of papers (e.g.,
[12], [13], [14], [15], [17], [18]) have considered transformations that reduce the cost
of evaluating a query. However, these transformations do not necessarily produce an
equivalent query of least cost. Chandra and Merlin [8] show how to perform global
optimization on a large class of queries, but their algorithm is exponential in the size
of the query.

The most commonly used operators of the relational algebra are select, project
and join, and a polynomial time algorithm for optimizing a subclass of expressions
with these operators is given in [4], [5]. This optimization technique uses tableaux [3]
as a nonprocedural representation of queries. Tableaux are similar to the conjunctive
queries of [8], and resemble Zloof’s "query-by-example" language [20]. Relational
expressions over select, project, and join can be represented by tableaux [3]. In I-8]
it is shown that every tableau has an equivalent minimal tableau. The importance of
this result follows from the fact that an expression with a minimum number of joins
corresponds to a minimal tableau. A polynomial minimization algorithm for the class
of simple tableaux is given in [4] (although the problem is NP-complete in the general
case [3]). In 15] it is shown how to obtain in polynomial time an optimal expression
from a minimal simple tableau (if such an expression exists).

This optimization technique is machine independent. It is capable of minimizing
the number of join operators (note that join is the most expensive operator to
implement), eliminating redundant subexpressions, and applying select and project
as early as possible. This type of optimization should be augmented with machine
dependent optimization that takes into consideration the size of the relations, sorted
columns, etc.

* Received by the editors November 21, 1979, and in revised form May 28, 1982. This work was
supported in part by the National Science Foundation under grants MCS-76-15255 and MCS-80-03308.

t Institute of Mathematics and Computer Science, The Hebrew University, Givat Ram 91904,
Jerusalem, Israel.

316

QUADRATIC ALGORITHMS FOR MINIMIZING JOINS 317

In this paper we describe new minimization algorithms for two subclasses of
tableaux. We also show how to improve the running time of the minimization algorithm
for the class of simple tableaux. All these algorithms have an O(n 2) running time. It
is shown that each one of the three subclasses of tableaux discussed in this paper also
has an O(n 2) time equivalence algorithm. Finally, in 7 and 8 we touch upon the
problems of minimizing tableaux in the general case and obtaining optimal expressions
from minimal tableaux.

2. Basic definitions.
2.1. The relational model. The relational model for databases [9] assumes that

the data is stored in tables called relations. The columns of a table correspond to
attributes, and the rows to records or tuples. Each attribute has an associated domain
of values. A tuple is viewed as a mapping from the attributes to their domains, since
no canonical ordering of the attributes is needed in this way. If r is a relation with a
column corresponding to the attribute A, and tx is a tuple in r, then Ix (A) is the value
of the A-component of tz. In this paper we usually denote a relation as a set of tuples.

A relation scheme is a set of attributes labeling the columns of a table, and it is
usually written as a string of attributes. We often use the relation scheme itself as the.
name of the table. A relation is just the "current value" of a relation scheme.

2.2. The relational algebra and relational expressions. The relational algebra [9],
[10], is a set of operators defined on relations. In this paper we consider the operators
select, project, and join.

Let r be a relation defined on a set of attributes X, A an attribute in X and c a
value from the domain of A. The selection A c, written rA=c(r), is

crA=c (r) {/ [r and (A) c }.
Let Y be a subset of X, the profection of r onto Y, written zrv(r), is

zrv(r) {l/x is a mapping on Y, and there is a u in r such that tz(Y) ,(Y)}.

Let rl and rz be relations defined on the relation schemes R and Rz, respectively.
The (natural) foin of rl and r2, written rl N r2, is

rl r {tz[is a mapping ouR1 [..J R2, and there is Ul in rl and u2

in r2 such that (R 1) ’1(R 1) and tz (R z) tz(R2)}.

Note that the join includes intersection (when R1 and R2 are the same) and cartesian
product (when R and Rz are disjoint) as special cases.

The relational algebra operators are used to formulate queries in terms of
relational expressions. A restricted relational expression consists of select, project and
join as operators, and relation schemes as operands.

2.3. Expression values and equivalence of expressions. An underlying assump-
tion in many papers (e.g., [1], [6], [7]) is the existence of a single universal relation
at each instant of time. This relation is defined on the set of all the attributes, and it
is called a universal instance or just an instance. If I is an instance and E is a relational
expression, then each relation scheme Re in E is assigned the relation zrR,(I). The
value of E with respect to I, written vt(E), is computed by applying operators to
operands in the following natural way:

(1) If E is a single relation scheme Ri, then vt(E)= 7rR,(I).
(2) (a) If E=O’A=(E1), then vi(E)=O’A-__c(vt(E1)).

(b) If E rx(E1), then vt(E)= zrx(vt(E1)).
(c) If E E1 N Ez, then vt(E) v(E1) vt(E2).

318 YEHOSHUA SAGIV

We may regard a relational expression as a mapping from instances to relations,
i.e., the expression E maps the instance I to the relation vx(E). Two expressions E1
and E2 are equivalent if they define the same mapping. That is, if for all instances/,
v,(E) v,(E.).

The algorithms given in this paper do not depend upon the universal instance
assumption. These algorithm can be applied in O(n 2) time even if the relations assigned
to the relation schemes do not necessarily come from an instance (see [3] for details
on how to test equivalence in this case).

3. Tableaux. Tableaux are just another way of representing mappings from
instances to relations. Unlike relational expressions, tableaux are nonprocedural
representation of queries in exactly the sense that relational calculus [9], [10] is
nonprocedural.

A tableau is a matrix consisting of a summary and a set of rows. The columns
of a tableau correspond to the attributes of the universe in a fixed order. The symbols
appearing in a tableaux are chosen from:

(1) distinguished variables, usually denoted by subscripted a ’s.
(2) nondistinguished variables, usually denoted by subscripted b’s.
(3) constants, which are drawn from the domains of the attributes
(4) blank.
Each row may contain constants, distinguished and nondistinguished variables.

The summary has constants, distinguished variables and blanks. A variable cannot
appear in more than one column, and a distinguished variable may appear in a
particular column only if it appears in the summary. Further, if a constant or a
distinguished variable appears in some column A of the summary, then it must also
appear in column A of at least one row.

Let T be a tableau with a summary w0 and rows w 1," ", w,, and let S be the
set of all the nonblank symbols in T. A valuation p for T maps each symbol in S to
a constant, such that if c is a constant in S, then t (c)= c. The valuation t9 is extended
to the rows and summary of T by defining p(wi) to be the result of substituting tg(v)
for all variables v in wi.

A tableau T defines a mapping from instances to relations on its target relation
scheme, which is the set of all the attributes corresponding to columns that have a
nonblank symbol in the summary. Given an instance/, the value of T, written T(I),
is

T(I)={p(Wo)[for some valuation p, we have p(w) in I for 1-<i =<n}.

Conventionally, we also regard b as a tableau. This tableau represents the function
that maps every instance to the empty relation.

Example 1. Consider the following tableau:

A B C

al a3

al 2 b3
bl b2 a3
al b2 b4

The summary is shown first, with a line below it, and integers are used as constants.

QUADRATIC ALGORITHMS FOR MINIMIZING JOINS 319

Tableau T defines a relation on the relation scheme AC. For example, suppose
that ! is the instance {211,121,122}.

Consider the valuation p that assigns 2 to b2 and 1 to every other variable in T.
Under this valuation, each row of T becomes 121, which is a member of L Therefore,
p(ala3) 11 is in T(I).

If t9 assigns 1 to a l, bl, b3 and b4, and 2 to b2 and a3, the first and third rows
become 121 and the second row becomes 122; both are members of/, and so 12 is
in T(I).

Since no valuation for T produces a tuple other than 11 or 12, T(I)= {11, 12}.
Given a restricted relational expression E, we can construct in polynomial time

a corresponding tableau that represents the same mapping [3]. However, there are
tableaux that do not correspond to any relational expression [3].

3.1. Equivalence of tableaux. Two tableaux T1 and T2 are equivalent, written
T =- T2, if for all instances L T(I)= T2(I). We say that T is contained in T2, written
T

_
7- T2, if for all/, T1 (I)

_
T2(/).

Let T and T2 be tableaux with the same target relation scheme, and let S and
$2 be the sets of symbols of T and T2, respectively. A homomorphism is a mapping
:S S2 such that:

(a) If c is a constant, then j(c)= c.
(b) If s is the summary of T, then :(s) isthe summary of T2.
(c) If w is any row of T, then (w) is a row of T2.

The following theorem is proved in [3], [8].
THEOREM 1. T2 7" T1 if and only if T and T2 have the same target relation

scheme, and there is a homomorphism :St - $2.
By condition (c), a homomorphism corresponds to a mapping 0 from the rows

of T to the rows of T.. The mapping 0 is called a containment mapping, and it satisfies
the following conditions:

(1) If row w of T1 has a constant in some column A, then O(w) has the same
constant in column A.

(2) If row w of T1 has a distinguished variable in column A, then O(w) has a
distinguished variable in column A.

(3) If rows w and v have the same nondistinguished variable in column A, then
rows 0(w) and O(v) have the same symbol in column A.

COROLLARY 2. [3]. Tableaux T and T2 are equivalent if and only if they have
identical summaries up to renaming ofdistinguished variables, and there are containment
mappings in both directions.

A tableau T is minimal if T is not equivalent to any tableau with fewer rows.
If an expression E corresponds to a minimal tableau, then E is not equivalent to any
expression with fewer joins. Since it has been shown that each tableau has a unique
(up to renaming of variables2) equivalent minimal tableau [3], [8], it follows that one
can minimize the number of joins in a restricted relational expression E by minimizing
its corresponding tableau T. Further, the minimal tableau equivalent to T can be
obtained by deleting some of the rows of T. Therefore, if E is a nonminimal expression,

In this paper we consider only equivalence (and not proper containment) of tableaux, and therefore
the definition of a containment mapping is more restricted than the original definition given in [3].

Let T and T’ be tableaux with sets of symbols S and S’, respectively. T’ is a renaming of T if there
is a one-to-one homomorphism from S onto S’ such that the simultaneous replacement of each variable
v in T with (v) produces T’.

320 YEHOSHUA SAGIV

then E has a proper subexpression (corresponding to its unique minimal tableau) whose
value is the same as E and, so, the evaluation of a nonminimal expression can never
be more efficient than the evaluation of its minimal form.

A core of T is a subset of the rows of T that forms a minimal tableau equivalent
to T. (Note that all the cores of T are the same up to renaming of variables.) A folding
is a containment mapping from the rows of a tableau T to the rows of a core of T,
such that every row in the core of T is mapped to itself. Since a tableau is equivalent
to its core, every tableau T has a folding. Note that a homomorphism that corresponds
to a folding maps every variable in the core of T to itself. The following corollary is
an immediate consequence of the results stated so far.

CoroI.I.Ap,’ 3. Let T1 and T2 be tableaux with the same summary. If the rows
of Ta are a subset of the rows of Ta, then

(1) T2 r T1, and
(2) T2 TI if and only if a core of T2 is contained in Ta.
Let w and x be rows of tableaux over the same set of attributes. Row w covers

row x, if for all columns A,
(1) if x has a constant in column A, then w has the same constant in column A,

and
(2) if x has a distinguished variable in column A, then w has a distinguished

variable in column A.
If x is mapped to w, and w covers x, then the first two conditions of a containment
mapping are satisfied. Let R and S be sets of rows over the same set of attributes.
The set S covers the set R, if every row of R is covered by some row of S. We say
that rows w and x are equivalent if w covers x and x covers w.

A symbol (i.e., a variable or a constant) of a tableau T is repeated in some column
A, if it appears in that column in more than one row. A tableau T is simple if whenever
T has a repeated nondistinguished variable b in some column A, then b is the only
repeated symbol in that column. The class of simple tableaux has an O(n 3) equivalence
algorithm [3], and an O(n 4) minimization algorithm [4]. Other equivalence algorithms
can be obtained from the containment algorithms of 16]. In particular, testing whether
T2 T1 can be done in O(n 2) in the following two cases:

(1) Both T1 and T2 have at most one repeated nondistinguished variable in each
row.

(2) Every row of T1 is covered by at most two rows of T2, and every row of
is covered by at most two rows of

4. Polynomial equivalence algorithms. In this section we consider the following
classes of tableaux.

(1) The class of all tableaux T, such that T has at most one repeated nondistin-
guished variable in each row.

(2) The class of all tableaux T, such that every row of T is covered by at most
one row of T besides itself.

Deciding whether a tableau belongs to Class 1 (or whether a tableau is simple)
can be done in O(n) time. Deciding whether a tableau belongs to Class 2 can be done
in O(n 2).

THEOREM 4. Each one of the above classes has an O(n 2) time equivalence
algorithm.

Proof. If tableaux T1 and T2 belong to Class 1, then the first algorithm of [16]
can be used to test whether T1---T2. If T1 and T belong to Class 2, the second
algorithm of [16] cannot be applied directly to Ta and T2 (since it is not necessarily

QUADRATIC ALGORITHMS FOR MINIMIZING JOINS 321

true that every row of T1 is covered by at most two rows of T2). However, we can
still use it in the following way. First, we remove from T1 every row that does not
have an equivalent row in T2. Let T be the tableau consisting of the remaining rows
of T. Similarly, T is obtained from T2 by removing every row that does not have
an equivalent row in T. We claim that T T2 if and only if

(,) T=-T, T2-=T and T=T.
Further, condition (,) can be tested using the second algorithm of [16]. Clearly, this
algorithm can be used to test the first and second equivalences, since the rows of T
are a subset of the rows of Ta and T belongs to Class 2 (and similarly for T and
Tz). A row w of T cannot be covered by more than two rows of T, since w has
an equivalent row x of T and so every row of T that covers w also covers x.
Therefore, the second algorithm of [16] can also be used to test the third equivalence
of (*).

It remains to be shown that T T2 if and only if condition (,) is satisfied. Clearly,
if condition (,) is true, then Ta-= T2. The "only if" direction follows from the fact
that if T Tz, then T1 and Tz have identical cores, and so every row in a core of
one of them has an equivalent row in every core of the other. [3

5. Obtaining minimization algorithms from equivalence algorithms. Let S be a
class of tableaux. We say that S is closed under row deletion if whenever a tableau T
is in S, and T’ is obtained by deleting some of the rows of T, then T’ is also in S.

THEOREM 5. Let S be a class of tableaux closed under row deletion. If there is an
equivalence algorithm for S that runs in F(n) time (F(n) >-cn for some constant c), then
them is a minimization algorithm for S that runs in nF(n time.

Proof. Suppose that a tableau T in S is not minimal. Then there is a row x such
that T =-T-x, where T-x is T with the row x deleted. Thus, for each row x we
have to test whether T T-x, and if so, delete x and continue the process with the
remaining rows. This can be done in nF(n) time, since no row has to be considered
more than once (because if T T-x, then T’ T’-x for every T’ obtained by
deleting some redundant rows of T). 71

The classes of tableaux described in 4 and the class of simple tableaux both
have polynomial time equivalence algorithms. Each one of these classes is closed
under row deletion and, therefore, Theorem 5 can be applied to obtain polynomial
minimization algorithms for these classes. However, the algorithms obtained by
applying Theorem 5 are not the most efficient minimization algorithms for these
classes. In the following sections we will give for each one of these classes a minimiz-
ation algorithm that runs in O(n z) time.

6. Polynomial minimization algorithms.
6.1. Quasi-minimal tableaux. In this section we will show that a tableau, in which

a folding does not eliminate any repeated nondistinguished variable, can be minimized
in O(n z) time. This fact is used in developing the minimization algorithms of the
following sections.

Let b be a repeated nondistinguished variable of a tableau T. The variable b is
essential if it appears in every core of T. A tableau T is quasi-minimal if all repeated
nondistinguished variables of T are essential.

LEMMA 6. A quasi-minimal tableau can be minimized in O(n 2) time.
Proof. Consider the following rule for row deletion. Delete row x of T if T has

a row w such that for all columns A, if x (A) w (A), then x (A) is a nondistinguished
variable that appears nowhere else in T. By [3, Cot. 2], T =-T-x. We claim that a

322 YEHOSHUA SAGIV

quasi-minimal tableau can be minimized by repeatedly deleting rows according to the
above rule until no more rows can be deleted. (Clearly, this can be done in O(n 2)
time.) Let T be a quasi-minimal tableau. Every repeated nondistinguished variable
of T is essential and, therefore, must appear in every core of T. Consider a folding
from T onto its core. The corresponding homomorphism maps every repeated nondis-
tinguished variable of T to itself, since the folding maps every row in the core to
itself. Therefore, if row x of T is mapped to some other row w in the core of T, then
in every column on which x and w disagree, x has a nondistinguished variable that
appears nowhere else in T. Thus, x can be deleted by the above rule.

Each one of the following algorithms for minimizing a tableau T has two steps.
In the first step some rows of T are deleted in order to obtain an equivalent
quasi-minimal tableau T. In the second step the algorithm for minimizing quasi-
minimal tableau is applied to T.

6.2. Minimizing tableaux of class 1. Let T be a tableau that has at most one
repeated nondistinguished variable in each row. For each repeated nondistinguished
variable b, let W(b) be the set of all the rows that contain b. Suppose that some
repeated nondistinguished variable bo is not essential, and let A be the column in
which bo appears. Let 0 be a folding from the rows of T to a core that does not
contain bo. Obviously, all the rows of O(W(bo)) have the same symbol d (d bo) in
column A, and W(bo) is covered by O(W(bo)). The following lemma shows that these
conditions are also sufficient for the elimination of bo.

LEMMA 7. Suppose that is a mapping from T to itself such that for all x . W(bo),
O(x) x. Then 0 is a containment mapping if and only if

(1) all the rows of #(W(bo)) have the same symbol in column A, and
(2)]’or all x W(bo), x is covered by d/(x).
Proof. By the above discussion, conditions (1) and (2) are satisfied if is a

containment mapping. Conversely, if satisfies condition (2), then satisfies the first
two conditions of a containment mapping. If two rows x and w of T have the same
nondistinguished variable b in some column B, then either both x and w are in W(bo)
and b is bo (because T is the Class 1), or both x and w are not in W(bo). In either
case, O(x) and (w) have the same symbol in column B. Thus, is a containment
mapping. El

By Lemma 7, if bo is not essential, then we can always delete all the rows
containing bo by finding a set of rows $, such that S covers W(bo) and all the rows
of S have the same symbol in column A. By comparing each row with every other
row, i.e., in O(n 2) time, all repeated nondistinguished variables that are not essential
can be deleted. The result is a quasi-minimal tableau that can be minimized in O(n 2)
time. Thus, we have the following theorem.

THEOREM 8. A tableau T that has at most one repeated nondistinguished variable
in each row can be minimized in O(n 2) time.

6.3. Minimizing tableaux of class 2. Let T be a tableau such that every row of
T is covered by at most one row of T besides itself. For each row w of T, let c(w)
be the other row that covers w (if no other row of T covers w, then c(w)= w). The
function c can be computed in O(n) time. Note that every folding maps each row
w to either c (w) or itself.

Let bo be a repeated nondistinguished variable of T, and let W(bo) be the set of
all the rows containing b0. Suppose that there exists a folding ff that eliminates bo.
Let Ar be the set of all rows w such that 4(w) c(w) and w c(w). Clearly, W(bo) IQI,
since 0 is a folding onto a core that does not have b0. We can simultaneously compute

QUADRATIC ALGORITHMS FOR MINIMIZING JOINS 323

M and the homomorphism h corresponding to as follows. We initialize a set M to
W(bo). Then the following rules are applied repeatedly to rows of M"

1. If a nondistinguished variable b appears in column A of some row w M,
then h(b) is the symbol appearing in column A of c(w).

2. If b appears in some row c(w), where w M, then h (b)= b.
3. If w is a row of T such that w M and w has a variable b for which h (b) has

already been determined and h (b) b, then add w to M.
The first rule follows from the fact that every wM is mapped to c(w). The

second rule is valid, since c(w) is in the image of a folding and, hence, c(w) must be
mapped to itself. The third rule follows from the fact that if w contains a variable b
such that h(b) b, then d,(w)- c(w).

The above rules can be applied even if a folding that eliminates bo is not known
to exist. The rules should be applied repeatedly until one of the following happens"

(i) The rules imply that h (bo) bo and, hence, bo is essential.
(ii) A contradiction is derived (i.e., for some b, the rules imply that h(b) must

be equal to two distinct variables) and, so, bo is essential.
(iii) The rules cannot be applied any more (and neither (i) nor (ii) has occurred).

We will show that in this case bo can be eliminated.
Suppose that Case (iii) has occurred, and let M be the final value of M. Define

a mapping 0 as follows’
O(w)=c(w) ifwM,_

w if wM.
LEMMA 9. The mapping 0 is a containment mapping, and no row ofM is in the

image of 0 (provided that neither Case (i) nor (ii) has occurred).
Proof. For all rows w of T, row c(w) covers w and, hence, 0 satisfies the first

two conditions of a containment mapping. Suppose that rows w and x of T have the
same nondistinguished variable b in some column A. If both w and x are in M, then
O(w) and O(x) have the same symbol in column A (because the rules have not implied
a contradiction). If both w and x are not in M, then 0(w)= w and O(x)= x and, so,
O(w) and O(x) agree in column A. Suppose that exactly one of w and x is in M.
Therefore, h (b)= b (otherwise, Rule 3 implies that all the rows containing b should
be in M) and, hence, O(w) and O(x) have b in column A. Thus, 0 satisfies also the
third condition of a containment mapping.

Suppose that a row w of M is mapped to some other row u of M. Since u is in
/, it must have some repeated nondistinguished variable b such that h (b) b (other-
wise, u neither contains bo nor could have been added to M by Rule 3). But since w
is mapped to u, Rule 2 implies that h (b) b. However, it is assumed that no contradic-
tion has occurred and, hence, w cannot be mapped to u. I-!

It follows that if the rules imply neither a contradiction nor h (bo)= bo, then all
the rows of M (and hence all the rows containing bo) can be eliminated from T. If a
contradiction is derived or h(bo)-bo, then b0 is essential. Thus, by repeating this
process for every nondistinguished variable in T, we obtain a quasi-minimal tableau
T equivalent to T.

THEOREM 10. A tableau T, in which each row is covered by at most one row of
T besides itself, can be minimized in time O(n).

Proof. For each repeated nondistinguished variable bo, we can test in linear time
whether bo is essential. If it is not, then all the rows of M can be deleted from T. In
O(n) time we can repeat the process for every repeated nondistinguished variable.
The result is a quasi-minimal tableau that can be minimized in O(n 2) time by
Lemma 6.

324 YEHOSHUA SAGIV

6.4. Minimizing simple tableaux. Suppose that T is a simple tableau. Let S be
a set of rows, and let w be a row of T. The closure of S with respect to w, denoted
CLw (S), is the minimal set of rows such that

(1) S
_
CLw (S), and

(2) if x is a row in CLw(S) such that x has a repeated nondistinguished variable
b in some column A, and w has some other symbol in this column, then all the rows
containing b are in CLw(S).

In [3] it is shown that if w covers CLw(S), then the tableau obtained by deleting
all the rows of CLw (S)-w is equivalent to T (this is true even if T is not simple).
Further, if some repeated nondistinguished variable b of T is not essential, then there
is a row w (that does not contain b) such that w covers CLw (W(b)). (Note that
wCLw (W(b)), since w W(b).)

These results can be used to obtain a quasi-minimal tableau equivalent to T as
follows. Compute CLw (W(b)) for each repeated nondistinguished variable b and each
row w that does not contain b. If w covers CLw (W(b)), then delete all the rows of
CLw (W(b)) from T. The resulting tableau is equivalent to T, and it is quasi-minimal
[3]. In this section we describe an implementation of this algorithm that runs in O(n z)
time.

LEMMA 1 1. Let w be a row of a simple tableau T. Suppose that ba and bE are two
repeated nondistinguished variables of T that do not occur in w. Then CLw (W(ba)) and
CLw (W(b2)) are either equal or disjoint.

Proof. Suppose that x 6 CLw (W(bl)). By the definition of CLw (W(b)), row x
has a repeated nondistinguished variable b that does not appear in w. Further, part
(2) of the definition is reversible, i.e., if y in CLw (W(b)) implies that z is also in
CLw (W(b)), then z in CLw (W(ba)) implies that y is also in CLw (W(b)). Therefore,
CLw (W(b))=CLw (W(b)). It follows that if CLw (W(b)) and CLw (W(b)) have a
row x in common, then they are equal. 71

Lemma 11 implies that if CLw (W(b)) has been computed, and b is a repeated
nondistinguished variable that appears in some row of CLw (W(b)), then there is no
need to compute CLw (W(b)) (it is assumed that neither b nor b occurs in w). Thus,
for each row w we do the following. At first all repeated nondistinguished variables
that do not appear in w are marked "unconsidered". The next step is to compute
CLw (W(b)) for some repeated nondistinguished variable that is marked "uncon-
sidered". During this step all repeated nondistinguished variables that occur in some
row of CLw (W(b)) are marked "considered". If CLw (W(b)) is covered by w, then
all the rows of CLw (W(b)) are deleted. This step is repeated for some other variable
that is marked "unconsidered", until all the variables are marked "considered". The
complete procedure is described in Algorithm 1.

()
(2)
(3)
(4)
(5)

(6)
(7)
(8)

ALGORITHM 1
procedure CLOSURE (b, w):
begin
S := 4,;
make QUEUE empty;
mark b considered ’,
add all the rows containing b to QUEUE;
while QUEUE is not empty do

begin
let v be the first row on QUEUE;
move v from QUEUE to S;
for every column A do

QUADRATIC ALGORITHMS FOR MINIMIZING JOINS 325

(9)

(10)
(11)
(12)
(13)

(14)
end

if v and w disagree in column A, v has a repeated
nondistinguished variable d in this column,
and d is marked "unconsidered" then
begin
mark d "considered";
for every row x containing d do

if x is neither in S nor on QUEUE
then add x to QUEUE;

end;
end;

return S;

begin/* main procedure */
(15) for every row w do

begin
(16) mark all repeated nondistinguished variables "unconsidered";
(17) for every repeated nondistinguished variable d

that occurs in w do
(18) mark d "considered";
(19) while there is a repeated nondistinguished variable b

marked "unconsidered" do
begin

(20) R := CLOSURE (b, w);
(21) if w covers R then delete all the rows of R from T;

end;
end;

(22) return T;
end

THEOREM 12. A simple tableau Tcan be minimized in O(n 2) time.

Proof. By Lemma 11 and [3], Algorithm 1 returns a quasi-minimal tableau T
equivalent to T. Consider the time complexity of this algorithm. Each call
CLOSURE (b, w) is done in O(]CLw (W(b))[) time and, hence, the cost of executing
the loop of lines (15)-(21) once is O(n). Thus, the total cost of the algorithm is O(n2).
By Lemma 6, 2P can be minimized in O(n 2) time. V]

THEOREM 13. If Tx and T2 are simple tableaux, then testing whether T1 is
equivalent to T2 can be done in O(n 2) time.

Proof. By using Algorithm 1, we compute quasi-minimal tableaux Tx and T2
equivalent to Tx and T2, respectively. It follows from [3] that testing whether Tx is
equivalent to 2Pz can be done in O(n 2) time, where n is the size of Tx and T2. V]

7. Decomposition of tableaux. Let T be a tableau that does not necessarily
belong to one of the classes we have discussed so far. None of the three minimization
algorithms can minimize T in polynomial time, but they can be used as heuristics.
The minimization algorithm for simple tableaux can be applied to any tableau, and
the result is an equivalent tableau possibly with fewer rows. The idea behind the
algorithm of 6.2 can be used to reduce the number of rows in a tableau T as follows.
Let b be a repeated nondistinguished variable of T, and suppose that the set W(b)
of all the rows containing b does not have any other repeated nondistinguished
variable. Then all the rows of W(b) can be deleted if they are covered by a set of
rows S that have the same symbol in the column of b.

326 YEHOSHUA SAGIV

The algorithm of 6.3 is not only good as a heuristic, but can also be used as an
exponential time minimization algorithm for tableaux. Let T be a tableau. For every
row of T, we define C(i) to be the set of all the rows that cover row i, i.e.,

C(i) =t]l] and row j covers row i}.

Suppose we construct a function c such that for all i, c(i) C(i) (it is understood that
c(i)= if C(i) =b). Using c we can apply the algorithm of 6.3 as a heu,ristic. The
number of all possible c’s is exponential only in the number of rows for which C(i)
has more than one element. If we execute the algorithm once for each possible c we
are guaranteed to minimize T, since at least one of these c’s corresponds to a folding
from T to its core.

The following approach can be used to further reduce the exponential factor in
the running time of this algorithm. We define a relation R on the rows of a tableau
T as follows. For rows x and y of T, xRw if and only if x and w have the same
nondistinguished variable in some column. Obviously, R is symmetric and reflexive.
Let P1, P2,""", Pq be the equivalence classes of the transitive closure of R.

LEMMA 14. Let 0 be a containment mapping from a tableau T to itself, and let k
(1 <-_ k <-_ q) be a fixed integer. Define

(x)=0(x) if x ePk,
X otherwise.

Then is a containment mapping.
Proof. Obviously, for all rows x, :(x) covers x. Suppose that rows x and w have

the same nondistinguished variable in column A. Thus, either both w and x are in
Pk or both are not in Pk. In either case, :(x) and :(w) have the same symbol in
column A.

Lemma 14 implies that when the algorithm of 6.3 is applied as a heuristic, we
have to consider only c’s such that for some fixed k, c(i)C(i) if Pk; otherwise
c(i) i. If among all the Pj’s, PJo has a maximum number, say m, of rows for which
C(i) contains more than one element, then the number of all possible c’s is exponential
only in m. For each P there is at least one possible c that maps all redundant rows
in Pi to the core of T. Thus, no c has to be considered more than once.

8. Synthesis of expressions from tableaux. Given an expression E over select,
project and join, we can construct an equivalent tableau T in polynomial time [3].
However, deciding whether a tableau T has an equivalent expression E is NP-complete
[19] (the problem is NP-complete even if T is minimal).

The optimization of a relational query is carried out in two steps. First, we
minimize the number of joins (by minimizing the corresponding tableau). This step
has the effect of eliminating redundant subexpressions. In the second step, we produce
from the minimal tableau an equivalent expression in which select and project are
applied as early as possible. The approach taken in the second step was found useful
by previous workers (e.g., [12], [17]) in the field of expression optimization, and can
be viewed as our "cost function." In the case of simple tableau, the second step can
also be done in O(n 2) time [5].

In order to obtain an optimal expression for a minimal tableau T, [5] uses the
following approach. At first all constants are deleted from the summary of T. Then
an optimal expression E is synthesized. Finally a new operator augment, defined by
OtA=c(r) {/xl/x(A)= c and there exists , in r such that for all attributes B in the
relation scheme ot r, /z (B)= v(B)}, is applied to E to introduce the constants that
were deleted from the summary of T.

QUADRATIC ALGORITHMS FOR MINIMIZING JOINS 327

Suppose we decompose a tableau T into equivalence classes P1, P2,’" ’, Pq as
described in 7, and let s be the summary of T. For every j, we can define a tableau
T that has the same rows as Pj and a summary as follows. For each column A, if s
has a nonblank symbol in column A and that symbol appears also in column A of
P., then the summary of T. has the same symbol in column A; otherwise, it has a
blank. It follows that T 7=1 T.. Thus, T comes from an expression if and only if
each T. comes from an expression. Suppose that each T comes from the expression
E.. Then T corresponds to the expression E N--1 Ei. If T is a minimal tableau, we
can get an optimal expression for T as follows. At first all constants are deleted from
the summary of T. Then we decompose T and find an optimal expression Ei for each
T.. (Note that each T is minimal.) Let E 7= Ei. By applying augmentation to E
we get an optimal expression for T.

If T is a tableau with at most one repeated nondistinguished variable in each
row, then each T. is a simple tableau (because it has at most one repeated nondistin-
guished variable). Thus, we can synthesize an optimal expression for T in polynomial
time. However, if T is a tableau in which every row is covered by at most one row
besides itself, then testing whether T comes from an expression is NP-complete.3

THEOREM 15. Let T be a tableau in which every row is covered by at most one
row besides itself. The problem whether Tcorresponds to a restricted relational expression
is NP-complete.

Proof. The problem is in NP, since we only have to guess an expression E,
construct its corresponding tableau as in [3], and check that it is identical to T (after
possibly renaming some variables).

In order to show that the problem is NP-complete, the problem of testing whether
a tableau T corresponds to an expression (shown NP-complete in [19]) is reduced to
this problem as follows. Let T be a tableau, and let G be a new attribute. We construct
a tableau T’ by adding to T a new column that corresponds to G. The summary of
T’ has a blank, and row has the constant in this column. We claim that T corresponds
to an expression if and only if T’ corresponds to an expression.

If. Let E’ be an expression for T’. Delete G from each relation scheme in E’,
and delete every selection operator that is applied to the attribute G. Each projection
operator 7rx that appears in E’ is replaced with 7rx-. Let E be the resulting
expression. It is easy to show that E corresponds to T.

Only if. Let E be an expression for T. Let Ri be the relation scheme that
corresponds to row of T, and define R Ri (.J {G} for every i. An expression E’ for
T’ is obtained from E by replacing each Ri with "a’R,(O’G=i(R)).

Since each row of T’ is covered by no other row of T’ besides itself, the proof
is complete.

Acknowledgment. The author is grateful to an anonymous referee for useful
suggestions.

REFERENCES

[1] A. V. AHO, C. BEERI AND J. D. ULLMAN, The theory of joins in relational databases, ACM Trans.
Database Systems, 4 (1979), pp. 297-314.

[2] A. V. AHO, J. E. HOPCROFT AND J. O. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] A. V. AHO, Y. SAGIV AND J. D. ULLMAN, Equivalences among relational expressions, this Journal,
8 (1979), pp. 218-246.

See [2], [11] for an exposition of NP-completeness and related topics.

328 YEHOSHUA SAGIV

[4] A. V. AHO, Y. SAGIV AND J. D. ULLMAN, Efficient optimization of a class of relational expressions,
ACM Trans. Database Systems, 4 (1979), pp. 435-454.

[5] A. V. AHO, Y. SAGIV, T. G. SZ’MANSKI AND J. D. ULLMAN, Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions, this Journal, 10 (1981),
pp. 405-421.

[6] W. W. ARMSTRONG, Dependency structures of data base relationship, in Proc. 1974 International
Federation for Information Processing Congress, North-Holland, Amsterdam, 1974, pp. 580-583.

[7] C. BEERI, R. FAGIN AND J. H. HOWARD, A complete axiomatization for functional and multivalued
dependencies, in Proc. ACM-SIGMOD International Conference on the Management of Data,
Toronto, Canada, August, 1977, pp. 47-61.

[8] A. K. CHANDRA AND P. M. MERLIN, Optimal implementation of conjunctive queries in relational
data bases, in Proc. Ninth Annual ACM Symposium on Theory of Computing, Boulder, Colorado,
May, 1977, pp. 77-90.

[9] E. F. CODD, A relational mbdel for large shared data banks, Comm. ACM, 13 (1970), pp. 377-387.
[10], Relational completeness of data base sublanguages, in Data Base Systems, R. Rustin, ed.,

Prentice-Hall, Englewood Cliffs, NJ, 1972, pp. 65-98.
[11] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, San Francisco, 1978.
[12] P. A. V. HALL, Optimization of a single relational expression in a relational database system, IBM

J. Res. Develop. 20 (1976), pp. 244-257.
[13] J. MINKER, Performing inferences over relational databases, in Proc. ACM-SIGMOD International

Conference on Management of Data, San Jose, CA, May, 1975, pp. 79-91.
[14] F. P. PALERMO, A database search problem, in Information Systems COINS IV, J. T. Tou, ed.,

Plenum Press, New York, 1974.
[15] R. M. PECHERER, Efficient evaluation o.f expressions in a relational algebra, in Proc. ACM Pacific

Conference, San Francisco, April, 1975, pp. 44-49.
[16] Y. SAGIV AND M, YANNAKAKIS, Equivalences among relational expressions with the union and

difference operators, J. Assoc. Comput. Math., 27 (1980), pp. 633-655.
[17] J. M. SMITH AND P. Y.-T. CHANG, Optimizing the performance of a relational algebra database

interface, Comm. ACM, 18 (1975), pp. 468-579.
[18] E. WONG AND K. YOUSSEF, Decomposition--A strategy for query processing, ACM Trans. Database

Systems, (1976), pp. 223-241.
[19] M. YANNAKAKS AND C. H. PAPADIMITRIOU, Algebraic dependencies, in Proc. 21st Symposium

on Foundations of Computer Science, Syracuse, N.Y., October, 1980, pp. 328-332.
[20] M. M. ZLOOF, Query-by-example: The invocation and definition of tables and forms, in Proc. ACM

International Conference on Very Large Data Bases, New York, September, 19"75, pp. 1-24.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0009 $01.25/0

THE WORST AND THE MOST PROBABLE PERFORMANCE
OF A CLASS OF SET-COVERING ALGORITHMS*

V. LIFSCHITZ" AND B. PITTEL$

In memory of Y. D. Burtin

Abstract. Let I (1, , m), J (1, .., n) and A (Di)i! be a family of subsets D of J. A class of
algorithms which find a minimum number of Di’s covering D U itDi is studied. A measure T(A) of the
computation time is shown to grow exponentially with the size of the problem in the worst case, namely
maxa T(A)::>(41/5)min(m’n’):>l.319min(m’n’), n’=lDI. For rn=n’ and a large subclass of algorithms, an
estimate maxa T(A)< (3/41/3) < (1.890)" is established, so they always perform better than the obvious
trivial procedure. Let, on the other hand, A be chosen at random. Under condition In n/ln m 3/ (0, c), it
is proven that

P(rn cl()n" <= T(A)-< rnC2) n ")-> 1.

Hence, asymptotically almost certainly, the computation time is of a considerably lower order than that in
the worst case, but it is still far from being polynomially bounded.

Key words, algorithmic analysis, complexity, worst case, probable behavior, random trees, asymptotical
estimates

1. Introduction. Consider a finite family A--(Di)ii of finite sets, and let D--
[.JitDi. A A-cover is any set X c I such that

U Di=D.
ix

The minimum cover problem calls for finding a A-cover of minimum cardinality. It is
known to be NP-complete [8], [7], unless all Di’s have IDil -< 2, in which case it can
be solved in polynomial time by matching techniques [15], [4], [9]. Hence, it is highly
unlikely that there will be found a polynomial time algorithm for the general case.
Still, many attempts have been made to develop practically working algorithms. One
of them [5] is based on the reduction of a given problem to one or two problems of
a smaller size. By iterating this procedure, every problem can be reduced to trivial
problems with D . A branching type reduction is performed only if other kinds
of reductions are not applicable, and this restriction actually defines a whole class of
set covering algorithms, each of them to be specified by additional conditions.

We are interested in the computation time of these algorithms, which can be
defined as the total number T(A) of reduction steps needed to find a minimum cover
for A. We show that the worst case computation time of the algorithms in question
grows exponentially with the size of the problem" if Itl m, IDI- n then

max T(A)>-(41/5)min(m")> 1.319min (re’n).
A

Avis [1] studied more elaborate set covering algorithms due to Chvfital [3]. For
a special Steiner type of subsets Di suggested first by Fulkerson et al. [6], he proved
that these algorithms have a computation time of the order 22"//3.

* Received by the editors July 9, 1981, and in final revised form July 7, 1982.

" Department of Mathematical Sciences, University of Texas at E1 Paso, E1 Paso, Texas 79968. The
research of this author was supported by the National Science Foundation under grant MCS 8002442.

t Department of Mathematics, Ohio State University, Columbus, Ohio 43210. The research of this
author was supported by the National Science Foundation under grant MCS 8002966.

329

330 v. LIFSCHITZ AND B. PITTEL

To brighten things up, we prove that, for m n and a large subclass of the
algorithms,

max T(A)< (3/41/3) < (1.890)".
A

Thus, these algorithms always perform better than the trivial procedure based on the
examination of all 2 subsets of A. (Another result of this kind which we are aware
of was obtained by Tarjan and Trojanowski [17] in connection with the problem of
finding a maximal independent set of a graph.) We conjecture that the same nice
property holds when n is allowed to grow not faster than a polynomial function of
m. If no restriction is imposed on n then the situation is considerably worse" for every
m there is a A with

n
1+[(m-1)/2

for which

m 1) -1/2 2,.T(A)
[(m 1)/2]

cm

Suppose now D1," ’, D,, are subsets chosen at random, and independently of
each other, from the whole collection of 2" subsets of a given n-element set. (Thus,
there is a positive probability that not all of D,..., D,, are distinct or (and) that
some of them are empty. Under conditions given below, this probability tends to zero
as m, n - m.)

Then, for each set covering algorithm in question, the computation time T(A)
becomes a random variable. What are its typical values? How do they compare with
that of the worst case? Let m, n--> oo, so that In n(ln m)-l--> y (0, oo). Then there
exist two constants Cl(y), c2(y) such that, for each algorithm,

P(m(’ r, <_ T(A) _--< m(In m) --> 1.

Hence, asymptotically almost certainly, the computation time is of a considerably
lower order than that of the worst case, but is still far from being polynomially
bounded. Our conjecture is that, under the above condition, In T(A)/ln2m--> C in
probability, where C is a constant possibly dependent on the choice of the algorithm.

This paper contributes to the investigation of the worst and stochastic behavior
of algorithms for exponentially hard to solve problems [2], [10], [11], [12], [13], [16],
17]. A common difficulty is the necessity to analyze the distribution of the computation
time whose typical values rapidly grow with the size of the problem. It is our hope
that the methods of this paper can be used for other problems of this class.

2. A class of set covering algorithms and their worst-case behavior. Our problem
is to find a set X c I of minimum cardinality such that

(2.1) UD=D, (D U D,).
iX ieI

If D then the only solution is X . Otherwise a reduction of one of the
following four types can be performed.

1. Elimination of a redundant subset. If D,D for some il # i2 then every
A-cover which includes il can have i2 instead, so that D, can be eliminated from
consideration. In other words, A can be replaced by

(2.2) h’= (D)z\f.

PERFORMANCE OF SET-COVERING ALGORITHMS 331

2. Elimination of a redundant element. Let/’1 /’2ED; if i2 majorizes fl, i.e.,
/’1E Di implies/’2 Di for every i, then every subfamily of A covering fl covers/’2, so
A can be replaced by

(2.3) A’= (D,\{j2}),.v

3. Inclusion of a necessary subset. If for some/’1 D and il I
(2.4) il U D,,

i#i

then every A-cover includes il. Thus it suffices to find a minimum cover for

(2.5) A’= (Di\Dil)xi\{il};

if X is a minimum A’-cover then X U {il} is a minimum A-cover.
4. Branching. If reductions of types 1-3 do not apply then we choose an s I

and examine separately X’s with il eX and with il EX. To this end, we find solutions
X’, X" of the problems
(2.6) A’: (Di)ii\{il}, A"-- (Di\Di)ii\{il}.
Notice that the union of A’ is D, since otherwise D would be necessary and branching
would not apply. Hence X’ is a A-cover not including which has the minimum
possible cardinality. The union of A" is D\DI and X"U{il} is a A-cover including il
with the minimum possible cardinality. Set X-X’ or X =X"U{il} depending on
which of these sets has fewer elements. It is convenient to represent A by the Boolean
matrix with the columns corresponding to the elements of D, the rows corresponding
to the Di’s, and the elements in each subset specified by the l’s in the proper column.
This matrix will have no zero columns. It is easy to see that every reduction step
corresponds to the elimination of some rows and columns.

Example. The family A ({1, 2}, {1, 3}, {2, 3}) can be represented by the matrix

2 3

D2 1 0 1

03 0 1 1

No elements or subsets can be eliminated and no subset is necessary, so that
branching applies. If 1 then we get these two matrices’

2 3 3

D3 1 1 D3 1

The second matrix leads, after eliminating D2 and including D3, to X" {3}. In
the first, the third column is redundant, and we get

2

D3 0

Here DE is necessary, and in the resulting matrix

2

03 [1]

D3 is necessary, so that X’= {2, 3}. Both X’ and X"U{il} {1, 3} are two-element,

332 V. LIFSCHITZ AND B. PITTEL

therefore each of them is a minimum A-cover. (We would find the third minimum
A-cover {1, 2} if, when solving the second of the two problems obtained by branching,
we eliminated D3 instead of DE.)

Our only restriction on the order of reductions (viz., that branching is not used
unless necessary) does not define the choice of reductions completely. Every particular
order of reductions can be described by a tree with a submatrix of A assigned to each
vertex; for instance, the example given above can be depicted as in Fig. 1.

0

0

1 1 0

0

0

0

0

FIG.

A tree of this type will be called a A-tree. In every A-tree r, A is assigned to the
root, and the 0 0 matrix to every leaf. No matrix in z has zero columns. Every edge
of z leads to a matrix obtained by eliminating at least one row and/or at least one
column. Of the two matrices obtained by branching, we shall show the one in which
a row is eliminated on the left, and the one in which, in addition, columns are
eliminated, on the right.

We shall study the size of A-trees, which characterizes the computation time of
corresponding computational processes. For instance, the number of vertices [r[of a
A-tree r equals the number of recursive calls of the corresponding procedure. Another
quantity describing the size of r is the number of leaves (or branches) L(r), which
also equals the number of branchings plus 1. If Izl- m, IDI n (so that A is an m n
matrix) then

L(z) =< [zl =< (m + n + 1)L(r),

because every branch consists of at most rn + n edges.
The following theorem shows that, in the absence of restrictions on the size of

D, L(r) may grow about as fast as 2", so that the computation time of the algorithm
in question is as large, in the worst case, as that of the trivial procedure based on the
examination of all 2 subsets of A.

THEOREM 1. (a) For every A-tree r with tn [I[_-> 2,

(2.7) L(z)_-< 2"-E

PERFORMANCE OF SET-COVERING ALGORITHMS 333

(b) For every m them is A with II]- m such that for every A-tree r

(2.8) L(-)
2

Proo[. Part (a) is proved by induction on m. If m -<_ 2, then every column either
is necessary or majorizes another column, so that branching does not apply, and
L(r) 1. If m > 2 then the uppermost branching leads to two matrices with at most
m 1 rows, so that the number of branches at most doubles.

To prove part (b), consider the matrix o,,, (1-<_k <= m) whose columns are all
Boolean vectors of length m with exactly k nonzero elements. For instance, of the
example is o3,2. It suffices to prove the following lemma"

LEMMA 1. For every o.,k-tree r,

L(r) (m-1k-l)"
Pro@ By induction on m. Basis: m 1, k 1; for the only q,-tree r, L(r)= 1.
Induction step: m > 1. If k 1 or k m then, for every q,,k-tree r,/_,(-) 1. Let

1 < k < m. Then in any q,-tree r, the first reduction is a branching. Assume for
definiteness that i 1. After a rearrangement of columns, o,, may be represented
in the form

(g l,k-1

Consider the result of the first branching. The left edge leads to

the right edge to (49m_l,k. By the hypothesis of induction, the latter gives (,_-2) branches..
To describe the tree generated by the former, consider two cases.

Case 1. k 2. Then 0,.-1,k-1 is the (m 1) (m 1) unity matrix, and each
column of .-1,k majorizes some of the columns of 0,.-1,k-. Thus two types of
reductions are possible: the elimination of a column of o,.-t,k and the inclusion of a
row of A’. Row eliminations are impossible and will be impossible at every stage of
the process, because what remains of q.-l,- is always a unity matrix. Thus the
matrix in question gives one branch, in which all columns of 0,.-1,k are eliminated
and all rows of A’ included.

Case 2. k > 2. Then the only possible reductions are the eliminations of the
columns of q,.-1,k, SO that the left branch leads to 0.-,k-, which, by the hypothesis
of induction, gives (’_-22) branches. This formula clearly works in Case 1 too, so in
both cases the total number of branches of z is

m m

This concludes the proof of Lemma 1 and of Theorem 1.

334 v. LIFSCHITZ AND B. PITTEL

Theorem 1 estimates the maximum possible size of A-trees under the assumption
that n, the number of columns of A, is not restricted. In fact, the number of columns
of the matrix used in the proof of Theorem l(b) grows exponentially with m. What
can be said about the size of A-trees if n O(m), e.g., if A is a square matrix?

We begin by constructing examples of square matrices with large A-trees.
LEMMA 2. Let

0 A"
If LO’)= a, L(’)= b for every -tree ’ and every A.-tree -, then LO’)= a b for
every A-tree -.

Proof. By induction on I1. If then each of A1, Aa, A is the 0 x 0 matrix,
and a b a. b 1. Let I’1 > 1. Consider the first reduction in z.

Case 1. This is not branching. The result A’ of that reduction has the form

I or
0

where A.can be obtained from A by a reduction of the same type. Assume for
definiteness that i- 1. For every A-tree -, L(’) =a. If -’ is the A’-tree obtained
from A by removing the root and the uppermost edge then L(-)= L("), and, by the
induction hypothesis, L(") a. b.

Case 2. The first reduction is branching. Then the matrices A’, A" which result
from this branching have the form

or

0

where A’, A can be obtained from A by branching. Assume again 1. For all
A-trees -, L(-) has the same value a’ (otherwise there would exist Al-trees ’1 with
different values of L(’I)). Similarly, for all A-trees - L(-) has the same value a",
and a’ + a" a. If -’ and -" are the A’-tree and the A"-tree obtained from A by removing
the root and the uppermost edges, then L(’)=L(")+L(-"), and, by the induction
hypothesis, L(-’) a’. b, L(’") a". b. Hence L(r) a’ b + a" b (a’ + a")b
a.b.[3

Lemma 2 suggests a way to construct a sequence of square matrices A1, A2,
such that the sizes of A-trees grow rapidly with the size of A. Let A1 be an m x ml
matrix, and L(’I) a for every Al-tree ’1. Define Ai to be the m x m matrix, m im 1,

consisting of blocks equal to A1. By Lemma 2, for every Ai-tree -L(-) a (a

Hence A1 should be chosen in such a way that a 1/ml is as large as possible.
Since q.,,_l is an m m matrix, we can use it as A1 in this construction. In

this case

a =ml-1, 1/m (mla --1) 1/ml

PERFORMANCE OF SET-COVERING ALGORITHMS 335

The fastest growing L(z) corresponds to the value ml 5, for which (m- 1)1/" is
maximum. Thus we have proved’

THEOREM 2. Let m 5i, >--0. There exists an m m matrix A,, such that for
every A,-tree -(2.9) L(z) (41/5)

CoRottAl. For m, n >= 5, there exists an m n matrix A such that for every
A-tree -(2.10) L(z) >-- (41/5) rain (re, n).

Pro@ Consider the problem A represented by the m x n matrix

where , [min (m, n)/5], Av is introduced in the proof of Theorem 2 and 1 and 0
are matrices with one and zero entries. Clearly, every A-tree consists of the
(m + n 2u)-long vertical branch with a Av-tree attached to the endpoint of the branch.
Thus, every A-tree has (41/5) leaves. !-1

The constant 41/5 can be replaced by a larger one if we want at least one A-tree
to be large, not necessarily all of them (in other words, if we want to give an example
of A for which at least one order of reductions leads to a long computation).

THEOREM 3. Let m 7i, >--_ O. There exists an m x m matrix A such that for some
A-tree z

(2.11) L(r)=(101/7)".

Proof. Let

-1
0
1

hi= 1
1
0

_0

0 0 0 0 1 1-
1 1 0 1 0 0
1 1 0 0 0 0
1 0 1 1 1 0
0 1 1 1 0 1
1 1 1 0 1 1
0 0 0 1 1 1_

There exists a A1-tree ’1 with ten branches as shown in Fig. 2. (In this tree we always
use the first row for branching, and the rows and columns that are eliminated are
marked by asterisks.)

Let now Ai be the m m matrix consisting of blocks equal to hi. Construct the
Ai-tree ’i as follows: apply the reductions shown in the Al-tree above to the first block,
thus arriving at ten matrices equal to Ai_l, and then continue reducing each of those
matrices in a similar fashion. Clearly,

L(’ri) 10’ L(ri-1).

Since L(’I)= 10, it follows that

L(’ri)- 10= 10m/7= (101/7)m.
Theorem 3 is proved.

Since
41/5 1.3195, 101/7 1.3895,

336 v. LIFSCHITZ AND B. PITTEL

Ii 0

0

0

@3,2

2 leaves

0

0

0

0 0 0

0"]
0

0

A

0 0 0

1 0 0 0 0

00 1

1 0

0

0 0

0 0 0 0 -1
0

0

0 0

0

3 leaves

q0/i 3,[

2 leaves

FIG. 2

11o 0 *
0

0 0

1" 4,3

3 leaves
0

Theorems 2 and 3 show the following: there exist large m m matrices A such that,
for every A-tree z, L0")> 1.319", there exist large m m matrices h such that, for
some A-tree r, L(z) > 1.389".

Our next goal is to show that for every sufficiently large m x m matrix h there
exists a A-tree z with L(r)< 1.9" so that the base 1.319 in the estimate above cannot
be replaced by 1.9.

To this end, we shall estimate first the size of A-tree for matrices A with at most
2 nonzero elements in any row (in terms of families of sets, with [Di[-<2 for each
e I). The minimum cover problem for such matrices has a simple graph-theoretic

interpretation. Without restricting generality, we can assume that the Di’s are distinct,
and for every [Di] 2. Then the D’s can be considered as the edges of a graph with
the set of vertices D. The minimum cover problem can be stated as the problem of
finding a minimum edge cover of that graph.

PERFORMANCE OF SET-COVERING ALGORITHMS 337

LEMMA 3. Let every row of A contain at most two nonzero elements. For every
A-tree z,

(2.12) L(z)-<h

where m Izl, and , is the root of the equation
4 I O.

Proof. By induction on the size of z. If Iz] 1 then m 0, and L(z)= , o= 1. If
I’[> 1 then consider two cases.

Case 1. The first reduction is something other than branching. Let r’ be obtained
from r by deleting the root and the uppermost edge. Then L(z)=L(z’) and by the
induction hypothesis, L(z’) -<

Case 2. The first reduction is branching. Then every row of A has exactly two
nonzero elements (a row with <2 nonzero elements either is necessary or is majorized
by another row), and every column of A has at least two nonzero elements (otherwise
A would have a necessary row). Let z’, z" be obtained from - by deleting the root
and the uppermost edges, and let A’, A" be their roots. Assume for definiteness that
for the first reduction ix 1, and that the nonzero elements in the first row of A are
All and A12 SO that

1 1

m--- A.21 A.22
Am1 Am2

A? A.22

Case 2.1. Each of the first two columns of A’ has at least two nonzero elements.
These four nonzero elements belong to four different rows, for otherwise one of the
rows of A’ would majorize the first row of A, and branching would not apply. Then
A" contains at least four rows with one nonzero element in each. Each of these rows
is either eliminated or included in z" prior to the first reduction, so that this reduction
is applied to a matrix with at most m -5 rows. On the other hand, A’ has m 1 rows.
By the induction hypothesis, L(z’) <-_ h "-, L(z") _-< h ,-5. Hence

L(z) L(r’) +L(r") <- X ,,-1 + A ,-5 X "-5(h 4 + 1) h m.
Case 2.2. One of the first two columns of A’ has at least two nonzero elements,

and the other has one nonzero element. Arguing as in Case 2.1, we see that A" has
at least three rows with one nonzero element in each, so that the first reduction in z"
is applied to a matrix with at most m-4 rows. On the other hand, A’ has at least one
necessary row, so that the first reduction in z’ is applied to a matrix with at most
m 2 rows. By the induction hypothesis, L(-’) _-< A ,,-2, L(z") _-< A m--4 Hence L(z) _-<

Am-2-bAm-4=Am-4(A2+ 1)<A (calculation shows that A2+ 1 <A4).
Case 2.3. Each of the first two columns of A’ has one nonzero element. Then

A" has at least two rows with one nonzero element in each, and A’ has at least two
necessary rows, so that both in A’ and in A" the first reduction is applied to a matrix
with at most m -3 rows. By the induction hypothesis, L(’r’), L(’")_<-h ,,-3. Hence

L(,r) =< 2A -3 < h

(calculation shows that h 3> 2).

338 v. LIFSCHITZ AND B. PITTEL

Lemma 3 is proved, l-1
Since A 1.3247, Lemma 3 shows that the computation time of the algorithm in

question applied to finding minimum edge covers is estimated from above by 1.325",
where m is the number of edges. This estimate will be used in Theorem 4 below. (As
for the minimum edge cover problem itself, it can be solved in polynomial time by
matching methods; see the Introduction).

An estimate from below can be obtained as in the proof of Theorem 2 with q3,2

instead of q5,4. In other words, for m 3i, there exists an m x m matrix A with at
most two nonzero elements in every row, such that for every A-tree -L(r) > (2/3) > 1.259".

This matrix A consists of blocks equal to (493.2 each. The corresponding graph consists
of triangles not connected with each other (incidentally, this graph is known to have
the maximum possible number of maximal independent sets [14]).

Now we shall estimate the size of A-trees under a natural additional restriction
on their structure.

A A-tree - is regular if branching is always applied in - to a row with the maximum
number of nonzero elements. For instance, the proof of Lemma 1 shows that every
q,,k-tree " is regular, since branching is applied in " only to matrices with the same
number of nonzero elements in every line. The tree constructed in the proof of
Theorem 3 is not regular. A regular branching minimizes the number of columns in
the second of the two matrices it leads to, and thus minimizes the total size of the
matrices.

THEOREM 4. Let/x > 3/4/3 1.8899. For every sufficiently large m, every m x m
matrix A and every regular A-tree -,

(2.13) L(-) </x ".

Proof. A vertex x of - is critical if the submatrix Ax of A assigned to x has at
most two nonzero elements in every row, and no matrix between Ax and the root of- has this property. Every branch of - contains exactly one critical vertex. To estimate
L(-), we shall estimate the number of critical vertices and, using Lemma 3, the number
of leaves under each critical vertex.

The position of a critical vertex x in - can be described as follows. Let ul, ", uk
be the branchings on the way from the root of - to x. Let ei (i 1,. ., k) be zero if
the way from ui to x passes through the left of the two descendants of u, and one,
otherwise. Define

g’(x) (e,.’. ,e).

Since no two critical vertices belong to the same branch, the Boolean vector g’(x)
completely defines x.

The size of Ax can be estimated in terms of g’(x) (el, eg) as follows. Since
every branching involves deleting a row, h has at most m- k rows. It follows that
k -<_ m. Since - is regular, and each , occurs above a critical vertex, the row used for
branching in , has at least three nonzero elements. Then each nonzero component
of g’(x) corresponds to deleting at least three columns. It follows that the number
of nonzero components of 8"(x) does not exceed m/3. The number of vectors g’(x)
of length k with nonzero components does not exceed (); hence the number of
vectors ge (x) of length k does not exceed _-<,,/3 (). Lemma 3 implies that the number
of leaves of - descending from x does not exceed A "-. Hence

PERFORMANCE OF SET-COVERING ALGORITHMS 339

L(-)_-<
k,l

O_lNkNm

l<-m/3

()’-’ =<(m+ 1)(+ 1) otmmaX F(k, 1)
l<=m/3

where F(k, l) ()A ,,-k. To estimate F(k, l), consider two cases.
Case 1. k <- 2m/3. Then

F(k, l) <= 2 h m-k X (21-1) <_ I (21-1)2m/3

Case 2. k > 2m/3. Then

((41

F(k,l)<=F(k,m/3),

and F(k, m/3) is an increasing function of k"

F(k, m/3) m/3
1

Hence, by Stirling’s approximation for factorials,

k m

(k-m -(m-m
3

(m)F(k, l) <=F(m, m/3)
m/3

0

Theorem 4 is proved.

3. The most probable behavior of the set covering algorithms. Introduce m.,
the set of all families A (Di)iet with I {1, , m}, Oi c {1, , n}. Given A
associate with it the m x n Boolean matrix to (toij), where toij 1 if and only if f Di.
Assume that the family A, i.e., the matrix to, is taken in Ilm, at random. In other
words, we introduce the uniform distribution P(.),

e(o)].,. I- 2

and all the functions of to become random variables. (In particular, the entries w0 are
independent and P(wii 1) P(toii O) 1/2, Vi,

Note. Remember that n has previously stood for II..J DI, and now It.J, Dil < n with
positive probability. Still, we decided not to introduce a new symbol because, under
the condition of Theorem 5 below, P([t-JiDil n) 1 as m, n -.

Our goal is to study the random number of recursive calls of the set covering
procedure.

Notice first that in the preceding section we obtained estimates for the worst-case
size of A-trees (more appropriately, w-trees) under a single restriction on their structure
(except regular w-trees), namely that branching is not used if not necessary. Thus the
choice of reductions was not defined completely.

In order to consider the size Irl of an to-tree r as a random variable, we shall
study here completely defined (deterministic) algorithms. For these algorithms, the
choice of reduction at each vertex of the to-tree is uniquely determined by the submatrix
of to assigned to this vertex. (More generally, the choice may be determined by the
submatrices assigned to vertices which form the path leading to the vertex from the
root .)

340 v. LIFSCHITZ AND B. PITTEL

Consider large m and n. The theorem lelow clearly demonstrates that, for each
of these algorithms, the most probable computation time is a subexponential function
of max (m, n). Henceforth it is considerably smaller than that in the worst case (see
Theorems 2, 3).

THEOREM 5. Let m, n oo in such a way that

In n
lim 3" (0, +oo).

m,noo In m

Then, for each deterministic algorithm,

lim P(m cllnm [’l’[mC21nm) 1,

where

0.36 3,
2

Cl
1.44 (3’-1)

c. 0.37 (1 +/1 +43")2.

Remark. Notice that the constants c l, 172 are the same for all the algorithms in
question. Particular properties of an algorithm can be used to sharpen the estimates.
For example, if it is agreed to always choose for branching the first available row,
then c1 in Theorem 5 can be replaced by 1.443".

This theorem and some experience in dealing with subexponentially growing
random variables [11] lead us to:

CONJECTURE. For a given deterministic algorithm,

c in probability,
In2 m

where c is a constant dependent upon 3, and the algorithm.
Also, it is worth mentioning that a lower probabilistic estimate similar to one in

Theorem 5 was conjectured in [2] with regard to an algorithm estimating the stability
number of a graph.

Proof of Theorem 5. Part 1. Lower estimate. Introduce the maximal binary sub-
tree ? of the to-tree z which grows from the same root as -. It consists of only the
root if and only if the first step of the algorithm is not branching. For all its vertices
except endpoints, the algorithm calls for branching. Clearly,]zl--> I l,

Fix a,/3 (0, 1) and introduce So So(to) the number of the endpoints of "which are reached from the root by making no more than [m] moves in such a way
that the number of moves to the right does not exceed a [(l-a)log2 n]. (Each of
these endpoints is associated with a submatrix of to obtained by elimination of no
more than [m t] rows, and no more than a of these eliminations are accompanied by
elimination of the correspondent columns.)

Prove that

lim P(to: S. (to) O) O,

provided/3 < a 3,.
To this end, let us estimate E(S,,t). Notice first that ? is a binary subtree of the

complete binary tree with 2m- 1 vertices. Let x be a vertex of the latter and l- l(x)
be the length of the path leading to it from the root. As in the proof of Theorem 4,

PERFORMANCE OF SET-COVERING ALGORITHMS 341

introduce the Boolean vector *(x)= (el,’’", el), so that ei 1 if and only if ith edge
of the path is rightward directed. Denote I’(x)[e +" / el(x). Then

E(St Y P(x),
{xll(x)[mt],i(x)l<a}

where P(x) is the probability that the vertex x is an endpoint of ?. Now,

P(x) ., P(x,),

where summation is taken over all ordered tuples (il, , it), 1 <= i, , it <= m,
l(x), and P(x, i) is the probability that x is an endpoint of ,7 and that the branchings

leading to x use consecutively rows with numbers il, i2, ’, it. Denote

I(1)(x,) {i" ik, ek 1 for some k 1,. , },

J (x, i, to) t..J Di [-J Di.
ik I(1)(x, -)

Call a submatrix of to degenerate if it has either a necessary row or a majorizing
row (column). Introduce

Pl(x, i-)= P(to" J(x, , to)= (),

Pv.(x, i)=P(to’J(x, i, to) f,

but (w), (i, il, u sY(x, w)), is degenerate).

By the definition of P(x, i), we obtain

(3.1) P(x, Px(x, + Pz(x,).

Further, as II<a)(x,)[l(x)la [(1 -a) log n], l(x) [m’],

P(x, i)= P " max 1 or max il =0
ii(l(x,) i,...,i

(3.2) [1 2-1(x)l + 2-(-t()+l<)l)] N c[1 2-1(x)l]
c exp (-n 2-a) c exp (-cn).

(Here and below, we use a letter c to denote various positive constants whose actual
values do not matter.)

To estimate P2(x, i), write

(3.3) "n’_m-.l_x_.,k_,(l()1)-
k=l

where 7r(s, t) stands for the probability that an s x submatrix of to is degenerate.
(Really, ()(2-1xl)k(1--2 is the probability that elimination of rows with
numbers il, , i, coupled with elimination of columns covered by rows with numbers
from the subset Il(x, ’), leads to an (m-II(x)l)k submatrix of to.) For an ordered
pair of rows (columns), the first majorizes the second with probability (43-) t((43-)s), and a
fixed column has a single nonzero element at a fixed position with probability ()s.
Hence,

7r(s, t) <- s(s -1) ()t +t(t-1). ()s + st(1/2)
(3.4)

3<=c(m2/n2)(pt /ps), P ---&

342 v. LIFSCHITZ AND B. PITTEL

By (3.3), (3.4),

P2(x, i)<-c(m2+n 2) (2-1(x)l)k. (l_2-1(x)l)--k. (p -I)1 +p
k=0

c(m 2 + n2)[O "-II)l + (1 + (O 1)2-1)1)"
(3.)

<-_c(m : + n2)[p "-t’’’l +exp (n(o 1)2-a)]
-<_ c [p "/ + exp (-cn o,)].

Combining (3.1), (3.2), (3.5), we get

P(x, i-) <= c[p m/: + exp (-cn)].

Consequently

Hence

P(x)

_
P(x, i-) <-c(m)t[p "/2 +exp (-cn)]

mS m/2<=cm [O +exp(-cn)]=g(m,n).

E(So,t P(x
{xll(x)_-<[m o],[’(x)l_-<a}

<=g(m,n) E 1
{x (x)<--Ira 3,1(x

=g(m,n). 2 Y’. =g(m,n).
i;o k;o k ;o ; k

/ ()< (m,)(a+l) IraI+1
=o k+l

=g n
a+l

m m/2<-g(m,n)’([mO]+l)a/=cm [0 +exp(-cn)]([too]+1)+,
or

E(So)-<c exp -lnp+m .lnm+clnn’lnm

+ exp (-cn + m Inm + c Inn In m)J.
Recalling that p < 1,/3 < min (1, ay), (y lim In n/ln m), we conclude that

lim E(S) 0,

and therefore

P(fl,,,,(a,B)) 1, f,,(a, B)= {w e f/,,, S(w) 0}.

But, on 1,,, (a,/3), the binary subtree z contains all the vertices of the complete
binary tree which are connected with the root by paths of the length [m] having
a [(l-a) log2 n] moves to the right. Thus, for these w’s,

[z(o)[_-> I?(w)] _--> (Ira_]) exp (a.ln [mt](1 +o(1)))

=exp ((1-a)fl In m logz n(1 +o(1)))
(c,/,/) In m(l+o(1))--m

PERFORMANCE OF SET-COVERING ALGORITHMS 343

(3.8)

where

c(a,/3, 3’) (1- a)/33"/ln 2.

Elementary arguments show that

/4 In 2 if 3"_-<2,
sup{c(a,/,3")’,s(0,1),/<3"}=

(3"-1)/ln2 if 3">2.
It leads directly to the lower estimate in the theorem, as (4 In 2)- 0.3606. > 0.36,
(ln 2)- > 1.44.

Part 2. Upper estimate. Let x be a leaf of the o-tree -. Of the branchings on the
way from the root of z to x, consider only the ones in which rows are eliminated
together with the columns covered by them. (These branchings correspond to rightward
moves of the path.) Introduce R (x), the set of these rows according to the order of
elimination. It is important that

(3.6) R (x’) R (x") if x’ x".
Observe also that if R(x)= (i,’.., ik) then

(3.7) 1{/’" wi O, ix," ", is-x, and Wis 1}[>- 2, s 1, ., k,

i.e., the row i covers at least two columns which are not covered by the preceding
rows i, ., i_x (s 1, .., k). (Otherwise, for some s, the row i is either a necessary
row of the submatrix assigned to the correspondent vertex of z, or majorized by
another row of this submatrix: in any case, branching is not warranted.)

Let (w) be the set of all the leaves x of z(w), L(w)= I(w)[. Fix a >0 and
introduce L (o), the number of leaves x for which

IR(x)[>=a =[(1 +c)log2 n].
We have (see (3.6), (3.7))"

.(o)

=E(E l{o.):R=R(x)forsome
R: IRl>--a

<- E P(n,R).
R: IRl--a

Here summation is taken over R =(il,’" ’,ik), k->a, ordered subsets of I---
(1,..., m), and

P(n, R) P{o" the condition (3.7) holds true}.

Clearly, P(n, R e(n, (, [R I)) f(n, IR I) and (3.8) becomes

(3.9) E(L,) <- Y (m)rf(n,r) <- Y’. mrf(n,r).

To proceed further, we need
LEMMA 4. Uniformly over r _-> a [(1 + ce logz n],

(3.10) f(n, r)_-< exp [-a log n In n(1 +o(1))](c n-)r-.
Proofi Define f(n, 0)= ’n. Then, from the definition of f(.,.), it follows easily

that

:-". (")
i=z]

"f(n-],s-1), n>-2, s>-_l.

344 V. LIFSCHITZ AND B. PITTEL

Introduce F(x, s), the exponential generating function of f(., s)"

F(x, s) E f(n, s)x"
,-o n!

In particular, F(x, O) =exp (x). In view of (3.11), for s => 1, we obtain

F(x, s)= Y. f(n, s.x"=) E (n, S)X
,=o n! ,, n!

x.
Y’. .. 2-" f(n -/, s 1)

n_-->2

/._>-a 1! _/.

[exp (x/2)- 1- (x/2)]. F(x/2, s 1).

Hence (F(x, 0) exp (x)),

F(x, s)=exp (x/2S) fi [exp (x/2/.)- 1- (x/2/.)].
/=1

The last relation implies (see the definition of F(x, s)) that

(3.12) f(n, s) <-_n !x-" exp (x/2S) fi [exp (x/2/.)- 1 (x/U)],
/’=1

where x>0, and is otherwise arbitrary. Choose x =n and consider s_->a
[(1 +a) log2 n]. Notice first that, by Stirling’s formula,

(3.13) n !n-" exp (n/2) exp (-n + O(ln n) + O(n-)) <- exp (-n + c In n).

Further,

(3.14)
i In [exp (n/2/.)- 1- (n/2/.)] E + E
i=1 l<-/--<_[log2 n] [log2 n]<j<=a

=E+2+2.
2 3

Here

(3.15) Y E In [exp (n/T)] _-< n Z 2- n.
l_--</._--<[log2 n] j>l

Also, (exp (x)- 1-x <-CX 2, for x --< 1),

(3.16)

and

(3.17)

E <-- E In [c(n/2i)2] E
2 [log2 n]</.<<-a [log2 n]</.=<[(l+c) log2 n]

2N--a log2 n In n + c In n,

2(ln n -/" In 2)+ O(ln n)

Y<= Y ln[c(n/2i)2]<-(s-a) ln[c(n/2a)2]<-(s-a) In (cn-2).
3 a<j<=s

PERFORMANCE OF SET-COVERING ALGORITHMS 345

Putting together (3.12)-(3.17) completes the proof of Lemma 4. 71
By (3.9) and this lemma,

(3.18)
E(L,) -<exp [-(a logz n In n -(1 +) log2 n In m) +o(ln n)] Y (crnn-’)-’.

Now,
2lim (a 2 1og2 n In n (1 + a) log2 n In m)/(log2 n In m) a 3’ (1 + a).

Choose a >a(y)= (1 +x/ +4y)/2y, which is the positive root of an equation
2z y-z-l=0.

For this choice of a,

mr/
-2a

and

(3.19)

where

2
a v-(l+a)>O,

exp (-2a In n + In m) exp [-In m (2ay 1) + o (ln m)],

(3.20) 2ay- 1 >x/1 +43,>0.

Invoking (3.18)-(3.20), we obtain: if a > (1 +x/ +4y)/2y, then

E(L) =< exp (-c (ln m)2)(1-cmn-2)-lO, m, n c.

Hence,

P(o: [R(x)l<a for all leaves x of r(to))= P(to: L(to) 0) 1,

as m, n c. This implies directly that

P(o’L(to)< (m)r) 1, m,naz.
ra

But

(m)r <am m c2(a’/)lnm(l+(1)),
ra

c2(a, y) (1 + a)3,/ln 2, so

P(w L(og) < mCz(a"v) lnm(l+(1))) --) 1.

As Iz(w)[=< (m + n + 1)L(w) and

inf c2(a, V)= c2(a(y), y)=(1 +#1 +43,)2/4 In 2<0.37(1 + /1--)2,

we arrive finally at the upper estimate in the theorem. 71

Acknowledgment. The authors thank the editor and referees for many valuable
remarks and suggestions which helped us to improve the presentation of the paper.

REFERENCES

[1] D. AvIs, A note on some computationally difficult set covering problems, Math. Programming, 18
(1980), pp. 138-145.

[2] V. CHVATAL, Determining the stability number of a graph, this Journal, 6 (1977), pp. 643-662.

346 v. LIFSCHITZ AND B. PITTEL

[3] ., Hard knapsack problems, J. Oper. Res., 28 (1980), pp. 1402-1411.
[4] J. EDMONDS, Paths, trees, and flowers, Canad. J. Math., 17 (1965), pp. 449-467.
[5] S. EVEN, Algorithmic Combinatorics, Macmillan, New York, 1973.
[6] R. FULKERSON, G. NEMHAUSER AND L. TROTTER, Two computationally difficult set covering

problems that arise in computing the 1-width o[incidence matrices of Steiner triple systems, Math.
Programming Stud., 2 (1974), pp. 72-81.

[7] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

[8] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computation,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

[9] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

10] V. LIFSCHITZ, The efficiency of an algorithm of an integer programming: a probabilistic analysis, Proc.
Amer. Math. Soc., 79 (1980), pp. 72-76.

[11] V. LIFSCHITZ AND B. PITTEL, The number of increasing subsequences of the random permutation,
J. Combin. Theory Ser. A, 3 (1981), pp. 1-20.

[12] V. LIFSCHITZ AND L. PESOTCHINSKY, The analysis of a partition algorithm, J. Assoc. Comp. Mach.,
to appear.

[13] C. MCDIARMID, Determining the chromatic number of a graph, this Journal, 8 (1979), pp. 1-14.
[14] J. W. MOON AND L. MOSER, On cliques in graphs, Israel J. Math., 3 (1965), pp. 23-28.
[15] R. Z. NORMAN AND M. O. RABIN, An algorithm for a minimum cover of a graph, Proc. Amer.

Math. Soc., 10 (1959), pp. 315-319.
[16] J. M. PLOTKIN AND J. W. ROSENTHAL, On the expected number of branches in analytic tableaux

analysis in propositional calculus, Notices Amer. Math. Soc., 25 (1978), pp. A-437.
[17] R. E. TARJAN AND A. E. TROJANOVSKI, Finding a maximum independent set, this Journal, 6 (1977),

pp. 537-546.

SlAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0010 $01.25/0

TOWARDS A GENUINELY POLYNOMIAL ALGORITHM
FOR LINEAR PROGRAMMING*

NIMROD MEGIDDOt

Abstract. A linear programming algorithm is called genuinely polynomial if it requires no more than
p(m, n) arithmetic operations to solve problems of order m x n, where p is a polynomial. It is not known
whether such an algorithm exists. We present a genuinely polynomial algorithm for the simpler problem
of solving linear inequalities with at most two variables per inequality. The number of operations required
is O(mn log m). The technique used was developed in a previous paper where a novel binary search idea
was introduced.

Key words, linear programming, genuinely polynomial-time, convex minimization

1. Introduction.A major result in computational complexity theory was reported
by Khachiyan [6] in 1979, namely, that the feasibility of linear inequalities can be
decided in polynomial time. However, many researchers interested in linear program-
ming have not been completely satisfied with Khachiyan’s result for the following
reasons. First, the fact that Khachiyan’s algorithm is polynomial depends on the
numbers being given in binary encoding. It is not hard (see [9]) to establish encoding
schemes with respect to which Khachiyan’s algorithm requires an exponential number
of operations, although the operations themselves require polynomial time. The
number of operations tends to infinity with the magnitude of the coefficients and thus
for any given class of problems with fixed numbers of variables and inequalities, the
number of arithmetic operations required by Khachiyan’s algorithm is unbounded.
Secondly, Khachiyan’s algorithm has not yet been proven practical, while the simplex
algorithm is usually efficient [4].

By solving a set of linear inequalities we mean producing a feasible solution or
else recognizing that the set is infeasible. An interesting open question is the following;
Do there exist an algorithm and a polynomial p (rn, n) such that every set of m linear
inequalities with n variables is solved by the algorithm in less than p (m, n) arithmetic
operations? We shall call such an algorithm genuinely polynomial. It is not even known
whether the transportation problem has a genuinely polynomial algorithm. The scaling
method of Edmonds and Karp [5] has a polynomial time-bound but, as in Khachiyan’s
algorithm, the number of arithmetic operations depends on the magnitude of the
coefficients.

In this paper we shall be discussing a special type of system of linear inequalities,
namely, sets of m inequalities with n variables but no more than two variables per
inequality. Previous results were obtained by Chan [3] and Pratt [11]. They solved
the special case of inequalities of the form x-y-< c (i.e., the dual of a shortest-path
problem) in O(n 3) operations. Shostak [12] developed a nice theory, on which we
base our results in this paper, but his algorithm is exponential in the worst-case.
Nelson [10] gave an O(mn rlog2nl/4 log n) algorithm. Polynomial-time algorithms for
this problem were given by Aspvall and Shiloach [2] and by Aspvall [1]. The former
requires O(mn3I) arithmetic operations, where I is the size of the binary encoding
of the input, while the latter requires O(mn2I) operations.

We shall present an algorithm which requires O(mn 3 log m) operations, i.e., a
genuinely polynomial algorithm for solving systems of linear inequalities of order

* Received by the editors August 17, 1981, and in revised form July 15, 1982. This research was
partially sup’ported by the National Science Foundation under grants ECS7909724 and ECS8121741. The
work was done while the author was visiting at Northwestern University.

" Statistics Department, Tel Aviv University, Tel Aviv, Israel.

347

348 NIMROD MEGIDDO

m n with at most two variables per inequality. Our algorithm is based on that of
Aspvall and Shiloach [2] and on Shostak’s [12] result. A similar construction can be
based on Aspvall’s [1 algorithm but no better complexity is obtained. Thus, although
this paper is intended to be self-contained, the reader may find it helpful to refer to
[2] and [12] for further clarifications.

2. Preliminaries. Given is a set S of m linear inequalities involving n variables
but no more than two variables per inequality. Suppose S $1 t.J $2, where Si is the
set of inequalities involving exactly distinct variables (i 1, 2). Without loss of
generality, assume that $1 is given in the form lo(y)-< y-<up(y), where lo(y) and
up(y) are the lower and upper bounds, respectively, on the variable y; these bounds
may be infinite. It will be convenient to maintain for every variable y a list of all the
inequalities in which y participates.

Throughout the computation there will be derived more and more restrictive
lower and upper bounds, y and , respectively, for each variable y. The basic step
of updating such bounds makes use of a single inequality from $2. Given the current
bounds y, on y and any inequality ay + bz <=c in which y participates (a, b 0),
the bounds on z may be updated in an obvious way. We define the routine FORWARD
y, ay + bz <= c) to be the updating procedure which operates according to the following

case classification:

case (i): a, b > 0,

case (ii): a > 0, b < 0,

case (iii): a < 0, b > 0,

case (iv): a, b < 0,

min[, (c ay)/b],

z max[z, (c -ay)/b],

e min[e, (c a)/b],

z max[z, (c ay)/b].

The routine FORWARD detects infeasibility when < z.
The routine FORWARD may repeatedly be applied along "chains" of

inequalities. Specifically, a sequence of inequalities aiyi + biyi/ <--ci, 1, ., k, may
be used for updating the bounds on yk/ by starting from the bounds on y and
updating y/, y/l according to the updated yi, yi(i=l,...,k). Consider the
case where the initial bountls are y lo(y), 37 up(y) for all y # y and y =y g,
where g is any real number. Obviously, the bounds that will be derived with respect
to ya,..., yk/ will be linear functions of g (not excluding the possibility of infinite
bounds).

A special case of chains is that of a "loop", i.e., when y/l and y are the same
variable, which we now denote by x. Consider, for example, a case where applying
the routine FORWARD around a loop starting and ending at x yields x= ag +ft.
A necessary condition for feasibility is that x >= ax + ft. This is an inequality which is
"hidden" in our loop and obviously has the following consequences"

(i) If a 1 and fl > 0 then S is infeasible; in this case we say that the loop is
infeasible.

(ii) If a < 1 then x >-ill(1-a) is a necessary condition for feasibility.
(iii) If a > 1 then x -<//(1-a) is necessary.

Obviously, the number h =/3/(1-a) (in case a 1) is the solution of the equation
g ag +. Suppose we apply the routine FORWARD around each simple loop and
along every simple chain. If either an infeasible loop is discovered or an infeasibility
is detected by FORWARD (in the form z>) then the problem is infeasible;
otherwise, we may adjoin all the necessary conditions so obtained to our set of
inequalities and that of course will not restrict the set of solutions. By doing this we
obtain what Shostak [12] calls a closure S’ of our set of inequalities. Shostak’s main

POLYNOMIAL ALGORITHM FOR LINEAR PROGRAMMING 349

theorem states that $ is feasible if and only if S’ does not have any infeasible simple
loop nor a simple chain along which FORWARD detects infeasibility. This is the
essence of Shostak’s algorithm. That algorithm is exponential since it needs to consider
all simple loops.

Aspvall and Shiloach obtained a polynomial-time algorithm by considering
another extension S* of S. Specifically, S* S* LI $2 where S* is the set of the most
restrictive inequalities in $’ with respect to a single variable and $2 is the original set
of inequalities involving exactly two variables. Following Aspvall and Shiloach we
denote those most restrictive bounds for a variable x by xlow and x high, i.e., SI*
consists of the inequalities x low _-< x _-< x high. Once xlow and xhigh have been found,
Aspvall and Shiloach can find a solution, or else recognize infeasibility, in O(mn 2)
operations. We shall develop an O(mn2 log m) algorithm for finding xlow and xhigh
for a single variable x.

3. The functions r(g) and r’(g). It has already been noted that the bounds
obtained at the end of a fixed chain are themselves linear functions of the value g
which is assigned to the variable at the start of the chain. Let x be an arbitrary variable.
We define r(g) to be the largest lower-bound on x which may be obtained in one of
the following ways" (i) Apply FORWARD along any chain of length not greater than
n, with the initial bounds y=lo(y), 37 =up(y) for all y, (ii) Apply FORWARD
around any loop of length not greater than n, starting and ending at x (where x is
the selected variable) with the same initial bounds except for x $ g. Analogously,
r’(g) is defined to be the least upper bound on x that may be obtained in such a way.
It follows that r(g) is convex piecewise-linear function of g while r’(g) is concave and
piecewise linear.

By definition, if g is a feasible value of x (i.e., there is a solution of S in which
x g) then, necessarily, r(g)<-g <-r’(g). The properties of the functions r, r’ imply
that the set of the values of g such that r(g)<-_g <-_r’(g) is convex, i.e., there exist
(possibly infinite) numbers a, b such that r(g)<-g <-r’(g) if and only if a _-<g_-<b. If
this set is empty we take a -, b =-. On the other hand, if h is either a lower or
an upper bound which is hidden in a loop then there exist a 1 and fl such that
h =ch +/3 and either g+fl <-_r(g) for all g[a,b] or g+fl>-_r’(g) for all g[a,b].
Moreover, if h is a bound obtained from a chain then either h <-r(g) or h >-_r’(g) for
every g. It thus follows (see Fig. 1) that the endpoints a, b are precisely the most

r(g)

g

a b
xlow xhigh

FIG. 1

350 NIMROD MEGIDDO

restrictive bounds that may be obtained either along chains or around loops (all of
length no greater than n), i.e., a =xlow and b =xhigh. In other words, xlow=
min{g:r(g) <= g <- r’(g)} and xhigh max {g:r(g) <= g <= r’(g)}. We shall develop a search
algorithm for xlow and x high.

4. A useful generalization. As a matter of fact, we can handle a more general
situation which is more convenient to describe. Consider the function R(g)=
min[r’(g)-g, g-r(g)]. Note that this function is defined with respect to a variable x.
Obviously, r(g)<-_ g <-_r’(g) if and only if R(g)>-0, while R is concave and piecewise
linear. We are interested in finding a =min{g: R(g)->0} and b =max{g: R(g)->0}.
Let R/(g) and R_(g) denote the slopes of R at g on the right-hand side and on the
left-hand side, respectively. Thus, R_(g)>=R/(g) and this inequality is strict if and
only if g is a breakpoint of R. If R(g), R/(g) and R_(g) are known at a certain g,
then the location of g relative to a and b can be decided according to the following
table:

R(g)>=O a <-_g<=b

R(g) >0, R_(g) >_-0 g<a

R(g)<0, R+(g)<=O g>b

Note that this table exhausts all possible cases since R_(g)>=R/(g). Furthermore, if
R_(g) >= 0 >- R/(g) and R (g) < 0, then R takes on only negative values (a oo, b -oo).

An algorithm for evaluating r(g) and r’(g) (with respect to a variable x) was
given by Aspvall and Shiloach [2]. To conform with the notation used in the present
paper, we state the following algorithm which is essentially the same as Algorithm 1
in [2].

procedure EVAL(g);
begin

for each variable y [y up(y); ylo(y)];
min(, g); x max(x, g);

for - until n do
begin

for each y and each ay + bz <= c FORWARD (y, ay + bz <-_ c);
end

r-x, rx,
end

Clearly, EVAL(g) requires O(mn) arithmetic operations. For our purposes we
need to know not only r(g) and r’(g) but also the one-sided slopes of r and r’ at g.
Thus, we have to modify EVAL a little. Imagine all the quantities x, 37 (including
x and) to be themselves functions of g in some neighborhood of a given value.
There exists a neighborhood over which all these functions consist of at most two
linear pieces with the given g being the unique breakpoint. It is fairly simple to keep
track of the slopes of these linear pieces. At the start, every y has both 37 and y
with slope zero on both sides. The next step is g -min(g, g). Here we have one of
the following cases: (i) If g <up(x) then g has slope unity on both sides. (ii) If
g up(x) then g has slope zero on the right-hand side and slope unity on the left-hand
side. (iii) If g > up(x) then has both slopes equal to zero. Later, when functions

POLYNOMIAL ALGORITHM FOR LINEAR PROGRAMMING 351

are multiplied by constants (see the routine FORWARD), the slopes are multiplied
by the same constants. Adding a constant does not affect the slope. The effect of the
"min" operation is also straightforward. Without loss of generality assume we perform
f3 min(/1, f2), where fl -<-f2. The solution is as follows. If fl(g) <f2(g) then f3 inherits
its slopes from fl; otherwise, if f(g)-rE(g) then f3 inherits the minimum slope on
either side of g. Thus, in general, as long as in the evaluation of R (g) the variable g
is involved only in comparisons, additions and multiplications by constants, we can
evaluate the slopes R+(g) and R_(g) with the same computational complexity as that
of R (g). In our particular case this is O(mn).

5. Solving R (g) _>-0. We shall now develop an algorithm for finding a and b.
Assume that we have an algorithm for evaluating R (g) such that g itself is involved
only in comparisons, additions and multiplications by constants (and R is a concave
function of g). In view of the discussion in the preceding section, we assume without
loss of generality that this algorithm computes not only R (g) but also the slopes R+(g)
and R_(g).

We maintain bounds a, 4, _b, b which are repeatedly updated and always
satisfy a_-<a_-<4 and b__-<b_-<b. The initial values are a=_b=-oo and
The basic idea is to follow the known algorithm for evaluating R with g being
indeterminate; however, g will always be confined to D=[a, 8] [b,b].
Whenever the result of the succeeding step depends on the value of g within D, a
test which amounts to one R-evaluation (i.e., with a specific argument g) is performed,
in order to update D appropriately. The fundamental principle used here was first
introduced in [7] and later applied in [8].

The details are as follows. At the start, the available quantities are the indetermin-
ate g together with several constants, while D [-oo, oo]. We distinguish two phases
in the computation: Phase 1 lasts as long as a= b__ and - b; when this does not
hold any more then we are in Phase 2. Consider a typical point at Phase 1. Assume,
by induction on the number of steps since the start, that all the "program variables"
are linear functions of g over D, possibly constants. If the next operation is an addition
or a multiplication by a constant, then it can be carried out with the indeterminate g
over the entire D. Suppose the next operation is a comparison, f3 <’" min(fx, rE), say.
If the linear functions f and f2 do not intersect over D, or if they coincide over D,
then the assignment can be carried out symbolically and f3 is a linear function of g
over D; otherwise, denote the intersection point by g’ and assume, without loss of
generality, that f(g)<fE(g) for g<g’ while fE(g)<fl(g) for g>g’ (gD). At this
point we test the value g’, i.e., we evaluate R(g’), R/(g’) and R_(g’) and update D
as follows:

R (g’) >- O (enter Phase 2) a g’; b- g" f3 xnin(fl, f2)

R (g’) < 0 and R_(g’) >-_ 0

R (g’) < 0 and R/(g’) <= 0 a-g" ff#g’;f3-f

If Phase 1 continues then all the available quantities remain linear functions of g
over the updated D.

Phase 2 will work on the two intervals separately" the assignment will be different but constant over
each interval.

352 NIMROD MEGIDDO

When Phase 2 starts we have a b and all the quantities consist of at most
two linear pieces with the breakpoint occurring at a b). During Phase 2 we split
the computation of a from that of b. Consider, for example, the computation of a.
We continue with the evaluation of R, where g is indeterminate but confined to
[a, a]. The situation is very similar to that of Phase 1. If g’ and fl, f2 and f3 are as
before, then the assignments are according to the following table’

R(g’)>=O a,..g’.f3-f

R (g’) < 0 and R_(g) >= 0

R (g’) < 0 and R+(g) <-_ 0 a-g"fafl

As a result we have R (g) as a linear function over [a_, a]. It is then straightforward
to decide which of the following is the case" (i) There is a unique solution to R (g)= 0
over [a,a]; this solution is then assigned to a(i.e., a=a). (ii) R(g)>-O for all
g e [a, a l; this is possible only if a =-oo, in which case a --oo. (iii) R(g)< 0 for
all g e[a, a l; this is possible only if a oo, in which case a oo and R(g)< 0 for
every real g (i.e., infeasible system). The computation of b is analogous.

If the evaluation of R at a single g requires.T operations, including C comparisons,
then the computation of a and b takes O(CT) operations, since it amounts to O(C)
evaluations of R (see [7] for a more detailed discussion of this point).

6. Finding xlow and xhigh.When we solve r(g) <= g <= r’ (g) (equivalently, R (g) _->
0) according to the scheme presented in the preceding section, we run the routine
EVAL with g being indeterminate. However, here we do not have to test every critical
value g’ right away. Specifically, consider for example the value of z_ which is obtained
at the end of the second loop of a single iteration of EVAL (i.e., while is fixed). As
a function of g over D this is the maximum envelope of the linear functions
corresponding to the different inequalities in which z participates together with the
previous function corresponding to z. If there are mz such inequalities, then we can
can find all the breakpoints of the maximum function in O(mz log mz)time (see the
Appendix of [7]). Thus, the set of all breakpoints produced during one interation can
be found and sorted in O(m log m) time. Assuming that these breakpoints are
gl <-- <- gq (q 0(m)), we may perform a binary search over these q values which
amounts to testing only O(log q) of them. If this occurs during Phase 1, then by
testing the number gEq/21 we either enter Phase 2 or discard approximately a half of
the set of critical values. During Phase 2 each test cuts the set of critical values (lying
in [a,], say) in half. Thus, the computation of xlow and xhigh takes n stages
during each of which we have to evaluate r(g) and r’(g) at O(log m) values of g. This
amounts to O(mn 2 log m) arithmetic operations. This procedure needs to be repeated
for every other variable so that the bounds xlow and xhigh are found for all variables
x in O (ran 3 log m) time.

7. Solving ,q. Let y low and y high denote the bounds obtained in the previous
section. The following routine (which was essentially given by Aspvall and Shiloach
[2]) either discovers that S is infeasible or else produces a feasible solution (x. x ’,/"
1,... ,n)’

POLYNOMIAL ALGORITHM FOR LINEAR PROGRAMMING 353

procedure FINAL:
begin

for each variable x [-xhigh; _x xlow];
for j - 1until n do

begin
for - 1 until n do
begin

for each y and (ay + bz <-_ c) FORWARD (y, ay + bz <-c);
end
if there is a finite such that xj-< -_< then [x.-
x -; x-.- :] else return (IN-EASIBLE);

end
return(x x, j 1,..., n);

end

The validity of the routine FINAL follows from Shostak’s theorem. Since we are
now working with the set of inequalities extended so as to include the necessary
conditions xlow _-< x _-< x high, if no infeasible loops or chains of length n are discovered,
then the problem is feasible.

The routine FINAL takes only O(mn 2) operations, i.e., the whole process is
dominated by the computation of the bounds xlow and x high for all the variables.
The genuinely polynomial algorithm hence runs in O(mn 3 log rn) operations.

Acknowledgment. The author is grateful to the referees for their helpful com-
ments.

REFERENCES

[1] B. ASPVALL, Efficient algorithms for certain satisfiability and linear programming problems, Ph.D.
dissertation, Dept. Computer Science, Stanford University, Stanford, CA, August 1980.

[2] B. ASPVALL AND Y. SHILOACH, A polynomial time algorithm for solving systems of linear inequalities
with two variables per inequality, this Journal, 9 (1980), pp. 827-845.

[3] T.-H. CHAN, An algorithm for checking PL/CV arithmetic inferences, Report TR-77-326, Dept.
Computer Science, Cornell University, Ithaca, NY, 1977.

[4] G. B. DANTZIG, Linear Programming and Extensions, Princeton Univ. Press, Princeton, NJ, 1963.
[5] J. EDMONDS AND R. M. KARP, Theoretical improvements in algorithmic efficiency for network flow

problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.
[6] L. G. KHACHIYAN, A polynomial algorithm in linear programming, Soviet Math. Dokl., 20 (1979),

pp. 191-194.
[7] N. MEGIDDO, Combinatorial optimization with rational objective functions, Math. OR, 4 (1979), pp.

414-424.
[8], Applying parallel computations algorithms in the design of serial algorithms, Proc. IEEE 22nd

Symposium on Foundations of Computer Science, 1981, pp. 399-408.
[9], Is binary encoding appropriate]’or the problem-language relationship?, Theoret. Comp. Sci.,

to appear.
[10] C. G. NELSON, A nIgn algorithm for the two-variable-per-constraint linear programming satisfiability

problem, Tech. Rep. AIM-319, Dept. Computer Science, Stanford University, Stanford, CA, 1978.
[11] V. R. PRATT, Two easy theories whose combination is hard, unpublished manuscript, 1977.
[12] R. SHOSTAK, Deciding linear inequalities by computing loop residues, J. Assoc. Comput. Mach., 28

(1981), pp. 769-779.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0011 $01.25/0

VLSI ALGORITHMS FOR THE CONNECTED COMPONENT PROBLEM*

SUSANNE E. HAMBRUSCHt

Abstract. This paper presents algorithms for the connected component problem that are suitable for
VLSI implementation and use o(n 2) area. Two VLSI models, which differ in the number of input/output
ports allowed to be placed on the boundary of the chip, are considered. It is shown how to achieve a
continuous area-time tradeoff of AT2= O(n4) in the range f(n)= A o(n2). This tradeoff is optimal for
one model, and for the other model continuous tradeoffs of the form AT O(n 5/2) in the range iq(n) A
O(n 5/4) and AT O(n 5) in the range l(n 5/4) A o(n 2) are exhibited.

Key words. VLSI algorithms, connected components, area-time tradeoffs, d-dimensional meshes

1. Introduction. Advances in the fabrication technology of VLSI electronics have
motivated the study of parallel algorithms on networks with simple and input-indepen-
dent interconnections [2], [7], [13]. Within the VLSI model, a number of problems
have been shown to exhibit tradeoffs between the time to solve the problem and the
area in which the network is laid out [1], [4], [15]. In this paper we examine VLSI
algorithms for the connected component problem: Given an undirected graph G
(V, E), where IV[n, IEI e, determine the connected components of G (i.e. two
vertices v l, v2 V are in the same connected component if and only if there is a path
between vl and v2 in G). We present several algorithms with area-time performance
superior to previous solutions, and which raise several intriguing questions about the
relation between time and area in graph problems.

Hirschberg et al. [5], Savage and Ja’Ja’ [6] and Wyllie [16] have solved this
problem in time O((log n)2), using O(n2/log n), O(e +n log n) and O(n +e) process-
ing elements, respectively. However, their model of computation, in which processing
elements share a common main memory, is not suitable for VLSI because of the
number of interconnections. Kung et al. [4] have given a systolic algorithm for the
directed transitive closure problem, which can be used to solve our problem. The
algorithm runs in O(n3/k 2) time and uses O(k2) processing elements, 1-< k -< n, but
would require O(n 2) locations to store the adjacency matrix. Nassimi and Sahni [12]
implement Hirschberg’s algorithm on a d-dimensional mesh-connected network of n
processing elements in time O((d + g)n /d log n/a), where g is the maximum degree
allowed for any vertex in G. They do not consider the area of their network, but each
of the n processing elements must have g registers, each containing log n bits, indicating
at least n 2 area to handle general graphs.

The algorithms cited above assume the adjacency matrix or adjacency lists are
stored in the network, which requires O(n 2) and O(e) storage locations, respectively.
We present algorithms for solving the connected component problem on networks of
o(n 2) area, which rules out storing the edges of the graph in the network explicitly.
The algorithms run on d-dimensional mesh-connected networks and allow the graph
to be input in a very general form. Lipton and Valdes 10] more recently have presented
an algorithm that finds the connected components on binary tree network for a more
restrictive form of graph representation.

In 2 we define the two models of computation, which differ only in the number
of input/output ports allowed on the chip. In 3 we develop the basic algorithm for
the connected component problem, which runs in time O(n 3/2) on a 2-dimensional

* Received by the editors April 23, 1981, and in revised form June 28, 1982.
t Computer Science Department, Pennsylvania State University, University Park, Pennsylvania 16802.

354

VLSI ALGORITHMS FOR THE CONNECTED COMPONENT PROBLEM 355

mesh-connected network of n processing elements. In 4 we show how to solve the
connected component problem on a d-dimensional mesh-connected network, in time
O(n 1/1/a) using area O(n2-2/a), where d can be any real number ->2. This gives a
continuous tradeoff of AT= O(n 4) in the range f(n)=A o(n), which is optimal
for the first model. In 5 we .develop algorithms for the second model, which exhibit
two forms of continuous area-time tradeoff: the first one, of AT O(n 5/) in the
range l)(n)=A 0(n5/4), is obtained by modifying the network and the algorithm
given in 3; the second tradeott, of AT3=O(n 5) in the range l’(nS/4)=A =o(n),
is achieved by performing the same modifications on the d-dimensional mesh-
connected network.

2. Model of computation. We consider models similar to those developed in the
literature [4], [7], 1-13] and which conform to the basic VLSI restrictions in Mead and
Conway 11]. The main assumptions are given below.

1. The processing elements (PE’s) of the chip contain a constant number of
registers and are able to execute a simple set of instructions. Each register can hold
a number of size at most n, where n is the number of vertices in the graph. Each PE
is connected to a constant number of other PE’s. The PE’s operate synchronously.

2. The chip communicates with the outside world through the input/output (I/O)
ports, which lie on the boundary of the chip. In one model, the limited boundary
model, the number of I/O ports can be at most the square root of the total area of
the chip. With this restriction the chip can be laid out so that the bounding rectangle
has a constant aspect ratio (= width/length). In the other model, the boundary model,.
I/O ports can be placed everywhere on the boundary of the chip.

3. Each input is read once and each output is generated once. The locations at
which the inputs arrive and the outputs are generated are independent of the input
data. The time at which the inputs arrive can depend on the input data; i.e. the chip
is allowed to determine when to read the next input sequence.

4. A constant number of parallel layers can be used, and the layout on each layer
is supposed to be planar.

Our cost measures are time and area. Two definitions of time have been used in
papers on VLSI. One defines time as the number of steps required to generate all the
outputs, where one step is either an operation on two bits of a PE, or the transmission
of a bit from one PE to an adjacent PE. This definition is generally used in papers
on lower bounds in VLSI [2], [14], [15]. Many algorithms for VLSI networks perform
operations on entire registers rather than on bits of the registers, and this motivated
the second definition. Here time is the total number of cycles needed to generate all
the outputs, where one cycle is either an operation on two registers of a PE, or the
transmission of the content of a register of a PE to an adjacent PE. See [4], [7], [10]
and [13].

The area is the space necessary to lay out the PE’s with their interconnections
on a small, constant number of layers. When time is measured in terms of steps a bit
is considered to have unit size, and thus each PE occupies log n area. When time is
measured in terms of cycles we consider a register to have unit size, and thus each
PE occupies a constant number of units of area. Throughout this paper we will measure
time in terms of cycles. Thus, in order to compare our results with results obtained
in the other model, the area needs to be multiplied by a factor of log n. The time
needs to be multiplied by a factor of (log n)1/2 or log n, depending on whether or not
in the model PE’s of log n area are interconnected by wires of (log n)1/2 or constant
bandwidth.

356 SUSANNE E. HAMBRUSCH

In our algorithms we charge unit time for the transmission of the content of a
register to an adjacent PE independent of the length of the interconnecting wire.
Recent papers [1], [3] studied VLSI models where time is proportional to the length
of the interconnecting wire. Results in [1] suggest that under the current technology
unit time is a reasonable assumption.

The graph G will be represented in the form of edges: each one of the k input
ports of the chip will read elk edges (i, f), (i,/’)E, of the graph. The output is a
vector C of size n, where the component number Ci of vertex is the smallest vertex
reachable from vertex i, 1 -< -< n.

3. A 2-dimensional mesh. We show how to solve the connected component
problem in time O(n 3/2) using a 2-dimensional mesh-connected network of n PE’s,
that can be laid out in O(n) area. It can be shown that in either model the lower
bound on the number of PE’s needed is n. For simplicity we assume n to be a perfect
square; the modifications to be done when n is arbitrary are straightforward (use a
network of size In 1/] [nl/2 that contains dummy PE’s). See Fig. 1.

FIG.

In our algorithms the PE’s are indexed in snake-like row-major order (i.e.
row-major order where the even rows are reversed). This allows PEi to transmit to

PEi-1 and PEi/ in constant time, provided they exist. Each PEi has 5 registers’
Ci contains the current component number of vertex i;
Xg, Y’g hold initially an input edge (xi, yg), later the component number of xg and
Yi, respectively;
A li, A2i, A3i are three auxiliary registers.

The network is initialized with every vertex being a component by itself, Ci i, 1 <= <- n.
In the input phase of algorithm CONNECT each input port reads the next n/

edges and propagates them vertically down to the PE’s in the same column. After
the input phase each PE holds an edge (xg, yg). The following lookup phase determines
for each edge (xi, yg) whether or not it causes two components to get merged. First
the current component numbers of xg and yi are found. An obvious, but inefficient
strategy is to let all PEg, 1 =< =< n, look up the component number of xi by sending xi
to PEx,, updating xg to Cx,, and sending it back to PEi. The path from PEi to PE, can
be found, for example, by first moving horizontally until the column containing PE,
is hit, then going vertically to PE, (e.g., if PEi is in row p and column r, PE, is in
row s and column q, p and s are odd, and p > s, r < q, then move q r steps horizontally
and p-s steps vertically). Since it is possible that different PE’s want to look up the
same component numbers or look up component numbers on the same communication

VLSI ALGORITHMS FOR THE CONNECTED COMPONENT PROBLEM 357

path, the strategy above can lead to problems of congestion. We overcome this problem
by using sorting algorithms to control the flow of information. Recall that there are
efficient sorting algorithms for 2-dimensional mesh-connected networks, e.g., [8]
presents an algorithm that uses O(n 1/2) parallel steps. Our strategy for the lookup
phase is to first sort the PE’s of the network according to the xg’s. If two or more PE’s
want to look up the same component number, only one PE does the actual lookup
and it propagates the result of the lookup to the other PE’s. The merging phase
considers all the edges that merge components and merges up to n/ components
simultaneously.

Let Cg, Q be the current component numbers of the vertices and / before the
kth input sequence is read, Cg Q. Assume the (k + 1)st input sequence contains the
edge (i,/). If Cg < Q, we want to change, in the merging phase of the (k + 1)st input
sequence, every occurrence of Q to Cg, and we denote this by Cj Cg and call it a
change (similarly for Cg > Q).

ALGORITHM CONNECT (outline)
1. Initialization
//each vertex is a component by itself//
Cg=i, l<-_i<=n;
repeat until all edges have been read

2. Input phase
each one of the n / input ports reads n /2 edges and propagates them
vertically down to the PE’s in the same column;
3. Lookup phase
#PEi holds edge (xi, yg), 1 _-<i<_-n,mdetermine the//
//current component number of xg and yg, and the//
//components to be merged//

(i) call DET-COMPNR to determine the component numbers;
(ii) determine which of the PE’s contain changes;

(iii) if some changes occur more than once in the network, remove all but
one occurrence of them;

4. Merging phase
repeat until all changes have been processed

(i) find the next set of (at most) n 1/ changes and call UPDATE
(ii) send the updated changes to all the PE’s and update their component

number and change if necessary;
endrepeat;

endrepeat;
end CONNECT;

The following algorithm determines the current component numbers of the
vertices of the input edges.

ALGORITHM DET-COMPNR;
//After the input phase each PEg contains an edge//
[/(xi, yi), 1 <=i <-_ n, and the current component numbers Cx,//
//and Cy are determined; xi is stored in register Xi, yi is stored in register Yg//

(i) sort the registers Xg of the PE’s of the network in increasing order such that
xg_l _-< xi, 1 -<_ _-< n, after the sort;

(ii) //if edges have the same first entry xg, determine//
//the PE’s with smallest index containing such a xg and call them the leaders//

358 SUSANNE E. HAMBRUSCH

for each PEi, 1 =< -< n pardo
if xi > x_l then

store (i, x. 0) in the auxiliary registers
//PE contains a leader//

fi
odpar
make PE1 be a leader by storing (1, xl, 0) in the auxiliary registers of PE1;

(iii) //’the leaders (i, xi, 0) look up the component//
//numbers of x and record it in the third entry//
while not all (i, xi, 0) have arrived at PEx, do

tor each PE. containing a leader (i, x, 0) pardo
(let PEj be in row p, column r and PEx, in row s, column q)
if s p then send (i, x, 0) along row s to the PE closer to column q

else send (i, xi, 0) along column r to the PE closer to row s;
fi

odpar
endwhile;

(iv) //when all leaders (i, xi, 0) have arrived at//
ffPEx, record the component number of
for each leader pardo (i, x, 0)= (i, xi, C,) odpar;

(v) send the leaders (i, x, C,,) back to PE;
(vi) propagate C,,, to all the other PEr with xr x and change xr to C,;
(vii) look up the component numbers of the y{s by performing steps (i) to (vi)

on the y s,
end DET-COMPNR;

In step 3(ii) each PE examines the current component numbers obtained in step
3(i) and determines the changes as shown in the following program:

for each PE, 1 _-< _-< n, pardo
#PEi reads the edge (xi, y); the component number of//
//x is stored in register X, the component number of y is stored in register yi

if C, Cy, then x y 0 fi
//vertices x and y are already in the same component//

if Cx, > Cy, then C, Cy, is a change
else interchange registers Xi and Y, Cy, Cx, is a change

fi
odpar;

In order to remove in step 3(iii) the multiple changes contained in the network
we sort the PE’s of the network according to the changes, and then perform:

for each PE, 2 -< _-< n pardo
//if PEi contains the same change as PEi-1 remove the change in PE//
if (Xi-1 Xi) ((Yi-1 Yi) then xi y d fi

//set the registers containing a multiple change to Off

odpar;

Let x Y 1, , xs -* Ys be the s changes found in step 4(i) of the merging phase,
s <-n 1/2. Let them be stored in PE1,..., PEs of the network. The changes represent
a not-necessarily connected graph that can contain transitive and multiple edges. In

VLSI ALGORITHMS FOR THE CONNECTED COMPONENT PROBLEM 359

order to send the changes through the network and merge components simultaneously,
the changes have to be updated first: When merging the components the th change
xi yi will arrive at all PE’s after the changes 1,..., i-1. Thus if the changes
1, ., 1 change the component number of vertex x to xj, x. < x, (or yi to y., y. < y),
we need to update in change xi to x., (or yi to y.), before sending out change i. The
updating is done by letting the changes "ripple" to the right in the first row of the
network and is described in algorithm UPDATE. Thus algorithm UPDATE detects
the transitive and multiple edges. Figure 2 gives an example of how the updating is
performed. (The changes 4- 3, 4 2, 2 1, 3 2 get updated to 4 3, 3 2, 2 1.)

4

(U,V)
(x,Y)

ALGORITHM UPDATE;
FIG. 2

//Update the component numbers x and yi of the th#
//change to the index of the component the vertices//
[[x and yi are in after the 1 preceding changes have been processed//
filet (ui, vi) be two auxiliary registers in PE[[
for each PEi, 1 -< <_- s, pardo (Ui, Vi) (Xi, Yi) odpar;
for 1 to s do

for each PEj, _-< j -< s- 1, pardo
send (ui, vi) of PEi to PEi+I and store in (ui+l,

odpar;

///the ith change is updated, continue updating change + 1, ..,
for each PE, + 1 _-</" _-< s, pardo

case of:
#the j’th change merges two components already//
//merged by the preceding changes//

360 SUSANNE E. HAMBRUSCH

(xi yi): do nothing
((ur xr) & (vr Yr)): xr y //change xr y into Yr -->

//in the changes j + 1, ., s it is already recorded/{
/{that xr and Yr get merged; every occurrence of{{
/Ix is changed into
(vi xi): vi Yi //change ui--> vr into ui -’>

(vi y): do nothing
(u. yi): Yi vr {{change x --> Yi into x -->

(ui x)" i v > Yi
then//change Ur -* v. and Xr -* Yr into vr

lj Vj, Vj yj, Xj Uj

else//change Ur - v. and Xr -* Yr into y.
Uj Yr, Xi Ui, YJ Vj;

end case;
odpar;

endfor;
end UPDATE;

After the updating the s changes are sent out to all the PE’s in the network such
that change arrives at each PE after change i-1, 2 <= <=s. Assume change xi--> yi

arrives at PEr. Then update the change xj--> yj in PE if x. xi or Yr xi, and if C. x
change C to yg.

1/2 1/2)LEMMA. Algorithm UPDATE updates the s changes, s <=n in O(n time,
so that x and yi of the ith change, 1 <= <= s, contain the index of the component they
are in after the i- 1 preceding changes are performed.

Proof. The s changes stored in the first row of the network "ripple" simultaneously
to the right using the horizontal interconnections. The changes i-1,..., 2, 1 pass
through PE containing change xi -> y in this order. After the kth change, 1 k -< 1,
has passed through PE, xi and y contain the index of the component they are in after
the changes k, k + 1, , i- 1 are performed. Thus after all i- 1 changes have passed
through PEi, x and y contain the desired value. Change arrives at all PEi, j > i,
before change k, 1 <= k <= i- 1, and it might be necessary to update change k when it
passes through PE (since in PEr every occurrence of xi gets changed to y before
change k arrives). When change 1 passes through PE, which requires O(s)= O(n
time, the updating is completed.

THEOREM 1. Algorithm CONNECT finds the connected components of an
undirected graph G in time O(n 3/2) and uses O(n area.

Proof. When the ith input sequence is read, => 1, the network has computed the
connected components of the previously read n (i- 1) edges. We collapse two com-
ponents x and y’ if and only if we have read an input edge (x, y) such that before
the merge is performed we had Cx, x and Cy, =y i. The component numbers and
changes are determined in the lookup phase. If more than one change is found,
algorithm UPDATE of the merging phase updates the changes such that they can be
performed in parallel (see lemma). This shows correctness.

The time bound is obtained as follows. The initial values of the PE’s can be
generated in O(n /2) time. Reading an input sequence of n edges requires O(n 1/)
time. Each one of the steps 3(i), (ii) and (iii) of the lookup phase can be done in
O(n /) time. Since we can read at most n input sequences, the overall time spent in
the input and lookup phase is 0(n3/2). In the worst case only two components are
combined in the merging phase and no parallelism is used in step 4(ii). Since we

VLSI ALGORITHMS FOR THE CONNECTED COMPONENT PROBLEM 361

cannot merge more than n-1 components and the merging of two components
requires O(n 1/2) time, the overall time spent in the merging phase is 0(n3/2).

Since each PE is considered to occupy a constant number of units of area, the
2-dimensional mesh-connected network can be laid out in O(n) area. 71

THEOREM 2. A lower bound on the time required to solve the connected component
problem on a limited boundary network of area A is (nZ/A 1/2).

Pro@ The limited boundary network has O(A 1/2) input ports and thus at most
0(A1/1) input edges can be read at each clock pulse. Hence the time needed to read
2n input edges is l)(n/A1/2). 71

COROLLARY 1. The time bound of O(n 3/2) achieved by Algorithm CONNECT
is optimal]or a limited boundary network of O(n area.

4. Itigher dimensional meshes. The algorithm for the connected component
problem described in the previous section has a running time of 0(n3/2). In this time

1/2bound the factor n reflects the time necessary to sort and route information in the
2-dimensional mesh-connected network, and the algorithm can be improved by using
a faster sorting and routing algorithm. In a d-dimensional mesh-connected network
we can sort and route in time O(nl/d), d>-2 [8]. Using the same techniques as in
algorithm CONNECT we can obtain an algorithm, CONNECTD, which solves the
connected component problem on a d-dimensional mesh-connected network in time
O(n+/).

In a d-dimensional network, each of the n PE’s is connected to its 2d nearest
neighbors in each of the d dimensions. The network has n input ports and in
Theorem 3 we show how to lay it out in O(n 2-2/d) area.

For nonintegral values of d, d-d’+a, O<=a <1, the d-dimensional mesh-
lid lid aidconnected network is defined to have d’ + 1 dimensions and size n x... x n x n

Since lid >a/d we can sort this network in O(n /d) time. Figure 3 shows a 2.5-
2/5 2/5 1/5 2/5dimensional mesh for n --32. It has size n x n x n i.e. it consists of n (= 4

1/5 2/5in the example) 2-dimensional meshes, each of size n2/Sx n (4 x2), (n rows,
n 1/5 columns). Each PE in a row of the 2-dimensional mesh is connected to the
corresponding PE in the two adjacent 2-dimensional meshes. The network can be

1/5 1/5 6/5laid out in n 2/ n 2/5. n n n area.

FIG. 3

The initialization of algorithm CONNECTD is done as in the 2-dimensional case.
In the input phase each one of the n 1-1m input ports reads n 1/ edges and propagates
so that each PE holds an edge after the input phase. The lookup and merging phases
consist of the same steps as in CONNECT. Each step can be done in O(n 1/) time.

THEOREM 3. The connected component problem can be solved on a d-dimensional
mesh-connected network in time O(n 1+1/) using area O(gl2-2/d), where d can be any
real number >-2. This gives a continuous tradeoff ofAT2= O(n 4) in the range f(n)
a o(n2).

362 SUSANNE E. HAMBRUSCH

Proof. The proof of the O(n 1+1/d) time bound is analogous to the proof of the
time bound in Theorem 1; (replace n /2 by n/a). The bound on the area is proven
by induction on d’. Let d d’+ a be the dimension, d’>= 2, 0-< a < 1. For d’= 2 the
network consists of n I/d blocks, where each block is a 2-dimensional mesh-connected
network of size n /a n -2/d. Each block has n lid rows and n -2/d columns.

Row i, <= <- n /a, of the/’th block, 1 <-_] < n /a, has connections to row of the
blocks] + 1 and/’-1, provided they exist (see Fig. 4). To lay out these connections
we need n -2/a additional space between two rows of each block. The total space
needed for the network is n /d n-/ n -2/a n /a which is O(n2-2/a).

Ill

FiG. 4

For d’ > 2 the network consists of n /a blocks, where each block is a d’-dimensional
mesh-connected network of size n /a x x n /a x n a/a. It has n I/a PE’s in a column
and n-/ PE’s in a row. Each block can be laid out in O((n(a-/d)-2/(a-)
O(n 2-4/a) area, where the space between two rows of PE’s is O(n-3/a). To lay out
the connections for the (d’+ 1)st dimension we need additional n -,/a space between
two rows of PE’s in each block, and the total space necessary between two rows is
O(n -3/a + n -2/a) O(n-=/a). Thus the area for the d-dimensional mesh-connected
network is O(n TM n TM n -2/a n/a), which is O(n=-=/a).

We have just learned that Leiserson [9] obtained a similar result for the layout
of the d-dimensional mesh-connected network when d is an integer by using a
divide-and-conquer approach.

Using Theorems 2 and 3 we get:
CorouAR 2. For the limited boundary network, an optimal tradeoff for the

connected component problem of AT=O(n4) in the range f(n)=A =o(n) can be
achieved.

5. Better tradeofls in the less restricted model. When the number of I/O ports
is not limited to O(A/2), we can solve the connected component problem in time
O(n//k) using O(nk) area, 1 <-_k -n /4, and achieve a tradeott of AT O(n/) in
the range l(n) A O(n/’). We sketch the network that achieves these bounds.

Denote by

VLSI ALGORITHMS FOR THE CONNECTED COMPONENT PROBLEM 363

the 2-dimensional mesh-connected network described in 3, and call it a block. Then
the new network is as shown in Fig. 5.

NNECTOR

FIG. 5

The network consists of k blocks and a connector, a 2-dimensional mesh-
connected network of size n 1/2 k. The lowest and leftmost PE of block is connected
to the leftmost PE in row of the connector.

Each block is initialized like the mesh in 3, C i, 1-<i-<n, 1 <-f-<k. The
network has kn 1/2 input ports and each one will read e/kn 1/2 edges. In the input
phase each block reads n edges as described in algorithm CONNECT. In the lookup
phase the blocks again work independently and determine the changes by using the
algorithm given in CONNECT. The mergingphase differs from the one in CONNECT"
Block i, 1 <-i <-k, enters up to n 1/2 changes into the ith row of the connector. If none
of the k blocks has entered n 1/2 changes, we sort the connector to find a number of
distinct changes as large as possible, but not exceeding n 1/2. After updating the changes
in the connector (by using the algorithm UPDATE of 3), we send the changes from
the connector back to the blocks, where we perform up to n 1/2 merges simultaneously.

ALGORITHM CONNECTK (outline);
1. Initialization
//each vertex is a component by itself#
C =i, l<-_i<-_n, l<-_f<-_k;
repeat until all edges have been read

2. Input phase
for each block i, 1 _-< _-< k pardo

read the next n input edges (as in CONNECT)
odpar;
3. Lookup phase
for each block i, 1 -< <= k pardo

determine the changes in block (as in the lookup phase of
CONNECT)

odpar;
4. Merging phase
repeat until all changes are processed

(i) for each block i, 1 _-< _-< k pardo
enter up to n 1/2 distinct changes into the ith row of the
connector

odpar;
(ii) if every block entered fewer than n 1/2 changes

then sort the connector according to the changes in it and
remove multiple changes

fi;

364 SUSANNE E. HAMBRUSCH

(iii) let x y 1, ’, xs --> ys be the distinct changes in the connector;
(either entered by one block, (s nl/2), or found in step (ii));
call UPDATE;

(iv) duplicate the updated changes stored in one row of the connector
to the other k- 1 rows;
send the changes in the ith row of the connector to block i,
where components are merged as described in CONNECT;

endrepeat;
endrepeat;

end CONNECTK;

THEOREM 4. Algorithm CONNECTK finds the connected components of an
1/4undirected graph G in time O(n3/2/k) and uses O(nk) area, 1 <-k <-_n This gives

a continuous tradeoff ofAT O(n 5/2) in the range l)(n)=A 0(n5/4).
Proof. Besides having more parallelism for the same operations, algorithm CON-

NECTK differs from CONNECT in the merging phase, where the blocks combine
the changes found independently and try to determine up to n 1/2 distinct changes.

Initialization, input and lookup phase can be done in O(n 1/2) time. Since we can
read at most n2/nk input sequences, the overall time spent in input and lookup phase
is O(n3/2/k). Steps 4(i)-(iv) of the merging phase can be done in O(n 1/) time. If we

1/2 1/4obtained n changes in step 4(ii) we will merge at least n components" assume
we are dealing with the worst case and the n 1/ changes describe a complete graph
on n 1/4 vertices. Then after the updating only rt

1/4 distinct changes will be left, and
thus the n 1/a initial changes merge only n 1/4 components. If we obtained fewer than

1/2n changes in step 4(ii), we will read nk input edges after the current changes are
processed. We either merge at least n 1/4 components or read nk edges after step 4(iv)
is completed. Since we can merge at most n- 1 components and read at most n/k
input sequences, the overall time of CONNECTK is (n/nl/4)nl/a+(n/k)n 1/ which

1/4is O(n3/Z/k) for l_-<k_-<n

The area necessary to lay out the k blocks is O(nk) and the connector requires
O(kn 1/) area, 1 =<k--<rt 1/4. Therefore the blocks, the connector can be laid out in
O(nk) area. (Since the connector and the blocks perform the same set of operations,
it is possible to declare one block to be the connector.) [3

Using k d-dimensional blocks and a d-dimensional connector we can achieve
time O(nl+l/d/k).

TIEOREM 5. The connected cornponentproblem can be solved in time O(nl+l/d/k
1/2d 2>. 1/2dusing area O(kn-2/a), where 1 <-k <-n d a real number =2. For k n this

gives a continuous tradeoff ofAT3 O(n s) in the range (n 5/4) A o(n2).
Proof. Similar to the proof of Theorem 4. [-1

Acknowledgments. I would like to thank Joseph Ja’Ja’ for introducing me to this
area and Greg Frederickson for many helpful and useful discussions.

REFERENCES

[1] G. BILARDI, M. PRACCHI AND F. P. PREPARATA, A critique and an appraisal of VLSI models of
computation, in Proc. CMU Conference on VLSI Systems and Computations, 1981, pp. 81-88.

[2] R. P. BRENT AND H. T. KUNG, The area-time complexity of binary multiplication, J. Assoc. Comput.
Mach., 28 (1981), pp. 521-534.

[3] B. CHAZELLE AND L. MONIER, A model of computation for VLSI with related complexity results, in
Proc. 13th annual ACM Symposium on Theory of Computing, 1981, pp. 318-325.

VLSI ALGORITHMS FOR THE CONNECTED COMPONENT PROBLEM 365

[4] L. J. GUIBAS, H. T. KUNG AND C. D. THOMPSON, Direct VLSl implementations for combinatorial
algorithms, in Proc. of Conference on VLSI Technical Design and Fabrication, California Institute
of Technology, Pasadena, CA, 1979, pp. 509-525.

[5] D. S. HIRSCHBERG, A. K. CHANDRA AND D. V. SARWATE, Computing connected components on
parallel computers, Comm. ACM, 22 (1979), pp. 461-464.

[6] C. SAVAGE AND J. JA’JA’, Fast efficient parallel algorithms for some graph problems, this Journal, 4
(1981), pp. 682-691.

[7] H. T. KUNG AND CH.E. LEISERSON, Systolic arrays for VLSI, in Introduction to VLSI systems, C.
Mead and L. Conway, eds., Addison-Wesley, Reading, MA, 1980, pp. 260-292.

[8] H. T. KUNG AND C. D. THOMPSON, Sorting on a mesh-connected parallel computer, Comm. ACM,
20 (1977), pp. 263-2"71.

[9] C. E. LEISERSON, Area efficient graph layouts, Proc. of 21st IEEE Conference on Foundations of
Computer Science, 1980, pp. 270-281.

[10] R. J. LIPTON AND J. VALDES, Census function: An approach to VLSI upper bounds, Proc. 22nd
IEEE Conference on Foundations of Computer Science, 1981, pp. 13-22.

11] C. MEAD AND L. CONWAY, eds., Introduction to VLSlsystems, Addison-Wesley, Reading, MA, 1980.
[12] D. NASSIMI AND S. SAHNI, Finding connected components and connected ones on a mesh-connected

parallel computer, this Journal, 9 (1980), pp. 744-757.
[13] F. P. PREPARATA AND J. E. VUILLEMIN, The cube connected cycles: A versatile network]’or parallel

computation, Proc. 20th IEEE Conference on Foundations of Computer Science, 1979, pp.
140-147.

[14] C. D. THOMPSON, Area-time complexity for VLSI, Proc. 11th ACM Symposium on Theory of
Computing, 1979, pp. 81-88.

[15] J. E. VUILLEMIN, A combinatorial limit to the complexity of VLSI circuits, in Proc. 21st IEEE
Conference on Foundations of Computer Science, 1980, pp. 294-300.

[16] J. C. WYLLIE, The complexity of parallel computation, Ph.D. thesis, Cornell University, Ithaca, NY,
1979.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0012 $01.25/0

INITIAL AND FINAL ALGEBRA SEMANTICS FOR DATA TYPE
SPECIFICATIONS: TWO CHARACTERIZATION THEOREMS*

J. A. BERGSTRA- AND J. V. TUCKER

Abstract. We prove that those data types which may be defined by conditional equation specifications
and final algebra semantics are exactly the cosemicomputable data types--those data types which are
effectively computable, but whose inequality relations are recursively enumerable. And we characterize
the computable data types as those data types which may be specified by conditional equation specifications
using both initial algebra semantics and final algebra semantics. Numerical bounds for the number of
auxiliary functions and conditional equations required are included in both theorems.

Key words, data types, algebraic specifications, conditional equations, initial algebra semantics, final
algebra semantics, computable, semicomputable and cosemicomputable algebras

Introduction. Suppose you have it in mind to define a data type by means of a
set of operators E whose behavior is to be governed by a set of axioms E. Then initial
and final algebra semantics represent two distinct, though natural, ways of settling
upon a unique meaning for the specification (,E, E) when the axioms E are written in
certain algebraic normal forms. As its semantics, they each assign to (E, E) a many-
sorted algebra, unique up to isomorphism, from the class ALG(Z, E) of all algebraic
systems of signature E which satisfy the properties prescribed by E. Viewed from the
proof theory of the axioms E, initial algebra semantics formalize the decision that
two formal syntactic expressions, or terms, t, t’ over should be semantically equivalent
if, and only if, t’ can be proved from the axioms E. While final algebra semantics
allows t, t’ to be semantically identified as long as t’ does not contradict the
requirements of E, ormas one says in the terminology of model theory--t t’ is
consistent with E.

Both techniques have been widely discussed in the literature devoted to the design
of programming languages with varying degrees of exactness and approval; and it
seems fair to say that most theoretical and practical work on algebraic data types can
be placed in one or other of these opposing initial and final camps, usually the former.
For example, looking at the origins of the algebraic specification methods, one sees
that the ADJ group [9], [10] and Zilles and Liskov [16], [25], [26] used initial algebra
semantics for their specifications, but that J. V. Guttag [11] probably thought in terms
of final algebra semantics. (At least, Guttag and Horning [12] deny they are taking
initial models for their specifications and come close to an informal description of the
final model strategy. Moreover, in the first paper to explicitly formulate final algebra
semantics [23], Wand argues that it is indeed the denotational semantics of Guttag’s
theory of specifications.) Mathematically exact declarations in favor of the far less
well-understood final algebra semantics can be seen in Hornung and Raulefs [13],
Kamin [14], Kapur and Srivas [15], the Munich Group [8], [24] and Wand [23].

The issues involved in the initial and final alternatives are many and complex;
they seem to turn on independent theoretical and practical options for specific problems

* Received by the editors November 3, 1980, and in revised form April 26, 1982.
t Department of Computer Science, University of Leiden, Waasenaarseweg 80, 2300 RA Leiden, The

Netherlands.
$ Department of Computer Studies, University of Leeds, Leeds LS2 9JT, Britain. The results in this

paper were obtained while this author was at the Mathematical Centre, Amsterdam, and an earlier edition
of this paper is registered there as MC Report IW 142/80.

366

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 367

tO do with data types. Unfortunately, no thoroughly researched comparative study of
the questions involved is yet available. However, it is an objective of this paper to
provide some theoretical perspective for such a discussion by reporting the technical
facts of life about a rather basic problem, the adequacy problem]’or specification
methods, which lead to the conclusion that the theory of algebraic data types needs
both the initial and the final techniques. We will prove two theorems, the First and
Second Characterization Theorems below, which characterize two kinds of effectively
computable data types in terms of the initial and final algebra semantics for algebraic
specifications allowing finite sets of conditional equations only. Before giving their
statements we shall explain some background issues that have to do with data types
which the theorems are meant to resolve; after this introduction we shall adopt an
exclusively technical outlook.

Roughly speaking, a specification methodM is characterized partly by syntactical
properties of the specifications it uses and partly by the semantical conditions it imposes
on their meanings. For example, a method M may allow specifications with equations
only, or with conditional equations; it may require those sets of axioms to be finite
or it may let them be recursively enumerable. Each of these four decisions yields two
distinct methods depending on which of the initial and final algebra semantics is
chosen. And the two ways of introducing hidden or auxiliary operators to assist in
specifying data types doubles the number of methods based upon these familiar
options. The adequacy problem for a particular specification methodM is the informal
question Does the method M define all the data types one wants ? Our theorems will
frame exact answers to two of three precise formulations of this question when M is
assumed to use finite sets of conditional equations only and an elementary mechanism
for involving hidden operators. The three versions of the adequacy question are
determined by three natural and distinct kinds of effectively computable data type
semantics"

Let us say that an algebra A is effectively presented whenever we possess an
effective enumeration of its elements and we can effectively calculate its operations.
Then A is said to be a semicomputable algebra, or a cosemicomputable algebra, if in
addition the equality relation of A is r.e., or co-r.e., respectively. A is a computable
algebra when equality is decidable.

Now it is obvious that an r.e. algebraic specification (Z,E) defines a semi-
computable algebra under its initial semantics: remembering the proof theoretical
basis of the technique, with an r.e. set of axioms E one can simply enumerate all
proofs and list the identifications E t’. It is less well known, though almost equally
obvious, that the final algebra semantics of an r.e. algebraic specification defines a
cosemicomputable algebra. Therefore, if a data type can be specified both initially and
finally by two r.e. sets of axioms then it must be computable. Clearly, then, equational
term rewriting systems, formal grammars, and so forth, with r.e. but not recursive
word problems qualify as data types without any effectively definable final algebra
specification. On the other hand in [6], we showed that the set of functions computed
by LOOP-programs on the natural numbers--the primitive recursive functionsm
composed a data type with a finite equational specification (allowing hidden functions)
under final algebra semantics, but that it does not possess an effective algebraic
specification of any kind using initial algebra semantics. We will give some new
examples to divide the methods in 2.

Concentrating on the two methods based upon finite sets of conditional equations
(and allowing hidden operators), the three formal adequacy problems per method

368 J. A. BERGSTRA AND J. V. TUCKER

boil down to the question Can the following known implications be reversed?

FINITE CONDITIONAL SPECIFICATIONS + INITIAL SEMANTICS
SEMICOMPUTABLE DATA TYPES,

FINITE CONDITIONAL SPECIFICATIONS +FINAL SEMANTICS
-COSEMICOMPUTABLE DATA TYPES,

BOTH SPECIFICATION METHODS
COMPUTABLE DATA TYPES.

In 3, we prove that the second implication can be reversed. This argument will go
quite some way toward reversing the first implication, at least far enough to prove
that the third implication is an equivalence; we deal with these points in 4. On top
of the characterizations, we are able to put numerical upper bounds for the number
of auxiliary operators and the number of equations necessary to specify the
cosemicomputable and computable data types"

FIRST CHARACTERIZATION THEOREM. Let A be an algebra finitely generated by
elements named in its signature ,. Then the following are equivalent:

1. A is cosemicomputable.
2. A possesses a conditional equation specification, involving at most 5 hidden

functions and 15 + IE] axioms, which definesA under its final algebra semantics.
SECOND CHARACTERIZATION THEOREM. Let A be an algebra finitely generated

by elements named in its signature E. Then the following are equivalent:
1. A is computable.
2. A possesses two conditional equation specifications, each involving at most 5

hidden functions and 15 + [,E[axioms, such that one specification defines A
under its initial algebra semantics while the other defines A under its final
algebra semantics.

This paper is the sixth in our series of mathematical studies of the power of
definition and adequacy of algebraic specification methods for data type definition
[2]-[6] (see also [7]). Obviously, the reader is assumed to be familiar with the informal
issues and basic algebraic machinery of algebraic specifications and their semantics.
For this material ADJ [10] is essential, but the reader ought also to be experienced
in following algebraic arguments as he or she will then find this paper virtually
self-contained: our previous work is involved explicitly in an appeal to [5] which
dispenses with finite data types, and implicitly in that we talk about single-sorted
algebras only. Our previous articles established a standard procedure for turning
single-sorted adequacy theorems into their many-sorted generalizations, and that
procedure readily applies here.

1. Specifications and their semantics. The purpose of this first section is to
describe, in a summary form, two denotational semantics for algebraic data type
specifications: initial algebra semantics and final algebra semantics. Our working
definitions of these two mechanisms for assigning a meaning to a specification are
given as Definitions 1.5 and 1.6 below: they, and they alone, represent what we will
have in mind for initial and final algebra semantics in the technical work which follows.
By way of exposition of these two different semantics we describe them from the
standpoints of category theory, logic and lastly algebra. Let us repeat that we take it
for granted that the reader is well versed in the mathematical theory of data types
created by the ADJ group [10], [21], [22]:

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 369

Semantically, a data type is modelled by an algebra A finitely generated by
elements named in its signature E, a so-called (finitely generated) minimal algebra.
A specification (E, E) for a data type distinguishes the category ALG* (E, E) of all
minimal algebras of signature E satisfying the axioms E and all morphisms between
them. Thus, the semantics of a specification (E, E) is designed so as to pick out some
algebra from ALG*(F_,, E) as the unique meaning //(,E, E) where the uniqueness of
d,/(E, E) is measured up to algebraic isomorphism. Given a data type semantics
(modelled by an algebra) A, a specification (E, E) can be said to correctly define the
data type when (E, E) A.

Seen from the point of view of the category ALG* (E, E), initial algebra semantics
for algebraic specifications assigns as the meaning of (E, E) the initial algebra I (E, E)
in ALG* (E, E); this I(Z, E) always exists and is unique up to isomorphism. On the
other hand, final algebra semantics would like to pick out the final object from
ALG* (E, E) as the meaning of (E, E), but clearly this final algebra is in all cases the
trivial one-point, or unit, E-algebra 1 ALG* (Z, E). (Notice 1 may not play an initial
role in ALG* (Z, E) because of the minimality assumption.) Instead, final algebra
semantics turns to the category ALG0* (E, E) which is simply ALG* (E, E) with the
unit algebra removed. Unfortunately, ALG0* (E, E) need not always possess a final
object F(E, E), but when it does this object is unique.

Because of this asymmetry, defining and using the final algebra semantics of
algebraic specifications is a rather delicate matter when compared with the initial
technique. Nevertheless, the technical motives behind final algebra semantics are
natural enough and complement those behind initial algebra semantics. To explain
these we adopt a logical point of view toward algebraic specifications from which the
raison d’etre of the semantics becomes evident.

Given any data type semantics A, a minimal algebra of finite signature E, consider
the algebra T(E) of all syntactic terms over E. There is an obvious semantic mapping
vA:T(,)-A which evaluates the formal expressions over E as data belonging to A;
)A is an epimorphism of E-algebras and is uniquely determined as a function by A.
The congruence A induced on T(E) by VA, defined by

() tAt if and only if VA(t) VA(t’) inA,

for t, t’ T(E), is uniquely determined as a set by A and clearly

(2) A T(,)/=A..

Combinatorially, devising a specification (E, E) for A amounts to devising axioms E
which determine this congruence A in some precise way.

The first, and most obvious, method is to choose axioms E such that t, t’ T(E)
have the same meaning in A if, and only if, one can prove that t’ from the axioms
E. In the standard notation of logic, the desired relationship between A and E is

(3) A g t’ if and only if E t’,

or, equivalently,

(4) t A t’ if and only if E - t t’.

This is exactly the decision made when one seeks an algebraic specification (E, E)
and uses initial algebra semantics to define A" the equivalence

I(E, E) t’ if and only if E - t’

is always true and entails equivalence (4) when I(E, E)-A.

370 J. A. BERGSTRA AND J. V. TUCKER

Final algebra semantics corresponds to a different use of the axioms in a
specification (, E). There one decides to assume t, t’ T(E) to have the same meaning
in A if, and only if, one can assert t’ without contradicting the axioms of E"

--A t’ if and only if t’ is consistent with E.

This notion of consistency simply means that there is some nonunit model B
ALG* (E, E) where B t- t’. Equivalently, the relationship desired between A and
E can be expressed as follows: the congruence ---A has the property that]’or every
congruence -- on T(E) which defines a nonunit algebra T(,)/-- in ALG* (E, E) we
have that -- t’ implies --A t’.

As will be seen, when this relationship between --A and E can be arranged we have
A as the final object of ALG0* (E, E). And it is precisely these technical observations
to do with consistency which lie behind the notion of semantic observability much
used in writings on final algebra semantics.

While thinking about these semantics for (, E) in logical terms let us consider
their effectivity. For initial algebra semantics,

--A if and only if E k- t’

and --A is clearly recursively enumerable. For final algebra semantics however, -----A
is co-r.e. This is proved as follows.

First, notice that

At’ if and only if t’ is inconsistent with E.

Now, t’ is inconsistent with E if, and only if, the following condition holds: for
any tl, t2 T(,), Ew{t=t’}k-tl=t2. To list the elements of A tWO cases must be
considered:

Case (i). There exist distinct tl, t2 T(E) such that tl At2. Choose such a pair
of terms. The algorithm for A takes each t, t’ T(E) and lists all term identities
provable from E {t t’} seeking tl t2. If tl t2 appears in the list then A t’.

Case (ii). There does not exist tl, t2 T(E) such that tl A t2. Here A is empty
and therefore r.e.

Now we come to our purely algebraic definitions of these semantics framed in
terms of congruences on T(E).

Let A be an algebra of signature E.
A congruence on A is said to be the unit congruence if for any a, b A we

have a -- b; or, equivalently, if A/-- is the unit algebra of signature E.
A congruence --2 on A is said to extend another congruence --1 on A if for any

a, b e A we have a --1 b implies a --2 b.
Let E be a set of conditional equations over E.
If A satisfies the axioms of E we say that A is an E-algebra.
A congruence -- on algebra A is said to be an E-congruence if for each conditional

equation in variables X (X1, ’, X,)

tl(X) t’ (X) ^... ^ tk(X) t’(X) t(X)= t’(X)

and for any a A

if tl(a)--t’(a), tk(a)--t’k(a) inA then t(a)--t’(a) inA.

LEMMA 1.1. Let -- be a congruence relation on A ALG (, E). Then -- is an
E-congruence if, and only if, A/-- is an E-algebra.

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 371

We will now define certain least and largest E-congruences on T(Y.,) whose
corresponding factor algebras will be the initial and final objects of ALG0* (E, E)
respectively. Let us consider the initial case first.

Define min(E) to be the intersection of all E-congruences on T(E) and set
Ti(,, E) T(,)/’min(E). It is easy to see that min(E) is an E-congruence and to verify
that

LEMMA 1.2. Tx (,, E) is isomorphic to any initial object I(E, E) of ALG* (E, E).
Define ----maxE to be the smallest E-congruence extending all the nonunit

E-congruences on T(E). Equivalently, let --maxE be the smallest E-congruence
containing the union of all nonunit E-congruences on T(E). And set TF(E,E)=
T(E)/-- max(E).

Of course we have no guarantee that =maxe is not the unit congruence and that
T(E, E) is not the unit algebra, but it is easy to prove that

LEMMA 1.3. Whenever =--maxe is not the unit congruence, TF(E, E) is isomorphic
to any final obfect F(,, E) of ALG (E, E).

OBSERVATION 1.4. For t, t’ T(E), t,ax()t’ if, and only if, the least E-
congruence extending ’min(E)k.)(t t’} is the unit congruence.

We can now define precisely what we mean by initial and final algebra
specifications for data types.

SEMANTICS OF ALGEBRAIC SPECIFICATIONS 1.5. Let E be a set of conditional
equations over the signature E and let A be an algebra of signature E.

The pair (E, E) is said to be a conditional equation specification of the algebra
A with respect to (1) initial algebra semantics or (2) final algebra semantics if (1)
Tt(E,E)-A or (2) TF(E,E)-A.

When the set of axioms E is finite we speak of finite conditional equation
specifications with respect to these semantics.

To conclude this preparatory section, we shall explain our favored method of
involving hidden or auxiliary functions into algebraic specifications for data types.

Let A be an algebra of signature EA and let E be a signature E EA. Then we
mean by

AI the E-algebra whose domain is that of A and whose constants and operators
are those of A named in E: the E-reduct of A; and by

(A) the E-subalgebra of A generated by the constants and operators of A named
in E: the smallest E-subalgebra of A[.

The following represents the two basic working definitions of specification theory
in this paper.

ALGEBRAIC SPECIFICATIONS WITH HIDDEN OPERATORS 1.6. The specification
(E, E) is said to be a finite conditional equation hidden enrichment specification of the
algebra A with respect to (1) initial algebra semantics or (2) final algebra semantics
if EA E, and E is a finite set of conditional equations over the (finite) signature E
such that

(1) Tx(, E)I.,, (T, (;, E)).,, A

or

(2) TF(,, E)I., (TF (E, E)).,, A.
In this paper, all specifications involving hidden operators are made to define data
types as described in Definition 1.6.

A complex example of a specification of a data type using final algebra semantics
is included in [6].

372 J.A. BERGSTRA AND J. V. TUCKER

2. Eltectively computable algebras. A countable algebraic system A is said to
be effectively presented when it is given an effective coordinatization consisting of a
recursive set f c o and a surjection a" f A, and, for each k-ary operation cr of A,
a recursive tracking [unction which commutes the following diagram

Ak

wherein c k (x 1,’ ", xk) (aXl, ’, axg).
The algebra A is said to be computable, semicomputable, or cosemicomputable,

if there exists an effective presentation a:f-A for which the relation =- on l’l
defined by

n --m if and only if an am in A

is recursive, r.e., or co-r.e., respectively.
These three notions are the standard formal definitions of constructive algebraic

structures currently in use in mathematical logic and they derive from the work of
M. O. Rabin [20] and, in particular, A. I. Mal’cev [18] devoted to founding a theory
of computable algebraic systems. Their special feature is that they make computability
into a finiteness condition of algebra: an isomorphism invariant possessed of all finite
structures. In the case of finitely generated algebras, the concepts enjoy a much
stronger recursion-theoretic invariance property which we shall now explain.

Let a and/3 be effective presentations of some algebra A. Then a recursively
reduces to B (in symbols: a < B) if there exists a recursive function f to commute the
following diagram,

A

And a is recursively equivalent to/3 if both a </3 and/3 < a.
Recursive equivalence is the fundamental identity relation between numberings

of algebras and is meant to measure the uniqueness of the recursion-theoretical
concepts under their translation to algebraic systems.

Let R be a k-ary relation on A and let A be effectively presented by a. Then R
is said to be a-computable if its preimage

--1R "{(x, x) (x, .,x)R}

is recursive. The definitions of a-semicomputable and a-cosemicomputable relations
follow mutato nomine. The following fact is easy to check.

LEMMA 2.1. Let R be an a-computable (a-semicomputable or a-cosemicompu-
table) relation on A. If is another effective presentation forA and recursively reduces
to a then R is -computable (-semicomputable or -cosemicomputable). In particular,

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 373

the effectivity of a relation on an algebra is unique up to the recursive equivalence of
codifications.

The invariance property for finitely generated algebras which interests us is the
existence of certain canonical effective presentations which solve the irritating problem
of how to speak of a relation as being computable (say) without also having to name
a coordinatization.

Henceforth, assume A is algebra finitely generated by elements named in its
signature Z.

Clearly, the term algebra T(E) is computable under any natural GSdel numbering
of terms. It is easy to make a general definition of such a G6del numbering and to
go on to prove that G6del numberings compose an equivalence class under recursive
equivalence; so the choice of y.: (9- T(Z) is unimportant. Let v: T(E)-A be the
unique term evaluation homomorphism. We define the standard effective presentation
of A derived from y. to be the composition

’YA V’]/, :(9 --) T(E) --> A.

To see that YA is indeed an effective coordinatization of A one need only observe
that an effective presentation for A is nothing more than an epimorphism between
A and a recursive algebra of natural numbers.

REDUCTION LEMMA 2.2. The standard effective presentation "YA Of A recursively
reduces to every effective presentation a ofA.

A proof of this can be found in Mal’cev [18]; coupled with Lemma 2.1, it has
several important consequences.

INVARIANCE THEOREM 2.3. The algebra A is computable, semicomputable or
cosemicomputable if and only if it is so under the standard effective presentation "YA.

COROLLARY 2.4. Any two semicomputable coordinatizations ofA are recursively
equivalent.

Let R be a recursive number algebra and a" R A a homomorphism. Let us say
that a is a decidable, r.e. or co-r.e, homomorphism accordingly as the congruence it
induces on R

n --m if and only if an am in A

is recursive, r.e. or co-r.e, respectively.
REPRESENTATION LEMMA 2.5. IrA is semicomputable, or cosemicomputable, then

it can be represented as the image of a recursive number algebra R with domain (9 under
an r.e., or co-r.e., homomorphism a respectively. In particular, A is isomorphic to the
]’actor algebra R/=- of R under the r.e., or co-r.e., congruence induced by . If A is
computable then it is isomorphic to a recursive number algebra R with domain (9 provided
A is infinite.

What material we need from the theory of the recursive functions is elementary
and is well covered by Machtey and Young [17] with one exception" Matijacevi’s
Diophantine Theorem.

Let 7/[X1,..., Xn] denote the ring of polynomials in indeterminates X1,..., Xn
and with integer coefficients. A set I) (9" is said to be diophantine if there exists a
polynomial p 7/[X,. , X, Y, .., Y,,] such that

(x, ", x,) [IC,:ty, ., y, (9. [p(x, ", x,, Yl, Ym) --0].

Clearly, each diophantine set is recursively enumerable; the converse is a hard theorem
of Y. Matijacevi:

DIOPHANTINE THEOREM 2.6. All recursively enumerable sets are diophantine.

374 J. A. BERGSTRA AND J. V. TUCKER

The number of search variables y l, ’, y,, can always be chosen to be 13 or less,
incidentally. A good exposition of the theorem appears in Manin [19].

We will always use the Diophantine Theorem to obtain polynomials over the
natural numbers to rather than over Z. We will now write down an equivalent
characterization of a diophantine set of natural numbers, one more suited to our
special tasks.

Let to[X1,... ,Xn] denote the set of all polynomials having natural number
coefficients and involving only addition and multiplication.

A set 12 to is to-diophantine if there exist p and q to [X, ., X,,, Y, , Y,,
such that

(x,..., x,)e lq::lyx,..., y,eto.[p(xx,...,x,, yl,""’, y,)

=q(x,...,x,, y,..., y,)].

It is easy to check that the to-diophantine sets are precisely the diophantine sets.
These technical preliminaries concluded, we can now turn our attention to data

types and their specifications.
BAsic LEMMA 2.7. Let (,, E) be a specification with E a recursively enumerable

set of conditional equations. Then T(X,E) is semicomputable and TI(X,E) is
cosemicomputable. In particular, if algebra A possesses an r.e. conditional equation
hidden enrichment specification with respect to (1) initial algebra semantics or (2) final
algebra semantics then (1) A is semicomputable or (2) A is cosemicomputable. If A
possesses such specifications with respect to both initial and final algebra semantics then
A is computable.

The proof of Basic Lemma 2.7 is routine and is left as an exercise for the reader.
(Hint: Use Observation 1.4 and recall the discussion of effectivity in 1.) Here are
examples of semicomputable and cosemicomputable algebras which are not compu-
table.

COMBINATORY LOGIC 2.8. Consider the signature E consisting of constants K,
S, I and a single binary operation .. Combinatory logic can be axiomatized by three
equations over this E.

(K.X).Y=X,

((S. X). Y). Z (X. Z). (Y. Z),

.x=x,
where X, Y, Z are variables. The initial algebra of the resulting variety is known as
the term model for combinatory logic and we denote it TMCL. Clearly, it is an algebra
having a finite equational specification and it is semicomputable. It is not a computable
algebra, however, because combinatory logic is a formalism strong enough to define
all recursive functions; see Barendregt [1] for details.

POLYNOMIAL FUNCTIONS 2.9. The typical cosemicomputable algebra is a set of
computable functions structured by some effective operators. For example, let A be
a computable algebra of signature X and let Tx[X,’", X] be the algebra of formal
polynomials in n indeterminates over X. Each Tx[X,"’, Xn] defines an n-argu-
ment polynomial function A A which is computable. It is easy to derive an effective
presentation of the E-algebra PF(A,A) of all n-ary polynomial functions over A
from a computable coordinatization of Tx[X," ", X,]; and to prove that PF(A, A)
is a cosemicomputable algebra. We give an A for which PF(A, A) is not computable
when n > 13.

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 375

Let A have domain to, constants 0, 1 to, and the operations of addition x + y,
minus x "-y, multiplication x y, and

l" 0 if x 0,
min (x

1 ifx =>1.

Let E be the signature of A.
Now let fl be any r.e. subset of w and assume it defined by the Diophantine

Theorem as
n I)::ly w’[p(n, y)= q(n, y)]

for p, q to[X, Y1,’", Ym]. Define a family of polynomial mapsww over A by

H,(y) min (p,(y)=q,(y)+q,(y)=p,(y)).

Clearly, the family {H,:n w} is a computable subset of PF(A m, A) and if PF(A, A)
were a computable algebra then we could decide whether or not

where 1(y)= 1 for all y w m. However, it is easy to see that

H, 1 if and only if n .
Thus, choosing to be r.e. and not recursive shows that PF(A,A) cannot be
computable. The reader might care to find a finite algebraic specification for PF(A, A)
as an exercise.

3. Cosemieomputable data types. This section is entirely given over to proving
the First Characterization Theorem stated in the Introduction. In view of Basic Lemma
2.7, we have only to prove that (1) implies (2).

Let A be a cosemicomputable algebra of signature E.
First of all we dispense with the relatively easy case when A is finite. In [5], we

proved that any finite algebra possesses a finite conditional equation specification
under initial algebra semantics which involves at most 1 auxiliary operator, 1 simple
equation and 2 conditional equations. As it happens, precisely the same syntactic
specification designed there for a finite algebra A also defines A under its final algebra
semantics. Thus, we leave the reader to check this claim (or to devise his or her own
proof of the theorem in this special case) and we move on to the considerably more
difficult case when A is cosemicomputable and infinite.

We divide the proof of this case into two parts. First, we will frame an auxiliary
hypothesis H and prove the First Characterization Theorem for any infinite
cosemicomputable algebra satisfying the extra condition H. This done, we will then
prove that, indeed, every infinite cosemicomputable algebra satisfies our hypothesis H.

PARTITION HYPOTHESIS 3.1. Let A be effectively presented by a:fl A. By
an a-computable partition we mean a family V {Vg:i w} of nonempty subsets of
A such that

(i) .=ifif.
(ii) =a.

(iii) The are a-computable subsets of A uniformly in i; that is, the function
My: w x {0, 1} defined by

Mv(i,n)=O ifan,
1 ifan V

is recursive.

376 J. A. BERGSTRA AND J. V. TUCKER

Thanks to Lemma 2.1 and the Reduction Lemma 2.2 we need not be careful about
the coding a to which an a-computable partition is tied. And as our hypothesis H
we may take the statement that A possesses a computable partition.

THE PROOF FOR A INFINITE, COSEMICOMPUTABLE, AND POSSESSING A COMPUT-

ABLE PARTITION 3.2. Let A be the image of recursive number algebra R, with domain
to, under co-r.e, homomorphism a:R -A (Representation Lemma 2.5) and assume
A has a computable partition with respect to this a. In outline, our plan is to add to
R a constant and some 5 functions to make a new recursive number algebra R0 such
that

(a) R01 (R0). R,
(b) -- is a congruence on R0.

In consequence,

Ro/=-.l. (Ro/=-) R/- A.

For Ro/=- we will make a conditional equation specification (E0, E) which defines
it under final algebra semantics and which satisfies the required boundedness condi-
tions. The first four new functions are designed to simulate arithmetic on R and, in
particular, to respect the congruence -- on R. This latter condition will mean that
the new functions will induce an arithmetic on Ro/=-,. With arithmetic internalized
in this way, the fifth function will internalize an entirely new coding of R whose
domain is the arithmetic on R. And, because the fifth function respects the congruence
-=, this coding may be internalized to Ro/=-. This done we are able to systematically
specify the coding, the recursive functions of R and the congruence =- itself, all by
means of the Diophantine Theorem 2.6. So much for the informal description" first
we build the arithmetic in R from the hypothesis of A having an a-computable
partition.

Let V {V/" to} be an a-computable partition of A. Now V determines an
a-computable equivalence relation =v on A whose equivalence classes are the Vi. In
particular, the factor set Ally is a computable set under coordinatization a (V)" R
A/--v defined by a (V)(n)= Jan]. This set supports a natural arithmetic based upon
using V0 as zero, and taking

Vi Vi+l as successor,

V, V.) V/j as addition,

as multiplication

and this partition arithmetic on A/=-v is what we propose to model in R by special
tracking functions for =(v).

The first four functions are determined by choosing a recursive transversal for
--=(v) on R.

Let t’to R be a recursive function enumerating the following "least code"
transversal T(V, R) for =(v),

t(i) (z e R)[az e V].

Thus T(V,R)=im(t) and, obviously, it is a recursive set such that T(V,A)=
{an’n T(V, R)} is an a-computable transversal for --v on A.

We also define the recursive function d" R to by

d (n) (z e o)[n e Yz]

which gives the location of n, and so of an, in the equivalence classes of (v), and --- v.

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 377

The new operators required on R to make Ro are

Profection
Zero

Successor

Addition

Multiplication

projR (X) t(d (x)),

0R t(0),

SUCCR (X) t(d (x) + 1),

addR (x, y)=t(d(x)+d(y)),

mult (x, y)= t(d(x), d(y)).

The reader should pause to become familiar with the effects of these functions.
Notice, for example, that by the guiding principles of their design, these operators
make an algebra

(T(V, R); OR, SUCCR, addR, mUltR)

which is recursive and is isomorphic to the arithmetic we described on A/=-v under
the mapping a(V)’T(V, R)A/=-v. The role of projR is solely to internalize this
transversal arithmetic within R. Notice, too, that what the partition property provides
is this: because --v is a coarser equivalence relation than equality in A, the relation
--(v is coarser than =- on R with the result that each of the four new maps respect

-= in a particularly strong way"

x --x’ implies projR (X)= projR (X’),

X ----- X’ implies SUCCR (X) SUCCR (X’)

and similarly for addR and multR. Thus, =--- remains a congruence on the algebra R
when these functions are added.

Let "-arith {0, SUCC, ADD, MULT} denote the signature of the transversal arith-
metic.

The fifth function required is there to code R by our transversal arithmetic.
Choose any recursive bijection enumv,n: T(V, R)R. This bijective renumbering of
R we refer to as the transversal coding, but it should be thought of strictly in terms
of the arithmetical structure of T(V, R) and divorced from its original connections
with a-codes. This can be made visible in our notations. Observe that the arithmetical
structure of T(V, R) entails we may write the set as a list without repetitions

T(V, R)= {succ (OR)" n w}

and, moreover, implicit in our view of the transversal coding is this composition

Xn.succt (0,) v,l

oo T(V, R R

Still, the transversal coding must be internalized and this means it must be defined
outside T(V, R). Thus, we take as our last function in the construction of Ro from R

enumR (n) enumv.R (projR (n)).

Again, we see that the partition yields

x x’ implies enumR (x) enumR (x’)

and so we know that -- is a congruence on R0. Thus, given (a) and (b) we concentrate
on the problem of specifying Ro/=- by conditional equations (without hidden functions
and using 15 + lY-,I formulae). This task we divide into the problems of specifying Ro

378 J.A. BERGSTRA AND J. V. TUCKER

and then pressing on to specify Ro/=-. As it turns out, the first job will be to give a
specification (Eo, Eo), involving no hidden functions and 14 axioms, which defines Ro
by means of initial algebra semantics. Whence one more axiom e added to Eo will
make a specification (Eo, E,) which completes the proof of the theorem in Case 3.2
(the reader curious about this arrangement is invited to read the proof of Lemma 3.7
first). Here is the specification (Eo, E0) for Ro.

The firs 10 equations specify the transversal arithmetic.

Profection
(1) PROJ (0) 0,

(2) PROJ (SUCC (X))= SUCC (PROJ (X)),

(3)

(4)

(5)

Successor

Addition

PROJ (X)= PROJ (PROJ (X)),

SUCC (X)= SUCC (PROJ (X)),

ADD (X, 0)= PROJ (X),

(6) ADD (X, SUCC (Y)) SUCC (ADD (X, Y)),

(7) ADD (X, Y)= ADD (PROJ (X), PROJ (Y))

Multiplication

(8) MULT (X, 0) 0,

(9) MULT (X, SUCC (Y))= ADD (MULT (X, Y), X),

(10) MULT (X, Y) MULT (PROJ (X), PROJ (Y)).

Next we construct three formulae to specify the transversal coding of R. Consider
these two sets designed to recover T(V, R) from that coding. (We drop the subscript
R from the operations of Ro.)

Yl {(n, m) e to to" enum (succ" (0g)) e T(V,R) &enum (succ" (0))=succ (0)},

Jz={(n, m)eto to" enum (succ".(O)) T(V, R) & proj (enum (succ" (0)))
enum (succ" (0))}.

Our hypotheses imply that both sets are r.e. subsets of to x to and hence, by the
Diophantine Theorem, there are polynomials px, q and p2, q2, in 2 + k(1) and 2 + k(2)
variables respectively, such that

k(1) (n, m, z)(n,m)JxCrZ:lz to .[pl (n,m,z)],
k(2)(n, m) e J2 :> ::lz e to [p2(n, m, z qz(n, m, z)].

Let P1, Q1 and P2, Q2 be formal polynomials over Earith corresponding to p, qx and
p2, q2 respectively. Then our enumeration axioms are

(11)
PI(X, Y, Z," ’, Zk()) Ol(X, Y, Zl,. ’, Zk(1))

-+ ENUM (PROJ (X))= PROJ (Y)

(12)
P2(X, Y, Zl,’ ’, Zk(2)) Q2(X Y Zl," ", Zk(2))

-> PROJ (ENUM (PROJ (X)))= ENUM (PROJ (Y))

(13) ENUM (X)= ENUM (PROJ (X))

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 379

It now remains to add axioms to specify the new constant 0 and the original
constants and operations of R. We need one formula in each case and this will make
the total IEol 14 + I1.

Let c R be a constant named by _c {0}5;. To this c there corresponds a
unique n to such that c enum (succ (0R)): assign the identification

_c ENUM (SUCC" (0)).

Let f’ R k -R be an operation named by f 5;. Consider the graph of f translated
to the transversal coding

G(f) {(n (1), n(k), m): f(enum (succ"(1) (OR),’’’, enum (succ"(k) (OR)))
enum (succ" (OR))}.

Our hypotheses imply G(f) is an r.e. set and again we define it by means of the
Diophantine Theorem. Let Pr, qr be polynomials in k + 1 + k (f) variables such that

k(f)(n(1),...,n(k),m)G(f)C:]zto [p(n(1),...,n(k),m,z)

=q(n(1),..., n(k), m, z)].

Choosing formal polynomials P, O over 5;ith corresponding to p, q we assign the
axiom

Pf(Xl, ,Xk, g, Zl, Zk(f) (f(Xl, ,Xk, g, Zl, Zk(f)

-f(ENUM (PROJ (Xl)),..., ENUM (PROJ (Xk)))= ENUM (PROJ (Y))

LEMMA 3.3. The specification (5;0, Eo) defines Ro with respect to initial algebra
semantics:

T (5;0, Eo) Ro.

Proof. First we picture Ro through the transversal coding

Ro {enum (succ" (0)): n to}.

Remembering that

An.succn (OR)
to T(V,R) R

is bijective, we define 4’Ro T(5;o, Eo) by

b (enum (succ" (OR)))= [ENUM (SUCC (0))].

We write =-Eo as =- and denote the equivalence class of e T(Eo) under by It]. To
show that 4 is bijective is to prove that

T {ENUM (SUCC (0)): n to}

is a transversal for ---. To show b is a homomorphism will be an easy exercise afterwards.
Consider T as a transversal. It is easy to check that no distinct elements of T

are equivalent under -= because they denote different elements of Ro and Ro is an
Eo-algebra. Thus, we have to prove that each tT(Zo) is Eo-equivalent to some
member of T and this is done by induction on term complexity.

The basis is obvious thanks to the identifications assigned to the constants of 5;0.
Assume, as induction hypothesis, that all subterms of e T(5;o) are Eo-equivalent

to some element of T. We have to consider each situation corresponding to the leading

380 J.A. BERGSTRA AND J. V. TUCKER

function symbol of t:

PROJ, SUCC, ADD, MULT, ENUM, [X

Case 1. PROJ (s).
By the induction hypothesis s ENUM (SUCC" (0)).
Subcase 1.1. If enum (succ" (0R)) T(V,R) then PROJ (s) ENUM (SUCC" (0)).
Subcase 1.2. If enum(succ" (0R)) T(V, R) then PROJ (s)-- ENUM (SUCC (0))

for (n, m)J2.
Proofo[Subcase 1.1. This first subcase is quite involved as it introduces techniques

and lemmata of use throughout the proof of Lemma 3.2; we shall write out its argument
in detail. The bulk of the work lies in showing this important fact"

LEMMA 3.4. Let enum (succ" (OR))= succ (OR). Then ENUM (SUCC") (0))--
sufc (o).

Assume we have done this. Thus, immediately we know that for (n, m) J1

PROJ (ENUM (SUCC" (0)))----PROJ (SUCC (0)).

A little lemma already required in the proof of Lemma 3.4 is this"
LEMMA 3.5. For any k o9, PROJ (SUCC (0))---SUCC (0).
Proof. This is an easy induction on k whose basis is covered by equation (1) and

whose induction step is covered by equation (2).
Applying Lemma 3.5 we can deduce that

PROJ (ENUM (SUCC" (0)))--SUCC (0)--ENUM (SUCC" (0)),

the latter step using Lemma 3.4 again. This is what is required for Subcase 1.1.
Consider the proof of Lemma 3.4. We must use equation (11) which means we

must verify the premiss that there exist h," ’, tk()e T(Xo) for which

PI(SUCC (0), SUCC (0), h,"" ", t/(1)) O2(SUCC (0), SUCC (0), t,.’’, t(1)).

From this premiss we can conclude, directly, that

ENUM (PROJ (SUCC (0)))-= PROJ (SUCC" (0)).

By Lemma 3.5, the Lemma 3.4 follows.
So consider the premiss. Since (n,m)J we know there exists z=

k(a) (n, m, z) q(n, m, z) We claim the premiss(z(1),..., z(k(1)))eto such that p
is true on choosing ti SUCC(g) (0), 15- 5- k (1). This follows from another invaluable
general lemma:

LEMMA 3.6. Let p(x,. ,x) be any polynomial over o and let P(X,. ,X)
be its formal translation to a polynomial over Zartn. Then for any n (1), , n (k) to

P(SUCC((0),..., SUCC"(k) (0))--SUCC"("(1)’’’’’"() (0).

Proof. This is done by a straightforward induction on the complexity of the
polynomial P(X,...,X). The basis case, where P(X,...,X)=O or
P(X,..., X)= Xi for 1 _-<i _-< k, is immediate. The induction step divides into three
cases determined by the leading operator symbol of P(X1,’" ,Xk). When this is
SUCC the induction step is immediate. When it is ADD one requires an easy induction
on m to prove that

ADD (SUCC (0), SUCC" (0))=SUCC"+ (0).

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 38l

The basis of this induction will use (5) and Lemma 3.5; the induction step will use
(6). When the leading operator symbol is MULT one has to prove

MULT (SUCC (0), SUCC (0))--- SUCC (0)

by induction on m. Here the basis is covered by equation (8); and the induction step
is covered by equation (9) together with the previously completed case of addition.

Proof of Subcase 1.2. Given the pattern of reasoning in Subcase 1.1, this subcase
can be completed quite concisely. Let proj (chum (suet" (0n)))= enum(succ" (0n)) SO

that (n, m) Jz. We shall prove that

PROJ (ENUM (SUCC (0)))---ENUM (SUCC (0))

by using (12). Thanks to Lemma 3.5, it is enough to verify the premiss of (12) that
there exist tl,’ ’, tk(z) T(o) such that

Pz(SUCC (0), SUCC (0), t,..., tk2))

-O2(SUCC (0), SUCC (0), tl,’’’, tk2)).

Since (n,m)Jz, there exists z=(z(1),...,z(k(2)))w such that pz(n,m,z)=
qz(n, m, z). Taking t SUCC)(0) and applying Lemma 3.6 the premiss is true.

This first case provides two evidently important identities" Lemma 3.4 and the
statement of Subcase 1.2:

(n, m) J1 if and only if ENUM (SUCC" (0)) SUCC" (0),

(n, m) eJ if and only if PROJ (ENUM (SUCC" (0)) ENUM (SUCC (0)).

From these we can deduce for enum (succ" (0n)) T(V, R)

PROJ (ENUM (SUCC" (0)))--- SUCC (0) if and only if :lz. [(n, z)J2 & (z,

and taken together we have the means to access the algebraic specification’s model
of the transversal arithmetic. The next three cases SUCC (s), ADD (s 1, s2) and
MULT (s l, sz) are routine to check.
Case 2. SUCC (s).
By the induction hypothesis s ---ENUM (SUCC" (0)).
Subcase 2.1. Ifenum (succ (0n)) T(V, R) thenSUCC (s)-= ENUM (SUCC" (0))

for (n, z) J1 and (z + 1, m) e
Subcase 2.2. If enum(succ" (0R))T(V,R) then SUCC(s)---ENUM

(SUCC (0)) for (n, z) Jz and (z, w), (w + 1, m)
Consider enum (succ" (0n)) e T(V, R). Then Lemma 3.4 says that

SUCC (ENUM (SUCC (0)))SUCC (SUCC (0)) SUCCZ/I(0) for (n, z)eJ1.

To make a reduction to an element of T, we have only to prefix an ENUM to the
right-hand side by applying Lemma 3.4 again: SUCCZ+I(0)--ENUM (SUCC (0)) for
(z + 1, m)J1.

Consider enum (succ (0R)) T(V, R). Then equation (4) and Subcase 1.2 allows
us to write

SUCC (ENUM (SUCC" (0))) SUCC (PROJ (ENUM (SUCC (0))))

SUCC (ENUM (SUCC (0))) for (n, z) J2.

But enum(succ (0R)) T(V, R) so the right-hand side is covered by Subcase 2.1. Thus

SUCC (ENUM (SUCC (0))) ENUM (SUCC (0)) for (z, w) J1 and (w + 1, m)

382 J. A. BERGSTRA AND J. V. TUCKER

The two other arithmetical cases follow the same pattern: equations (7) and (10)
guarantee that the identities of Lemma 3.4 and Subcase 1.2 can reduce the subterms
to numerals. Lemma 3.4 gives the numeral which is E0-equivalent to t. And the
prefixing of an ENUM, to complete the reduction of to an element of T, is again
done by Lemma 3.4. We omit the details, leaving them as a straightforward, if tedious,
exercise for the reader.

Case 5. ENUM (s).
By the induction step s ---ENUM (SUCC (0)).
Subcase 5.1. Ifenum (succ (0R)) T(V, R) thenENUM (s)--ENUM (SUCC" (0))

for (n, m) J1.
Subcase 5.2. If enum (succ (0R)) T(V,R) then ENUM (s)=ENUM

(SUCC" (0)) for (n, z) J2 and (z, m) J1.
Subcase 5.1 is immediate from Lemma 3.4 which says that ENUM (SUCC" (0))---

SUCC" (0) for (n, m) J1.
In Subcase 5.2, we may use equation (12) and Subcase 1.2 to write

ENUM (ENUM (SUCC (0)))-= ENUM (PROJ (ENUM (SUCC" (0))))

-= ENUM (ENUM (SUCC (0))) for (n, z) J2.

But enum (succ (0R)) T(V, R) so we are in the situation of Subcase 5.1 again.
Case 6. f(Sl, s).
By the induction hypothesis si ENUM (SUCC"e) (0)), 1 <-i <-k. We claim that

f(Sl," ", sk)=ENUM (SUCC (0)) for (n(1),..., n(k), m) G(f).

kNow, given n =(n(1),... ,n(k))oo and m with (n,m)G(f), we can choose z
(z(1),. ., z(k(f))) such that p(n, m, z)=q(n, m, z). Substituting SUCC") (0),
SUCC (0) and SUCCz) (0) into the premiss of equation (13) we can (via Lemma
3.6) detach the identity

f(ENUM (PROJ (SUCC" (0)),..., ENUM (PROJ (SUCC"k (0)))))

=--ENUM (PROJ (SUCC" (0))).

By Lemma 3.5 this reduces to our claim.
To complete the proof of Lemma 3.3 we have now to verify that 4’Ro T(Zo, Eo)

is a homomorphism. Each constant and each operation of Ro must be considered,
but we will write out only one case which is entirely typical. We will now show that
for any x Ro,

b (enum (x)) ENUM (4 (x)).

Write x enum (succ" (0n)).
If enum (succ (0n)) T(V, R) then

4 (enum (enum (succ" (0n))))= 4(enum (succ" (0R))) for (n, m)J

[ENUM (SUCC (0))] by definition of b

[ENUM (ENUM (SUCC" (0)))] by Subcase 5.1

ENUM [ENUM (SUCC" (0))] by definition of ENUM

ENUM [b (enum (succ" (0R)))].

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 383

If enum (succ (0n)) T(V, R) then

4(enum (enum (succ (OR))))= 4(enum (proj (enum (succ" (OR)))))

4 (enum (enum (succ (OR)))) for (n, z) J2

4 (enum (succ (OR))) for (z, m) J
[ENUM (SUCC"* (0))] by definition of

[ENUM (ENUM (SUCC" (0)))] by Subcase 5.2

ENUM [ENUM (SUCC" (0))] by definition of ENUM

ENUM (4 (enum (succ" (OR)))).

This concludes the proof of Lemma 3.3.
Finally, we shall make one new axiom e which when added to Eo forms E

Eo w{e,,} and completes a final algebra specification for Ro/=. Translating = into
the transversal coding we get

J {(n, m) to to" enum (succ" (OR)) enum (succ" (OR))}.

By our hypothesis, this is an r.e. set and so we can define it, via the Diophantine
Theorem, as

k(a){(n, tn to x to. :lz to [p (n, m, z) q (n, m, z)]}.

Taking P, Q, as formal translations of p, q,, we set e,, to be the formula

P(X, Y, Z1,"" ,Zk())=Q(X, r, Zl,’’’, Zk(,))

^ ENUM (PROJ (X))= ENUM (PROJ (Y)) U V.

LEMMA 3.7. The specification (,o, E) defines Ro/=- with respect to final algebra
semantics"

TF(,,E,,)-Ro/=-,,.

Proof. We prove the representation as follows. Let 0 be the unique semantic
evaluation epimorphism T(Y-,o)-,Ro/=,, so that T(Y_,o)/= is isomorphic to Ro/=,.
We will show that =, is a maximal E-congruence on T(Eo) whence it will follow that
---o is max(Eo) and

T(E0)/-- max(E,,,)-- TF(,o, E,)

It is a routine matter to check that -=, is nonunit and is, itself, an E,,-congruence.
Consider its maximality. We have to show that if -= is any nonunit E,,-congruence
then is a subcongruence of =-,. Contrapositively, we shall argue that if is an
E-congruence which is not a subcongruence of -=, then -= is the unit congruence.

This is done by finding terms t, t’ T(E0) such that
(i) there exists s (sl, ", Sk(ot)) T(o)k(a) for which P(t, t’, s)--Q(t, t’, s);

(ii) ENUM(t)--- ENUM(t’)
because then we may apply conditional equation e to deduce =- is unit. We have to
get these terms from Ro, of course.

Using the assumption that is an E-congruence and the initiality of Ro for
Eo-algebras (Lemma 3.3), we can define an epimorphism 4:Ro-* T(,o)/=- which
translates into the numerical congruence --6 since Ro/=-6 is isomorphic with
T(Zo)/=-. It is easy to see that our hypothesis -= --, means that =-6 in Ro.

384 J. A. BERGSTRA AND J. V. TUCKER

Thus, we choose enum (succ (OR)), enum (succ" (OR)) R0 such that

enum (succ" (0))---+ enum (succ (0))

but enum (succ (0n)) enum (succ" (0n)).

forBy the diophantine definition of there exist z (z (1),. , z (k (a))) e w
which p, (n, m, z) q, (n, m, z). We set SUCC (0), t’ SUCC" (0) and si
SUCCZi)(0) for 1 -< =< k (or). Now condition (i) follows from Lemma 3.6, and condition
(ii) from our choice of n, rn and, in both cases, the initiality of Ro.

This concludes the proof of Case 3.2.
PROPOSITION 3.8. Every infinite cosemicomputable algebra possesses a computable

partition.
Proof. Thanks to the Representation Lemma 2.5, this proposition follows from

this next statement whose proof is an exercise in recursive function theory.
LEMMA 3.9. Let =-- be aco-r.e, equivalence relation on co having infinitely many

equivalence classes. Then there is a family V { Vi: w} of nonempty disjoint subsets
of o such that

(1) uiv =,o,
(2) n Vi is recursive uniformly in i,
(3) if n m and m Vi then n Vi.
Proof. We will describe an effective procedure which constructs the family V in

stages. These stages we index by natural numbers. At each even stage s 2n we will
have started the building of V0," ", Vn--1, but no other members of V. Our task at
this stage will be to give V, its first element. At each odd stage s 2n + 1 we will
ensure that n, itself, belongs to one of V0," ", V,-1. Thus at the beginning of each
stage s we will have made only finite parts of V0, , V,_I and nothing else. Let V
denote the status of V at the beginning of stage s.

Even from this outline it is clear that conditions (1) and (2) will hold for V. By
construction,

n V/:>i _-<2n & n V2"

and we will know that every n is assigned sooner or later at an odd stage. Condition
(3) will be routine to check after we have described the procedure. We formalize an
enumeration of by

n m if and only if ::lk. R (k, n, m)

for some recursive predicate R.
Stage s =2n. Now V ..., V,_I are nonempty, but V- ;. We want to

name the first element of V,. We enumerate the finite set V V-1 w w V,_s-1
searching for some z o such that for all m V-a, z m. Such an element z will
exist because w/-- is infinite. This z is put into V, with the result that at the conclusion
of this stage

V=V-x for0=<i-<n-landV={z}.

Stage s 2n + 1. Again V-, VL] are nonempty but we are concerned
only with the number n. First, we recursively decide whether n V
V- . VT,Zx. If this is so we are done and at the conclusion of this test V V-1

for 0=<i_<-n-1.

Assume n V-x. Now we will put this n in some V, 1 < < n 1. By searching
sufficiently far out in the enumeration of it is possible to find some ko and an

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 385

1 _-< -< n 1 such that for every/" i, and 0-<_/" -<_ n 1, and for every m V-1 there
is a k < k0 for which R (k, m, n) is true. That is we will come across a V-1 for which
we can verify that n m for m e VS- V-1. We put n V-1. Thus, at the end of this
case of stage s 2n + 1,

V=V-1 forjiandl_-<j-<_n-l, andV=V-t{n}.
This construction proves Lemma 3.9 and so concludes the proofs of Proposition

3.8, and of our main theorem.

4. Semicomputable data types. Our characterization theorem for cosemi-
computable data types focuses attention on a question we noticed and left open in
the first paper of our series [2] (see also [7]). We shall reformulate it now as an opinion:

CONJECTUrE 4.1. Let A be an algebra finitely generated by elements named in
its signature Z. Then there exist N oo andM M(II) ,o, numbers independent of A,
such that the following are equivalent:

1. A is semicomputable.
2. A possesses a conditional equation specification, involving at most N hidden

functions and M conditional equations, which defines A as a hidden enrichment under
its initial algebra semantics.

Moreover, we expect that N <- 6 andM <= 20 + I 1,
Since (2) implies (1) by Basic Lemma 2.7, the conjecture is the statement that

(1) implies (2). Actually, we did not ask for bounds in [2], but we do so here although
the unbounded adequacy problem remains open. Until the conjecture is settled, the
precise numerical values of the bounds are of secondary importance, of course.

The theoretical importance of a confirmation of the conjecture is evident. First,
semicomputable data types abound and one simply wants an adequacy theorem for
them (one sharper than the result we proved in [2], certainly). And, secondly, if
Conjecture 4.1 could be turned into a theorem then it would completely resolve the
debate between the advocates of initial and final algebra semantics for specifications,
at least for theoria if not for praxis. It seems hard to imagine a more elegant state of
affairs than that depicted in the Venn diagram of Figure 4.1.

FIG. 4.1

We will conclude this paper by explaining the extent to which its methods fail to
establish our conjecture.

386 J. A. BERGSTRA AND J. V. TUCKER

Assuming A to be semicomputable, we can first of all dispense with the finite
case because we proved the existence of a bounded conditional equational specification
for it in [5]. (One hidden function, one identification and two conditional equations
are sufficient for any finite data type!) Now, if A is infinite then it turns out that a
small adaptation to the proof of Proposition 3.2 will settle Conjecture 4.1 under the
hypothesis that A has a computable partition. Let us explain this.

The first change in the proof of Proposition 3.2 is made at the relatively late
stage of the construction of the last axiom e from a diophantine definition of the r.e.
set J. AsA is semicomputable we want to consider the complement of J,, instead: since

J,, {(n, m) co x co" enum (succ" (Oa) ---,, enum (succ" (Oa)}

is r.e. we can define it, via the Diophantine Theorem, as

{(n, m) o o" :tz ok(’ [p,(n, rn, z)=q,(n, m, z)]}

for (new) polynomials p, q. Taking P,,, Q, as formal versions of p,, q,, we take, as
the new e,,, the axiom

P (x, Y, z,..., z()=O(x, Y, z,..., z()
ENUM (PROJ (X))= ENUM (PROJ (Y)).

The redefined specification (E0, E,,) specifies R/--- under its initial algebra semantics:
a fact which can be readily verified and is much easier than Lemma 3.7. Thus, we
know this next fact which improves our earlier bounded adequacy theorem for
computable data types in [4], and obtains for us the Second Characterization Theorem
stated in the Introduction.

THEOREM 4.2. Let A be an infinite semicompulable algebra, finitely generated by
elements named in its signature. If A has a computable partition then A possesses a
conditional equation specification, involving 5 hidden functions and 15 +]El conditional
equations, which defines A as a hidden enrichment under its initial algebra semantics.

Unfortunately our strategy for the semicomputable case breaks down at the last
minute"

THEOREM 4.3. There exists a finitely generated semicomputable algebra (having
an initial algebra specification without hidden functions and with only 3 equations !)
which does not possess a computable partition.

The algebra in question is that in Example 2.8 and Theorem 4.3 is merely a
rephrasing of Scott’s theorem about the term model of combinatory logic: Scott has
shown that one cannot even computably partition TMCL into two sets, see Barendregt
1], Theorem 2.21.

REFERENCES

[1] H. P. BARENDREGT, The type free lambda calculus, in Handbook of Mathematical Logic, J. K.
Barwise, ed., North-Holland, Amsterdam, 1977, pp. 1091-1132.

[2] J. A. BERGSTRA AND J. V. TUCKER, Algebraic specifications of computable and semicomputable
data structures, Department of Computer Science Research Report IW 115, Mathematical Centre,
Amsterdam, 1979.

[3] ., A characterisation of computable data types by means of a finite, equational specification
method, in Automata, Languages and Programming, Seventh Colloquium, Noordwijkerhout, 1980,
J. W. de Bakker and J. van Leeuwen, eds., Springer-Verlag, Berlin, 1980, pp. 76-90.

[4], Equational specifications]:or computable data types: six hidden functions suffice and other
sufficiency bounds, Dept. Computer Science Research Report IW 128, Mathematical Centre,
Amsterdam, 1980.

ALGEBRAIC SEMANTICS FOR DATA TYPE SPECIFICATIONS 387

[5] J. A. BERGSTRA AND J. V. TUCKER, On bounds for the specification offinite data types by means of
equations and conditional equations, Dept. Computer Science Research Report IW 131, Mathe-
matical Centre, Amsterdam, 1980.

[6] A natural data type with a finite equational final semantics Specification but no effective
equational initial semantics specification, Bull. EATCS, 11 (1980), pp. 23-33.

[7], On the adequacy of finite equational methods for data type specification, ACM-SIGPLAN
Notices, 14 (11) (1979), pp. 13-18.

[8] M. BROY, W. DOSCH, H. PARSCH, P. PEPPER AND M. WIRSING, Existential quantifiers in abstract
data types, in Automata Languages and Programming, Sixth Colloquium, Graz, 1980, H. Maurer,
ed., Springer-Verlag, Berlin, 1979, pp. 72-87.

[9] J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER AND J. B. WRIGHT, Abstract data types as initial
algebras and correctness of data representations, in Proc. ACM Conference on Computer Graphics,
Pattern Recognition and Data Structure, ACM, New York, 1975, pp. 89-93.

10] J. A. GOGUEN, J. W. THATCHERAND E. G. WAGNER, An initial algebra approach to the specification,
correctness and implementation ofabstract data types, Current Trends in Programming Methodology
IV, Data Structuring, R. T. Yeh, ed., Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 80-149.

[11] J. V. GUTTAG, The specification and application to programming of abstract data types, Ph.D. thesis,
Dept. Computer Science, University o]’ Toronto, Toronto, 1975.

[12] J. V. GUTTAG AND J. J. HORNING, The algebraic specification ofabstract data types, Acta Informatica,
10 (1978), pp. 27-52.

[13] G. HORNUNG AND P. RAULEFS, Terminal algebra semantics and retractions for abstract data types,
in Automata, Languages and Programming, Seventh Colloquium, Noordwijkerhout 1980, J. W.
de Bakker and J. van Leeuwen, eds., Springer-Verlag, Berlin, 1980, pp. 310-325.

[14] S. KAMIN, Final data type specifications: a new data type specification method, in Seventh ACM
Principles of Programming Languages Conference, Las Vegas, ACM, 1980, pp. 131-138.

[15] D. KAPUR AND M. K. SRIVAS, Expressiveness of the operation set of a data abstraction, in Seventh
ACM Principles of Programming Languages Conference, Las Vegas, ACM, 1980.

[16] B. LISKOV AND S. ZILLES, Specification techniques for data abstractions, IEEE Trans. Software
Engng., 1 (1975), pp. 7-19.

[17] M. MACHTEY AND P. YOUNG, A Introduction to the General Theory of Algorithms, North-Holland,
New York, 1978.

[18] A. i. MAL’CEV, Constructive algebras, I., Russian Mathematical Surveys, 16 (1961), pp. 77-129.
[19] Y. M.A/NIN, A Course in Mathematical Logic, Springer-Verlag, New York, 1977.
[20] M. O. RABN, Computable algebra, general theory and the theory of computable fields, Trans. Amer.

Math. Soc., 95 (1960), pp. 341-360.
[21] J. W. THATCHER, E. G. WAGNER AND J. B. WRIGHT, Specification of abstract data types using

conditional axioms, IBM Research Report RC 6214, Yorktown Heights, NY, 1979.
[22], Data type specification: parametrization and the power of specification techniques, IBM

Research Report RC 7757, Yorktown Heights, NY, 1979.
[23] M. WAND, Final algebra semantics and data type extensions, J. Comput. Systems Sci., 19 (1979), pp.

27-44.
[24] M. WIRSING AND M. BROY, Abstract data types as lattices offinitely generated models, Mathematical

Foundations of Computer Science, Eighth Symposium, Rydzyna 1980, Springer-Verlag, Berlin,
1980.

[25] S. ZILLES, Algebraic specification of data types, Project MAC Progress Report 11, M.I.T., Cambridge,
MA, 1974.

[26], An introduction to data algebras, working paper, IBM Research Laboratory, San Jose, CA,
1975.

SIAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0013 $01.25/0

SOME TIME-SPACE TRADEOFF RESULTS CONCERNING SINGLE-TAPE
AND OFFLINE TM’s*

OSCAR H. IBARRA+ AND SHLOMO MORAN

Abstract. Fast simulations of time-bounded single-tape TM’s and offtine TM’s (i.e., TM’s with a
two-way read-only input and one storage tape) by space-bounded TM’s of the same type are presented. The
following results are shown:

(1) Any language accepted by a single-tape TM in time T(n)>= n can be accepted by a single-tape
TM in space Ta/2(n) and time T (n).

(2) Any language accepted by an offline TM in time T(n)>-n can be accepted by an offline TM in
space (T(n) log n) 1/2 and time T3/Z(n)(T1/2(n)+ n/(log n)I/2).

Similar (in fact, in some sense, stronger) results hold for nondeterministic TM’s. For example:
(3) Any language accepted by a single-tape nondeterministic TM in time T(n) n can be accepted

by a single-tape nondeterministic TM in space $(n) and time T2(n)/S(n) for any Ta/Z(n)<-$(n)<=T(n).
Similar time-space tradeotts hold for TM’s with a multidimensional storage tape. Previously known

results on simulation of time bounded by space bounded TM’s had exponential (in T(n)) time complexity.

Key words, single-tape TM, offline TM, time-bounded, space-bounded, time-space tradeoff

1. Introduction. A problem of long standing in complexity theory is finding a
characterization of time bounded Turing machines (TM’s) in terms of space bounded
TM’s. The "exact" relationship between time and space is not known. It is not even
known whether or not polynomial space bounded multitape TM’s are strictly more
powerful than polynomial time bounded TM’s. Currently the best simulation result
known for multitape TM’s is the following [1]"

(a) Any language accepted by a T(n) time bounded multitape TM can be accepted
by a T(n)/log T(n) space bounded multitape TM.

When the model of computation is a single-tape TM or an ofttine TM, sharper
results are known [3], [6]. (A single-tape TM has a single two-way read-write tape
which initially contains the input string. The tape is infinite to the right only. An ofltine
TM has a two-way read-only input tape with endmarkers and a single read-write
storage tape which is infinite to the right only. See [2] for normal definitions.) The
following results are known [3]’

(b) Any language accepted by a single-tape TM in time T(n) >= n 2 can be accepted
by a single-tape TM in space T/2(n).

(c) Any language accepted by an ofltine TM in time T(n)>=n can be accepted
by an otttine TM in space (T(n) log n)/2.

The space-bounded simulating machines in results (a)-(c) above have the property
that they operate in time exponential in T(n). In this paper, we show that in (b) and
(c) the simulating machines can, in fact, be made to operate in time polynomial in
T(n). Specifically, we show the following"

(1) Any language accepted by a single-tape TM in time T(n) >- n 2 can be accepted
by a single-tape TM in space T/2(n) and time T2(n).

(2) Any language accepted by an otttine TM in time T(n)>=n can be accepted
by an ofltine TM in space (T(n) log n)/ and time T3/Z(n)(Ta/Z(n)+n/(log F/)1/2).

* Received by the editors July 1, 1981, and in revised form August 23, 1982. This research was
supported in part by the National Science Foundation under grant MCS8102853.

+ Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.
Present address, Department of Computer Science, Technion, Haifa 32000, Israel.
In the sequel, the abbreviation TM, without an adjective, refers td a deterministic TM.

388

TIME--SPACE TRADEOFFS FOR TM’s 389

(3) Any language accepted by a single-tape nondeterministic TM (NTM) in time
T(n)>=n :z can be accepted by a single-tape NTM in space S(n) and time T2(n)/S(n)
for any T1/:Z(n)<-S(n)<-T(n).

(4) Any language accepted by an offline NTM in time T(n)>-n can be accepted
by an offline NTM in space S(n) and time T:Z(n)(l+n/S(n))/S(n) for any
(T(n log n) 1/:z <-S(n <- T(n).

Similar results hold for TM’s with a multidimensional storage tape.
The simulation techniques we present in this paper differ from the ones in [3],

where simulation techniques with similar space bounds but exponential time bounds
are given, in that instead of trying all of the possible "crossing sequences" in order
to decide if an input is accepted, we record the history of the "crossing moves" of
the simulated machine, in a way that makes it possible to reconstruct the computation
of the machine in a relatively short time.

Our definition of time/space complexity is the following: A TM or an NTM has
time complexity T(n) (respectively, space complexity S(n)) if it halts on every input
of length n after at most T(n) steps (respectively, after visiting at most S(n) tape
cells). The results in this paper, however, remain valid for other definitions of
time/space complexity.

2. The history of a computation.
DEFINITION 1. A sequence B (Bo, BI, B2,...) is a legal partition of a semi-

infinite tape F if for each i, Bi is a "block" of a finite number of consecutive cells of
F, Bi+ is directly to the right of Bi, and each cell of F belongs to a unique Bi. See
Fig. 1.

tape F

FIG. 1. A legal partition of F.

DEFINITION 2. Let M be a single-tape TM and w be in 5;*. Let B be a legal
partition of the tape of M. Then for each nonnegative integer n, the history ofM on
input w with respect to B after n steps, denoted by HIST (M, w, B, n), is a finite sequence
of pairs (dx, qx), (dE, q2),"’’, (din, qm), where di is in {-1, +1} and qi is a state of M,
and is defined as follows:

(a) HIST (M, w, B, 0) is the empty sequence.
(b) If M’s head does not cross a boundary between two consecutive blocks of B

during its nth move on input w, then HIST (M, w, B, n) HIST (M, w, B, n 1).
(c) If M’s head crosses a boundary between two consecutive blocks during the

nth move, then HIST (M, w, B, n) HIST (M, w, B, n 1), (d, q) where d is 1 if T’s
head moved left, + 1 otherwise, and q is the state in which M was during this move.
(We assume without loss of generality that M changes state before moving its head.)

DEFINITION 3. Let M, w, B be as in Definition 2. Then a (possibly infinite)
sequence (d, q1),..., (dn, q,)," is the history of M on input w with respect to B,
denoted by HIST (M, w, B), if the following holds:

(a) For each positive integer n, HIST (M, w, B) contains a prefix which is equal
to HIST (M, w, B, n).

(b) Each prefix of HIST (M, w, B) is equal to HIST (M, w, B, n) for some n.
The length of HIST (M, w, B) is the number m of elements in it. (Note that it is

possible that m

390 OSCAR H. IBARRA AND SHLOMO MORAN

In the sequel we shall be interested in a specific type of legal partitions which
we now define.

Drirq’rioN 4. Let s => 1 and 1 -</" =< s. Then the [th legal partition o] size s (see
Fig. 2) is the partition (B0, B1, B2," ’) defined by:

(a) B0 consists of cells 1, 2,...,/’.
(b) For > 0, Bt consists of cells f + (t 1)s + 1 to f + ts.

FIG. 2. The fth partition ol size s.

3. Single-tape TM’s. We will need the following lemma which is similar to
[3, Lemma 4].

LZMMA 1. Let M be of time complexity T(n), and let S(n)= Ta/2(n). Let w be in
Z*, [wl length of w n. For each f, 1 <-j <=S(n), let B be the jth partition of size S(n),
and let lj be the length of HIST (M, w, BJ). Then for some fo, 1 <=fo <=S(n), Ifo <=S(n).

Proof. It is not hard to verify that the sum la +... + lsn gives the total number
of times M’s head, on input w, crosses a boundary between two adjacent cells. This
number is at most T(n). Hence, la +... + Isn<= T(n)<=S2(n). This implies that for
some fo, ljo<-S2(n)/S(n)=S(n). [-]

DZVINITIOrq 5. S(n) is fully space constructable in time T(n) by a single-tape TM
if there is a single-tape TM, which on any input of length n, halts after using exactly
S(n) cells within time T(n).

TIzOrZM 1. Let A be accepted by a single-tape TM M in T(n) time, where
T(n)>=n 2. Assume that S(n)= T/Z(n) is fully space constructable in TZ(n) time by a
single-tape TM. Then A can be accepted by a single-tape TM M in S(n space and
TZ(n time.

Proof. The TM Ma simulating M is described below. Informally, on input w,
where [wl n, M1 operates in S(n) stages, where at stage f for 1 <_- f <_- S (n), Ma attempts
to simulate M on input w by using HIST (M, w, B) (B is the/’th partition of size
S(n)), which is recorded on M’s tape. If the length of HIST (M, w, Bj) is greater than
S(n), then M1 stops the simulation and goes to .the next stage. Since by Lemma 1
there is at least one fo for which the length of HIST (M, w, Bi) is at most $(n), the
simulation eventually succeeds.
M has a 4-track tape, where the track names are COUNT, INPUT, STACK

and SCRATCH. COUNT will contain a number/’, 1-<_/"-<_ $(n), which indicates the
stage Ma is in. INPUT stores the input string w, STACK and SCRATCH are used
in the simulation of M during stage f as described below.

For a given/’, the computation of M is (conceptually) divided into time segments
by the following rules:

1) Initially M is at time segment 0.
2) M goes from time segment to time segment + 1 immediately after M’s

head crosses a boundary between two consecutive blocks of B i. (Note that the total
number of time segments is equal to 1 + length of HIST (M, w, Bi).)

Let ng be the number of steps M makes before it enters time segment i. During
the simulation of time segment i, STACK will contain HIST (M, w, Bi, ng + 1), while
SCRATCH will contain the unique block B of B visited by M’s head during this
time segment. Initially STACK contains the empty list and SCRATCH contains Bo.

TIME-SPACE TRADEOFFS FOR TM’s 391

The simulation of time segment i- 1 is terminated when M’s head attempts to
cross the boundary between two consecutive blocks. In order to simulate time segment
i, M1 does the following:

Step 1. [[Update historyll. If there are already S(n) pairs in STACK then terminate
the simulation of this stage; else add the appropriate pair (d, q) to STACK.

Step 2. IIFind current block[[. By scanning STACK from left to right, find the
unique integer k such that Bk is the block visited by M’s head during the ith time
segment. (Note that if STACK (dl, qx).. (dr, qt), then k d + d2 +" + dr.)

Step 3. [IMark previous time segments when Bk was visitedl[. Scan again STACK
from left to right, and mark each pair (d,, q,) such that Bk was visited during the
mth time segment.

Step 4. IIReconstruct the contents of Bk[I.
4.1. Using INPUT, write on SCRATCH the contents of Bg at the beginning of

the computation. If k 0, recompute the value of Bk after the 1st time segment.
4.2. Repeat 4.2.a and 4.2.b until there are no more marked pairs on the STACK.
4.2.a. Find the first marked pair (d,,, q,). Delete the mark from it.
4.2.b. Using the information (d,, q,,) above, recompute the contents of B at the

end of the ruth time segment by direct simulation of M.
Verifying the correctness of the above simulation is a straightforward induction,

and is left to the reader. Since during the whole computation SCRATCH always
contains the contents of a single block, only $(n) space is needed for SCRATCH.
Also, STACK contains at most S (n) pairs, and the length of each pair (d, q) is bounded
by a constant independent of the input. Hence, S(n) space is enough for STACK. It
follows that the computation of M1 can be carried out in S(n) space.

To prove the time complexity, we first prove that for each f and i, the simulation
of time segment at stage f, as described above, takes O(T(n)) time"

Step 1 requires O(S(n)) time. Step 2 requires scanning STACK and computing
k, and this can be done by a single-tape TM, by a technique similar to the one in [4,
Thm. 10.11], in O(S(n)logS(n)) time. Steps 3 and 4.1 can also be computed, by a
similar technique, in O(S(n) log S(n)) time.2

Each time step 4.2.a is executed requires O(S(n)) time, and this step is executed
less than S(n) times, which gives a total of S:(n)=O(T(n)) time. The total time
needed to simulate the executions of step 4.2.b is bounded by the time complexity
of M, which is T(n). Altogether, step 4 requires O(T(n)) time, and steps 1, 2, 3
require less than T(n) time. Hence, O(T(n)) time is enough to simulate time segment
at stage/’.

Since at each stage at most S(n) time segments are simulated, and there are at
most S(n) stages, we have that the total time required by M to simulate M is at
most O(Sa(n)T(n))= O(T(n)). [3

The assumption of space constructability of S(n) in Theorem 1 can be removed
if we are willing to increase the time of simulation slightly:

COROLLARY 1. Let A be accepted by a single-tape TM M in T(n) time, where
T(n)>-n . Let S(n)= T/2(n). Then A can be accepted by a single-tape TM M1 in
S(n) space and TS/2(n) time.

Proof. M[does the simulation for S(n)= 1, 2, 3,.... I-1
One can verify that the simulation technique of Theorem 1 generalizes to non-

deterministic computations. (The only difficulty may arise from the fact that when

The time needed in step 4.1 to recompute the value of Bk after the 1st time segment when k 0 is
counted in the time requirement of step 4.2.b.

392 OSCAR H. IBARRA AND SHLOMO MORAN

using nondeterminism, each time the contents of a block Bk is reconstructed by M1,
M1 may use a different computation which satisfies the same history with respect to
B. However, one can check that this does not affect the correctness of the proof.)
Now when the simulating machine M1 is nondeterministic, it does not have to go
through all of the $(n) stages of the simulation. It can guess a f0, 0 <fo -< 5:(n), such
that the length of HIST (M, w, Bj) is small, and then simulate M only at stage/’o.
This decreases the time complexity of the simulation by a factor of S (n), which results
in a "trade-off" phenomenon, stated in the following:

THEOREM 2. Let A be a set accepted by a single-tape NTM M in T(n time, and
let S (n be such that T1/2(n <= , (n <--_ T(n). Assume that S (n is fully space constructable
in T2(n)/S(n) time. Then there is a single-tape NTM M1 accepting A in S(n) space
and TE(n)/S(n) time.

Proof (sketch). Let M and S(n) be given, and let w be an input to M, Iwl- n.
Let B be the]th partition of size S(n). As in Lemma 1, one can prove that there is
a]0 such that the length of HIST (M, w,Bi) is at most T(n)/S(n). MI guesses this
]o, and then carries out the simulation of stage]0 as in the proof of Theorem 1. Since
T(n)/S(n)<=S(n), S(n) space is enough to restore HIST (M, w, Bi). As in the proof
of Theorem 1, one can show that the time needed to simulate time segment is
O(T(n)). Since there are at most T(n)/S(n) time segments, we have that the total
time needed for the simulation is O(T2(n)/S(n)).

It is unlikely that the time bound of TE(n)/S(n) in Theorem 2 can be improved.
For otherwise, by setting S(n)= T(n), we would have that every set accepted in T(n)
time by a single-tape NTM can also be accepted in less than O(T(n)) time by a
single-tape NTM, which is very unlikely.

4. Oltline TM’s. An offline TM is a TM with a two way read-only input tape
and a single work-tape. (See [2] for a formal definition.) The technique used to prove
Theorem 1 can be used to prove

THEOREM 3. Let A be a set accepted by an offline TM M in T(n)>= n time. Let
T(n) Ta/2(n)(T/:Z(n)+ n/(log n)/2). Let S(n) (T(n) log n) /2 be fully space con-
structable in time T(n) by an offline TM. Then there is an offline TM M1 accepting
A in S(n) space and Tl(n) time.

Outline of proof. M simulates M in a manner similar to that described in the
proof of Theorem 1, with the following modifications:

(a) The history of a computation of an otItine TM M on input w with respect to
a legal partition B is a sequence of triples (d, q, k), where d and q are as in Definition
2, and k is an integer, 1 <_- k _<- n (n Iwl), which indicates the location of the read-only
head on the input tape immediately after M’s storage head crossed a boundary between
two blocks. Thus, a history of length m can be stored in O(m log n) space.

(b) Let B be the fth partition of size S(n) (T(n) log n)/. Then one can prove,
in a way similar to the proof of Lemma 1, that for some fo, 1 <-fo <- S(n), the length
of HIST(M,w,B) is at most (T(n)/logn)1/ and hence it can be stored in
(T(n) log n)/2 space.

(c) In steps 4.1 and 4.2.a of the simulation, M1 has also to move and reposition
the input head. This can be done in O(n) additional steps at each time.

Space and time analysis. Since each block contains at most O((T(n) log n)1/)
cells, and we have to store only histories of length (T(n)/logn)/2, which can be
done in (T(n)log n)1/2 space, only (T(n)log n)/ space is needed. The total time
required for repositioning the input head during the simulation of time segment
at stage/" is at most n(T(n)/logn)/, since there are at most (T(n)/logn)/2 time

TIME-SPACE TRADEOFFS FOR TM’s 393

segments. It can be shown that this implies that the time required to simulate
time segment at stage/" is O(T(n)+n(T(n)/logn)l/2). Since there are at most
(T(n)/logn)/2 time segments at each stage, and there are (T(n)logn)/2 stages,
the total time needed for the simulation is O(T(n)(T(n)+n(T(n)/logn)/2))
O(T3/2(n)(T1/2(n)+n/(log n)l/2))" []

The analogue of Theorem 2 for offline NTM’s is:
THEOgEM 4. Let A be accepted by an offline NTM in T(n) time, and let $(n) be

such the (T(n) log n)/z <-s(n)<- T(n). Assume that S(n) is fully space constructable
in TZ(n)(l+n/S(n))/$(n) time. Then there is an offiine NTM accepting A in S(n)
space and TZ(n)(1 +n/$(n))/$(n) time.

Proof. Omitted. F!

5. Related results. We have presented time-space tradeoff results concerning
single-tape and offline TM’s. These results can be used to sharpen some known
hierarchy results. For example, the following result follows from Theorem 1 and
diagonalization: Let T(n)>=n 2. Let S(n) be a space bound such that
lim_, T/2(n)/S(n)=O. Then there is a positive integer k such that the class of
languages accepted by single-tape TM’s operating in space $(n) and time Tg(n)
properly contains the class of languages accepted by single-tape TM’s operating in
time T(n).

The simulation technique described in this paper can be generalized to hold for
offline TM’s whose storage tape is multidimensional. (See [2], [5] for a formal
definition.) An r-dimensional storage tape is a tape where each cell is identified with
an element Y (x 1,..., x) of Z. (Z is the set of all integers.) Two cells and
are adjacent if for some 1 _-< io _-< r, [Xgo- Ygol 1, and xi yg otherwise. Thus, the storage
head of the machine can move in 2r directions.

The following is a generalization of Theorem 3. A similar result, but with
exponential time complexity, has been shown earlier in [5].

THEOREM 5. Let A be a set accepted by an offline TM M with an r-dimensional
storage tape in T(n)>=n time. Let Tl(n)= T2(n)(n/(T(n) log T(n))a/r/l)+log T(n)).
Let S(n)=(T(n)log T(n))r/r+) be fully space constructable in Tl(n) time by a 1-
dimensional offline TM. Then A can be accepted by an offline TM M with an
r-dimensional storage tape in S (n space and Ta(n time.

We shall sketch the proof of Theorem 5 for the case when r 2. Let s >-1 and
1 <= j <-s. Then the jth legal partition of size s of the 2-dimensional space, denoted by
Bi, is a partition of the plane to blocks, where each block is a square which for some
u and v, contains all the cells (x, y) satisfying us +f < x <- (u + 1)s +f, vs +f < y <=
(v + 1)s +/’. (See Fig. 3.) Let s be given, and let Y, 37 be 2 adjacent cells of the
2-dimensional plane. Then it is easy to verify that for some unique j, 1 <-j =< s, Y and
7 belong to 2 distinct blocks of the jth legal partition of size s of the plane.

(i,i)

(o, o)

Fc;. 3. The/th h’gal partition o]’size o]’the plane.

394 OSCAR H. IBARRA AND SHLOMO MORAN

The (2-dimensional) history of the computation of M on input w with respect
to B is a sequence of 4-tuples (d, q, k, p), where d is one of four directions, q and k
are as in the definition of the history of an offline TM, and p is an integer, 1 =< p -< s,
which indicates the exact location of M’s storage head immediately after it crossed a
boundary between 2 adjacent blocks. (Note that the history of an r-dimensional TM
will be a sequence of (r + 2)-tuples.) A history of length m can be stored in O(m (log s +
log n)) space.

The analogue of Lemma 1 for 2-dimensional space is the following:
Lemma 2. Let M be an offline TM with a 2-dimensional storage tape operating

in time T(n). Let w be in Y*, [w[=n, and let s <-T(n). Then for some 1 <-_f <-s, the
length of HIST (M, w, B) is at most T(n)/s.

Clearly, the space required to store an s by s block is O(s2). The space required
to store a history of length T(n)/s is O((T(n)/s)(logs+logn)). Substituting s=
(T(n) log T(n))/3, we get that the space required for both tasks, and hence for the
simulation, is O(T(n) log T(n))/3. We omit the time analysis.

Using a well-known technique for simulating multidimensional TM’s by one-
dimensional TM’s (see [2]) we get:

COROIIARV 2. Let A be accepted by an offline TM M with an r-dimensional
storage tape in T(n)>-_ n time. Then A can be accepted by a one-dimensional offline
TM in O(T(n) log T(n))/(+ space and O(Te(n)) time]’or some e.

In the corollary above, the exponent e depends on the dimension r of the TM
M. It would be interesting to know whether there is a fixed e such that
(T(n) log T(n))/(r+) space and T (n) time are sufficient for all r’s.

REFERENCES

[1] J. E. Hor’CROWr, W. J. PAUL AND L. G. VALIANT, On time versus space, J. Assoc. Comput. Mach.,
24 (1977), pp. 332-337.

[2] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

[3],Relations between time and tape complexities, J. Assoc. Comput. Mach., 15 (1968), pp. 414-427.
[4],Formal Languages and Their Relation to Automata, Addison-Wesley, Reading, MA, 1969.
[5] M. C. LouI, A space bound for one-tape multidimensional Turing machines, Tech. Memo. TM-145,

Lab. for Computer Science, Massachusetts Institute of Technology, Cambridge, 1979; Theoret.
Computer Sci. to appear.

[6] M. S. PATERSON, Tape bounds for time-bounded Turing machines, J. Comput. System Sci., 6 (1972),
pp. 116-124.

SlAM J. COMPUT.
Vol. 12, No. 2, May 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1202-0014 $01.25/0

GENERALIZED p-ADIC CONSTRUCTIONS*

MARKUS LAUER-

Abstract. In this paper "abstract lifting algorithms" for polynomial equations over a commutative ring
with identity element are developed. They lift solutions modulo some ideal I to solutions modulo another
ideal J ! (e.g. J IT). These algorithms are obtained by applying Newton’s method to the polynomial
equations and include for example the Hensel-type polynomial factorization algorithms as special cases.

Key words, algebraic algorithms, modular algorithms, p-adic constructions

1. Introduction. Hensel’s lemma is a strong and widely used tool in algebraic
computation; see, for example, [Mus71], [Mus75], [Yun74a], [Yun74b], [W&R75].
It is applied to factorization, gcd calculation, division with remainder and squarefree
decomposition of integral polynomials. It provides, in the case of univariate poly-

Tnomials, a method to compute (or "lift") from a solution of the given problem mod p
a solution mod p7-/1, where p is a prime integer, and can be generalized to multivariate
polynomials. Zassenhaus in [Zas69] proposed a "quadratic" version of Hensel’s lemma
where factors of a polynomial mod pa are lifted to factors mod p27-.

Yun in [Yun75] pointed out the similarities between Hensel’s lemma and Newton’s
method; more precisely he showed that Hensel’s lemma is an application of Newton’s
method in an algebraic setting, namely polynomial factorization.

This Hensel-Newton technique can be applied to more general problems such
as to the solution of polynomial equations. Lewis in [Lew69] used it to lift solutions
of (nonlinear) diophantine equations modulo prime powers. In fact our basic Theorem
4.2 is a fairly straightforward generalization of Lewis’s Theorem D to commutatix;e
rings with identity and finitely generated ideals.

Our theorems lead to abstract algorithms in the sense of Musser in [Mus75]: an
abstract algorithm works over abstract algebraic domains (in our case commutative
rings with identity), and must terminate. No consideration is given to the effectiveness
of its steps; this has to be regarded if it is specialized to a concrete algorithm by
specializing the abstract algebraic domain to a concrete one, for example to the ring
of integral polynomials.

After the next two (preliminary) sections we present in 4 the generalization of
the "Lewis-Hensel-Newton method" to polynomial equations over a commutative
ring with identity which leads to an abstract linear lifting algorithm. In 5 we apply
Zassenhaus’s technique to obtain a quadratic lifting algorithm, and Musser’s iterative
method to get our most general abstract lifting algorithm. Section 6 shows some of
the difficulties which arise when the abstract lifting algorithms are specialized to
concrete ones.

2. Newton’s method and Hensel’s lemma. It is well known that Hensel’s lemma
can be regarded as an application of Newton’s (numerical) method in an algebraic
setting; see [Yun75] for a detailed discussion. Let us briefly recapitulate this view.

Newton’s method provides an iteration formula for approximating a root of a
differentiable function f(x): Let f()= 0 and let Xo be an approximation for , i.e.,

* Received by the editors May 17, 1978, and in revised form September 1, 1980.

" Institut f/ir Informatik I, Universit/it Karlsruhe, Karlsruhe, West Germany.

395

396 MARKUS LAUER

Xo+6 where 6 is sufficiently small. Assume that f’(Xo)# 0, where f’ denotes the
first derivative of f. Taylor series expansion of f at Xo yields

o =f() =l(xo + a) =f(xo)+. l"(xo)+ o(a).
Since is small we have

o-f(xo) + ,f’(xo);

since f’(xo) # 0 we can solve this linear equation for 6:

f(xo)
Y(xo)’

and so get a new approximation

f(xo)

Hensel’s lemma, in its formulation for factoring univariate integral polynomials,
reads as follows:

LEMMA 2.1. (Hensel). Let A 1, A 2, C [x], where denotes the ring of integers,
p a prime, T a positive integer. Suppose that

A1A2=-C mod p,
and thatA andA2 are relatively prime mod p. Then there existA, A *z [x such that

set

Then

Proof. Let

AA* =-C modp T+I.

A1A2 C + Vp 7", vY[x];

A* =AI +Blp T, A’ A2 +B2p T.

AA =A1A2 +(B1A2 +B2Aa)p 7 +B1Bzp2"

=- C + (V +B1A2 +B2A 1)p " mod pT+l
C mod pT+l,

V +B1Az +B2A1 =0 mod p.

Since A and AE are relatively prime mod p, this linear congruence can be solved for
B1 and BE.

To see how this is an application of Newton’s method we note that (A 1, A2) is
a mod p r-solution ("approximation") of the equation

XIX2--C =0

over [x]. We get the new approximation by adding an increment: A* Ai +Bp,
1, 2. (In the "numerical" Newton’s method: x x0 + 6.) Plugging the new approxi-

mation (with indeterminate increment) into the equation, expanding, and cutting off
high order terms we get a linear equation for the increment. This can be solved if the

GENERALIZED p-ADIC CONSTRUCTIONS 397

old approximation satisfies a "solvability condition" (A andA2 relatively prime mod p
for Hensel’s lemma, f’(Xo) # 0 for the "numerical" Newton’s method).

One difference, however, should be noted: the numerical Newton’s method can
be used only if a root of f is known to exist; in Hensel’s lemma one only needs a
factorization mod p to start with.

After establishing conventions for notation in the next section we will generalize
that approach to arbitrary polynomial equations.

3. Notation. We use the standard basic facts of ring theory as described for
example in [Lfin73]. In all that follows R denotes a commutative ring with identity
element; denotes the ring of integers.

DEFINITION 3.1. If k, m are positive integers, Rkm is the set of all k m matrices., W* denotesW (wj) over R, i.e. with wj R, 1 k,/" 1, m. If W Rkxm,
the transposed matrix, an element of Rmxk. We write R (" for R,I and a
(al, ’, a,)* for the elements of R (".

DEFINITION 3.2. If I is an ideal in R we write I
denotes the ideal in R generated by {r1,"" ’, r,,}. If R1,.. ", R, are subsets of R,
(R 1, ’, R,,) denotes the ideal in R generated by (.J "= 1R. If V, W Rkxm and I R,
V-- W modI means v--w modL 1, .., k,] 1, .., m.

DEFINITION 3.3. Let f6R[Xl,’’" ,Xr], r 1. Let Yl,""", Yr be new indetermin-
ates. Then Of/Ox denotes the coefficient of the term y in f(xl +yl,’", xr +yr)a
R[Xl,’’", x][yl,""’, y]. (Of/OxjR[xl,"", x].)

4. Linear lifting. We now generalize the linear Hensel construction. That is, we
apply Newton’s method to polynomial equations over R and lift solutions modulo
powers of ideals.

LEMMA 4.1 (Taylor expansion). Let fR[xl,"’,x], r_->l; yl,"’,Yr new
indeterminates. Then

f(xl+yl,""" ,x+y)=f(xl,’’" ,x)+ y +f,
’= 0x.

where F R Ix1, ", x,][yl,. ’, yr], and

F-=0mod (yl," ", y)2 R[xl,. ",Xr][Yl," ", Y].

Proof. Obvious from Definition 3.3.
Now we are ready for a first generalization of the Hensel construction.
THEOREM 4.2. Let I be a finitely generated ideal in R; f, , f, R[xl, ", Xr],

r >-- 1; al, , aeR with

fi(al,’" ", a)0 mod/, i=l," .,n.

Ofi (al, .ar)eR, i= l n,]=1,... r,uq
Oxi

let each system of linear equations with coefficient matrix U (uj) R, have a solution
mod I. Then]’or each positive integer T there exist aT, T

’’,a Rwith

fi(a(r) r’’,a)OmodI i=l,...,n,

and

a(T) a. mod L

398 MARKUS LAUER

(T)Proof. We proceed by induction on T. If T 1, we set a a.,/" 1,..., r. So
let T => 1 and assume that the proposition is true for T. So there exist a (r),..., a (r)r E .R
with

(1) fi(aIW), ", a(W))Ormod IT, 1, n,

and

(2) a .T)=- ai mod I, /’ 1,.’’, r.

Since I is finitely generated, IT is finitely generated. Let

(3) Ir=(q,..., q,,).

By (1) and (3) there exist v E R, 1,. ., n, k 1,. ., m, with

(4) fi(aT), aT)) ., l)itcqt.
k=l

We set

(5)

with

(T+I) (T)
aj aj +BI,

(6) B.= Y bikqkeIT bjkeR, j=l,...,r, k=l,...,m,
k=l

where we want to choose the "unknowns" blk such that the proposition of the theorem
(T+I)holds for a ,/" 1, ., r.

Let

(7.) =Ofi (a(xr), a l, n, j= l, r.(7) U ij
OXj

We then have, by (5),

fi(aT+), a(T+))=fi(aT)r +B, aT)

!T)n. mod IT+=fi(aT), a(rT))+ U,, ._.,
i=1

(T)=-- Vikq, + U ij bkqk
k=l 1=1 k =1

kZ (T)/. T+I(8) =-- Vgk + U ii ’ik qk rood I
i--1

Now by (3), (8)--0 mod IT+ if

(by Lemma 4.1. and (7))

(by (4) and (6))

(9) Vik "4- U (T)L’gi", =- 0 mod L 1, n, k 1, .., m.
/=1

These are m systems of linear equations, each with coefficient matrix (U (T)
0"), and we

want solutions rood L By (2) and (7),
(T)uq =uqmodI, i=l,...,n,]=l,...,r.

GENERALIZED p-ADIC CONSTRUCTIONS 399

So (9) is equivalent to

(10) Vik + i uiibjk =- O mod L i=l,...,n, k=l,..’,m.
j=l

By the assumption on (u0), big which satisfy (10) do exist, and so, for these bik
fi(a(lr+l, .., a(rr+l) =- 0 mod it+l, 1, n.

Clearly, by (2) and (5),

a(T+l) -= a mod I,] 1,..., r.

As a sample application let us see how we get the Hensel construction as a
specialization of that theorem. Let R [y and I (p) R, where p e is a prime.
Let C e R and

fl--XlX2-CeR[Xl, X2].

Let A, A2 R with

fl(A 1, A2)= A1A2-C =-0 mod I (p).

Then

c3fl (AI, A2)Of (A 1, A2) A2, u 12
0X2

Each system of linear equations with coefficient matrix U (A., A 1) R12 has a
solution mod (p) if and only if A and A2 are relatively prime mod (p). If A(T, A(T
satisfy

A(TA(2T-C Vp r =--0 mod (p)r (p)r,

we get A7+1) =AT +Blp r, A(2r+l) =A(2T) +B2p r, by solving (for B1 and B2)

V+B1A2+B2AI=-Omod (p).

The proof of Theorem 4.2. is constructive and leads to our first abstract lifting
algorithm. For each lifting step we have to solve the linear systems (10). The coefficient
matrix U (uii) remains always the same, so we can do a "preconditioning" which
not only increases the efficiency of the algorithm (though we are not considering the
efficiency of an abstract algorithm, preconditioning does increase efficiency if we
specialize it to a concrete algorithm), but also turns out to be useful in the next section.

If U Rnr, each linear system with coefficient matrix U has a solution mod I if
and only if U has a "right inverse" mod/, i.e. there exists a W Rn such that

UW =-E mod L
where E denotes the n x n identity matrix. Then, if a e R ("), the system

U a
has the solution

Wa R (.

So our abstract lifting algorithm takes as an additional input a right inverse of U.

4.00 MARKUS LAUER

ALGORITHM H (Hensel’s linear lifting).
Inputs" P {P, ", Pe} R with I (p,. ., p) R

f,... ,f, eR[xa,..., x], r >- 1;
a,.. , a R with

f(a,. ., a)=-Omod/, 1,. ., n;
W Rr, with

UW E mod L where
U (uij) R and
uij (Ofi/Oxi)(al, ar), 1,"’, n, f 1,..

T, a positive integer.
Outputs" A 1, ",Ar R with

fi (A 1," ", At) 0 mod !, 1,.. , n, and

A a mod/,] 1, , r.

(1)[Initialize.]
set t 1, a(t)-(at), ,a(t)*(al, ar)*R (r)

(2)[Lift.]
while < T do
begin compute q 1, ’, q, R with

I’ (ql, , q,,) R
/k (Vlk, IAnk)* R (", k 1, m, with

lt), (t)fi(a ", ar =1Vikqg, 1," ", n;
set b-k - WOk R r), k 1, , m

(t+l) <-" (t) ..1_ Ek=l ffkqk R (r)"

t#t+l
end.
(3)[Finish.]
set A +- a t),..., Ar - a t) exit

5. Quadratic lifting and another generalization. In [Zas69] Zassenhaus proposed
a "quadratic Hensel construction" which can be carried over to the construction in
Theorem 4.2. If we re-examine the proof of Theorem 4.2 we see that by Lemma 4.1
the congruence (8) holds not only mod Ir/l but even mod 12T. So we may try to
determine the r+x such that (8)0 mod 12 By (3) this holds ifj

(T) I, T(11) vi + u 0 "J 0 mod I
/’=1

(T) mod ITSince in general u ii uii we cannot pass from u (T)
ii to uii as we did in (10).

But the next theorem shows that (11) can be solved.
THEOREM 5.1. Let L f, aj, U (uii) be as in theorem 4.2; let W Rrn with

UW E mod L
where E denotes the n n identity matrix over R. Let S be a nonnegative integer. Then
there exist a (is), a r(S) R with

fi(aS) (s) 2
,’’’,ar)--0modI

a mod/, f 1,.
Let

,r.

(s) Ofi (a (s) a (s)) R"U i/ O"X
,n, f l, ,r,

GENERALIZED p-ADIC CONSTRUCTIONS 401

Then them exists a W(s) Rr, with

U(s)Ws) E mod i2s.

Proof. Though the existence of a is),.. ", a s) is guaranteed by Theorem 4.2 with
T 2s, we will prove it again, now using a quadratic construction. We proceed by
induction on S. If S 0, we set aS) a/.,/" 1,..., r, and Ws)= W. So let S _-> 0 and
assume that the proposition is true for S. So there exist a Is),..., a Cs)r R with

(12) fi(aS, .., arS))O mod 12, 1,. ., n,

and
(s)a =- a/. mod I.

(17) B/. b/.t.qt. 12s, b/.k e R. / 1. . r.

We have by (16)

fi(a(S+l), a(S+l)=fi(aS)r +B1, a

.,r,

(18) =- Y v + u o]q mod
k=l /’=1

By (13) the m systems of linear "equations"

(s
Vik + u i/.)b/., --0 mod 12S

have solutions b/. mod 12, and so by (14)

(18) =-0 mod Iz+l

Clearly by (16)
(s+) (s)a a/. -aimodI, j=l,...

i (s)n mod/2s+1=f,(ais), a(rS)+ ui/. /.
/=1

(by Lemma 4.1. and (7))
(s)=- 2 v,.q. + ui/. 2 b/..q. (by (15) and (17))

k=l 1=1 k=l

We set

(16)

with

and w(S) e Rr. with

(13) u(S)w(s) =-E mod I.
Let

(14) 12 (q,..., q,,) R.

By (12) and (14) there exist vi R, 1,..., n, k 1,..., m, with

(15) fi(aS), a E viq.
k=l

402 MARKUS LAUER

Now, by (16) and (17)

so by (13)

(19)

U(s+) =- U(s) mod Ias,

u(s+’)W(s) E mod 12s.
Thus by (14) there exist Dk e Rnn, k 1,..., m, with

(20) u(s+)W(s) =E+ D,q,.
k=l

We set

(21) W(s+’> w(S)+ Y Zqg,
k=l

where we want to choose the "unknowns" Z eR. such that the proposition of the
theorem holds for W(s+l). Then, by (21),

u(S+l>w(S+’> u(S+)w(S) + y u(S+’>Zq
k=l

(22) E + (Dk + u(S+a)Z)q by (20).
k=l

By (14), (22)--E modIzs+’ if

D, + u(s+’)Z =-0 rood Is, k I, , m.

By (19) this holds if we set

Zk w(S)Dk. 1-]

This constructive proof leads to the next abstract lifting algorithm. It lifts not
(s) w(S) w(S)only the a but also the Since the final will be needed in another algorithm,

it belongs to the output.

ALGORITHM Z (Zassenhaus’ quadratic lifting).
Inputs: P {Pl, Pe} c R with I (pl, Pe) R

f," ,f, eR[x," ,x], r-l;
a a, a with

fi(al," ", ar)----O mod/, 1,. ., n;
W e Rr, with

UW=-E mod/, where E is the n n identity matrix,
U (uij) e R, and
Ui] (Ofi/Oxj)(al, ", ar), 1," ", n,] 1,. ., r;

S, a nonnegative integer.
Outputs: A 1, Ar R with

fi(A1, ,Ar)=-OmodI, 1, ,n, and

A. --ai mod I,] 1,..., r;
W Rrn with

(1)[Initialize.]
set s 0, a(>= (a (s),

Off’ ------ E mod i2s where
U (ai) e R,, and
aii (Ofi/Oxi)(A 1,’" ", At), 1,. ., n, / 1,. ., r.

(s)), (a, a)* eR (r> W(s)
",ar <- <-W.

GENERALIZED p-ADIC CONSTRUCTIONS 403

(2)[Lift.]
while s < $ do
begin compute q x, , q,, R with

Izs (qx, ",q.) R;
Tk (Vlk, ’, V.k)* S R ("), k 1, , m, with

fi(a, a)= y" v,kqk, i= 1 n"k=l
set b-k W(S)k R (r) k 1, m"

set

end.
(3)[Finish.]

i=1,...,n,j=l,...,r;
Dk R.., k 1,..., m, with

U(+)W() E + k Dkqk
Zk -- W(S)Dk e Rr,, k 1," ", m;
W(S+l) W(S) + ,m Zkqkk=l

s-s+l

(s) W(S).set A - a s) Ar a /" exit.

Musser in [Mus71, 75] generalized the Hensel construction in a different way to
nonprincipal ideals: the factors are not lifted modulo powers of an ideal but modulo
ideals which are generated by powers of the basis elements of the starting ideal. We
apply this technique to the solution of polynomial equations, again replacing powers
of principal ideals by powers of finitely generated ideals. To do so we make use of
the second isomorphism theorem for rings (see for example [Liin73]):

If/, J < R and I c J, then

(23) R/J (R/I)/(J/I)

via the mapping
r +J-> (r + I) + (J/Z).

THEOREM 5.2. Let PI, , P, be finite subsets of R and I (P1, ’, P,) m R;
f,"’,f, eR[xx,"’,xr], r>_-l; ax,...,areR with fi(a,...,ar)=-OmodI, i=
1, , n. Let WRr, with

UW =-E mod L

where E denotes the n n identity matrix over R, U (uij) R,r and

uii=(al, ,ar)eR, i=l,...,n,]=l,...,r.

Then for each sequence ofnonnegative integers]x, ,], there existA x, , ArR with

fi(Aa,’", At)--0 mod ((px)2,1, (p,)2,.), i= 1,... n,

and

A. --a. mod L /" 1,..., r,

and W Rrxn with

Off’-=E mod ((p)2,1,..., (p,,)2,.),

404 MARKUS LAUER

where U =(aii) Rnxr and

a, =Ofi (A1, ,At), i= 1,"’, n,]= 1,... r.

Proof. We proceed by induction on m. If rn 1, we get A 1," ’, At and W from
Theorem 5.1. with I (P1) and $ =]1. So let m > 1 and assume that the proposition
is true for m- 1. Let R’= R/(P,); for r e R let r’ denote the image of r under the
canonical homomorphism from R onto R’, i.e. r’= r + (P,,); similarly for subsets of
R and elements of Rkx and R[xl, ’, xt]. Then

I’=I/(P,,)= (PI, ,P’m-1) :3 R;

(24) R/I-R’/I’

by (23), and therefore

/q(al,’’’, a’r) 0 mod I’,

and

U’ W’ =- E’ mod I’.

So, by the induction hypothesis for R’ I’, f,...,f’,, a,...,at, W, there exist
A1,..., teR’with

(25) f’i(fil, fi-r)=--0 mod ((el) 2’, .., (P’-I i= 1,... n,

and

(26) Ai -= a. rood I’, /" 1,.. , r,

and W R’ with

(27) mod ((P) (P’

where/) (t0.) R’,xt and

=0f(A1,...,At)eR’, i=l,"’,n, j=l,.",r.Uq

Now we choose l,’’’,r eR such that

(28) ft.; =fi.i,] 1,..., r,

and e Rrxn such that

(29)

,.By (23) R/((p,)2 "’, (P’,,-1
(25) and (28)

(30) f(-l,’"’ ,t)---0mod ((P1)Z, (P,,_1)2’-, P,), i= 1,...,n,

and by (27) and (29)

(31) /)I----E mod ((P1)2J’, (Pro_l) 2j’-1, P,,,),

where U (t,) e R,.,r and

aij’-Ofi(2x ", ,2r), i=1, n, /=1, r.
3x

", (Pro-1 Pro), and so by

GENERALIZED p-ADIC CONSTRUCTIONS 405

By (26), (28) and (24)

(32) Ai =-a. mod/, /’ 1, , r.

Let R"= R/((P), (Pm_)z’-) for r e R let r" denote the image of r under the
canonical homomorphism from R onto R", similarly for subsets of R and elements
ofR and R[x, , x]. Let

(33) I*=(P)R".

(34) R/((P)’, ., (Pm_)’’-’, P,,)"-’R"/I*

by (23), and therefore, by (30),

A’;)," (A
ji, ", 0 modI*, 1, , n,

and by (31),

g]"r,,E" mod I*.

So,. by Theorem 5.1, with R" instead of R, andwith I* afr/, f"i for fi, 1, n,
A" ..., AfaR"for a#/" 1, r, and f, for S, there exist A 1, with

(35) f’I(A *)’"Ar)=---O mod (I

and

(36) i -=" mod I* j=l,...,r,

and

(37)

where D (dq) e R".r and

of’
uii

Oxi
(A 1, Ar) e R",

We choose A a, ’, Are R such that

(38)

and W eR, such that

(39)

By (33)

and by (23)

i :1 :1
E 21mW e R", with UW mod (I*)

i=l,...,n,]=l,...,r.

(I*) 2,., (p)

R"/(I*)2’’.-- R/((p1)2’l, (pro)2’-’),

and hence by (35) and (38)

f(a 1, ar 0 mod ((Pa)2 2,’’’,(Pro) "),

and by (37) and (39)

/.7--E mod ((P1)2’a, (p,)2,..).

By (33) I* _I"= (P,’’’, PL) R", so by (36)

(40) A ---A" mod I",]=l,...r.

i= 1,...

406 MARKUS LAUER

By (23) R/I -R"/I", so by (38) and (40) A.-=A. mod/,/" 1,..., r. Finally, by (32)
Aj=aj modL]= l, r.

According to our custom, Theorem 5.2. is followed by an abstract algorithm,
ALGOmTHM M (Musser’s lifting).
Inputs" P1, , P,,, finite subsets of R, with I (P1, , P,) R

fl, ,f -R[xl, ,x], r >- 1;
al, , aeR with

fi(al," ", a)---0 mod/, 1,. ., n;
W Rrn with

UW =-E mod L
where U (uj)
and uij (Ofi/Oxi)(al, ., ar), 1," ", n, f 1,..., r;

fl, fro, nonnegative integers.
Outputs" A 1, , Ar R with

f(al,’", A)-0 mod ((P1), (P,,)z’), i- 1,. ,n
and Ai --- a. rood/,/" 1,. ., r;

W R, with
Off" =E mod ((P1):’, (P,,)"),

where U =(aii)
and a, (of/Oxi)(A1, ", Ar), 1,. ", n,] 1,. ., r.

(1) [m 1.] if rn 1, apply Algorithm Z with inputs
P1,]’1, , f,, a 1, ’, a, W,/’1; obtain outputs
A1,...,A and W; exit.

(2) [m > 1; recursive call for P1," , P,-I.]
set R’ R/(P,);
let h denote the canonical homomorphism from R onto R’; apply this algorithm
recursively, with R’ instead of R, to inputs hi(P1),’" ",

h(f),..., h(f,), h(a),..., h(a), ha(W),]," ",],,_; obtain outputs
fi l, fi, e R’, l e R rX

choose
1,"" ,rR with hl(i)=.,/’= 1,...,r, and I’Rr, with

(3) [Algorithm Z for P,,.]
set R" -R/((P1) 2’1 (P,,_l)m’-l)
let hz denote the canonical homomorphism from R onto R"; apply Algorithm Z
(with R" instead of R), to inputs he(P,,), he([l),’", he([), he(l),"’,
he(W),],;
obtain outputs A 1, ’, Are R" W e R"rxn

choose
A 1,_" ", A R with _h2(Ai) Ai,/" 1,..., r,

and WRr, with he(W)= W;
exit

It should be noted that Algorithm H (Hensel’s linear lifting, 4) can easily be
modified such that it also lifts (linearly) a right inverse W(r) of U(r) mod Ir, and that
in Algorithm M this algorithm could be used instead of Algorithm Z, thereby achieving
iterated linear lifting. Then all essential operations are done mod I (instead of mod
and this may turn out to be more efficient for some concrete lifting algorithms; see
[M&Y74].

GENERALIZED p-ADIC CONSTRUCTIONS 407

6. Application problems. In this last section we will specialize the abstract lifting
algorithms into some concrete ones. We don’t want to go into the details; several
sophisticated implementations are described elsewhere ([Mus71,75], [Yun74],
[W&R75]). We rather want to point out some general problems which arise.

The most commonly used domain R in which the concrete lifting algorithms work
is [yl,’" ’, yn], n _-> 1, the ring of integral polynomials in n variables. The most
commonly used lifting algorithm is Algorithm M (5). The starting ideal I=
(P1,’"’ ,P,,) is chosen such that R/I -GF(p)[y,,], because polynomial operations
can be carried out rather efficiently over GF(p). There are different ways to choose
P1, ’, P, in Algorithm M to achieve this. Musser in [Mus71, 75] proposed P1 {p },
p s prime, Pi {yi-l-ai-1}, ai-1, 2,..., ft. Yun in [Yun74] and Wang and
Rothschild in [W&R75] use P1 ={p}, PE={yl--al, yn-l--a,-1}. In both cases
p, a 1," , a,-1 are chosen such that I is "lucky" in a sense which has to be specified
according to the problem to be solved; for factorization it means that the polynomial
C to be factored has the same degree in yn as its image C’ mod [, and that C’ is
squarefree if C is. So the choice of I depends on the particular instance of the problem.

The final aim of computation in a domain R is in general a solution over R, not
a solution modulo some ideal J. So one needs a method to obtain a solution over R,
if it exists, from a solution mod J for a suitable J. It is intuitively clear that this implies
that, if A*, ., A r* is a solution over R, and A 1, , Ar is a solution mod J obtained
by a lifting algorithm, then

(41) A =-Ai mod],] 1,..., r.

This is by no means obvious, as the following example shows.
We take the factorization problem for univariate integral polynomials. So R

’[y], I (p), p s prime. Let

C y3 5y2 + 4y 20 (y2 + 4)(y 5),

so

A* yE+4, A: =y-5.

We want to solve f xlxE-C 0 over R and choose p 3. A solution mod I (3) is

a1 =y2+l, a21) =y+l,
and we have

f(a1, a21))=al>a21) -C (2y2-y +7). 3.

So, for a solution aE) =a1) +bl. 3, a22) =a21) +bE" 3 mod (9), we have to solve

(42) (2y-y +7) +bl(y + 1) +bE(y+ 1)---- 0 mod (3).

One possible solution is

bl =y-l, bE =-y,

and so

a2) 4y2-2, a22 =-2y + 1.

We have

f(a:Z), a22)= (_y3 q_ y2+ 2). 9=0 mod (9),

408 MARKUS LAUER

but

a z) A mod (9), a2) A2* mod (9)!

Another solution of (42) is

for this we get

Now we have

b=l, b2=l;

a(2 y2+4, a(22) =y+4.

a]2) ---A* mod (9), az) ---A mod (9).

The reason for this flaw is that (42), or more generally (10), does in general not have
a unique solution, and we need a way to uniquely choose a particular solution which
leads the lifting to a solution which satisfies (41).

If there exists a solution An*,’’’ ,A* over R then one usually can specify an
ideal J such that Af is a canonical representative of its residue class Af +J R/J,
for example, if R --N[yl, ’, Yn], by giving bounds on the degrees and norms of the
A" if it is known that [Af]<q and degy, (A)<ni, i= 1,... ,n-l, then we may
choose ! (p, y a 1, ’, yn--1 a,-1) and j ((p k), (y a 1) "1,
(y,_l- a,-1)nn-1), where k is such thatp k > 2q, orJ ((p), (yl- al, , y,-1- a,-1)s)
where s max {n 1, , n,-1}. It is easy to see that during the lifting process the lifted
solutions can be chosen in canonical form modulo the ideal which is currently used,
so that by (41)

Af =Ai,]=l,. .,r,

holds.
So, if it is known that a solution A,..., Ar* over R exists, two points have to

be regarded in order to compute it by a lifting algorithm: first, an ideal J has to be
specified such that the Af are canonical representatives of Af +J R/J, andK c J c L
where I is the (lucky) starting ideal and K is the final ideal of a lifting algorithm, and
second, one must be able to solve the linear congruences at each lifting step such that
finally (41) holds.

The situation becomes more difficult if a solution modulo the starting ideal I
exists and the lifting can be carried out, but the existence of a solution over R is not
guaranteed, as it is for factorization. Of course each polynomial C R N[y 1, , y,
has a complete factorization (which is unique up to units), but the number of factors
is not known in advance. For the lifting, these factors have to be given as solutions
of an equation, and in that equation the number of variables is given by the number
of irreducible factors mod I which may be greater than the number of irreducible
factors over R. So usually (41) will not hold. The equivalent of (41) in that case is
that the lifted solution A1,..., Ar constitutes a complete factorization of C mod J,
i.e. (see [Mus71]):

(a) C=-cA1 A,. modJ for some c N[yl, , yn-1];
(b) for every factorization C =-AB mod J such that degy. (C)

degy. (A) + degy. (B), there exists a unique H {Aq,. ., As} {A 1," ’, At}
such that A nAil" As mod J for some a

(c) The leading coefficient with respect to y, of each Ai is not a zero divisor mod J.
If this holds, the true factors of C can be obtained by trying all products of Ai’s.

GENERALIZED p-ADIC CONSTRUCTIONS 409

So one has to specify a solution for the congruence arising from (10) (or its
equivalent in the quadratic lifting) which leads to a complete factorization mod J. Let
us look somewhat closer at this particular problem.

If a 1,’", ar are the irreducible factors of the squarefree polynomial C R
[yl, , y,] mod I (p, yl-zl, , y,-1-zn-1), zl, , zn-1, where I is lucky,
then a 1, , ar are solutions mod I of the equation

f =xl x-C =0.

To lift this solution we need a right inverse W Rrxl of U Rlxr mod/, where

U= (U l, ", Ur) and a) H ai.Uj (al,
3X i=1

Since al,. ", ar are pairwise relatively prime mod/,

gcd (ul,..., Ur) 1 mod/,

and hence W (wl, ’, w)* exists with UW--- 1 mod/, so that the input assertions
for the lifting algorithms hold. We now need a way to modify Algorithm Z in such a
way that it (or Algorithm M) leads to a complete factorization modulo the final ideal.
For each lifting step we have to solve (see (18))

(43) k + u(S)k --0 mod 12S, k 1, , m,

where

(s) (s)]-[(s)U(s) (ui and u1 a
i=1
i]

and the as) are solutions (the factors) mod 12s.
In Algorithm Z we used

b- w(s)k,
where W(s) was a right inverse of U(s) modI2 obtained by lifting. Let /-
(bl," ",br)*; then bfl,[yx,’" ’,y,], /’=1,...,r. Suppose that the leading
coefficient of as with respect to y is a unit modI2, /’ 1,..., r; let then qjk,

b; s’[yl,. ", y],/" 1,..., r-l, be defined by

bj =- qjas) + b mod 12,
(s)b;k =0 or degy, (b)<degyn (a.),

and

b (r=l)s)
rk qi. a + br.

Then/;, (b’)*1, ., brk is also a solution of (43). If this is used,
(S+l) (S)ldcfy, (a. ldcfyn (a. ldcfy., (a), f 1,. r- 1.

Since mod I each nonzero element is a unit and since each unit mod I is a unit mod I,
one can always choose the solutions b as just described, i.e. with degy, (bi) < degy, (a).
Furthermore, is uniquely determined mod I by this degree condition. This is a
rather straightforward generalization of the classical lifting to more than 2 factors,
and generalizing Musser’s proofs in [MusT1] (see also [MusT5]) one can show that

410 MARKUS LAUER

this choice of solutions of (43) leads to a complete factorization modulo the final ideal,
in both Algorithms Z and M.

In the case where R [yl,.. ’, yn], such degree constraints on the solutions of
(43) seem to be the general method to lead the lifting algorithms to solutions modulo
some ideal J from which solutions over R can be obtained.

As a final remark let us note that for the validity of the lifting theorems and
algorithms we required an input assertion which may be somewhat too strong: we
assumed that each system of linear equations with coefficient matrix U has a solution
mod I; it would be sufficient to require that each such system which actually shows
up during the lifting has a solution mod L (To include this would make the formulation
of Theorem 4.2. longer than its proof.)

Acknowledgments. I want to express my sincere gratitude to Professor R. Loos
for his guidance and encouragement throughout this work. I also want to thank
Professor G. E. Collins for helpful discussions.

REFERENCES

[Lew69] D.J. LEWIS, Diophantine equations: p-adic methods, in Studies in Number Theory, W. J.
LeVeque, ed., Math. Assoc. Amer., 1969, pp. 25-75.

[Lfin73] H. L3NEBURG, Einfffhrung in die Algebra, Springer Hochschultext, Springer-Verlag, Berlin,
1973.

[Mus71] D.R. MUSSER, Algorithms for polynomial factorization, Technical Rep. 134 (Ph.D. Thesis),
Computer Sciences Dept., University of Wisconsin, Madison, WI, 1971.

[Mus75] ,Multivariatepotynomialfactorization, J. Assoc. Comput.’Mach., 22 (1975), pp. 291-308.
[M&Y74] A. MIOLA AND D. Y. Y. YUN, The computational aspects ofHensel-type univariate polynomial

greatest common divisor algorithms, in Proceedings of EUROSAM’74, Stockholm, 1974,
pp. 46-54.

[W&R75] P. S. WANG AND L. P. ROTHSCHILD, Factoring multivariate polynomials over the integers,
Math. Comp., 29 (1975),pp. 935-950.

[Yun74a] D.Y.Y. YUN, The Hensel lemma in algebraic manipulation, Ph.D. Thesis, Dept. Mathematics,
Project MAC Report TR-138, Massachusetts Institute of Technology, Cambridge, MA, 1974.

[Yun74b] , A p-adic division with remainder algorithm, ACM SIGSAM Bulletin, 8 (1974) (Issue
32), pp. 27-32.

[Yun75] Hensel meets Newton-algebraic constructions in an analytic setting, in Analytic Computa-
tional Complexity, Proc. CMU Symposium, J. Traub, ed., Academic Press, New York, 1975.

[Zas69] H. ZASSENHAUS, On Hensel Factorization, L J. Number Theory, 1 (1969), pp. 291-311.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0001 $01.25/0

ON CERTAIN POLYNOMIAL-TIME TRUTH-TABLE REDUCIBILITIES
OF COMPLETE SETS TO SPARSE SETS*

YAACOV YESHA-

Abstract. Let 2, be a finite alphabet. A set S c 2,* is called sparse if the number of members of S
having length at most n is bounded above by a polynomial in n. Let <=,e denote polynomial-time many-one
reducibility, and let P

bptt denote the more general polynomial-time bounded positive truth-table reducibility.
<PWe prove" (1) =t,,tt reducibility of a coNP-hard set to a sparse set implies NP P, and (2) <Pbott reducibility

of an NP-hard set to a sparse set which is itself in NP implies NP P. (1) generalizes Fortune’s result IF].
He proved it for the case of =<e,, reducibility. (2), for the case of de reducibility, was proved by Mahaney
[M], even without assuming that the sparse set itself is in NP. Our results imply that if a coNP-hard set is

<ea finite union of sets which are reducible to sparse sets, then NP P. We then investigate a certain
nonpositive polynomial-time truth-table reducibility of NP-hard sets to sparse sets, and obtain new results
regarding the structure of sets hard for NP or for ETIME. Finally, we investigate the possibility of existence

<eof sets in NP-coNP which are reducible to sparse sets. Some of our techniques involve generalizations
of and variations on the techniques of Berman [B], Fortune [F] and Mahaney [M].

Key words. NP-complete sets, sparse sets, polynomial-time reducibility, truth-table reducibility

1. Introduction. This work is concerned with the implications of the existence
of certain polynomial-time truth-table reducibilities of NP-complete and other sets to
h-sparse sets (to be defined below). The questions resolved have natural interpretations
in terms of the structure of NP-hard and other sets. For example, we show that if
NP P, no NP-hard set A can be "very close" to a set B in P in the sense that the
symmetric difference of A and B is "very small", namely, is h-sparse (see definition
below) for h (n) O(log log (n)).

Let ,E be a finite alphabet. A set S, S c E*, is called h-sparse if its census function
Cs, defined by cs(n)= [[Ecn f-)SII (where for any set S, [IS[[denotes its cardinality, and
En is the set of all strings over E of length at most n) satisfies cs(n)= O(h(n)). In
particular, S is called sparse if there is some polynomial h such that S is h-sparse.
Several recent papers deal with the structure of NP-hard and other related sets. From
[L], IS] we know that a set which is polynomial-time Turing reducible (-< -) to arbitrarily
sparse sets (according to a different notion of sparseness) is in P (first proved by Lynch
[L for _-< P,, then extended by Solovay [S] to <-). ForA NP-complete, coNP-complete,
or PSPACE-complete, A _<- PS (A polynomial-time many-one reducible to S), where
S is sparse, implies A P ([B], [M], IF], IMP], see also [C1] for some generalizations).
Related questions are treated in Landweber, Lipton and Robertson [LLR] and in
Karp and Lipton [KL]. We now sketch our main results:

1) As pointed out in [M], the question whether A _-< S for A NP-complete and
S sparse implies NP P is an important open question. Motivated by this question,
we treat some special cases. In what follows let S be sparse. We prove that if A is
coNP-complete or PSPACE-complete and A < P

bptt S (A is polynomial-time bounded
positive truth-table reducible to S) then A P. We then prove that ifA is NP-complete,
A <P

bptt S, and S itself is in NP then A P.
We also show that A < t, P

bptt S where S is sparse if and only if A I,.J ti_-_ Ai, Ai < Si
(1-< =< t) and the Si are sparse. Thus, if a coNP-complete or PSPACE-complete set
A is a finite union of sets which are polynomial-time many-one reducible to sparse

* Received by the editors July 9, 1981, and in revised form June 10, 1982. This work was supported
in part by Natural Science and Engineering Research Council grants A7671 and A8651.

t Department of Computer Science, University of Toronto, Toronto, Canada M5S 1A7.

411

412 vhcov vzsI-Ia

sets, then A P. For example, take A E* # S U S # E*. This case already generalizes
polynomial-time many-one reducibility to sparse sets, since A does not seem to be
polynomial-time many-one reducible to a sparse set, but A <P

bptt S,
2) We also investigate some polynomial-time bounded truth-table reducibilities

which are not necessarily positive. We prove" If A is coNP-complete and for all x E*,

x ACef(x)S ^g(x)cSa,

where f, g are computable in deterministic polynomial-time, and $1, S2 are "sparse
enough" (e.g., CSl, Cs2 being O(log log (n))), then A P. This result has the following
consequences which we find interesting:

2-1) It is known [B], [MP] that if an NP-hard set A can be recognized by an
algorithm which runs in polynomial-time on all inputs except for inputs from some
sparse set S, then NP P. The hypothesis is equivalent to the existence of a recognizer
for A which always runs in polynomial-time, but for inputs from S halts without giving
any answer. So, in particular S is in P.

We now ask ourselves what happens if we weaken the hypothesis in the sense
that there is an algorithm for an NP-hard set which always runs in polynomial-time,
for each input in E*-S gives the correct answer, but for each input in S gives a wrong
answer. Note that in this case S is not necessarily in P! Using 2) above, we show that
if S is sparse enough (cs(n) O(log log (n)) is sufficient) we can conclude NP P. One
way to interpret the hypothesis is by saying that A is "close enough" to a set in P,
namely, the set B-{x E*lthe above polynomial algorithm answers "yes" on x},
where "close enough" means that S, the symmetric difference of A and B has a
sufficiently slowly growing census function. Using a result of Meyer, appearing in
[KL], we obtain as a corollary that if D is ETIME-hard (with respect to polynomial-
time many-one reducibility) there is no polynomial-time algorithm which recognizes
D correctly outside a set S with census O(log log (n)).

2-2) Let ISO be the set of all pairs (G1, Gz) where G1, G2 are graphs and GI is
isomorphic to G2. Let INTFAC be the set of all triples (m, a, b) where 1 < a <_-b <_-m
and m has a prime factor between a and b. ISO and INTFAC are in NP, but not
known to be in P. [M] and IMP] leave open the question whether A P,. S where A
is ISO or INTFAC and S is sparse imply A P. Using 2) above we show that for S
sparse enough (for instance cs(n) O(log log (n))) and A INTFAC we can conclude
A P. For A ISO we can only conclude the existence of a sub-exponential algorithm
under the above hypotheses.

3) [HM] raises the question whether NP P implies the existence of sparse sets
in NP- P. We show that the existence of a set in NP-coNP which is polynomial-time
many-one reducible to a sparse set implies ESPACE NETIME.

The main tools used in obtaining the results mentioned in 1) and 2) above are
generalizations of and variations on Fortune’s tree searching method IF], [M].

2. Preliminaries and notation. We assume familiarity with the classes P, NP,
coNP, [C], [K] and PSPACE NPSPACE. We also assume familiarity with [M] and
[MP]. For standard definitions and results from computational complexity, see [HU].

Let

ETIME= U DTIME (2c), NETIME= U NTIME (2c),
c>0 c>0

ESPACE= U DSPACE (2").
c>0

TRUTH-TABLE REDUCIBILITIES OF COMPLETE TO SPARSE SETS 413

For each set A c E*, A denotes E*-A. We will need the following sets, which are
in NP"

SAT---the set of all satisfiable Boolean formulas.
ISO--the set of all pairs (G1, G2) of isomorphic graphs.
INTFAC {(m, a, b)ll < a -< b <- m and m has a prime tactor between a and b }.
INTFAC P if and only if there is an integer factoring algorithm which runs in

polynomial-time [MP].
For any set C let Xc denote its characteristic function.
We need the following types of polynomial-time reducibilities"

P1) <- ,,-polynomtal-ttme many-one reducibility [K].
P2) <-_-polynomtal-ttme Turing reducibility [C].

3) Various types 0t polynomial-time truth-table reducibilities, essentially defined
in Ladner, Lynch and Selman ILLS].

DEFINITION ILLS]. Let A, B c E*. Then

A <= B (A is polynomial-time truth-table reducible to B)

it the following hold:
1) There exists a polynomial-time mapping g, called a tt-condition generator, from

E* into A* # (#E*)*, where A is a fixed alphabet and # Et3 A. The output of the
mapping is called a tt-condition.

2) There exists a polynomial-time mapping e from A* #{0, 1}* into {0, 1} called
a tt-condition evaluator.

3) (/x ,*)(x AC:g(x) is e-satisfied by B), where "g(x) is e-satisfied by B"
means that if g(x)= w# #c1 #2" #ak then e(w #XB(CI)XB(C2)""" XB(Ck)) 1.

Thus w A* represents a Boolean function which is applied to the variables
x 1, x2, ’, xk where x, 1 if c, B, and 0 otherwise, w and the c,’s depend on x by g.

DEFINITION. A tt-condition generator g is bounded if there exists a constant k
such that for any x ,*, g(x) contains at most k #’s. This means that all the Boolean
functions obtained have at most k variables.

A tt-condition evaluator e is positive if it has the property:

[e(w #crltr2’’" rk)= 1 ^ (tri 1 ::> zi 1)]=> [e(w # ’1’2"’’ ’k)= 1].

The meaning is that the Boolean function represented by w is positive (i.e., monotone
increasing).

DEFINITION.
A <P

=bt, B (A is polynomial-time bounded truth-table reducible to B) if the
generator g is bounded.

A <P
=tB (A is polynomial-time positive truth-table reducible to B) if the

evaluator e is positive.
A <P=boB (A is polynomial-time bounded positive truth-table reducible to

B) if g is bounded and e is positive.
We are now going to discuss self-reducibility [M], [MP], [KL].

DEFINITION. A = E* is called dis[unctively-self-reducible if"
1) There exists W E*, W P such that A f’) W P.
2) For each x W a list L(x)= (xl, x2,"’, x) can be computed in polynomial-

time, such that Ix, < Ix (1 =< <= k).
3) ForX W, x A:> v/k=l (xiA), where L(x)=(xl, x2,." ,Xk).
DEFNITIOr. The tree o] self-reductions of x is the tree with x as a root, the sons

of each node y W being the members of L(y) from left to right, and the leaves being
members of W.

414 YAACOV YESHA

A is called confunctively-self-reducible if in 3) above ^ =a (xi A) replaces
v = (xi A). Clearly A is disjunctively-self-reducible if and only if its complement
A is conjunctively-self-reducible, L, W and the tree of self-reductions being the same.

A is called strongly disfunctively (confunctively)-self-reducible if it is disjunctively
(conjunctively)-self-reducible and there exists a constant d such that for every
x WL(x) contains at most d members.

It is known [F], [M], [MP], [KL] that SAT and INTFAC are strongly disjunctively-
self-reducible, and there exists a set which is polynomial-time many-one equivalent
to ISO which is disjunctively-self-reducible. For SAT take W to be the set {false, true }
of constant Boolean formulas, and for a formula x W if x =/3(x a, x2,’’ ", xn) let
L(x) ((0, x2,’", x,,),/3(1, x2," ", x,)) [F], [M], [MP].

We know the following results [F], [M], [MP]:
1) If A =< P., S where S is sparse and A is conjunctively-self-reducible, then A P.

In particular (Fortune’s theorem IF]): A being coNP-complete implies NP P.
2) If A _-< P., S where S is sparse then"
i) A NP-complete =), NP P (Mahaney’s theorem [M]).

ii) A PSPACE-complete ::> PSPACE P (Fortune [F], see also Meyer and Pater-
son [MP]). Cook [C1] gives generalizations to h-sparse sets where h is not necessarily
a polynomial.

We also note that P. Berman [B] first proved a special case of the above results,
motivated by a conjecture by L. Berman and Hartmanis [BH]. His technique provided
a basis for the later results of IF], [MP], [M]. In particular, he proved that if NP # P,
no set over a one-letter alphabet can be NP-hard.

3. Polynomial-time bounded positive truth-table reducibility to sparse sets. First
<Pwe show that A --bptt S where S is sparse implies a particularly simple way of expressing

this reducibility.
LEMMA 3.1. The following are equivalent:

P(1) A bptt S, where S is sparse.
(2) There exist t, a sparse set Sa and fi computable in deterministic polynomial-time

(1 <-_ <= t) such that for all x E*,

x eA: v (fi(x)eSa).

P(3) For some t, A i= Ei, Ei =,< El, Ei sparse (1 < < t).
Proof. (1)- (2). Let r be the bound on the number of variables appearing in any

output of the tt-condition generator. Given x, use the tt-condition generator and
evaluator to find the truth-table of the corresponding Boolean function/3, by evaluating
its value for the finitely many combinations of the variable values. Now,

x eAC:[3(Xs(ya), Xs(Yz),’"’, Xs(Yk)) 1,

where y (1 -< -<_ k -<_r) are the arguments computed by the generator. Now, represent
/3 in positive disjunctive-normal-form (positive DNF), i.e., a Boolean formula of the
form ca v cz v... v co where each ci is a conjunction of some of the variables (no
negations allowed). Define fj(x) y,, if the/’th variable in c is Xs(Y,,). Also fj(x) o,
Ix0 a fixed member of S (we assume S) for any/"-<r which is greater than the
number of variables in cg. Let

f(x)=fga(x)#fiz(x)#’" "#fi(x) for/=<q

TRUTH-TABLE REDUCIBILITIES OF COMPLETE TO SPARSE SETS 415

and

f x t.L17 [.1,1 # "//J, (rtimes) for q < <= 2
where/xl is a fixed element not in S. Then x eAt:> v i=1 (fi(x)Sl), where

$1 {w # wz # # wlwi S(l <- <-r)}.

(2) (3). Let E ={xl[(x)S},E =S(1 <-i <_-t).
(3) (1). Let S={wa#wz#...#w,]wE(l<-_i<-t)}, [i(x)=(ha(x),...,

h,(x)), where for f i, hii(x)=ti, tz being a fixed member of E and h,(x)=q(x),
where E <P, E by q. Then for all x Z*, x A:> v =1 (f(x)S), hence A <P=bo. S.

Q.E.D.
Before we prove that for a coNP-hard set.D, D <P

bptt S, where S is sparse implies
NP- P, we need some combinatorial lemmas, and an approximation algorithm for
minimal hitting sets.

DEFINITION. A collection W of sets is called K-compact if there are no distinct
sl, s2," ’, sc/l in W such that s =c /5(1 <_-i <_-K + 1) where a andthe/Si are pairwise
disjoint.

LEMMA 3.2. If W is a K-compact collection of sets, each of cardinality at most t,
then there are at most I(K, t) =0 (t!/]!)K t-j sets in W.

Proof. We use induction on t. Clearly the assertion is true for 0. If >0,
choose a maximal collection U of pairwise disjoint sets of W. By K-compactness, U
has at most K sets in it. Let T be the union of the sets in U. T has at most Kt
elements, and each nonempty set in W contains some element of T. Let

T (a l, a2, ar (r <- Kt),

Wi {s e Wlai e s },

W,’ {s {a,}ls e } (1 < <= r).

Then W-{QS}== W. Also each W is a K-compact collection of sets, each of
cardinality at most t- 1. By the induction hypothesis there are at most I(K, t- 1) sets
in each W, hence in each W. Hence there are at most l+Kt .I(K,t-1)=I(K,t)
sets in W. Q.E.D.

LEMMA 3.3. Suppose W is a collection of sets, each of cardinality at most t, and
there exists a constant K > 1 and an ordering s l, sz, ", s,, of the sets in W with the
following property" For each 2 <-] <-_ m there is a set of at most K elements which has
nonempty intersection with each nonempty sg s]’or 1 <-_ <]. Then Wis K + 2 compact,
and hence has at most I(K + 2, t) sets by Lemma 3.2.

Proof. If W is not (K +2)-compact, choose a minimal n such that W’=
{sl, s2, , s,} is not (K + 2)-compact. Then there are sets a and/3(1 _-< _-<K + 3) all
pairwise disjoint and the /3i all different, and tl, t2,’", tK+3 in W’ such that t
a U fl(1 -< <-K + 3) and tK+3 Sn. Now ti- tK+3 [i--[K+3 [i for 1 -< <-K + 2, and
at most one of the B for 1-<i-<K+2 is empty. Thus among t-tr+3(l<-i<=K+2)
there are K + 1 nonempty disjoint sets, hence no set of K elements can intersect each
one of them, a contradiction. Q.E.D.

A set with a nonempty intersection with each set in a collection W is called a
hitting set for W. We now show that there exists a polynomial-time algorithm which
finds a "small enough" hitting set for a collection W.

LEMMA 3.4. There exists a polynomial-time algorithm that, given a collection W
of nonempty sets, produces a hitting set for W with at most k 1Oge Ilwll / 2 elements,
where k is the cardinality of the smallest hitting setfor Wwhich has at least two elements.

416 YAACOV YESHA

Proof. We use the following "greedy algorithm":
(1) Initialize: Wo W, Ho , r 0.
(2) Iteratively, while Wr , let y be an element which appears in a maximal

number of sets in W, Let Hr+lHt.J{y}, W+lWr-{slsWr^ys},
r#r+l.

Clearly after the algorithm terminates with r p, H, is a hitting set for W, and
Hp has p elements. Suppose there exists a hitting set for W with k elements (k > 1).
Then for each Wg there exists a hitting set with k elements, hence an element yi exists
such that {sis W ^ y s} contains at least IIW, ll/k sets. Hence

IIW+lll (1-) IIwll

and thus by induction on

(0-<i-<p- 1),

We now claim that

To see this, suppose

Now, let

then

Taking 1Oge Of both sides gives

IIWI[(O<--i <--P).

loge IlWll] +1P ----<
-1Oge (1 1/k)

1Oge IlWi[
P----> -1Oge (l-l/k)

io=[loge IIWII].-lo-e i)k)

(I)1Oge W,oll io 1Oge 1 -- + 1Oge wl{ 0.

Hence {IW,oll <--x, and since }lW,o/{{ <llWo{{ we conclude that {{W/o/,}l 0, hence p
io + 1. Thus in any case

(*) P N --lOge (1 k)

Now consider the real-valued function

(0) 0 and

b(x) =x +loge (l-x) (0=<x < 1),

-x
’(x) (O<x < 1).

1-x

TRUTH-TABLE REDUCIBILITIES OF COMPLETE TO SPARSE SETS 417

Since b’ is negative in (0, 1) we conclude that b (x)< 0 for 0 < x < 1, hence

Hence also

x <--lOge (l--x) (0<X < 1).

--<--lOge 1- for k > 1
k

or

Using (,) we finally get

-log (1 1 /k
<k for k > 1.

p k log IlWll- 2, Q,E,D.

Finally, we can prove
THEOREM 3 1 IfD <P

bptt S, where S is sparse and D coNP-hard, then NP P.
Proof. It is enough to consider D SATc. As in Fortune’s original method IF],

[M], we perform a depth-first search on the tree of self-reductions of the given Boolean
formula G, using the reducibility to a sparse set to prune the tree. By Lemma 3.1 we
may assume that there exist fi computable in deterministic polynomial-time (1 -< <= t)
such that for all x *,

x SAT : v (fi (x) c= S).
i=1

The tree of self-reductions of G is as defined in 2. Its nodes are all Boolean
formulas, its root is G, and the leaves are constant formulas. The tree is not constructed
in advance. Only nodes which are searched are constructed, as the search proceeds.
As we shall see below, the reducibility to a sparse set will enable us to search only
polynomially (in IG[) many nodes. Note also that for any nonsink H in the tree (which
is also a nonconstant Boolean formula), its left son is easily constructed by substituting
0 for the first variable appearing in H, and making the appropriate simplifications.
Its right son is similarly constructed by substituting 1 for the same variable.

We have the following rules for the search:
(Q-I) If a leaf which is the constant formula true is encountered, stop: G SAT.
(Q-2) Every encountered leaf which is the constant formula false is marked F

("unsatisfiable").
(Q-3) If the two sons of a node (see 2) are marked F the node itself is marked

F.
(Q-4) If the root G is marked F, stop: G SAT.
(Q-5) For each new nodeH encountered, a label l(H) U= {fi (H)} is computed.
(Q-6) If for a newly encountered node H, l(H) l(H’), where H’ is already

marked F, mark H by F and never search below H.
(Q-7) Let 1 be a monotone polynomial bounding the increase in size under the

transformation fi(l <- <= t). Let k=maxl<_<_,h((IGI)) where h is a
monotone polynomial bound on the census of S. Let K=
k (1Oge 2" IG + 2). For each newly encountered node H for which (Q-6)
does not apply form the collection

Wl {l(H’)- I(H)IH’ is already marked F},

418 YAACOV YESHA

and apply the algorithm of Lemma 3.4 to find a hitting set for W1. If the
hitting set produced has more than K elements--mark H by F and never
search below H.

For proving the validity of the algorithm, we only have to justify rule (Q-7). We
claim that if the above hitting set has J elements where J >K, then 1(/4) contains an
element in $, which implies H SATc. To see this, note that since the whole tree has
at most 2I1 nodes, 1Oge IIWlll is bounded above by IGI" loge 2. By Lemma 3.4, the
size q of a minimal hitting set for W1 satisfies

J J K
q__> __> >

logellWll+2 IO[’loge2+2 IOl’loge2+2
k.

Since there are at most k different elements in S of the form fi(H)(1 <=i <= t), where
H is a node of the tree, S is not a hitting set for W1, hence there exists some/4’,
already marked F, such that l(H’)- l(H) does not have a member in S. Since l(H’)
must have a member in S, we conclude that (H) has a member in S, hence/4 e SATc.

We now prove that the number of steps is bounded by a polynomial in IGI. We
claim that there are at most I(K + 2, t) distinct paths from the root to nodes interior
in the pruned tree (i.e., the tree without the subtrees which are never searched), which
are marked F. To see this consider any sequence of interior nodes H1,/42,""",/4r (r
any integer satisfying r => 1) which are marked F, such that for 1 <-i =< r- 1, Hi was
marked F before Hi/l, and such that if #/’, Hi and Hj are not on the same path from
the root. By rule (Q-7), the hypotheses of Lemma 3.3 apply to the collection W of
distinct (by rule (Q-6)) sets {l(Hi)ll <=i <=r}. Hence r<-I(K +2, t). Thus, for some d,
the total number of nodes visited is O(IGId), since each path has at most IGI nodes,
and there is at most one visited path leading to a leaf with value 1. Q.E.D.

We now prove a similar result for NP.
THEOREM 3 2 If D < Pb,S, where D is NP-hard and S is a sparse set in NP,

then NP P.
Proofi It is enough to consider D-SAT, and to assume the existence of fi

computable in deterministic polynomial-time (1 _-< -< t) such that for all x 5;*

x SAT4: v (fi(x)S).
i=1

Note that, in Lemma 3.1, if S in (1) is in NP then also S in (2) is in NP. Now, letting,. (SC) t, we have:

x e SAT :(fx(x), h(x),’" ", ft(x)) ,q.

Following Mahaney’s method [M] we define a set S NP which is called "pseudo
S". S being in NP implies the existence of a function g computable in deterministic
polynomial-time such that for all x E*,

x dC: v (fi(g(x))S).
i=1

Now, if we can reduce SAT to in polynomial-time, we clearly can use the method
of Theorem 3.1 to decide SAT in polynomial-time. As in [M] it turns out that indeed
SAT can be reduced to if we correctly guess the census function. Our is a

TRUTH-TABLE REDUCIBILITIES OF COMPLETE TO SPARSE SETS 419

generalization of Mahaney’s "pseudo complement", and is defined by
g ={((yx, y2,""", yt), #k, #)[[yil__<n for l<=/>=t,

k <_-h (n), and there exist distinct strings

such that g S, I ,1 n, , yj (1 k, 1 _-</" <- t)}.
Here h is a monotone polynomial bounding the census function Cs. Intuitively,

for k cs(n), coincides with . Thus, using an adaptation of Mahaney’s method of
trying all possible values of the census function and using the tree search method we
indeed can decide SAT in polynomial-time. We omit the details, which we believe
can be filled in by the reader who is familiar with [M]. Q.E.D.

Remarks. (1) Theorem 3.1 generalizes Fortune’s result IF], who proved that if
a coNP-hard set is =,<P reducible to a sparse set then NP P. Theorem 3.2, for the
special case of _-< P. reducibility, was proved by Mahaney [M], even without assuming
that the sparse set itself is in NP We prove the result for the more general <e

bptt

reducibility, but we need the extra assumption that the sparse set is in NP. It follows
from Theorem 3.2 that if NP P, no set complete for NP under <- Pbptt reducibility can
be sparse.

(2) If D is any conjunctively-self-reducible set, and D <P=bpttS, S a sparse set,
then D e P. The proof is almost the same as for Theorem 3.1.

(3) If D is PSPACE-hard and D <P
=bpt S, S a sparse set, then PSPACE P. The

proof is similar to the proof of Theorem 3.1.
We can assume D- QBF (the set of true quantified Boolean formulas [ST]).

Then we generalize the proof of Fortune’s result for the case QBF ---mP S in the same
way that Theorem 3.1 generalizes the case SAT =,<

P $.

4. Nonpositive tt reducibilities and applications. We investigate the consequen-
ces of the existence of a certain nonpositive polynomial-time bounded truth-table
reducibility of a conjunctively-self-reducible set to a sparse set.

For a monotone unbounded function h, let DN(h) denote the class of all subsets
of E* with census function bounded above by O(h).

THEOREM 4.1. IfD is strongly confunctively-self-reducible, and there exist h l, hE,
f, g computable in deterministic polynomial-time, SIDN(h), S2sDN(h2) such that
for all x Z*,

x DCzf(x)81 ^ g(x)cS2,
then

D DTIME (n v. (t(n). t2(n)) ’("))
where v is an integer and

tl(n) =p hoql(n), t2(n)=p2 h2 q2(n),, t3(n)=p3 h2 oq3(n)

for some polynomials pl, p2, p3, q, q2, q3. IfD is lust confunctively-self-reducible, then
under the above hypotheses

D e DTIME ((nVtl (n)t2(n))t3(,))
tl, t2, t3 as above.

Proof. Let G be an instance of the decision problem for D. Consider the tree of
self-reductions of G. This tree is defined in 2. Its set of directed edges is:

{(n, H’)IH’ is a son of H in the tree}.

420 YAACOV YESHA

Before proceeding with the proof of the theorem, we prove the following:
LEMMA 4.1. Let r _--> 1, H(1 <-_ <- r) nodes in the above tree such that there exists

a directed path in the tree from H to Hi+l(1 <-i <-r-l), f(H)SI(I<=i <=r), and]’or
some f, 1 <- f <- r g (Its.) ! S2. Then Hr D.

Proof. HieD since f(/-/.) S ^ g(/--/.) $2. Conjunctive-self-reducibility implies
that if a node is in D then its sons are all in D. Hence Hr D. Q.E.D.

We now proceed with the proof of Theorem 4.1. Let f, be monotone polynomials
bounding the increase in size under the transformations f, g, respectively. Let

k- hl(flGI), k2- h2(fflGI).
We have:

(1) There are at most k distinct values of the form f(H), where H is a node in
the tree and f(H) Sx. There are at most k2 distinct values of the form g(H), where
H is a node in the tree and g(H) $2.

We now describe the algorithm for deciding whether G D. As in Fortune’s
method, we perform a depth-first search on the tree. We have the following rules:

(R-l) If a leaf in D is encountered, stop: G eDc.
(R-2) Every leaf in D is marked F (Base case).
(R-3) If all sons of a node are marked F, the node itself is marked F.
(R-4) If G is marked F, stop: G D.
(R-5) For each node H encountered, f(H) and g(H) are computed.
(R-6) If for a newly encountered node H, (f(H), g(H))= (f(H’), g(H’)) for a

node H’ already marked F--mark H by F and never search below H.
(R-7) For each newly encountered node H let m (H) be 1 if there exists a node

H’, already marked F, such that f(H)=/e(H’). Let m (H) be 0 otherwise.
(R-8) For each newly encountered node H compute a set

l(H) {g(H’)IH’ is on the path from the root to H, and m (H’)= 1}.

(R-9) If for a newly encountered node H, l(H) contains more than k2 elements--
mark H by F and never search below H. H D.

For proving the validity of the algorithm, note that (R-9) is justified by (1) above
and Lemma 4.1. The other details are obvious.

We will now prove the bound on the number of steps, by establishing a bound
on the total number of nodes encountered. We call a node H a pivot if either H is
the root G, or (H) has more elements than (H’), where H’ is the father of/at. Clearly
in the latter case l(H) is the union of l(H’) with a one element set. For each pivot H
let T(H) be the pruned subtree with root H. Also let o-(H), the skeleton of H be
defined as follows: o-(H) is the part of T(H) with nodes H’ such that either l(H’)
has the same number of elements as l(H), or H’ is a pivot with l(H’) having one
more element than l(H). Clearly o-(H) is also a tree. We have the following property:

(2) If H is a pivot, then in or(H) there are at most k(kz / 1) distinct paths from
H to interior nodes in o-(H) marked F.

This is seen as follows: If H’ is marked F, then f(H’) St, hence there are at
most k possible values for f(H’). For a fixed a $1, suppose that there are kz + 2
distinct paths leading from the root H to interior nodes HI, H2,""", Htz/2, marked
F in this order, such that f(Hi)=a(1 <-i <_- k2+2). By rule (R-6), the values g(Hi) for
2 <_-i <_-k2 / 2 are all ditterent--otherwise some Hi would not be interior. Hence not
all the g(Hi) for 2 <_- -<_ k2 / 2 are in l(H), by (R-9) above. Since H1 is marked F first,
m(Hg)= 1 for 2-<i <-k2+2. (Note that Hi is already marked F when each Hi for

TRUTH-TABLE REDUCIBILITIES OF COMPLETE TO SPARSE SETS 421

2 -< =< k2 + 2 is first encountered.) Thus for some 2 _-< _-< k2 + 2 l(Hi) has more elements
than l(H), hence Hi cannot be interior in tr(H).

From (2) we have the following:
(3) For H as in (2), there are at most d(1 + kl(k2 + 1)) distinct paths from H to

the leaves of tr(H), where d is the constant bounding the degree of the tree.
To see this, note that in the whole pruned tree there can be only one path leading

from G to nodes which are never marked F. This, in the case that G D, is the unique
path from G to the first leaf in D which is encountered. Hence by (2) above, the
number of distinct paths from H to interior nodes of o-(H) is at most 1 + kl(k2 + 1).
Each such path can split to at most d paths in tr(H).

(4) If H is a pivot, with l(H) having r elements, then the pruned subtree with
root H has at most [d(1 + ka(k2+ 1))] t2+l-r distinct paths from H to the leaves. We
prove this by backward induction on r. By rule (R-9), the assertion is true for r k2 + 1.
Now consider a pivot H with l(H) having r <k2+ 1 elements. By (3) there are at
most d(l+ k(k2+ 1)) distinct paths from H to the leaves of o-(H). Also, each leaf
H’ of tr(H) is either a leaf of the whole tree, or a pivot with l(H)’ having r / 1
elements, hence there are, by the induction hypothesis, at most [d(1 / k(k2 + 1))] k2-r
paths from H’ to the leaves. Thus from H there are at most [d(l/kl(k2/ 1))].
[d(1 + kx(k2 + 1))] kz-r-- [d(1 + k(k2 + 1))] k-r+l paths to the leaves.

Now, since l(G)= , there are at most [d(1 + kl(k2 + 1))] k+l distinct paths from
the root G to the leaves of the pruned tree. Each such path contains at most z([G[)
nodes, where z is a fixed polynomial bounding the height of the tree derived from
G, and the result follows.

Now, if D is just conjunctively-self-reducible, the constant d above has to be
replaced by some polynomial in [G[. Q.E.D.

Since every complement of a (strongly) conjunctively-self-reducible set is
(strongly) disjunctively-self-reducible, we have the following corollary:

COROLLARY 4.1. If D P. S, S DN (h), h computable in deterministic poly-
nomial-time, then"

(i) IfD is strongly disjunctively-self-reducible then

D 6 DTIME (n t(n) ’(n))

for some integer v and where for some polynomials pl, p2, ql, q2,

t(n)=plOh ql(n), t2(n P2 h q2(n).

In particular, if tl(n) ’(n is bounded above by a polynomial (for instance, if h(n)=
O(log log (n))) then D P.

(ii) IfD is disjunctively-self-reducible then

D 6 DTIME ((n tl(n))’2(n)),

V, tl, t2 as above.
As applications, in (i) above D could be INTFAC, and in (ii) above D could be

the disjunctively-self-reducible set which is polynomial-time many-one equivalent to
ISO.

It should be noted that any set in NP, and in particular any disjunctively-
self-reducible set, has a strongly disjunctively-self-reducible set associated with it.
If ENP, let M be a nondeterministic Turing machine which accepts E in

422 YAACOV YESHA

nondeterministic polynomial-time. Let

A {(x, (##)k)lx is a configuration of M from which
an accepting configuration can be reached in
at most k steps}.

Clearly, E -<_ P., A. A is strongly disjunctively-self-reducible. Let d be a bound on the
number of nondeterministic choices of M in one step. If k 0 (x, (##))A if and
only if x is an accepting configuration, and this can be checked in deterministic
polynomial-time. If k > 0, let x , x ,..., x’ (r <_-d) be the configurations of M which
can be reached from x in one step. Then

(x, (##)) e A v (x , (##)-a) e A.
i=1

Since IxJl_-< Ixl/ 1, I(x, (##)-)l < I(x, (##))](a <_-i _-<r).
We note, however, that a reducibility of E to a sparse set does not seem to imply

a reducibility of A to a sparse set.
We now turn to the second application of Theorem 4.1. Define an S-approximate

algorithm for a set D as a polynomial-time algorithm which decides D correctly on
Z*-S, and gives a wrong answer on any input from S (S E*). The closeness of
approximation is measured by the census function of S. For S sparse, the assumption
of the existence of the above algorithm is weaker than the existence of an "almost
polynomial-time" algorithm for D, [B], [MP], which never gives a wrong result, but
requires more than polynomial-time on a sparse set S. For example, the latter
assumption implies S P. It is known [B], [MP] that if there exists an almost poly-
nomial-time algorithm to solve an NP-hard question then NP P. Now, if one could
settle the basic question regarding reducibility to sparse sets, by showing that if an
NP-complete set is _-< - reducible to a sparse set then NP P, this will also show that
unless NP P, no S-approximate algorithm according to our definition exists for
NP-hard sets, with sparse S.

Now, the above basic question is still open, nevertheless we are able to apply
Theorem 4.1 to show that if S as above is "sparse enough" (and having census
O(log log (n)) is enough) then NP P. This also can be interpreted as follows: Suppose
we measure the "distance" between two sets by the census of their symmetric
difference. How "close" (according to this criterion) can be an NP-hard set to a set
in P? The answer is partly given in the following theorem.

THEOREM 4.2. Suppose D is NP-hard, fa computable in deterministic polynomial-
time, fx:* "-> {0, 1} such that the set {xIfl(x # XD(X)} is in DN (h), where h is computable
in deterministic polynomial-time. Then every set in NP is in DTIME (nvtl(n) t2(")) for
some integer v and where for some polynomials pl, p2, ql, q2,

tx(n)=pa oh oq(n), tz(n)=p2oh oq2(n).

Hence in particular, if h (n) O(log log (n)) then NP P.
Proof. Let

S {x Ifl (x) XD (X)},

Then for all x E*,

x eDC::>(fx(x)=O ^x eS) v (fl(x) 1 ^x S).

Let f (which is computable in deterministic polynomial-time) satisfy: For all x s E*,

x s SAT<:f(x) e D.

TRUTH-TABLE REDUCIBILITIES OF COMPLETE TO SPARSE SETS 423

Then for all x 6 Z*,

x s SATe (fx(fz(x)) 0 ^ fz(x) s S) v (fl (f2(x)) 1 ^ f2(x S).

Hence since for any x, f(f2(x)){O, 1}, we also have for all x Z*,

x eSAT :> (/a(fz(x)) 0 ^fz(X)g-S)v (f(fz(X))= 1

Also, if S or if S * then SAT P. So suppose there exist/xo, tz such that
z0 e S and tx S. Define f, g computable in deterministic polynomial-time as follows:

f(x)
if f(f2(x)) 1,
if f(f(x))=O,

g(x) -!h(x) if f(f2(x)) O,
if fl(h(x)) 1.

Then for all x Z*,

x SAT eff(x) S ^ g (x) : S.

The result now follows by Theorem 4.1. Q.E.D.
We now use Theorem 4.2 and a result due to Meyer to prove the following

theorem.
THEOREM 4.3. For no ETIME-hard (under <- P., reducibility) setD does there exist

f computable in deterministic polynomial-time f:E*-{0, 1} such that {x[f(x) Xo(X)}
is in DN (log log (n)).

Proof. Let

s {x If(x) xo (x)}.

D is -<_- reducible to the sparse set S. By a result due to Meyer (see [KL]), if an
ETIME-hard set is -<- reducible to a sparse set, then NP # P. On the other hand,
since D is NP-hard, NP=P follows by Theorem 4.2, resulting in a contra-
diction. Q.E.D.

This should be compared with Meyer’s result (see [BH]) that no ESPACE-
complete set can be -<_ reducible to a sparse set. So in particular an ESPACE-hard
set cannot have a sparse symmetric difference with a set in P.

5. Do there exist sets in NP-coNP which are polynomial-time many-one reduc-
ible to sparse sets? In [HM] the question whether NP P implies the existence of
sparse sets in NP-P is raised. We are concerned with a similar question: Assuming
NP coNP, what are the implications of the existence of a sparse set in NP-coNP?
The following result is essentially from [BO].

LEMMA 5.1. ESPACE NETIME ifand only ifthere exists a tally set (asetoverone
symbol) in PSPACE-NP.

Proof. See [BO] for the proof of similar results. Q.E.D.
We now show the following:
THEOREM 5.1. If there exists a set D NP-coNP such that D <--er S, where S is

sparse, then there exists a tally set in PSPACE-NP, hence ESPACE # NETIME.
Proof. Using a method of Mahaney [M], we first show that we may assume that S

itself is in NP-coNP. Let f be computable in deterministic polynomial-time such
that for all x E*, x DCzf(x)S. Let f(x)-f(x)# Ixl, where # is a new symbol,
$1 f(D). Then S is sparse. Also, to decide whether y $1, guess an x satisfying
Ix I--< Yl, verify that fl(x)=y and that x D. Thus S NP. Also S coNP, since
D -<_P,, S andD coNP. Now letH={O6(i’J)lcs(i)=f, i=0, 1, }, where (i,/’) is the

424 YAACOV YESHA

conventional pairing function $(i,])= + 1/2(i +])(i +] + 1), and Cs is the census function
of S. We now show that H PSPACE, by exhibiting a nondeterministic polynomial-
space algorithm for H. Given 0’, guess and/" and check whether b(i,])= r. Then
check all x X* with Ix[-< for membership in S, thus determining Cs(i). Since S NP,
this can be done in polynomial-space. Finally, verify that cs(i)=]. Now we show that
if H NP then S coNP, resulting in a contradiction. The method is essentially in [M].

Suppose H NP. Let h be some polynomial bound on Cs. To decide whether
x S in nondeterministic polynomial-time, do the following:

1) Guess a] satisfying]-<h([x[). Verify that 0 *(I I.i)H in nondeterministic
polynomial-time, thus proving that Cs([X[)=].

2) Guess distinct x,x2,...,xi such that [x[-<[x[and xi#x(1-<i-<]), verify in
nondeterministic polynomial-time that for 1 -< -</’, x S. Since cs(i) =], x S if and
only if such x, x2," ", x. exist. Q.E.D.

The above result might imply that it will be very difficult to show [NP # coNP=>
there exists a sparse set in NP-coNP] because this will also imply [NP # coNP=>
NETIME # ESPACE]. Whether the latter implication holds is an open and apparently
difficult question.

6. Concluding remarks. We have obtained new results regarding the structure
of sets which are hard for NP and other classes with respect to certain polynomial-time
truth-table reducibilities, and sets in NP-coNP (assuming NP # coNP). The results
are applied to the question how "close" can be difficult or apparently difficult sets to
sets in P. We also answer new restricted forms of very basic open problems which are’

1) Does -<_ er reducibility of NP complete sets to sparse sets imply NP P?
Note that A <e=bptts is a special case of A -<S, in which the polynomial-time

oracle Turing machine which accepts A with oracle S can ask only a bounded number
of questions, and furthermore, the Boolean formula which describes the outcome of
the computation as a function of the oracle answers is monotone increasing.

2) Can ETIME-complete sets be <_- reducible to sparse sets?
Clearly a set with census O(log log (n)) is a special case of a sparse set. Also if

A has an S-approximhte algorithm, then A is accepted by a polynomial-time oracle
Turing machine which accepts A with an oracle S, such that given input x, only two
questions, which are prepared in advance, are presented to the oracle, and the outcome
of the computation as a function of the oracle answers is described by a Boolean
formula in two variables of a specific form (see the proof of Theorem 4.2).

Acknowledgments. I would like to thank Professor Stephen A. Cook for his
encouragement, very helpful suggestions which helped to improve the results of this
work, and patient and careful reading of the manuscript, resulting in remarks which
lead to an improved presentation, also for bringing IS] to my attention and supplying
me with IS] and IMP]. I am grateful to the referee for pointing out a mistake in the
previous version of Theorem 3.2.

[B]

[BH]

[BO]
[c]

REFERENCES
P. BERMAN, Relationship between density and deterministic complexity of NP-complete languages,

Fifth International Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science 62, Springer Verlag, Berlin, 1978, pp. 63-71.

L. BERMAN AND J. HARTMANIS, On isomorphisms and density of NP and other complete sets,
this Journal, 6 (1977), pp. 305-322.

R. BOOK, Tally languages and complexity classes, Inform. Control, 26 (1974), pp. 186-194.
S. A. COOK, The complexity of theorem proving procedures, Proc. 3rd Annual ACM Symposium on
Theory of Computing, 1971, pp. 151-158.

TRUTH-TABLE REDUCIBILITIES OF COMPLETE TO SPARSE SETS 425

[C1] unpublished lecture notes, CSC2428F 1980, Dept. Computer Science, Univ. Toronto,
Toronto, Ontario.

IF] S. FORTUNE, A note on sparse complete sets, this Journal, 8 (1979), pp. 431-433.
[HM] J. HARTMANIS AND S. MAHANEY, An essay about research on sparse NP complete sets, Computer

Science Dept. Technical Report 80-422, Cornell Univ., Ithaca, NY, 1980.
[HU] J. HOPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages and Computation,

Addison-Wesley, Reading, MA, 1979.
[K] R. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations,

R.E. Miller and J. W. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.
[KL] R. KARP AND R. LIPTON, Some connections between non-uniform and uniform complexity classes,

Proc. 12th ACM Symposium on Theory of Computing, May 1980, pp. 302-309.
[L] N. LYNCH, On reducibility to complex or sparse sets, J. Assoc. Comput. Mach., 22 (1975),

pp. 341-345.
ILLS] R. LADNER, N. LYNCH AND L. SELMAN, Comparison of polynomial-time reducibilities, Proc. 6th

ACM Symposium on Theory of Computing, 1974, pp. 110-121; Theoret. Comput. Sci., (1975),
pp. 103-123.

[LPR] L. LANDWEBER, R. LIPTON AND E. ROBERTSON, On the structure of sets in NP and other
complexity classes, Computer Science Dept. Technical Report :342, Univ. of Wisconsin-
Madison, 1978.

[M] S.R. MAHANEY, Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis,

IEEE 21st Annual Symposium on Foundations of Computer Science, 1980, pp. 54-60.
[MP] A. MEYER AND M. PATERSON, With what frequency are apparently intractable problems difficult?

MIT Laboratory for Computer Science TM-126, Massachusetts Institute of Technology, Cam-
bridge, 1979.

IS] R. SOLOVAY, O/I sets Cook-reducible to sparse sets, this Journal, 5 (1976), pp. 646-652.
[ST] L. STOCZMEYER, The complexity o]decision problems in automata theory and logic, MAC TR-133,

Project MAC, Massachusetts Institute of Technology, Cambridge.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0002 $01.25/0

CONSTRUCTION OF OPTIMAL c-[LEAF TREES WITH
APPLICATIONS TO PREFIX CODE AND INFORMATION RETRIEVAL*

DAVID M. CHOY" AND C. K. WONGt

Abstract. In this paper, we study a special class of trees called a-/3 leaf trees with degree r. These
trees arise in information retrieval problems as well as prefix coding problems. An efficient method for
constructing optimal trees is presented. The method is combinatorial in nature instead of the integer
programming approach followed by other authors to study similar problems. The construction time is linear
to the number of leaves of the tree.

Key words, a-/3 leaf trees, prefix coding, information retrieval, integer programming, analysis of
algorithms, combinatorial optimization

1. Introduction. In this paper, we consider a special class of trees, called
leaf trees with degree r. Given integer r => 2, real numbers J => a > 0, an a-CJ leaf tree
with degree r is a tree such that each of its internal nodes has at most r children. The
weights, denoted by o)t(.), are defined as follows"

(a) o)t(root) =0;
(b) o)t(ith child from the left) o)t(parent)+a + (i 1)fl, 1 =< -< r;
(c) ot(tree)=sum of ot(leaf) over all leaves.

Figure la gives an example of an a-/ leaf tree with r 3 and ot(tree)=lla +6/.
Figure lb shows a binary tree representation of the same a-CJ tree with each left path
associated with a and each right path associated with/. The weight of a node is equal
to the sum of the edges from the root to the node in the binary tree.

The problem we study here can be described as follows: Given integers n >= 1,
r => 2, and real numbers/3 _-> a > 0, we want to construct an a-/3 leaf tree with degree
r such that it has n leaves and that o)t(tree) is minimum. (Note that the assumption
/ =>a is not essential. The approach described in this paper can also be adapted for
the case of/3 < a.)

This problem arises in at least the following two applications [3]:
(i) Information retrieval. Given a collection of records for storage and retrieval,

we want to assign identifying keys to these records and store these keys along with
the addresses of the corresponding records so that the retrieval of records (through
search of the keys) can be performed efficiently. The keys are composed of strings of
symbols over some given key alphabet of size r. For example, let {1, 2, 3} be the given
key alphabet and let R 1, R 2, R 3, R 4, R 5 be five records to be stored. We can assign
keys to the records as follows:

111 R1
12 R2
13 R3
22 R4
23 R5

and then store these keys in a tree structure such that each key corresponds to a leaf
(Fig. 2a, b). To retrieve the address of a record, we have to follow a chain of pointers
from the root of the tree to the appropriate leaf. For example, to get the address of

* Received by the editors July 6, 1981, and in revised form March 15, 1982.
t IBM Research Laboratory, San Jose, California 95193.
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

426

OPTIMAL a-/3 LEAF TREES 427

0

2a/ 2a+2/
2a+2/

3a+2/
(a) Weights of the nodes.

/.

(b) Binary tree representation of the tree in (a).

FIG.

R4, we have to follow one downward pointer followed by a horizontal pointer and
two more downward pointers. In general, the downward pointer and horizontal pointer
may have different retrieval costs due to the clustering of the nodes in storing the
tree. If we assign cost a to the downward pointer and cost/3 to the horizontal pointer,
and r is the alphabet size, then a doubly chained tree can be thought of as an
leaf tree with degree r and the weight of the tree as defined above reflects the expected
search time for the record addresses assuming all records have the same retrieval
probability.

(ii) Prefix code. Suppose we have r coding symbols denoted by 1, 2,..., r with
costs C1, C2, Cr, respectively. Consider any prefix code in which the prefix Sj, S
a string and j a symbol, is utilized only if S1, $2,..., $(j-1) are utilized. Figure 2c
is an example for r =4, where 111, 12, 2, 31, 32, 33, 4 are the code words and the
cost of any word is the sum of the costs of the symbols in the word. In the case when
Ci a + (i- 1)/3, 1, 2,. ., r, we can regard a prefix code as an a-/ leaf tree with
degree r, and the weight of the tree represents the average word cost.

Thus an optimal a-/ leaf tree with degree r, i.e., one with the minimum weight,
corresponds to a key assignment to records such that the expected search time for
the keys is minimized, or to a prefix code with minimum average code word cost.

The more general prefix code problem where Ci, 1, 2,..., r, are arbitrary
integers was first solved by Karp [7] using integer programming methods, which may
have exponential time complexity. Stanfel used the same approach to solve the special

428 DAVID M. CHOY AND C. K. WONG

(a)

(b)

4

FIG. 2

case of optimal a-/3 leaf trees when /a is an integer [3]. A nearly optimal algorithm
that runs in linear time for the general case was proposed by Mehlhorn [8].

In this paper, we propose an algorithm that runs in linear time to construct
optimal a-/3 leaf trees for arbitrary a,/3. The method is combinatorial in nature and
is based on an enumeration technique previously employed to study other a-/3 tree
problems, namely, a-/3 node trees [1] and -/3 node trees with degree r [2].

2. Tree array. Given r, a, and/3, consider any a-/3 leaf tree with degree r (tree
for short). Each node in the tree has a weight ia +/’/3 for some nonnegative integers
i, j. Suppose we count the number of nodes with the same ordered pair i, j and enter

OPTIMAL a-/3 LEAF TREES 429

o 2 3

0 0 0

0 0

2 2 0

0 0 0

FIG. 3

this number at the ith row and/’th column of an array. We then obtain an array of
nonnegative integers.

For example, Fig. 3 shows the array corresponding to the tree in Fig. l a. Notice
that such mapping f from a tree to an array always exists and is unique. We shall
next discuss the range of f, from which the construction of an optimal tree will result.

Given r-> 2, consider the following semi-infinite array. Let e (i,/’) be the entry at
the ith row (i => 0) and/’th column. Construct the array according to the following rules:

(1) e(i,]) 0 for] < 0,
(2) e(0, 0)= 1,
(3) e(O,f)=Ofor]>O,

r--1(4) e (t, I) Ek=0 e (t 1, f k) for > 0.
An example of this array for r 4 is given in Fig. 4. The implication of e(i, f) is that
it is possible to construct a tree in which e(i, f) of the nodes (internal nodes or leaves)
each has weight ia +/[3. But there is no tree that can map into an array in which the
(i,/’) entry is larger than e (i,/’) for any and/’. This array has been studied in [2]. Our
approach here is to select an appropriate number of nodes from certain entries of
this array to form an optimal tree. After the selection, we shall actually construct the
tree in a natural way from these selected nodes.

While this array is sufficient for constructing a-fl node trees with degree r as
demonstrated in [2], it is, however, insufficient for leaf trees. A decomposition of

0 2 3 4 5 6 7 8

0 0 0 0 0 0 0

0 0 0 0

2 3 4 3 2 0

3 6 I0 12 12 I0 6

4 I0 20 31 40 44 40

r=4

FIG. 4. Array with entry e(i,]).

430 DAVID M. CHOY AND C. K. WONG

each entry into three components is needed. We shall let the entry at row (i => 0)
and column] (] >-0) be denoted by a triplet E(i,]) (el(i,]), e2(i,]), e3(i,])) where
each component is a nonnegative integer, and the sum of the components is given by
e(i,]) e 1(i,]) + e2(i,]) + e3(i,]). Within the triplet, e 1(i,]) denotes the number of nodes
(each with weight ice +]/) which are the first children of their respective parents.
Similarly, e2(i,]) represents the second children, and e3(i,]) the third and further
children. Clearly, if r 2, then e3(i,])=0 for all i,]. Consequently, the third com-
ponents of an entry can be dropped and we have E(i,])= (e(i,]), e2(i,])).

Given integer r->2 and ->0, we construct an alternate semi-infinite array as
follows:

E(O, O)= (, O, 0),

E(O,/) (0, 0,. O) for / O,

E(i,/)= e(i-1,]),e(i-1,]-l), ., e(i-1,]-k) fori>0.
k=2

By the same approach as used in the derivation of [2, Eq. (2)], we have

e(i,])= 2 e(i-1,]-k)=e(i,]-l)-e(i-1,]-r)-e(i-1,]-l).
k=2

Recall that e(i,/) =0 for/<0. Also, note that e(i,])=e(i,]+ 1) for i>0. This fact
will be utilized in our algorithm. Figure 5 shows an example of such an array for r 4.
It is a decomposition of the array shown in Fig. 4. For properties of this array, the
reader may refer to [2].

3. z-line. We are going to truncate the semi-infinite array defined in 2, so that
the subarray obtained corresponds to an optimal tree.

Let ti [i/ce], for 0, 1, 2,. . Then

(1) tice >- i > (ti 1

(2) ti -> i,

(3) ti+ + 1 -> t + ti -> ti+i

o

2

3

4

o 2 5 4 5 6 7 8

100

O0

100

O0

100

ooo

o o

o

21o

31o

ooo

321

631

ooo

oo

112

433

1064

ooo

ooo

012

12 I0 9

r=4

ooo

ooo

OO2

2:57

12 12 16

ooo

ooo

oo

127

10 12 22

ooo

o oo

ooo

o15

61024

FIG. 5. Array with entry E(i, j).

OPTIMAL a-/3 LEAF TREES 431

0 2 3 4 5

3rd TOOTH

c=3, /=4

FIG. 6. An example ol a z-line.

for i, j >_-0. Furthermore, if is the smallest positive integer such that tia i/, then

t.c -/’fl if and only if/" is divisible by for all/" _-> 0.
We now define a staircase-like semi-infinite line called a z-line, which will be

used to truncate the tree array. A z-line consists of horizontal and vertical segments
(Fig. 6). The vertical segments are of length si t- ti-1 --> 1, 1, 2, , (in terms of
the number of array entries), and are arranged upwards. The lower endpoint of s/l

is connected to the upper endpoint of s by a horizontal segment of unit length with
si being to the left of s/z. This horizontal segment will be referred to as the ith "tooth"
of the z-line.

Overlay the z-line on top of the tree array with segment s always between columns
i- 1 and i, as shown in Fig. 6. Suppose the head of the z-line (i.e., the 0th tooth) is
between rows k and k + 1 at column 0. Then the fth tooth is at column/" and between
rows (k-ti) and (k-t. / 1),/"- 0, 1, 2,.. . The entry E(k-t,) is said to be at the
/’th tooth of the z-line.

Let Nk be the sum of the entries at all teeth plus the third components of the
entries immediately below the "teeth"’

(4)

h(k)-I

]=0

E
]---0

[e(k-t,f)+ea(k + 1 t, f)]

[e(k + l-ti, f)+e3(k + 1- t,/’)],

432 DAVID M. CHOY AND C. K. WONG

where h (k) is the number of teeth inside the array and is given by

+1.

Figure 6 shows an example of a z-line with a 3, 4, which imply to 0, tl 2,
t=3, t3=4, t4=6, ts=7, t=8, tT= 10,..., and s =2, s= 1, s= l, s4=2, ss=
$6 1, .

We have the following observation concerning a z-line:
LEMMA 1. Referring to Fig. 7, let A be the entry at the Oth tooth. Let B be the

entry at any tooth. Let C be an entry inside the z-line but not at any tooth. Let D be an
entry outside the z-line. Let cot(X) denote the weight of a node associated with the entry
X. Then

wt(O > wt(A >- ot(B > oot(A) a >- oot(C).

Proof. (i) First inequality: Let A be at row k. If D is at row -> k, then the inequality
is obvious. Assume D is above A. Let X be the leftmost entry outside the z-line and
at the same row as D. Suppose X is at column]. Let Y be the entry just below the
]th tooth. Then

wt(D >- wt(X) >-_ ot(Y)

and ot(A) ka, ot(Y) (k + 1 ti)a +. From (1),/’B > (ti 1)a, thus ot(Y) > ot(A).
Hence ot(D > ot(A).

(ii) From (1), ta >=i, thus ka >-(k-t)a +i for i->_0. Hence ot(A >- ot(B).
(iii) From (1), i >(ti-1)a, and we have ot(B)>ot(A)-a.
(iv) Suppose C is at column f for some/’. Let Z be the entry at the fth tooth.

Then ot(Z) >-t(C) +a. By (ii), ot(A) >=ot(Z). Thus ot(A)-a >=ot(C).

4. Array truneat|on. We now describe the array truncation algorithm. We shall
truncate the array using the z-line in a graphical manner so that a better insight to
the algorithm is possible. At the end, the steps are summarized in an arithmetic form.

z

D

FIG. 7. Illustration for Lemma 1.

OPTIMAL a-/3 LEAF TREES 433

(a)

C D

A B A B C

(b)

FIG. 8

The first step is to move the z-line down the array so that the 0th tooth is at row
m where m is the smallest integer such that N,, -> n and n is the number of leaves in
the final tree. The entries below the z-line and not enumerated by N,, are set to zeros.
The nodes associated with these entries will not be included in the final tree.

If we let all the nodes enumerated by N,, be leaves, we can construct a tree with
N,, leaves. Clearly, it may have more leaves than we need, and furthermore, the tree
is not optimal. We shall proceed to "locally optimize" the tree as we select n leaves
from the entries near the teeth of the z-line.

Progressively we identify one new leaf at a time for the tree by marking the
corresponding entry in the array, such that each time, the incriase in the weight of
the tree due to the additional leaf is minimal. Note that the increase in tree weight
may or may not be equal to the weight of the new leaf added. For example, in Fig.
8a, adding a new leaf to B implies turning B into an internal node and creating two
new leaves C and D. The weight of the tree is increased by wt(B)+ 2a +/3, which is
neither equal to tot(C) nor equal to tot(D). On the other hand, adding a new leaf C
as in Fig. 8b will incur an additional tree weight equal to tot(C).

For a tooth at row and column/’, where m t., let us examine the components
of N,, (see Fig. 9). First of all, e(i,]) of these nodes are the first children of their

i-Sj/l

sj /1

E(i,j)

FIG. 9

434 DAVID M. CHOY AND C. K. WONG

parents. Also by construction, none of the nodes enumerated by ez(i, f + 1) will be
present in the tree since they are below those enumerated by N,. (Recall el(i, f)=
ez(i, f + 1) by definition.) It follows that each of the el(i, f) nodes is the only child of
its parent. If these nodes are leaves, we can delete them and let their parents be
leaves, i.e., nodes enumerated by e(i- 1, f). This will reduce the weight of the tree
by e 1(i,/’) c without changing the number of leaves. Similarly, we will not select any
node from e2(i -k,] + 1) to be a leaf for k 1, 2, , sj+- 1, and for the time being
we will also not select any node from e2(i-sj/,] + 1) to be a leaf. Consequently, we
change e(i-k,]) to zero for k =0, 1,..., s/t, and mark e(i-s+- 1,]), e2(i-k,]),
e3(i k,]) to be leaves for k 1, 2, ., S/l + 1. Note that the sum of all these leaves
is exactly e(i,]). Also note that the weight of each of these leaves is at most (i 1)a +]/3
because s+ _-> 1.

Next, consider e3(i,]) for the tooth at row and column]. Each of the nodes
enumerated by e3(i,]) has a weight of (ia +][3). Since this node is the third or further
child of its parent, (ia +][3) is also the additional weight to the tree. We shall mark
e3(i,]) to be leaves. After we mark e3(i,/’) to be leaves for all teeth, we obtain an
array corresponding to a tree of N,,-1 leaves where

h(m)-I

Nm-1 2
/’=0

[e(m ti, f) + e3(m ti, /’)] < n.

We shall add n-N,,_ more leaves to the tree one by one, each time choosing the
node which increases the weight of the tree by a minimum. These leaves will be
selected from those enumerated by e(i,) or e3(i + 1,/’) for teeth at row and column
j,j=O, 1,..., h(m)-l.

If we select a node from ea(i, f) as a leaf, we also have to turn one of the leaves
from e(i- 1, j- 1) back to an internal node and mark one of the nodes from e(i, j- 1)
to be a leaf. This is illustrated in Fig. 10a. Thus, adding a leaf from e2(i, j) incurs an

(ORIGINAL LEAF)

LEAF FRO LEAF FROM
el(i,j-I) e2(i,j)

(a) Adding a leaf’rom e2(i,]).

EAF FROM
e:(i +1, j)

(b) Adding a leaffrom e3(i + 1, f).

FIG. 10

OPTIMAL a-/3 LEAF TREES 435

additional tree weight of (i + 1)a +/’/. On the other hand, if we add a leaf from
e3(i + 1,/’) to the existing tree, the leaves of the existing tree need not be changed
(Fig. 10b). Thus the additional cost is also (i + 1)a +/’/3. Therefore, there are e2(i, f)+
e3(i 4-1,/’) nodes each bearing an additional weight of (i + 1)a +/’/3.

If we let these nodes at all the teeth be leaves, we obtain a tree of Nm leaves,
which may be larger than n. Therefore we shall select n-N,,-1 of these nodes to be
leaves in the order of increasing additional weight. Let us consider the case /3 > a
first. Note that at the fth tooth, =m-t; thus the additional weight is u.=
(m-t + 1)a +j/. Let

Then uj => uo if and only if dj <= do. Thus, we can order the teeth by decreasing di. We
refer to this partial ordering as priority, which is a function of/’. Clearly, the 0th tooth
has the lowest priority. Note that dr dj/q for all/’, where q is the smallest positive
integer such that tqa q/. If [3/a is an integer, then all teeth have the same priority.

We now follow this priority on j, 0-</" _-< h (m)- 1, to add leaves to the tree. For
each j (each tooth), we first mark e2(m-tj, f) to be leaves, change e(m- ti-1, f-1)
back to internal nodes, and restore and mark e(m- ti, f- 1) to be leaves. We then
for the same/" mark ea(m-ti + 1,f) to be leaves as well. This is possible because
e2(m -ti + 1, j- 1) has already been assigned either as internal nodes or as leaves due
to the following. Note that e2(m ti + 1, f 1) can also be represented by e2(m ti_-
s.+l,f-1). If si> 1 then e2(m-ti_l-Si+l,f-1) has been marked as leaves in the
previous step. If sj 1, then the (/"- 1)st tooth has a higher priority than the/’th tooth:

since/ > a. So e2(m ti_ s + 1,] 1) will be marked as leaves before e3(m ti + 1, j)
will. This loop on/" is continued until n leaves are marked.

For the case fl a, the basic operation is the same except it will be done in a
different order. First e2(m-tj,]) are marked to be leaves together with changing
e (m -ti- 1,/"- 1) and marking e(m -ti,- 1) as in the previous case. This is done for
all/" in any order. If more leaves are still needed, e3(m -ti + 1,]) are then marked to
be leaves for all], again in any order.

For both cases, the process stops when n leaves are marked. For the last visited
entry in the process, if only p leaves are needed then p of the nodes are marked. In
particular, if p <e2(m -t.,/’), then we change p of e(m-t-1,]-1) nodes to internal,
change both e(m-ti, f-1) and e2(m-ti,) to p leaves each. If on the other hand,
p < e3(m -t + 1, f), then we change e3(m -tj + 1, f) to p leaves.

Finally, we change the e2 component of all unvisited teeth to zero. All entries
below the z-line are assumed to be zero except those e3 components marked as leaves.
We now obtain an array which corresponds to an optimal tree. The weight of the tree
is the sum of the weight of the leaves. Proof of optimality will be given later.

Notice that, in reality, there is no need to first construct a semi-infinite array and
then truncate it using the z-line. Each array entry can be computed from the previous
ones when the entry is needed. Furthermore, the algorithm only uses entries close to
the z-line. Therefore, only these entries are saved. It is not necessary to store the
entire array, and no "truncation" is actually performed. Furthermore, the actual
marking of the array entries as leaves is also unnecessary. It is included here to provide
a better insight to the algorithm. What is required, though, is the count of the total

436 DAVID M. CHOY AND C. K. WONG

number of leaves selected and the new values of the modified entries. When a tree
is finally constructed from the "truncated" array, the nodes without descendants are
naturally leaves.

The algorithm is now summarized below. Any "unused" entry is considered to
be zero. The operations with asterisk * are only conceptual and can be ignored in
implementation.

ALGORITHM Construction of a-O leaf trees.
Step 1. Find the smallest m such that N,, _-> n (see (4)).
Step 2. Set the leaf count to N,,-1. For each/’, 0 <_-/" _-< h (m)- 1"
(1) Change e(m-tj-k,]) to zero for k =0, 1, Si+x.
(2)* Mark e(m -tj-si+- l, f), e2(m -ti-k, f), e3(m -ti-k, f), e3(m -ti, f) to be

leaves for k 1, 2,.. , si+ + 1.
Step 3
(a) For > a. Follow the order on/" defined by decreasing dj, 0 -<_/" <_- h (m) 1

(see (5)). For each/" do the following (until n leaves are counted):
(1)* Change e(m ti 1, f 1) back to internal nodes.
(2) Restore e (m ti,/" 1) from zero to its original value.
(3)* Mark e(m -ti,]- 1), e2(m -ti,]), e3(m -tj + 1,]) to be leaves.
(4) Increase leaf count by e2(m ti,]) and e3(m ti + 1,]).
For the] when the nth leaf is counted, let p be the number of leaves needed
for this/’:
(5) If p<-e2(m-t,]) then set both e(m-t,]-l) and e2(m-t,]) to p, and

set e3(m ti + 1,/’) to zero.
(6) Otherwise restore e(m-tj, f-1) to its original value and set ea(m-ti +

1, f) to p eE(m ti, f).
(7)* Same as (3)* and (4).
For each of the remaining/" after n leaves are counted"
(8) Set both eE(m ti,) and ea(m ti + 1,/’) to zero.

(b) For a.

(1) Follow any order on/’, 0_-</" <-h(m)-1. For each/" do (1)*, (2), (3)*, (4)
of (a) except that e3(m -tj + 1,/’) is not marked and counted as leaves.

(2) Again follow any order on/’. For each f count and mark e3(m ti + 1,)
to be leaves.

(3) If the nth leaf is counted in (1) then do (4) of (a) and set e2(m-ti, f) or
e3(m ti + 1,/’) to zero for the remaining/" in (1) and (2).

(4) If the nth leaf is counted in (2) then do (5) of (a) and set e3(m -ti + 1, f)
to zero for the remaining/" in (2).

Step 4. Construct a tree from the array (to be discussed in the next section).
An example of a truncated array is shown in Fig. 11, where n 93, r 4, a 3,

/3 -4. The circled entries are those marked for leav.es. An entry with a slash across
it and a number at its upper right-hand corner means this entry has been changed to
the number in the final array. I, II, III denote the priority of the teeth.

In this case, we start with N8=58 and N9 102. Thus m =9, h(m) =7, and we
have the z-line denoted by the heavy line in Fig. 11. To illustrate Step 2, we consider
the tooth at column 3. ea(5, 3)= 20 and we change the entries ex(3, 3), e1(4, 3) and
e(5, 3) to zero. Entries ez(4, 3), e3(4, 3), e2(3, 3), e3(3, 3) are marked for leaves and
e(2, 3), ez(2, 3), e3(2, 3) are temporarily marked for leaves, e3(5, 3) is also marked
for leaves. After we do this for all teeth, we have marked a total of N8 58 nodes
for leaves. Thirty-five more leaves are needed.

OPTIMAL c-/3 LEAF TREES 437

0

0 O0

O0

2 O0

3 O0

4. O0

5 O0

8 O0

7 ()00

8 200
9 fO0
o

3 5

000 0001 000’

0 0

0

210

310

4 10

o

2

000

001

321

O0 II

2

4

000

000

o(R)

0

000,

o o(1

I I[Ill I II I

r=4, el=3, ,8=4, n=93, N9=102, h(9)=7

C) NODES MARKED FOR LEAVES

TT TI’I" PRIORITY

6

000

000

FIG. 11

Step 3 selects leaves from e2(i, f) at the teeth and from e3(i + 1, j). Since/3 =4
and a 3, columns 1, 4 have priority I, 2, 5 have II, and 0, 3, 6 have III. All the
nodes from e2(i, f) and e3(i + 1,/’) in I and II are selected, and 8 from e.(5, 3) in priority
III are selected to make up a total of 93. When a node from e2(i, f) is selected for a
leaf, a node from el(i,f-1) must also be selected for a leaf, and one node from
E(i- 1, f- 1) must be turned into an internal node. For example, 8 nodes are selected
from e2(5, 3) 10 as leaves. Thus, we must select 8 of e1(5, 2) 10 and 2 of e(4, 2) 10
nodes as leaves.. Construction of the tree. In this section we shall construct a tree from the
"truncated" array obtained in 4. The entry el(0, 0)= 1 corresponds to the root of
the tree. We shall examine the array one row at a time starting from row 1, and
examine individual entries from left to right on that row. For an entry E(i, f) in the
array, e(i, f) nodes will be added to the tree. Pointers will be maintained so that these
nodes can later be located when i,/" and component subscript (1, 2 or 3) are given.

For an entry e(i, f), we add the first child to that many nodes associated with
E(i 1, f). This is always possible because by construction and truncation of the array,
e(i, j) <-e(i- l, j); see Fig. 12a.

For an entry e2(i, f), we add the second child to the parents of the nodes associated
with ex(i,]-1). This is possible because e2(i,])=ex(i,]-1) for all i,]; see Fig. 12b.

For an entry e3(i,/’), we add the third child to the nodes associated withE(/- 1,/’-
2), the fourth child to those associated with E(i-1,/-3),..., and the rth child to
those associated with E(i- 1, j-r + 1). There are enough parents because

e3(i,f) <- ., e(i-l,f-k).
k=2

438 DAVID M. CHOY AND C. K. WONG

WITH E(i-l,j)
NODES ASSOCIATED
WITH el(i ,j)

(a)

NODES ASSOCIATED
WITH el(i ,j-I)

(b)

FIG. 12

NODES ASSOCIATED
WITH E(i-l,j-I)

NODES ASSOCIATED
WITH e2(i ,j)

But what about the existence of the previous children under the same parents? The
only case that needs to be considered is when e2(i, -1) is at a tooth and e3(i, f) is
just below a tooth, such that the latter may be selected for leaves while the former
may not. This case has been proved in 4.

The process of adding nodes to the tree continues until all nonzero array entries
are exhausted. The final tree is an optimal a-fl leaf tree of degree r. For the example
in Fig. 11, the result is shown in Fig. 13.

Some of the properties of the tree can be observed directly from the truncated
array. Since e2(i, O)= e3(i, 0)= 0 for all i, we can easily show that the number of levels
(depth) of the tree is at most m- s l, which is equal to m- [fl/a]. Furthermore, the

/

FIG. 13. An optimal tree of degree 4 with 93 leaves for a 3,/3 4.

OPTIMAL a-/3 LEAF TREES 439

number of nodes at level of the tree is equal to

h(m)-I, e(i,]),
i=O

where e(i,]) refers to the entry of the truncated array. Since the weight of a node
represented by an entry at row and column/" in the array is ia +/’/3, the weight of
the final tree can easily be computed during the construction using the coordinates
of those entries marked as leaves.

6. Proof of optimality. We prove here that the tree constructed in 4 and 5 is
indeed an optimal a-/ leaf tree. We shall first prove that the tree thus constructed
is locally optimal in the sense that: (1) every internal node has at least two children,
and (2) subtracting a leaf from the tree followed by adding a leaf to it will not reduce
the total weight. We then show that a locally optimal tree is indeed optimal. We
reiterate a few definitions here and introduce some new definitions.

Let T be an a-/ leaf tree with degree r, r -> 2, (tree for short) and a finite number
of leaves L(T). The path of a node A in T is a finite sequence of integers i, i2, ,
where m is the depth of ,4 in T and i. represents the edge leading from the particular
node at the (]- 1)st level to its ith child (1 <_-ii -<_ r) at the]th level of T. The 0th level
of T contains the root only. Clearly, A can be uniquely identified by its path in T,
and vice versa. The weight of A is given by ot(A)= =1 [+ (i- 1)/3]. The weight
of the root is zero. The weight of T is given by tot(T)= tot(x), where x runs over
all leaves in T. T is said to be optimal if tot(T)<-ot(S) for all trees S such that
L(S) L(T). To subtract a leaf from T we decrease L(T) by one by removing a leaf
directly, and, if this results in an internal node with a single child, we remove the
single child as well, and make the internal node a new leaf. To add a leaf to T we
increase L(T) by one by either adding an extra child to an internal node currently
with less than r children, or adding two children to an existing leaf thereby making
it internal. T is said to be local optimal if (i) every internal node of T has at least
two children, and (ii) subtracting a leaf from T followed by adding a leaf to it will
not reduce ot(T) regardless of the particular leaves being modified.

Given two trees U and V, a node A in U is said to correspond to a node B in
V if the path of A in U is identical to the path of B in V. We may therefore denote
B by V :A. Clearly ot(A)=at(V :A). Next we extend this notion to include nodes
outside the trees, for example, B can be a node outside V. In this case B is said to
be nonexistent in V. Thus, V:A can be either a leaf, an internal node, or nonexistent
in V. The distance between A and V"A is defined as

0 if both A and V’A are leaves or if both

d(A, V" A)
are nonexistent,

[c (A) c (V :A)I if both A and V :A are internal nodes,
r otherwise,

where c (A) is the number of children that A has in U and c (V:A) is the number of
children that V :A has in V. The distance between U and V is defined as

n(u, V)=Z,d(x, V:x),

where the summation is over all nodes x in U and all nodes V :x in V. Clearly
d (A, V A) d(V :A, A) and rt (U, V) r/(V, U). U is said to be identical to V,

440 DAVID M. CHOY AND C. K. WONG

denoted by U V, if V:x exists in V for any node x in U and U:y exists in U for
any node y in V. Clearly U V if and only if V U.

THEOREM 1. The tree constructed by the Algorithm, described in 4 and 5, is
local optimal.

Proof. By construction, el(i,f)=e2(i,f+l)<=e(i-l,f) for i>0 and j->0. It
follows that for the set of nodes represented by e (i 1,/’), if they have p first children
among them then they also have p second children. Since this is true for all nodes
and since a node having a second child must have a first child, it is obvious that every
internal node of the tree must have at least two children.

Suppose we subtract a leaf from the tree, which must be the rightmost leaf of its
parent. Since an internal node has at least two children, this leaf corresponds to either
e2(i, f) or e3(i, f) in the array for some i,/’. For the former case, the reduction in the
weight of the tree is (i + 1)a +f13. Since this entry is above the z-line, we have -< m tj.
Therefore the maximum reduction in tree weight is (m -tt + 1)a +/’/3 for some/’. For
the latter case, i.e., e3(i, f), the entry is either above the z-line or immediately below
it. According to Lemma 1, any entry below the z-line corresponds to a larger weight
than any entry above the z-line. Therefore m ti + 1, and the maximum reduction
in tree weight is also (m-t + 1)a +f/3 for some f. Let the/th tooth be the one in
which the nth leaf of the tree was counted. Then the maximum reduction in tree
weight is equal to (m -tj +

Suppose we now add a leaf to the tree. This can be by either (i) adding two leaves
under an existing leaf or (ii) adding another leaf under an existing internal node which
currently has less than r children.

(i) The minimum additional weight is achieved by adding two leaves under a
leaf enumerated byE(m tt St+ 1, f) for some f. This weight is (m St+ + 1)a +
(] + 1)/3 (m tt+ + 1)a + (] + 1)/3 for some], (m tk + 1)a + k/3 for some k.

(ii) The only possible case here is to add a leaf which is enumerated by e3(m ti +
1,]) for some]. The additional weight is therefore also

(m + 1)a +]/3 for some].

For both cases, this additional weight is minimized by] J.
Therefore subtracting a leaf from the tree followed by adding a leaf does not

reduce the tree weight. [3
LEMMA 2. An optimal tree with a finite number of leaves is always local optimal.
Proof. Given an optimal tree T. Suppose T has an internal node A with a single

child B. Then we can remove B and hang the subtree under B directly under A. This
will reduce the weight of each leaf in that subtree by a, and so will reduce tot(T).
Since T is optimal, we cannot have such an internal node A. Furthermore, by
subtracting a leaf from T and then adding a leaf to T, we obtain a new tree S with
the same number of leaves as T. Since T is optimal, we have tot(S) >-_ tot(T), regardless
of the particular leaves subtracted or added.

LEMMA 3. Given two trees U and Vsuch that U V, every leaf of U corresponds
to a leaf in V, and every internal node of U corresponds to an internal node in V with
the same number of children. Furthermore, L(U) L(V) and tot(U) tot(V).

Proof. Let x be a leaf in U. Since U V, V:x exists in V. If V:x is internal,
let y be a child of V’x. U V implies U’y exists in U. This means x has a child
and cannot be a leaf. Therefore V:x must be a leaf. Now let x be an internal node
of U with p children. Since U V, V:x exists in V, and so do the p corresponding
nodes of the children of x. Therefore V:x is an internal node with at least p children.
If V :x has more than p children, then the (p / 1)st child of V: x must correspond to

OPTIMAL a-/3 LEAF TREES 441

the (p + 1)st child of x. By contradiction, we know V:x must have exactly p children.
Since every leaf in U corresponds to a leaf in V and vice versa, clearly we have
L(U)--L(V) and tot(U)=ot(V). F]

LEMMA 4. Given two trees U and V, (i) (U, V)>-0 and (ii) (U, V)= 0 if and
only if U V.

Proof. Statement (i) is obvious from the definition of .
Suppose U V. By Lemma 3, we know d(x, V:x)= 0 for any node x in U, and

d(U y, y) 0 for any node y in V. Therefore (U, V) 0. Now suppose (U, V) 0.
By the definition of d, we know d cannot be negative. So we have d(x, V:x)=
d(U:y, y)--0 for any node x in U and any node y in V. This implies that V:x
exists in V for any x in U and U:y exists in U for any y in V. Therefore U- V. El

LEMMA 5. Given two local optimal trees U and V in which there exist an internal
node A and a leaf B in U such that V A is a leaf and V B is an internal node of V
(we assume B is not in the subtree under A). If U is optimal then there exists an optimal
tree Wsuch that L(U) L(W) and (W, V)< "o(U, V). If Vis optimal then there exists
an optimal tree Wsuch that L(W)=L(V) and (W, U)< (U, V) (see Fig. 14a).

U

CAN BE
HERE

(a)

(b)

(c)

V’B CAN BE HERE

V:B CAN BE HERE

FIG. 14

442 DAVID M. CHOY AND C. K. WONG

Proof. Since both U and V are local optimal, the subtree under A and the subtree
under V:B each must have at least two leaves. If we subtract one leaf under A, we
reduce tot(U) by at least tot(A)+ 2a +/. If we then add a leaf by inserting 2 nodes
under B, we increase tot(U) by tot(B)+ 2a + [3. Since U is local optimal, we have

tot(B) + 2a +/ >_- tot(A) + 2a +/,

or

tot(A <- tot(B).

On the other hand, we can subtract a leaf under V:B and add one under V:A. This
implies

tot(V:A)>-tot(V:B), or tot(A)>-tot(B).

Consequently

tot(A) =tot(B).

If U is optimal, we can remove the entire subtree from under A to under B without
affecting the optimality or the number of leaves of U. But the distance between the
new optimal tree and V is smaller than r/(U, V). Similarly, we can move the entire
subtree from under V:B to under V:A if V is optimal.

LEMMA 6. Given two local optimal trees U and V in which there exist an internal
node A and a leafB in U (B can be in the subtree under A) such that V A and V B
are internal nodes of V and such that A has more children than V A has. If U is
optimal then there exists an optimal tree W such that L(W)= L(U) and I(W, V)<
rl (U, V). If V is optimal then there exists an optimal tree W such that L(W)= L(V)
and rl(W, U) <rl(U, V) (see Fig. 14b).

Proof. Let p be the number of children that V :A has. If B is in the subtree
under A, then V" B must be one of the p children of V’ A or in one of their subtrees.
Since V is local optimal, p >_-2. If we subtract a leaf from the subtree under the
(p + 1)st child of A (note that B cannot be in this particular subtree) and add an extra
leaf under B, we first reduce tot(U) by at least tot(A)+a +p[3 and then increase tot(U)
by tot(B)+ 2a +/3. Since U is local optimal, we have

tot(B + 2a +[3 >= tot(A + a +p.
On the other hand, if we subtract a leaf from the subtree under V:B and add the
(p + 1)st child to V: A as a new leaf, we first reduce tot(V) by tot(B) + 2a + or more
and then increase tot(V) by tot(A)+ a +p. Since V is local optimal, we have

tot(A + a + pi3 >= tot(B + 2a +.
Therefore tot(A)+ a +p tot(B)+ 2a +. This implies that if U is optimal, we can
subtract a leaf from the subtree under the (p + 1)st child of A and add a leaf under
B without affecting the optimality or the number of leaves of U. But the distance
between the new optimal tree and V is smaller than r(U, V). Similarly, we can
subtract a leaf under V:B and add the (p + 1)st child to V:A if V is optimal. U

LEMMA 7. Given two local optimal trees U and V in which there exist internal
nodes A and B in U (B can be in the subtree under A) such that V A and V B are
internal nodes of V. Furthermore, A has more children than V A has and V B has
more children than B has. If U is optimal then there exists an optimal tree W such that
L(W) L(U) and ,1 (W, V) < ,1 (U, V). If V is optimal then there exists an optimal tree
Wsuch thatL(W)=L(V) and rl(W, U) <(U, V) (see Fig. 14c).

OPTIMAL a-/3 LEAF TREES 443

Proof. Let p be the number of children that V :A has and let q be the number
of children that B has. If B is in the subtree under A, then V"B must be one of the
p children of V’A or in one of their subtrees. Since U and V are local optimal, we
have p ->_ 2 and q -> 2. Suppose we subtract a leaf from the subtree under the (p + 1)st
child of A (B cannot be in this particular subtree) and add the (q + 1)st child under
B as a new leaf, we first reduce ot(U) by at least ot(A)+a +p[3 and then increase
ot(U) by wt(B + a +q. Since U is local optimal, we have ot(B + +q >-

ot(A) + a +p[3. Similarly, we can subtract a leaf from the subtree under the (q + 1)st
child of V:B and add the (p + 1)st child under V:A as a new leaf. This shows

ot(A) + a + p/3 _-> ot(B) + a + q/3.

Therefore ot(A) + a +p/ ot(B) + a + q/. If U is optimal, we can remove a leaf from
the subtree under the (p + 1)st child of A and add the (q + 1)st child under B. We
then obtain a new optimal tree W such that L(W)= L(U) and r/(W, V)< r/(U, V).
Similarly we can remove a leaf from the subtree under the (q + 1)st child of V: B and
add the (p + 1)st child under V:A if V is optimal.

LEMMA 8. Given trees U and V such that L(U)=L(V)= n and U V, where n
is finite. Furthermore, U is optimal and V is local optimal. Then there exists an optimal
tree Wsuch that L(W) n and 1 (W, V) < 1 (U, V).

Proof. Since U V and L(U)= L(V), there exists a leaf x in U such that V:x
is not a leaf in V. So V :x is either an internal code (Case (i)) or nonexistent (Case (ii)).

Case (i). V:x is an internal node in V. Let x be B. Since V is local optimal, the
subtree under V B must have more than one leaf. Since L(U) L(V), if we disregard
B and the subtree under V:B, we know there must exist another leaf y in U different
from B such that V’y is not a leaf in V. If V’y is again an internal node in V, then
y is in the same situation as x and we can repeat Case (i) endlessly. But since n is
finite, at some point in the recursion V’y must be nonexistent in V for some leaf y
in U different from B.

Now consider the parent, grandparent,..., of this y until we find ancestor A of
y such that V’A exists in V. V’A is either a leaf or an internal node. If V’A is a
leaf, then A cannot be an ancestor of B and we can apply Lemma 5. If V :A is
internal, then A has more children than V:A has and we can apply Lemma 6. For
either situation, we can find an optimal tree W such that L(W)= n and r/(W, V)<
n(u, v).

Case (ii). V:x is nonexistent in V. Let us consider the parent, grandparent, ,
of x until we find an internal node y of U such that V’y exists in V. If V’y is a
leaf, then we have found a leaf in V and the corresponding node is internal in U. It
is the same situation as x and V:x in Case (i) except the roles of U and V are now
interchanged. Since we have used only local optimality in proving Case (i) and since
Lemmas 5 and 6 are symmetric with respect to which tree is optimal, we can apply
the same proof to this situation of Case (ii). So we only need to consider the case
where V :y is an internal node of V, and let y be A. Note that A has more children
than V:A has. Because L(U)=L(V) and x is a leaf in U but V:x is not in V, V
must have a leaf z such that U’z is not a leaf of U.

If U:z is an internal node of U, then this becomes Case (i) again. If U:z is not
in U, then we can consider the parent, grandparent,..., of z until we find a node
V"B such that B exists in U. If B is a leaf, then we can apply Lemma 6. If B is
internal, then V:B has more children than B has and we can apply Lemma 7. For
either situation, we can find an optimal tree W such that L(W)- n and rt (W, V)<
n(u, v). t

444 DAVID M. CHOY AND C. K. WONG

THEOREM 2. Given a local optimal tree V with a finite number of leaves, V is
optimal.

Proof. Let U be an optimal tree such that L(U)- L(V). If U V then V is
optimal because of Lemma 3. Otherwise by Lemma 4 we know rl (U, V)> 0. Because
of Lemma 8, we can find optimal trees W1, WE,’" ", W, such that L(WI)= L(Wz)=

L(W,)=L(U) and r/(U, V)>r(W, V)>r/(W2, V)>" ">r/(W,, V)-0,
where m is finite. This implies Wm V (Lemma 4) and so V is optimal (Lemma 3).

7. Computation time and storage. In order to estimate the computation time,
we need to estimate m.

LEMMA 9. In the tree array, e (i, f) 0 for >-_ 0 and f >- (r 1) + 1.
Proof. Suppose there exists some I => 0 such that e (L f) 0 for all/" -> I (r 1) + 1.

Then

r--1

e(I+l,(I+l)(r-1)+l+s)= e(L(I+l)(r-1)+l+s-k)
k=0

r-1

Y e(I,I(r-1)+l+s+(r-l-k))
k=0

0 for all s _-> 0.

That is, e(I + 1,f) 0 for all/’>-(I + 1)(r- 1)+ 1. Since the hypothesis is true for I=0,
the lemma is proved by induction.

LEMMA 10. Let f(i), >--_ O, be the sum of all entries at row of the tree array"

/(r--l)

f(i)= E e(i,i) Y’. e(i,j).
=o

Then f(i)= r i.
Proof. Given f(i) for some _-> 0, then

f(i+l)= Y’, e(i+l,j)

r-1 r-1

Y’, E e(i,f-k)= Y’, f(i)=r.f(i).
]=-c k=0 k=0

Since f(0) 1, we have f(i)= r for _-> 0.
THEOREM 3. Let m be the smallest k such thatN >-n where Nk is defined by (4).

Then

om

a +/3(r- 1)
<lOgr (n) < m.

Therefore, m O(log n) assuming a, , and r are constants.

Proof. Applying Lemmas 9 and 10 to Fig. 6, we obtain Fig. 15. Clearly
or equivalently x < 1Ogr (n)< m. Because of similar triangles, we have

m-x m

x(r-1) h(m) a

allowing for round-off error for integers. This implies

X
otm

a +/(r- 1)"

OPTIMAL a-/3 LEAF TREES 445

0 h(m)

FIG. 15

The computation time, in terms of the order of magnitude, is listed below:

Step 1. Compute entries
m h(m)

Sum entries
m .h(m)

h(m)-I

Step 2. 2 (S.+I) m+h(m)
i=0

Step 3. h (m

m .h(m)
Step 4. Construct tree

2

Since h(m) ma/, then the total time is on the order of m2+ n assuming a and/3
are constants. Because m --O(log n), the total time is O(n).

The storage requirement is roughly . m h (m) for the array (although this can
be reduced easily) and 1/2. m h (m)+ n for tree construction because of the pointer
chains and storage of the tree. So the total storage is also O(n).

If only the array of the optimal tree is needed (to get the properties of the optimal
tree, for example), then both the computation time and storage will be O(m)
0((log n):).

$. Conclusions. In this paper, we consider the construction of optimal a-/3 leaf
trees with degree r and edge weight Ci a +(i- 1)/3 for the edge to child i. This
special form of edge weight enables us to map the trees to arrays and hence the
resulting two-stage algorithm. In the first stage we select nodes from the array. In the
second stage we construct the tree explicitly. The first stage (Steps 1-3 of the Algorithm)
takes time O((log n)2) and is independent of r. The second stage (Step 4) takes time
O(n), also independent of r.

446 DAVID M. CHOY AND C. K. WONG

In case the tree is not explicitly needed, e.g., when one is only interested in the
cost of the optimal c-/ leaf tree or other properties of the tree, the first stage, hence
O((log n)2) time, suffices.

Also, if all optimal trees are required, we can easily get them all from the array
and generate them one by one.

Even though the algorithm is presented only for the case/ ->_ c, the same approach
is equally applicable to the case/ < t. The only difference is in the definition of the
z-line (Fig. 6). When fl >-c, we have a vertical z-line, which moves downwards (Fig.
6), whereas for/ < c, we have a horizontal z-line, which moves to the right (see [2,
Fig. 5]). The algorithm and complexity are identical.

Finally, it should be pointed out that in [9], an algorithm for the general case,
i.e. arbitrary Ci, is presented with running time O(min (r2n, rn log n)). The algorithm
works in two phases: extension and mending. The extension phase alone produces an
optimal tree if C1 + C2 <= C3. It runs in time O(min (rn, n log n)). In fact, if the smallest
elements of the r queues mentioned on the bottom of page 213 are kept in a heap,
then the running time reduces to O(n log r).

For our problem, i.e. Ci ct + (i 1)fl, the condition C1 + C2 =< C3 is equivalent
to a <-/. Hence the extension phase can produce an optimal tree in time O(n log r).
However, for the other case c >/ of our problem, the full two-phase algorithm is
needed with running time O(min (r2n, rn log n)).

The savings in our algorithm are largely due to the critical fact that C c + (i 1)/,
hence the possibility of separating the selection stage from the construction stage. In
the selection stage, we can select a large number of nodes at a time from the array,
which results in the more efficient running time O((log n)2). On the other hand, the
method in [9] integrates the selection and construction stages, and can only select one
node at a time.

Acknowledgments. The authors are grateful to a referee for bringing reference
[9] to their attention.

REFERENCES

[1] D. M. CHO AND C. K. WONG, Bounds for optimal- binary trees, BIT, 17 (1977), pp. 1-15.
[2] ., Optimal c- trees with capacity constraint, Acta Inform., 10 (1978), pp. 273-296.
[3] L. E. STANFEL, Optimal trees for a class of information retrieval problems, Inform. Stor. Retr., 9 (1973),

pp. 43-59.
[4] ., Optimal tree lists for information storage and retrieval, Inform. Systems, 2 (1976), pp. 65-70.
[5] E. H. SUSSENGUTH, Use of tree structures for processing files, Comm. ACM, 6 (1963), pp. 272-279.
[6] Y. PATT, Variable length tree structures having minimum average search time, Comm. ACM, 12 (1969),

pp. 72-76.
[7] R. KARP, Minimum redundancy coding for the discrete, noiseless channel, IRE Trans., IT-7 (1961),

pp. 27-35.
[8] K. MEHLHORN, An efficient algorithm for constructing nearly optimal prefix codes, IEEE Trans. Inform.

Theory, IT-26 (1980), pp. 513-517.
[9] Y. PERL, M. R. GAREY AND S. EVEN, Efficient generation of optimal prefix code: Equiprobable words

using unequal cost letters, J. Assoc. Comput. Mach., 22 (1975), pp. 202-214.

SlAM J. COMPUT.
Vol. 12, No. 3, August 1983

() 1983 Society for Industrial and Applied Mathematics
0097-5397/83/1203-0003 $01.25/0

OPTIMAL PLACEMENT FOR RIVER ROUTING*
CHARLES E. LEISERSON- AND RON Y. PINTERtt

Abstract. Programs for integrated circuit layout typically have two phases: placement and routing.
The router tries to produce as efficient a layout as possible, but of course the quality of the routing depends
heavily on the quality of the placement. On the other hand, the placement procedure ideally should know
the impact of its placement decisions on the quality of a routing. In this paper, we present a placement-and-
routing problem for which there is perfect interaction between the two phases. The algorithms for this
commonly arising problem are fast, simple and optimal.

River routing is the problem of connecting in order a set of terminals al, , a, on a line to another
set bl,’’ ", b, across a rectangular channel. The terminals are located on modules which must be placed
relative to one another before routing. This placement-and-routing problem arises frequently in design
systems like bristle-blocks where stretch lines through a module can effectively break it into several chunks,
each of which may be placed separately. In this paper we give concise necessary and sufficient conditions
for wirability which are applied to reduce the optimal placement problem to the graph-theoretic single-
source-longest-paths problem. For rectilinear wiring, the special structure of graphs that arise allows an
optimal solution to be determined quickly.

Key words, design automation, layout of integrated circuits, placement and routing, river routing,
graph theory, longest paths, analysis of algorithms

1. Introduction. River routing is a special routing problem which arises often in
the design of integrated circuits, and it has been shown to be optimally solvable in
polynomial-time for many wiring models (see in particular [1], [3], [10] and [11]). In
this paper, we demonstrate that the placement problem for river routing is. also
polynomial-time solvable.

The general character of the placement problem for river routing is illustrated
in Fig. 1. Two sets of terminals a 1,’", a, and b 1,’", b, are to be connected by

spread

bs br bs

""l eparagion

b bo

FIG. 1. Two sets of chunks on either side of a rectangular channel. Terminal ai must be connected to bi
fori=l,.. .,lO.

wires across a rectangular channel so that wire is routed from ai to bi. The terminals
on each side of the channel are grouped into chunks which must be placed as a unit.
The quality of a legal placementmone for which the channel can be routed--can be
measured in terms of the dimensions of the channel. The separation is the vertical
distance between the two lines of terminals, and the spread is the horizontal dimension
of the channel.

* Received by the editors October 16, 1981 and in final revised form August 10, 1982. This research
was supported in part by the Defense Advanced Research Projects Agency under contract N00014-80-C-
0622.

t Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139.

t Present address: Bell Laboratories, Murray Hill, New Jersey 07974.

447

448 CHARLES E. LEISERSON AND RON Y. PINTER

The wiring model gives the constraints that the routing must satisfy. Although
our results can be generalized to include a variety of wiring models (see 5), we
concentrate on the (one-layer) square-grid model. Crossovers are disallowed in the
square-grid model, and all wires must take disjoint paths through the grid.

The placement problem for river routing arises often during ordinary integrated
circuit design. A common instance is when the terminals of one or more modules
are to be connected to drivers. The various independent "chunks" are the modules,
which lie on one side of the channel, and the drivers, which lie on the other.

A more interesting manifestation of the placement problem occurs in the context
of design systems such as bristle-blocks [5] and DPL/Daedalus [2], [9]. These systems
encourage a designer to build plug-together modules so that the difficulties associated
with general routing can be avoided. A designer may specify stretch lines which run
through a module and allow the module to be expanded perpendicular to the stretch
line, as demonstrated in Fig. 2. When two independently designed modules are plugged
together, stretch lines permit the terminals to be pitch aligned, that is, the distances
between pairs of adjacent terminals are made to match the distances between their
mates and routing is avoided because the separation of the channel is zero. Unfortu-
nately, this approach may not succeed unless stretch lines are put between every pair

FIG. 2. A module before and after stretching (courtesy ofMITArtificial Intelligence Laboratory).

OPTIMAL PLACEMENT FOR RIVER ROUTING 449

of adjacent terminals. The stretch lines may not only disrupt the internal structure of
the modules, but the consequence may be an inordinate amount of stretching that
leaves the channel with a large spread.

The other extreme is to forego stretching altogether and river route between the
terminals. But the cost may still be large if a large separation is required in order to
achieve a routing. A reasonable compromise is to place stretch lines where it is
convenient and then do a little stretching and a little routing. Determining how much
of each to do is exactly the placement problem for river routing.

The remainder of this paper demonstrates that optimal solutions to the placement
problem can be achieved efficiently. Section 2 gives a concise necessary and sufficient
condition for a channel to be routable in the square-grid model. Section 3 shows that
the form of this condition allows the placement problem to be reduced to the
graph-theoretic problem of finding the longest paths from a source vertex to all other
vertices in a graph. Based on this problem reduction, a linear-time algorithm for
optimal placement is given in 4. Section 5 shows that the algorithm extends to wiring
models other than the square-grid model, but its performance depends on the particular
wirability conditions for the model. Section 6 discusses the application of our results
to other routing situations and suggests further placement problems.

2. Necessary and sufficient conditions for wirability. To demonstrate the results
of this paper, we adopt an extremely simple wiring model: the (one-layer) square-grid
model. All wires are constrained to run on an underlying grid of integer lattice points,
and no two wires may occupy the same grid point. In the real world, wires have width
and minimum spacing between them. We adopt the convention that a grid point
corresponds to the lower left portion of a wire.

Figure 3 shows a solution to the problem of Fig. 1 using this model. The terminals
a 1, , an and b l, ’, bn occupy grid points on opposite sides of the channel. As can

FIG. 3. A possible solution to the problem in Fig. [or which the separation is 5 and the spread is 28.

be seen in the figure, we obey the lower-left convention by routing wires on the
bottom row of grid points in the channel but not on the top row. This convention
also allows terminals to be located at the left corner of a chunk, such as b6, but not
at the right corner.

In order to establish constraints on wirability in this model, consider a straight
line segment drawn from (x l, y l) to, but not including, (x2, y2). We ask the question,
"How many wires can cross this line?" With a simple analysis we can show that the
answer is max (Ix-xll, ly.-yl). Without loss of generality, assume the situation is
as in Fig. 4, and look at the grid points immediately below the line, that is,

(x, Y)lxx <=x <x2and y=[y+Y2-Y (x-x)]}.X2 --Xl

450 CHARLES E. LEISERSON AND RON Y. PINTER

FIG. 4. The number of wires crossing the half-open line segment is at most the number of grid points
immediately below the line.

Any wire crossing the line must perforce occupy one of these grid points, and therefore
the number of such wires is bounded by the cardinality of this set.

Let us now turn to the river routing problem and examine how this constraint
can be brought to bear. Let al, ", a, denote both the names of the terminals at the
top of the channel and their x-coordinates, and let the same convention hold for the
terminals b1,’", b, at the bottom of the channel. Figure 5 shows a half-open line

j wires

/
/

bi b+
FIG. 5. The]- + wires from ai, , a must cross the dashed line between bi and aj + 1.

segment drawn from terminal bg to the grid point immediately to the right of terminal
aj. The/’- + 1 wires emanating from ag,. ., aj must all cross this line. Similarly, the
]- + 1 wires emanating from bg, , bj must all cross a line drawn from ag to b + 1.
In order for a channel with separation to be routable, therefore, it must be the case
that

(1) max(a-bg+l,t)>=]-i+l and max(b-ag+l,t)>=]-i+l

for l <=i <-] <=n.
Although condition (1) is a new condition for wirability, the analysis that leads

to it is essentially the same as that in [3] and represents previous work in the field.
One of the contributions of this paper is to provide a more compact condition which
is equivalent:

(2) ai+t bi >: and bi+t ai >:

for 1 <-i <-n -t. The channel is always routable if ->_ n.
Condition (1) implies condition (2) because condition (2) can be obtained by

substituting] + in condition (1). For the opposite direction, suppose first that

OPTIMAL PLACEMENT FOR RIVER ROUTING 451

f-i + 1 <t; then max (aj-bi + 1, t)>-t >f-i + 1. Iff-i + 1 ->t, on the other hand, then

ai bi -4-1 a i+t+(]--i--t) bi -4-1

>=a+-b + l +(]-i-t)>-t + l +(]-i-t)=]-i + l

since ak+l >= ak -b 1 for all 1 -<_ k < n. Thus the two conditions are indeed equivalent.
Figure 6 shows a simple geometric interpretation of condition (2). The condition

ai/t- bi >= means that a line with unit slope going up and to the right from bi must
intersect the top of the channel at or to the left of terminal ai/t. And if the condition

Permissible range .for ai+t

\
\

Permissible range Jbr

FIG. 6. Geometric interpretation of ai+t >= bi + and bi+t >= ai + t.

fails, terminal bj must be to the right of aj for _-</" < + t- 1, that is, each wire from
an a. goes down and to the right, which can be shown to follow from the fact that
a./l -> aj + 1. (For bg/t ag -> the line with slope -1 going down and to the right from
ai must intersect the bottom of the channel at or to the left of terminal b/t.)

This geometric interpretation can be used to show that condition (2) is not only
a necessary condition for routability of the channel, but a sufficient condition as well.
In fact, a simple greedy algorithm will successfully route a routable channel. Processing
terminals left to right, the greedy algorithm routes each wire across the channel until
it hits a previously routed wire; then it follows the contour of the opposite side until
it reaches its destination.

To see that this algorithm works given condition (2), we must be more precise
about what paths are taken by the wires. Consider without loss of generality a block
of consecutive wires that go down and to the right, that is, a =< bg for all wires in the
block. For any horizontal position x such that ag- < x -< bi, define

rli(x)=max (ai-x, max

The path of wire is then described by the locus of points (x +rli(x), tie(X)) for
ai-t <x <--bi.

A geometric interpretation of this formulation uses the same intuition as was
given in Fig. 6. The line with unit slope drawn from (x, 0) where x is in the range
a < x <- bi must cross wire i. The value r/i (x) gives the y- coordinate of wire where
it crosses this line of unit slope. The two-part maximum in the definition of rli(x)
corresponds to whether the wire is being routed straight across the channel or whether
it is following the contour of the bottom. The value of rli(x) for the latter situation is
the number of wires to the left of wire which must cross the line of unit slope.

452 CHARLES E. LEISERSON AND RON Y. PINTER

We must now show that the locus of points for a wire is a path, that the paths
are disjoint, and that they never leave the channel. That the locus of points is indeed
a path can be seen by observing that as x ranges from ai- to bi, the initial point is
(at, t- 1), the final point is (b, 0) and with a change of one in x the coordinates of
the path change by a single grid unit in exactly one of the two dimensions. To show
that the paths are disjoint, consider two adjacent wires and + 1 and observe for
ai+l-t<x<=bg that ai-x<ai+l-X and maxb,_rxr<maxb,+l_r>=xr and therefore
Ti(X < T/i+I(X).

To show a path of a wire never leaves the channel, we demonstrate that r/(x)<
for all and x in the associated range. It is for this part of the proof that we need
the assumption that condition (2) holds. If for a wire i, the two-part maximum in the
definition of Ti (X) is achieved by at x, then r/g (x) must be less than because x > ai t.
Suppose then, that the two-part maximum is achieved by the maximal r such that
b-r->_x. To show that r < t, we assume the contrary and obtain a contradiction. But
since b-t >-_ bi-r >- x > ai t, the contradiction is immediate because ai bi-t >= from
condition (2).

3. The structure of the placement problem. The objective of a placement
algorithm is to set up a routing problem that is solvable and minimizes some cost
function. Many criteria can be adopted to measure the cost of a placement for river
routing, whether in terms of area (total or channel) or some other function of spread
and separation. A plot of minimal spread versus given separation reveals that the
region of feasible placements may not be convex although the curve is guaranteed to
be monotonically decreasing. (Fig. 7 shows the plot for the problem of Fig. 1.) Any
measure of placement cost that is a function of spread and separation and which is
monotonically increasing in each of spread and separation will therefore find a
minimum on this curve.

Thus we content ourselves with producing points on this curve, that is, determining
a placement which achieves the minimum spread for a given separation t, if indeed the
channel is routable in tracks. If minimum separation is the goal, for example, binary
search can determine the optimum in O(lg t) steps. Since the algorithm presented
in the next section determines a placement for fixed in O(n) time, where n is the

spread

2r"
26"

24"-

T" ,,: I,, :.

Feasible region

F/I//l///I/lll/l

FIG. 7. The curve of minimum spread versus separation for the example of Fig. 1.

OPTIMAL PLACEMENT FOR RIVER ROUTING 453

number of terminals, and since the separation need never be more than n, a minimum-
separation placement can be achieved in O(n lg n) time. For more general objective
functions such as area, the optimum value can be determined in O(n z) time.

We now examine the character of the placement problem for river routing when
the separation is given. The n terminals are located on m chunks which are partitioned
into two sets that form the top and bottom of the channel. For convenience, we shall
number the chunks from 1 to k on the top and k +1 to m on the bottom. The
order of chunks on each side of channel is fixed, but they may be moved sideways so
long as they do not overlap. For each chunk i, a variable vi represents the horizontal
position of its left edge. Any placement can therefore be specified by an assignment
of values to these variables. We also add two variables Vo and v,,+l to the set of
variables, which represent the left and right boundaries of the channel. The spread
is thus v,/-Vo. Figure 8(a) shows the eight variables for the example from Fig. 1.

ala2a3a4 asa6aTasagall. _$.,.$

1/4
"3 b, bs b6 b7 b9 o

(a) Assignment of variables to chunks and channel boundaries.

I0

3 5 tO
(b) The placement graph for separation 3.

FIG. 8. Representing the placement constraints as a graph for the example of Fig. 1.

Since the relative positions of terminals within a chunk are fixed, the wirability
constraints of condition (2) can be reexpressed in terms of the chunks themselves to
give placement constraints that any assignment of values to the vi must satisfy. If
terminal a/t lies on chunk h and terminal b lies on chunk/’, the constraint ai+t bi
can be rewritten as Vh--Vj rhi, where rhi reflects and the offsets of the terminals
from the left edge of their respective chunks. The constraint between two chunks
determined in this way will be the maximal constraint induced by pairs of terminals.

Additional constraints arise from the relative positions of chunks on either side
of the channel. For each pair of adjacent chunks and + 1, the constraint Vi/l--Vi Wi

454 CHARLES E. LEISERSON AND RON Y. PINTER

must be added to the set of placement constraints, where wi is the width of chunk i.
Four more constraints are needed which involve the boundary variables v0 and
For chunks 1 and k + 1 which are leftmost on the top and bottom, the constraints-
v l-vo>=O and Vk+--Vo>--O enforce that these chunks lie to the right of the left
boundary of the channel. For chunks k and m which are rightmost on the top and
bottom, the relations V,,/I--Vk >--Wk and v,,+a-v,, >-w, constrain them to lie to the
left of the right boundary.

Figure 8(b) shows a placement graph which represents the constraints between
chunks for the placement problem of Fig. 1 where the separation is 3 tracks. A directed
edge with weight kl goes from vk to vt if there is a constraint of the form vt- Vk >- tkl.
For example, the weight of 1 on the cross edge going from v5 to v2 is the maximal
constraint of a9-b6>=3 and a0-b7>-3 which yield v2-vs->_-2 and v2-vs>= 1 since
a9 02+ 5, al0 v2+6, b6 t5 and b7 =/25+4. The side edge from v4 to v5 arises from
the constraint that chunk 4, which is 5 units long, must not overlap chunk 5.

The goal of the placement problem is to find an assignment of values to the vi
which minimizes the spread v,/- v0 subject to the set of constraints. This formulation
is an instance of linear programming where both the constraints and the objective
function involve only differences of variables. Not surprisingly, this problem can be
solved more efficiently than by using general linear programming techniques. In fact,
it reduces to a single-source-longest-paths problem in the placement graph. The length
of a longest path from v0 to v,/l corresponds to the smallest spread of the channel
that complies with all the constraints. The placement of each chunk relative to the
left end of the channel is the longest path from v0 to vi. If the placement graph has
a cycle of positive weight, then no placement is possible for the given separation.

For the placement problem of Fig. 1 with a three-track separation, the longest
path from v0 to v2 in the placement graph (Fig. 8) is Vo-Vl-Vn-Vs-V2 with weight
13 which corresponds to the positioning of chunk 2 in the optimal placement shown
in Fig. 9(a). Figures 9(b) through 9(d) show optimal solutions to the placement problem
of Fig. 1 for separations 4 through 6. The constraints for 2 yield a cycle of
positive weight in the placement graph and thus no placement is possible which
achieves a separation of only two tracks. On the other hand, no more than 6 tracks
are ever needed. The spread achieved for 6 is the sum of the widths of the chunks
on one side of the channel, which is a lower bound for the spread.

4. A linear-time algorithm for the fixed-separation placement problem. The
analysis of 3 showed that the optimal placement problem for fixed-separation river
routing was reducible to the single-source-longest-paths problem on a placement
graph. For a general graph G (V, E) this problem can be solved in time O ([V[. IEI)
by a Bellman-Ford algorithm [6]. Better performance is possible, however, due to
the special structure of placement graphs. This section reviews the Bellman-Ford
algorithm and shows how it can be adapted to give an O(m)-time algorithm for the
longest-paths problem on a placement graph, where m is the number of chunks. Since
the placement constraints can be generated in O(n) time, where n is the number of
terminal pairs, this algorithm leads to an optimal linear-time algorithm for the fixed-
separation placement problem. The discovery of a linear-time algorithm represents
joint research with James B. Saxe of Carnegie-Mellon University.

The linear-time algorithm is a refinement of the standard Bellman-Ford algorithm
which for each vertex vi, where 1, , m + 1, iteratively updates the length h (vi)
of a tentative longest path from v0 to v. The algorithm initializes h (v0) to zero and
all other h (vi) to -; then it sequences through a list 8’ of edges, and for each edge

OPTIMAL PLACEMENT FOR RIVER ROUTING 455

(a) Separation 3, spread 27.

b9 bt0

(b) Separation 4, spread 26.

"1 al’a2 a3 a4 a5 a6 a7 aS a9 10

....
(c) Separation 5, spread 26.

al a2a3a4 asacaTasagalo

b, bo

(d) Separation 6, spread 23.

FIG. 9. Optimal placements and routings]:or the problem of Fig. with separations ranging from 3
tot=6.

(vi, vi) with weight 6ij updates h (vj) by

A (v) max (A (v), 3u + A (vi)).

The list g’ of edges is the key to the correctness of the algorithm. The length of
a longest path from the source Vo to a vertex v converges to the correct value if the edges
of the path form a subsequence of the list . (This can be proved by adapting the
analysis of [12].) In the normal algorithm for a general graph G (V,E), the list 8’

456 CHARLES E. LEISERSON AND RON Y. PINTER

is IVI-1 repetitions of an arbitrary ordering of the edges in E, which ensures that
every vertex-disjoint path in G beginning with v0 is a subsequence of fg. If there are
no cycles of positive weight in the graph G, then from v0 to each other vertex in G,
there is a longest path that is vertex-disjoint; hence the algorithm is guaranteed to
succeed. The condition of positive-weight cycles can be tested at the end of the
algorithm either by checking whether all constraints are satisfied or by simply running
the algorithm through the edges in E one additional time and testing whether the
values of any h (vi) change.

The list g’ is also the key to the performance of a Bellman-Ford algorithm. For
the general algorithm on an arbitrary graph G (V, E), the length of the list is
(IvI-1). IE[, and thus the algorithm runs in O([VI" IEI) time. For a placement graph
it is not difficult to show that both [V[and IEI are O(m), and thus the longest-paths
problem can be solved in O(m 2) time by general algorithm. But a linear-time algorithm
can be found by exploiting the special structure of a placement graph to construct a
list g" of length O(m) that guarantees the correctness of the Bellman-Ford algorithm.
We now look at the structure of placement graphs more closely.

The vertices of a placement graph G (V, E) corresponding to the chunks on
the top of the channel have a natural linear order imposed by the left-to-right order
of the chunks. We define the partial order < as the union of this linear order with
the similar linear order of bottom vertices. Thus u <v for vertices u and v if their
chunks lie on the same side of the channel and the chunk that corresponds to u lies
to the left of the one which corresponds to v. The left-boundary vertex v0 precedes
all other vertices, and all vertices precede the right-boundary vertex v,,/l. The partial
order _< is the natural extension to < that includes equality.

The next lemma describes some of the structural properties of placement graphs.
Fig. 10 illustrates the impossible situations described in properties (i) and (ii) and

(a) The situation forbidden by property (i).

(b) The situation forbidden by property (ii).

(c) Every simple cycle contains at most one vertex from the top or at most one vertex from the bottom.
The edges incident on the vertex are a consequence of property (iii).

FIG. 10. The properties of the placement graph enumerated in Lemma 1.

OPTIMAL PLACEMENT FOR RIVER ROUTING 457

shows the only kind of simple cycle that can occur in a placement graph together with
the two consecutive cross edges that satisfy property (iii).

LEMMA 1. Any placement graph G V, E) has the following properties:
(i) There do not exist cross edges (u, v) and (x, y) such that u < x and y < v.

(ii) There do not exist cross edges (u, v) and (x, y) such that v < x and y < u.
(iii) All cycles have two consecutive cross edges (u, v) and (v, w) such that w <_ u.

Proof. Properties (i) and (ii) can be proved by considering which of the terminal
constraints from condition (2) induce the edges in the placement graph. For each of
these cases, suppose the edge (u, v) was caused by the terminals in u and + in v,
and the edge (x, y) came from the terminals/" in x and/’ + in y. For property (i) we
have u<x and y<v and thus i</" and /’+t<i+t. Canceling from this latter
inequality obtains the contradiction. The assumption to be proved impossible in (ii)
is that v < x and y < u, which implies + </’ and/’ + < i. Since is nonnegative, we
gain a contradiction.

To prove property (iii), we need only consider simple (vertex-disjoint) cycles.
Since no cycle can consist solely of side edges, every simple cycle must have a cross
edge (u, v) going from bottom to top. In order to complete the cycle, there must be
a top-to-bottom edge (w, x) such that v _< w and x _< u. If v w or x u, then the
pair of edges satisfies property (iii). But if v w and x u, then the pair of edges
violates property (ii).

Each edge in the placement graph is either a top edge, a top-bottom edge, a
bottom-top edge or a bottom edge. For each of these four sets of edges, there is a
natural linear order of edges based on _<, where (u, v) precedes (x, y) for two edges
in the same set if u _< x and v _< y. Property (i) guarantees that the linear order holds
for two cross edges in the same set. Let TT, TB, BT and BB be the four lists of edges
according to the natural linear order and include the two edges out of v0 and the two
edges into v,,/l in either TT or BB as appropriate.

The list g’ used by the Bellman-Ford algorithm is constructed by a merge of the
four lists which we call MERGE. At each step of MERGE, a tournament is played
among the first elements of each list. If (u, v) and (v, w) are the first elements of two
lists, then (u, v) beats (v, w) if w u. Since there may be more than one edge beaten
by none of the other three, ties are broken arbitrarily. The winner is appended to
and removed from the head of its list. The tournament is then repeated until no edges
remain in any of the four lists. The performance of the tournament can be improved
by recognizing that only six of the twelve possible comparisons of edges need be tried
and that w -x u is guaranteed for all but two. Figure 11 shows a possible ordering of
edges in g’ for the placement graph in Fig. 8.

FIG. 11. A possible ordering of edges in]or the placement graph in Fig. 8.

458 CHARLES E. LEISERSON AND RON Y. PINTER

In order for MERGE to be well defined, the tournament must always produce
a winner, which is a consequence of the next lemma.

LEMMA 2. The list produced by MERGE is a topological sort of the edges ofE
according to the relation R, where (u, v)R (v, w) if w : u.

Proof. First, we show that the relation R is acyclic so that the edges can indeed
be topologically sorted. By definition of R, a cycle in R induces a cycle in the placement
graph. According to property (iii), the cycle must have two consecutive cross edges
(u, v) and (v, w) such that w _< u. But since (u, v)R (v, w), we also have that w ; u,
which is a contradiction.

The proof that MERGE topologically sorts the edges of E according to R makes
use of the fact that if a vertex v is the tail of an arbitrary edge in any one of the four
lists TT, TB, BT or BB then for every u _< v there is an edge in the same list emanating
from u. Suppose that MERGE does not topologically sort the edges of E according
to R. Then there is a first edge (u, v) in g" such that there exists an edge (v, w) earlier
in g" and (u, v)R (v, w). Consider the edge (x, y) in the same list as (u, v) that competed
with (v, w) when (v, w) was the winner of the tournament. For each of the possible
combinations of lists for (u, v) and (v, w), it can always be deduced that there is an
edge emanating from y which makes (x, y) an earlier violator of the topological sort
than (u, v). I3

Since each edge of E is included exactly once in the list g’ created by MERGE,
the Bellman-Ford algorithm applied to ’ has a running time linear in the number of
chunks. The correct values for longest paths are produced by the algorithm if for
every vertex v, there is a subsequence of g" that realizes a longest path from v0 to v.
Since for every longest path, there is a vertex-disjoint longest path, the following
theorem proves the correctness of this linear-time Bellman-Ford algorithm.

THEOREM 3. Let G be a placement graph with left-boundary vertex Vo. Then every
vertex-disfoint path beginning with Vo is a subsequence of the list ge created by the
procedure MERGE.

Proof. We need only show that every pair of consecutive edges in a vertex-disjoint
path from v0 satisfies R because then Lemma 2 guarantees that the path is a
subsequence of g’. Suppose (u, v) and (v, w) are two consecutive edges on a vertex-
disjoint path from v0 which violate R, that is, w _< u. If either (u, v) or (v, w) is a side
edge, the pair must satisfy R, and thus both must be cross edges with the vertices u
and w on the same side. Since if w u, the path is not vertex-disjoint, we need only
show that w < u is impossible.

Assume, therefore, that w < u, and consider the initial portion of the path from
v0 to u. since v0 < v and v0 < w, there must be an edge (x, y) on the path which goes
from the set of vertices to the left of (v, w) to the right of (v, w) in order to get to u.
But then either property (i) or property (ii) is violated depending on whether x < v
andw<y, ory<v andx<w. [3

5. Other wiring models. The reduction from the fixed-separation placement
problem in the square-grid model to the single-source-longest-paths problem is poss-
ible because the wirability constraints can all be written in the form vi-vi >-_ 8ii. Thus
for any wiring model where wiring constraints can be written in this form, the reduction
will succeed. Also, it should be observed that in general, the performance of the
single-source-longest-path algorithm will not be linear, but will be a function of the
number of constraints times the number of variables. This section reviews other models
and gives the necessary and sufficient wirability constraints for each. Some of these
models are discussed in [1], [3], [10] and [11].

OPTIMAL PLACEMENT FOR RIVER ROUTING 459

1. One-layer, gridless rectilinear. Wires in this model must run horizontally or
vertically, and although they need not run on grid points, no two wires can come
within one unit of each other. The wirability constraints for this model are the same
as for the square grid model:

ai+t bi >= and bi+t ai >=
for l_-<i_-<n-t. As with the square-grid model, the fixed-separation placement
algorithm for this model can be made to run in linear time.

2. One-layer, gridless, rectilinear and forty-five degree. This model is the same as
the gridless rectilinear, but in addition wires can run which have slope +1. The
constraints in this case are

ai+r-bi >-_r/--t and bi+r-ai >=r/--t

for t/x/- <= r <-_ and 1 <-_ -< n r. The placement algorithm for this model runs in
O(min (tin 2 + tn, m 3 + tn, m 3 + n2)) time.

3. One-layer, gridless. Wires can travel any direction. The constraints are

ai+r bi >- /r2- 2 and bi+r ai >= x/r2- 2

for <_- r <- n and 1 <- <- n r. The placement algorithm runs in O(m 3 q- n) time.
4. Multilayer models. All the models presented until now have been one-layer

models. It is natural to generalize to /-layer models in which wires may travel on
different layers. Remarkably, optimal routability can always be achieved with no
contact cuts [1], that is, a wire need never switch layers. The necessary and sufficient
conditions for these multilayer models are a natural extension of the one-layer
conditions. For example, in the one-layer, gridless, rectilinear model the conditions
are modified for layers to be

ai+lt bi >= and bi+lt ai >=
for 1<-i <-n-lt.

There are some wiring models, however, where upper and lower bounds for
wirability do not meet. For these models a constraint graph which represents upper
bounds will give the best possible placement for those bounds. A graph representing
lower bounds will give lower bounds on the best possible placement. Together, bounds
can be established for some of these models, and heuristic algorithms invoked to
attempt routing within the feasible range of optimality.

6. Extensions and conclusions. A variety of related placement problems can be
solved by the method described in this paper. Some entail extensions to the problem
specifications, others employ different wiring models. In this section we shall mention
a few extensions we can handle and suggest further research on more complicated
problems. These and other extensions are explored in [8].

Nonriver routing. The placement algorithm gives optimal placements for river
routing, but there are other routing configurations for which it works optimally as
well. One example is the two-layer, any-to-any routing problem where two sets of
terminals must be connected across a channel, but they may be connected in any order.

Range-terminals. In some routing situations terminals occupy not a single point,
but rather a contiguous region along the edge of the channel. For example, the terminal
might be a wire that runs along the edge of the chunk, and connection can be made
to the wire anywhere. The additional flexibility of viewing a terminal as a contiguous

460 CHARLES E. LEISERSON AND RON Y. PINTER

range of points can be exploited by both the greedy routing algorithm and the
placement algorithm in any of the river-routing models we have discussed.

Each range-terminal is specified by an interval [a, a] or Ibm, b n]. The greedy
routing algorithm operates as before with minor changes. If the range-terminals
overlap, the wire is routed straight across. Otherwise, assume without loss of generality
that a n < b and use the standard greedy algorithm to route a wire from a n to b .

The wirability conditions for placement are accordingly adjusted. In the rectilinear
Rcase, for example, the condition ai/t- bi-> is rewritten as a g/t- b -> and condition

bi+t- a >= becomes b +t-a -> t. The transformation to chunk variables is as before
and the placement algorithm is unchanged.

Variable-width wires. In some applications the wires that must be routed do not
all have the same width. Our scheme can be generalized to deal with this situation
as long as each wire has uniform width. By computing an experimental cumulative
distribution function of the wire widths both routability and placement for a fixed-
separation problem can be determined in linear time [8].

Minimum fogging. The number of jogs (or turns) of wires produced by the greedy
algorithm may be excessive. In some cases, I)(n 2) jogs will be produced when O(n)
jogs suffice to route the same channel. An adaptation of the routability constraints
developed in 2 can be used to absolutely minimize the total number of jogs in the
channel [7].

River-routing in a polygon. Instead of constraining terminals to lie on two parallel
lines, we allow them to reside anywhere along the boundary of a simple polygon. The
planarity of the interconnect as well as the wirability within the polygon’s area can
be tested in time O(n +p), where p is the number of corners in the polygon. A routing
can be produced in time O(n2+pn) using an extension of the greedy algorithm. These
results are reported in [8].

Parallel channels. Multiple, parallel horizontal channels are easily handled within
the same graph-theoretic framework as long as the width of each channel is given.
Every row of chunks is represented by a chain of vertices from a common left boundary
to a common right boundary. The wiring conditions in the channels are represented
by edges linking adjacent chains. The optimal placement is achieved by solving the
longest paths problem on this graph. The standard Bellman-Ford algorithm runs in
time O(n + m 2) since the number of edges in the graph is O(m). We do not know
whether improvements of the kind used in 4 for the single channel problem can be
obtained for the multiple channels case.

The problem is much harder, however, when the input is specified so that only
the sum of the channel separations is given. Then the problem is to allocate the
channel widths so as to minimize the spread subject to the additional constraint on
the channels’ total width. This problem is NP-complete as has been shown by Pinter
and Sipser [8].

Two-dimensional river routing. The two-dimensional river-routing problem is
illustrated in Fig. 12. In the figure, a line between two chunks indicates that wires
must be river-routed between them. Unfortunately, in order to optimally solve this
general problem, it appears that the constraints indicated by the lines must be convex
in both dimensions, not just in one as is the case for the wiring models considered
here. When the constraints are convex, however, convex programming can be used
to optimize a cost function such as the area of the bounding box of the layout. One
model which gives convex constraints for the general two-dimensional problem is the
one in which all wires must be routed as straight line segments between terminals
such that no minimum spacing rules are violated. This model is not particularly

OPTIMAL PLACEMENT FOR RIVER ROUTING 461

FIG. 12. A two-dimensional extension to the river-routing problem. A solid line between two modules
indicates routing occurs between them.

interesting from a practical standpoint, however. Heuristics for solving the related
two-dimensional compaction problem by repeatedly compacting in one dimension and
then the other can be found in [4].

A major deficiency of many placement programs is that they lack knowledge
about the wirability of the routing problems that they set up. We have shown for river
routing that wirability conditions can be translated directly into placement constraints
without the overhead of actually wiring the channel. For rectilinear river routing, the
running time of the greedy wiring algorithm is O(n2), and any cost function for
placement that is monotonic in spread and separation can be optimized in O(n 2) time
without the overhead of routing. Studying wirability in the general case may lead to
the development of heuristics for wirability that do not involve routing. A program
that uses this heuristic knowledge should be able to outperform the iterative place-
route, place-route programs that dominate today.

Acknowledgments. We would like to thank Howie Shrobe of the MIT Artificial
Intelligence Laboratory for posting the plots of the data paths from the Scheme81
chip which inspired out interest in this placement problem and for his valuable
comments on the practicality of our work. We would also like to thank Alan Baratz
and Ron Rivest from the MIT Laboratory for Computer Science for numerous helpful
discussions, Shlomit Pinter (also from the Laboratory for Computer Science) for
influencing the direction of our proof of Theorem 3 and Eli Messinger from the
University of Washington for pointing out an error in condition (1) as it appeared in
an earlier version of this paper. Finally, special thanks to Jim Saxe of Carnegie-Mellon
University for his key contributions to the linear-time algorithm for longest paths.

REFERENCES

[1] A. E. BARATZ, Algorithms for integrated circuit signal routing, Ph.D. dissertation, Dept. Electrical
Engineering/Computer Science, Massachusetts Institute of Technology, Cam.bridge, August 1981.

[2] I. BATALI, N. MAYLE, H. SHROBE, G. SUSSMAN AND D. WEISE, The DPL/Daedalus design
environment, Proc. International Conference on VLSI, Univ. of Edinburgh, August 1981, pp. 183-
192.

462 CHARLES E. LEISERSON AND RON Y. PINTER

[3] D. DOLEV, K. KARPLUS, A. SIEGEL, A. STRONG AND J. D. ULLMAN, Optimal wiring between
rectangles, Proc. Thirteenth Annual ACM Symposium on Theory of Computing, May 1981,
pp. 312-317.

[4] M.-Y. HSUEH, Symbolic layout and compaction of integrated circuits, Memo UCB/ERL-M79/80,
Ph.D. dissertation, Electronics Research Laboratory, Univ. California, Berkeley, December 1979.

[5] D. L. JOHANNSEN, Silicon compilation, Technical Report 4530, Ph.D. dissertation, Dept. Computer
Science, California Institute of Technology, Pasadena, CA., 1981. An overview appears as Bristle
blocks: a silicon compiler, in the Proc. of the Sixteenth Design Automation Conference, June
1979, pp. 310-313.

[6] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[7] R. Y. PINTER, On routing two-point nets across a channel, Proc. Nineteenth Design Automation
Conference, June 1982, pp. 894-902.

[8] R. Y. PINTER, The impact of layer assignment methods on layout algorithms for integrated circuits,
Ph.D. dissertation, Dept. Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, August 1982.

[9] H. E. SHROBE, The data path generator, Proc. Conference on Advanced Research in VLSI,
Massachusetts Institute of Technology, Cambridge, January 1982, pp. 175-181.

[10] A. SIEGEL AND O. DOLEV, The separation for general single-layer wiring barriers, Proc. CMU
Conference on VSLI Systems and Computations, October 1981, pp. 143-152.

[11] M. TOMPA, An optimal solution to a wire-routing problem, Proc. Twelfth Annual Symposium on
Theory of Computing, April-May 1980, pp. 161-176.

[12] J. Y. YEN, An algorithm for finding shortest routes from all source nodes to a given destination in
general networks, Quart. Appl. Math. 27 (1970), pp. 526-530.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0004 $01.25/0

OPTIMAL DYNAMIC EMBEDDING OF TREES INTO ARRAYS*

MICHAEL C. LOUIS"

Abstract. An optimal method for dynamically embedding trees into arrays is presented. Every multi-
head tree machine of time complexity t(n) can be simulated on-line by a multihead d-dimensional machine
in time O(t(n)l+l/U/logt(n)). An information-theoretic argument gives the worst-case lower bound
fl(t(n)+/a/log t(n)) on the time required.

Key words, tree, array, data structure, multidimensional Turing machine, simulation, embedding

1. Introduction. Several researchers [2], [6], [14], [15], [16] have investigated
static embeddings among data structures. To model the physical implementation of
a logical data structure, they fix a correspondence between locations in the guest
(logical) structure and locations in the host (physical) structure and analyze the effect
of various correspondences on access costs. Lynch’s work on accessibility of values
in algebras [9] gives lower bounds on these access costs. When few cells of the guest
structure are used during a computation, these fixed embeddings waste space in the
host structure.

In contrast, we have developed dynamic embeddings that designate representa-
tives in the host only for cells of the guest that are actually used [7], [8]. To model
storage and retrieval operations in data structures, we have used generalizations of
Turing machines’ machines with tree-structured worktapes model trees, and machines
with multidimensional worktapes model arrays. The access heads of the machines
correspond to access pointers into the data structures.

Continuing the study of dynamic embeddings, we present an optimal on-line
simulation of a multihead tree machine of time complexity t(n) by a multihead
d-dimensional machine in time O(t(n)l/l/a/log t(n)). To establish the lower bound
fl(t(n)+/d/log t(n))on the time required, we employ the information-theoretic tech-
nique developed by Paul, Seiferas and Simon [11]. This technique extends the original
counting arguments of Hennie [4].

Previously, Pippenger and Fischer [12] proved that every tree machine of time
complexity t(n) can be simulated on-line by a one-dimensional machine in time
O(t(n)2/log t(n)), an optimal amount of time. For d _->2, a theorem of Grigoriev [3]
implies a simulation by a d-dimensional machine in time O(t(n)//(a-)).

Conversely, Reischuk [13] devised on-line simulations of d-dimensional machines
of time complexity t(n) by tree machines in time O(t(n)(5U)lg*t(n)). It is not known
whether Reischuk’s simulation is optimal.

2. Definitions. Cook and Aanderaa [1] introduced the bounded activity machine,
a generalization of the Turing machine model. A bounded activity machine has a
finite-state control, a read-only linear input tape (from which it reads input symbols),
a write-only linear output tape (on which it writes output symbols) and a finite number
of storage media, each of which has a finite number of access heads. A storage medium
is an infinite set of cells, each of which can hold a symbol from a finite storage alphabet.
One cell is designated the origin of the storage medium. Each access head is located
at a cell of its storage medium. From every cell, a head can shift to one of a finite

* Received by the editors October 12, 1981, and in revised form August 20, 1982. This research was
supported by the Joint Services Electronics Program (U.S. Army, U.S. Navy, U.S. Air Force) under contract
N00014-79-C-0424.

" Coordinated Science Laboratory, University of Illinois, Urbana, Illinois 61801.

463

464 MICHAEL C. LOUI

number of other cells. Cell X is at distance s from cell Y if s is the minimum number
of shifts required for an access head on X to travel to Y.

A bounded activity machine operates in a sequence of steps. At each step the
machine reads the symbols in the cells on which the input head and access heads are
located. Depending on these symbols and its current control state, the machine

(i) writes symbols on the cells on which the access heads are located,
(ii) may write a symbol on its output tape,

(iii) changes its control state, and
(iv) shifts its heads.

We may assume that the machine can detect when two heads are located at the same
cell and hence that the two heads do not attempt to write different symbols in this
cell. Initially, all storage cells hold a particular blank symbol, and every access head
is positioned on the origin of its storage medium.

The time complexity of the machine is a function t(n) defined for each n to be
the maximum over all input strings w of length n of the time (number of steps) that
the machine spends on w.

A tree worktape is a storage medium whose cells are organized into a complete
infinite rooted binary tree. The root has two children, and all other cells have two
children and a parent. An access head can shift from a cell to its parent or to one of
its children. The root of the tree worktape is its origin. A tree machine is a bounded
activity machine whose storage media are all tree worktapes. Let W be a tree worktape.
We fix a natural bijection between strings in {0, 1}*, called locations, and cells of W;
we write W(b) for the cell at location b. Let , denote the empty string. The root of
W is W(h). In general, W(bO) is the left child of W(b), and W(b 1) is its right child.
Let W[b, r] denote the complete subtree of W of height r rooted at W(b). The leaves
of W[b, r] are at distance r from W(b).

A d-dimensional worktape is a storage medium whose cells correspond bijectively
with d-tuples of integers, called the coordinates. An access head can shift from a cell
to another whose coordinates differ in just one component by :t:l. The origin of the
worktape is the cell whose coordinates are all zero. A box is a set of cells that form
a d-dimensional cube. The volume of a box is the number of cells in it. The base cell
of a box is the cell whose coordinates are the smallest. A d-dimensional machine is
a bounded activity machine whose storage media are all d-dimensional worktapes.

3. Simulation. Fix integers d _->2 and h 1. Let T be a tree machine of time
complexity t(n) with just one worktape W with h access heads. Let A be the storage
alphabet of T. We may assume that whenever a head of T visits a storage cell, it
writes a nonblank symbol in the cell. We shall devise an on-line simulation of T by
a d-dimensional machine S in time O(t(n)+//log t(n)): There is a fixed constant k
such that for every computation of T, if s a_-<s2 =<’" are the steps at which T shifts

’< .atits input head or output head, then there are corresponding steps s -<_sz ="
which the input and output heads of S perform the same shifts, reading and writing
the same symbols, and s <=ks+a/d/logsg for every i. Since every tree machine with
a total of h access heads on several tree worktapes can be simulated in real time by
a tree machine with h heads on one worktape with a larger storage alphabet, it will
follow that every multitape tree machine can be simulated on-line by a d-dimensional
machine in time O(t(n)+/d/log t(n)).

Let us outline the simulation before giving the details. The tree worktape of T
is divided into subtrees called blocks. To simulate the contents of a block B, machine
S uses a box P called a page. The page compactly represents the contents of the

EMBEDDING TREES INTO ARRAYS 465

corresponding block with a path string [12]. The length of the path string is proportional
to the number of nonblank cells in B. Page P has an Ancestor-pointer that specifies
the coordinates of the page that corresponds to the immediate ancestor of B. For
every immediate descendant B’ of B that has nonblank cells, P has a Descendant-
pointer that specifies the coordinates of the page that corresponds to B’. To simulate
one step of T, machine S determines the symbols read by the access heads of T by
examining the path strings in the pages that correspond to the blocks in which the
heads are located. Whenever a head exits a block B and enters another block B’,
machine S uses the pointers in the page that corresponds to B to find the page that
corresponds to B’.

As the number of nonblank cells in B increases, the volume of the page that
corresponds to B must increase. Thus, S allocates a sequence of pages P1, Pz, of
increasing volume to represent the contents of B. To avoid changing all the Ancestor-
pointers and Descendant-pointers, S uses an indirect addressing scheme to locate the
current page that corresponds to B. Each Pe has a First-pointer and a Current-pointer.
The First-pointer of every Pi specifies the coordinates of P1, the first page that was
allocated for B. The Current-pointer of P specifies the coordinates of the current
page that corresponds to B. Whenever a new larger page Pi+ is allocated for B, the
Current-pointer of P is modified to specify P+.

The remainder of this section describes the simulation.
On a particular input string of length n, suppose T runs for N’<= t(n) steps.

Because $ knows neither n nor N’ a priori, $ repeats the simulation described in this
section for N 1, 2, 4, 8,. , using N for the length of the computation of T, until
N->N’. Machine $ has an auxiliary worktape to record the input symbols that it has
read. When N > 1, machine S first repeats the simulation of the first N/2 steps of T,
obtaining the first N/2 input symbols from the auxiliary worktape. Then S simulates
the next N/2 steps of T, recording on the auxiliary worktape the new input symbols
read during steps N/2 + 1 through N. Furthermore, on the output tape, $ writes only
the symbols generated during steps N/2 + 1 through N, avoiding repetitious outputs.
Thus, the input and output heads of $ move only when it simulates steps N/2 + 1
through N. During its computation, $ marks all cells that its worktape heads visit.
Before embarking on the simulation with the next value of N, it erases its worktapes
via a depth-first traversal of the marked cells. We shall show that for each N, the
simulation with that value of N takes time to(N)= O(N+/d/logN). It follows that
S simulates T on-line in time

(t(,,)to(l) +to(2)+... +to(2 0
\ 1-o g

Assume that N _>-28(h + 1)4a and N->_45. (Smaller cases are trivial.) Choose r
so that

r4 .<-_N/ <= (r + 1)4+a.
The storage alphabet of S is so large that the coordinates of every cell of S within
distance dN of the origin can be encoded by a string of at most r symbols. Call the
encoded coordinates of a cell the cell’s position. If cell X is at distance s <= dN from
the origin of its worktape, then the encoding permits S to use the position of X to
send an access head from the origin to X in at most time proportional to s. The
position of a box is the position of its base cell.

466 MICHAEL C. LOUI

Cover W with overlapping trees W[b, 2r + 1] such that the length of b is a multiple
of r + 1. Call these trees blocks, and define Wb W[b, 2r + 1]. Every block has 2zr/z-

1 -<4r/l cells. Call W[b, r] the upper half of block Wb and the remainder of the block
its lower half. By definition, if a cell X is at distance at least r + 1 from the root, then
X belongs to exactly two blocks: X is in the upper half of one block and in the lower
half of another. The immediate ancestor block of W is the block Wa such that W(a)
is the ancestor of W(b) at distance r + 1 from W(b); equivalently, the location a is
the initial segment of b for which Ibl- lal + r + . An immediate descendant block of
W is a block Wc such that W(bc) is a descendant of W(b) at distance r + 1 from
W(b); equivalently, Icl r + 1.

Define the function - by

’(z) 2 rog zl.

’(z) is the smallest integral power of 2 such that -(z)->z. Define u and the function
7r by

u ’((28(h + 1)2aN)I/a), zr(m)=’((7m)/d).
Observe that the volume of a box of side 7r(m) is at least 7m, and that u O(NX/a).

To maintain the simulated contents of blocks, $ has a box of side u called the
mass store; the base cell of the mass store is the origin. By definition, since N->
28(h + 1)4a and d->2, u-<N. Consequently, every cell in the mass store is within
distance dN of the origin, and its position can be written with at most r symbols. The
mass store contains pages. A page P is a box whose side is a power of 2 and whose
contents are organized into a path string, an Ancestor-pointer, a First-pointer and a
Current-pointer.

We describe how the path string of P represents the contents of a block B Wb.
The path string has symbols from three disjoint alphabets" A (the storage alphabet of
T); three shift symbols for the shifts on the tree worktape; and position symbols to
specify positions on the d-dimensional worktape. A symbol occurring in the path
string visits cell X of W if a head that starts at W(b) and shifts according to the shift
symbols preceding that occurrence arrives at X. The path string represents the contents
of the lower half of B if the following two conditions hold. First, for every nonblank
cell X in the lower half of B, the path string has exactly one occurrence of a symbol
in A that visits X, and X contains this symbol. Second, for every binary string x, the
path string has at most one nonnull substring of contiguous position symbols that visit
W(bx); this substring has length at most r, and P has a Descendant-pointer whose
value Descendant (P, x) is this string of position symbols. Each Descendant-pointer
is part of the path string. A path string might have no Descendant-pointers.

The Ancestor-pointer, First-pointer, and Current-pointer specify positions of
pages in the mass store. Write Ancestor (P), First (P), and Current (P) for the values
of these pointers. For convenience, we identify a page with its position. For instance,
Current (First (P)) is the value of the Current-pointer of the page at position First (P).
As outlined at the beginning of 3, the Current-pointers and First-pointers implement
an indirect addressing scheme that enables S to locate the current page that corresponds
to B. We assume a standard format for pages such that a page of volume L + 3r can
accommodate a path string of length L and the Ancestor-pointer, First-pointer and
Current-pointer, which together occupy at most 3r cells.

For configurations of $ we define a correspondence between pages and blocks.
(i) There is exactly one page marked with a special symbol. This page corresponds

to Wx.

EMBEDDING TREES INTO ARRAYS 467

(ii) Let page P correspond to Wb. If Descendant (P, c) is nonnull, then Current
(First (Descendant (P, c))) corresponds to Wbc.

Throughout the simulation, the following will be true for a page P that corresponds
to a block B Wb.

Invariant 1. The path string of P represents the contents of the lower halt ot B.
Invariant 2. If the path string of P visits v distinct cells of B, then the path string

has at most 2v shift symbols and at most v A symbols. The cells of B visited by the
path string are nonblank.

Invariant 3. The page Current (First (Ancestor (P))) corresponds to the immedi-
ate ancestor block of B. If B’ Wbc is an immediate descendant block of B and the
lower half of B’ is nonblank, then Current (First (Descendant (P, c))) corresponds to B’.

Invariant 4. If B Wx, then for every nonblank cell X in B (not just in the
lower half), the path string of P has exactly one occurrence of a symbol in A that
visits X, and X contains this symbol.

Let H1,"’, Hh be the h access heads of T. To maintain the simulated access
head locations, S has several head location tapes named Lil, L2 for 1, ., h they
are used as linear tapes. On tape L the location of H is written in consecutive
contiguous substrings called segments; all segments preceding the last have length
r + 1, and the last has length between 0 and r. Because the head locations are broken
into segments, S can avoid reading the entire location when it simulates one step.
Tape Li2 is used as a unary counter with values 0 to 2r + 1.

Suppose Hi is located at cell X W(bx) in a block B rooted at W(b). Let page
P correspond to B. The value of the contents of L2 indicates whether H is in the
upper half or the lower half of B. Suppose $ wishes to determine whether a symbol
in the path string of P visits X. Depending on the value of Li2, S copies the last one
or two segments from Lix to a spare worktape. While one head scans along the path
string, S uses the information on this spare worktape to decide in a routine fashion
which symbols of the path string visit X. If X is in the lower half of B, then S can
retrieve the symbol that X contains and also the value Descendant (B, x).

To record the nonblank symbol 8 that Hi writes on X, machine $ first discovers
whether a A symbol in the path string visits X, and if so, then S changes this symbol
to 8. If no A symbol in the path string visits X, then $ determines the ancestor Y
closest to X that the path string visits in B. Let Y be at distance s >- 1 from X. Then
S produces a new path string that differs from the old one only by the insertion of a
string of 2s + 1 consecutive symbols: s shift symbols for the shifts from Y to X, the
symbol 8 (which visits X) and s shift symbols for the shifts from X to Y. If the original
path string visited v distinct cells of B and had at most 2v shift symbols, then the
new path string visits v + s cells, including X, and has at most 2v + 2s 2(v + s) shift
symbols. Throughout the computation of T, the nonblank cells of W form a connected
set. Thus, it X and Y are nonblank, then all the s- 1 cells between Y and X are
also nonblank. Consequently, if the old path string visited only nonblank cells of B,
then so does the new path string. We conclude that S can maintain Invariant 2.

The simulator S has heads G,..., Guh, Gll,’’’, Glh on its mass store. The
simulation begins with all these heads on a page Po of side zr(r) that corresponds to
Wx. Initially, Ancestor (Po)- First (Po)= Current (Po)- Po, and the path string of P0
is empty.

In general, to simulate head H on cell Xi in block B-- Wb,, head Gi is in page
Pi and head Gli in page Qi such that Qi corresponds to Bi and
Current (First (Ancestor (Q))) corresponds to the immediate ancestor block Ai of
If Xi is in the lower half of B, then S uses the path string of Q read by Gi to retrieve

468 MICHAEL C. LOUI

the contents of Xi. If the path string of Qi does not visit Xi, then Xi holds a blank
symbol. If Xi is in the upper half of Bi and bi h, then Xi is in the lower half of Ag,
and S retrieves the contents of X from the path string of P read by Gui. (If b-
then according to Invariant 4, the path string of Qi has the contents of Xi even when
X is in the top half of Bi.) To simulate the effect of one step of T, machine S records
the new contents of each Xi in the appropriate path string (of P or of Q). If T shifts
its input head or writes an ouput symbol at the end of this step, then S does the same.
Finally, S updates the head location tapes. When S completes the simulation of this
step, Invariant 1 holds: the path string of P represents the contents of the lower half
of Ai, and the path string of Qi represents the contents of the lower half of

Suppose Hi shifts from W(bi) to its parent. LetM Current (First (Ancestor (Pi))).
Machine S sends Gli from Qg to Pi and sends Gui from Pi to M, which corresponds to
the immediate ancestor block of A, in whose lower half the parent of W(b) is located.
Call this adjustment of access heads an upward reorientation of Gi and

If shifts to a child of a leaf W(bicx) of Bi, where [c]= r + 1, then S performs
a downward reorientation of Gi and Gu by sending G,i from Pi to Qg and Gu from Qi
to R Current (First (Descendant (Q, c))), provided that Qi has a Descendant (Qi, c)
pointer. If R is not defined, then the bottom half of Wb, is completely blank (by
Invariant 3), although r cells in its top half (on a path from W(bgc) to W(bcx)) must
be nonblank. The storage allocation procedure ALLOCATE (described in 5) pro-
duces a new completely blank page R of side zr(r) in the mass store. Next, on this new
page S sets First (R) R, Current (R) - R, Ancestor (R) - Q. Also, S sets
Descendant (Qi, c)R and sends Gu to R. After this initialization, R corresponds to
Wb,, and Invariant 3 holds.

Now suppose that when S adds further symbols to the path string of a page P
to record the contents of a cell in the corresponding block B, P is not large enough
to contain the updated path string. With a call to ALLOCATE, S finds a new unused
box P’ in the mass store whose side is a power of 2 such that P’ is just large enough
to hold the new path string (as well as the Ancestor-pointer, First-pointer and
Current-pointer). Then S writes the updated path string into P’ and sets First (P’)
First (P), Current (First (P)) - P’ and Ancestor (P’) - Ancestor (P). Page P’ now cor-
responds to B, and Invariant 3 remains valid.

4. Analysis of the simulation. First, we establish upper bounds on the volumes
of pages. Throughout this section we may assume that at least r cells of W are
nonblank.

LEMMA 1. In a configuration of S during the simulation, let page P correspond to
simulated block B Wb with m nonblank cells. Then the length of the path string of P
is at most 4m, and the side ofP is at most zr(m).

Proof. Invariant 2 guarantees that the path string of P has at most 2m shift
symbols and at most m symbols in A. If P has a Descendant (P, c) pointer, then by
Invariant 3, the lower half of block Wb is nonblank; since the nonblank cells of W
always form a connected set, at least r cells of W[bc, r] in the lower half of B are
nonblank. Consequently, the path string has at most m/r Descendant-pointers, each
of length r. We have deduced that the length of the path string is at most 2m /m +
(m/r)r =4m.

The Ancestor-pointer, First-pointer and Current-pointer together occupy at most
3r cells. Because a page is allocated only when the corresponding block has at least
r nonblank cells, rn -> r. Therefore, the volume of P is at most 4m / 3r _-< 7m, and the
side of P is at most zr(m).

EMBEDDING TREES INTO ARRAYS 469

LEMMA 2. Throughout the simulation, the total volume of pages in the mass store
is at most 28h 2aN.

Pro@ At an arbitrary configuration of the simulation, let P1, P2, be the pages
that correspond to blocks on W. Let Pi correspond to block Bi, and let Bi have m
nonblank cells. Since every cell of W belongs to at most two blocks and since the
access heads of T can visit at most hN cells of W,

Y’. mi <--2hN.

The mass store holds smaller pages that correspond to Bi in previous configurations
of S. The volumes of these smaller pages are distinct powers of 2. It follows that the
total volume of pages that have ever corresponded to Bi is at most twice the volume
of Pi. Ergo, by Lemma 1, the total volume of all pages in the mass store is

2 2(r (mi)) -< 2.2 2 (7m) _-< 28h2N.

The time used by S to simulate one step of T is proportional to the length of
the h path strings that it handles. Lemma 1 implies that every path string has length
at most o(4r). Thus, tO simulate N individual steps, S spends time O(N4)
O(N+/a/log N) updating path strings and head location tapes.

After an upward or a downward reorientation of G and Gu, the simulated head
H is at distance r or r + 1 from both the root and the leaves of a block. Consequently,
this head can induce at most N/r reorientations. Each upward reorientation takes
time O(r)=O (log N) to retrieve the position of another page and time O(u)=
O(N/a) to move the heads across the mass store. For a downward reorientation, $
may spend, in addition, time O((log N)z) for a call to ALLOCATE (as we show in

5). Therefore, the total time for reorientations is at most

O ((log N): +Nx/a) O
\ log N/"

When S copies the contents of a page P to a larger page P’, it spends time
O(u) O(N/) to move the heads across the mass store, time O((log N)a) for a call
to ALLOCATE, and time O(4 + r) to copy the path string and pointer values. Since
every page has volume at least r, Lemma 2 implies that S makes at most O(N/r)
allocations of pages. Thus, S spends time

(

finding and initializing new pages.
In summary, the simulator uses time O(Na+/a/logN) to simulate N individual

steps, time O(N+/a/log N) to reorient heads G, and G, and time O(N+/a/log N)
to prepare new larger pages in the mass store.

TnZOREM 1. Every multihead tree machine of 6me complexi t(n can be simu-
lated on-line by a muttihead d-dimensional machine in 6me O(t(n)+x/a/log t(n)).

Consider the logarithmic cost random access machines endowed only with addition
and subtraction. Since each of these machines can be simulated on-line in linear time
by a multihead tree machine [10], we obtain an immediate corollary of Theorem 1.

THEOREM 2. Every NgariNmk cost random access machine win addition and
subtraction of 6me complexi t(n) can be simuNwd on-line by a multihead d-
dimensional machine in 6me O(t(n)a+a/a/log t(n)).

470 MICHAEL C. LOUI

5. Storage allocation. Machine S has a free storage list, a list of positions of blank
boxes in the mass store. Initially, the free storage list holds the position of the mass
store itself, a single box of side u. Throughout the computation of S, after the first
call to ALLOCATE, for q 1, 2,..., u/2, this list has positions of at most 2a- 1
boxes of side q.

Procedure ALLOCATE.
Input" p, a power of 2.
Output" The position of a blank box of side p in the mass store.
Method" A buddy system [5] is used.
Step 1. If the free storage list has a box of side p, then skip to Step 2. Otherwise,

let q* be the smallest power of 2 for which the free storage list has a box of side q*.
(We shall show that when ALLOCATE is called during the simulation, q* must exist.)
For q q*, q*/2,..., 4p, 2p in order, select the position of a box Qq of side q and
delete this position from the list; add to the list the positions of the 2a disjoint boxes
of side q/2 whose union is Qq.

Step 2. Let y be the position of a box of side p on the free storage list; delete
y from the list, and return the value y.

The time taken by ALLOCATE is O(rlogu)=O((logN)2) because at most
(2 1) log u positions of length at most r are handled.

Let q --<q2--<’" ’qs be the sides of boxes whose positions are on the free storage
list when ALLOCATE is called to produce a blank box of side rr(m), where r <_-m <_-
4r+. Since N > 45d implies r > 4, it follows that

(1) m <=r4 <:N1/d.

Furthermore, since m >= r -> 4,

(2) 28m d >= 2d (7m).
Lemma 2 and the definition of u imply that

(3) qd +...+qd > ud _28h2dN > 2d(28N)
Since the free storage list has at most 2d- 1 boxes of each distinct side,

d

(4) qd+...+qs a<__(2d-1)qd+s (2d--1)(!)+...+(2d__l)(1)<(2q)d.

Combining inequalities (1), (2), (3) and (4) yields

q >-_ (28N)lid >-_ (28)I/dm >--_ 2(7m)/d >__ rr(m),

and ALLOCATE can find a box of side r(m) in the mass store.

6. Lower bound. We define a tree machine T’ and demonstrate that every
d-dimensional machine that simulates T’ on-line requires time gl(N//d/log N).

Machine T’ has just one access head on one tree worktape and operates in real
time. Its input alphabet is a set of commands of the form (e, or), where e s {0, 1, ?}
and r is a shift for a tree worktape. Suppose T’ is in a configuration in which the cell
X at which the access head is located contains e’. On input (e, r), machine T’ writes
e’ on its output tape, and the access head writes e on X if e s {0, 1}, but writes e’ on
X (its current contents) if e ?. At the end of the step the access head executes the
shift

EMBEDDING TREES INTO ARRAYS 471

Let d-dimensional machine S" simulate T’ on-line. To establish the lower bound
f(Nl+l/a/logN) on the time required by S’, we formalize the following volumetric
argument. The worktape head of T’ can access each of a set of N cells within log N
steps, whereas the heads of $’ require Iq(NTM) steps to access one of a set of N cells
in the worst case. If the contents of a set of iV cells of the worktape of T’ are sufficiently
random (in a sense made precise below), then there is a sequence of f(N/log N)
"hard questions" about the contents of these cells, each question having length log N,
such that S’ requires time 12(NI/a) to answer each question.

Let # be a new symbol. For strings x, y in {0, 1, #}*, let K(xly) be the Kol-
mogorofcomplexity ofx given y with respect to a fixed universal function U. Formally,
K(xly) is the length of the shortest binary string b such that U(b # y) x. Intuitively,
b is a binary description of x, given y. Write K(x) for K(xl,k), where ,k is the empty
string. The following elementary properties of K are well known: There is a fixed
constant c such that for all x and y,

g(x)<=21xl+c, g(x)<-g(xly)+g(y)+c.

Call a binary string x for which K(x) >- Ix incompressible. For every n, since there are
2 binary strings of length n but only 2 1 possible shorter binary descriptions, there
exists at least one incompressible binary string of length n.

LEMMA 3. Let h >-_ 1 and let x be an incompressible string of length N > 8(c + h).
For every set of h strings {yx,. ., Yh} of length at most N/4h each, K(xlya # #
yh) >N/4.

Proof. If not then

K(x)<-K(xly #.." # yh)+K(y #’’’ # yh)+C _-<-+(2h) +1 +2c <N.

This is a contradiction.
TEOREM 3. Let d-dimensional machine $’ with head-to-head lumps on one

worktape simulate T’ on-line in time t’(N). Then t’(N)= (N+/e/logN).
Pro@ For every N that is a sufficiently large power of 2, we shall construct a

string of N input commands on which S’ requires time D.(N+I/a/logN). The input
string will have a filling part O0 of length N/2 followed by a query part of length N/2.

Let W be the worktape of T’, and let W W[,, log (N/8)]. The filling part
compels the head of T’ to write on the (N/4)-1 cells of Wx such that a depth-first
traversal of the contents of Wx gives an incompressible string x of length (N/4)-1.

A question is a string of 2 loga N commands of the form ?, o’} that drives the
head of T’ from the root W() to a cell of Wx and back to the root. Note that the
contents of W, remain unchanged when T’ processes a question. The query part will
be a sequence of N/(4 log N) questions O1, O," . We shall choose the questions
so that S’ spends time f(N/) to process each O.

Let S’ have h access heads. For/’ _>-0, consider the configuration of $’ after it
has processed O. Let B,... ,Bn be the boxes of side (N/(32c’h))/ centered at the
heads in this configuration, where the constant c’ depends on S’ and is specified later.
These boxes hold all the cells accessed by S’ during the next (N/(32c’h))/a/2 steps.
We now show that there is some question O/ that forces some head of $’ to exit
B [,.J’’" [,-JBh when S’ processes I/+1. Otherwise, let y be a binary encoding of the
contents of B and z be a binary encoding of the relative position of access head in
B. Evidently, if c’ is sufficiently large, then both lYI <--c’lBil and Izl <--c’lBil for every
i. From the string y # # Yh # Zl # # Zh, only a small constant amount of
additional information (essentially a binary description of this discussion) is necessary

472 MICHAEL C. LOUI

to generate x because S’ can process every question Q/I with the heads remaining
in Blt.J’" "(.JBh. We deduce that K(xlyl #’" # y, # zl #"" # zh)=O(1),
contravening Lemma 4.

Therefore, since some head spends time (N/(32c’h))l/d/2 to exit B1 (.J" "l,.JBh
when S’ processes question Q/1, the time spent by S’ on the query part alone is at least

N N 1/d]
2

"Nl+l/d

(4iogN) (32c’h) / f/ (log N)"
Acknowledgment. A referee simplified the constants in the definitions of rr

and u.

REFERENCES

[1] S. A. COOK AND S. O. AANDERAA, On the minimum computation time of functions, Trans. Amer.
Math. Soc., 142 (1969), pp. 291-314.

[2] R. A. DE MILLO, S. C. EISENSTAT AND R. J. LIPTON, Space-time tradeoffs in structured programming:
An improved combinatorial embedding theorem, J. Assoc. Comput. Mach., 27 (1980), 123-127.

[3] D. Ju. GRIGORIEV, Imbedding theorems for Turing machines ofdifferent dimensions and Kolmogorov’s
algorithms, Soviet Math. Dokl., 18 (1977), pp. 588-592.

[4] F. C. HENNIE, On-line Turing machine computations, IEEE Trans. Elec. Comp., EC-15 (1966),
pp. 35-44.

[5] D. E. KNUTH, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley,
Reading, HA, 1968.

[6] R. J. LIPTON, S. C. EISENSTAT AND R. A. DE MILLO, .Space and time hierarchies for classes of
control structures and data structures, J. Assoc. Comput. Mach., 23 (1976), pp. 720-732.

[7] M. C. LouI, Simulations among multidimensional Turing machines, Theoret. Comput. Sci., 21 (1982),
pp. 145-161.

[8],Minimizing access pointers into trees and arrays, Rep. R-910, ACT-27, Coordinated Sci. Lab.,
Univ. of Illinois, Urbana, June 1981.

[9] N. A. LYNCH, Accessibility of values as a determinant of relative complexity in algebras, J. Comput.
System Sci., 24 (1982), pp. 101-113.

[10] W. J. PAUL AND R. REISCHUK, On time versus space II. J. Comput. System Sci., 22 (1981),
pp. 312-327.

[11] W. J. PAUL, J. I. SEIFERAS AND J. SIMON, An information-theoretic approach to time bounds for
on-line computation, J. Comput. System Sci., 23 (1981), pp. 108-126.

[12] N. PIPPENGER AND M. J. FISCHER, Relations among complexity measures, J. Assoc. Comput. Mach.,
26 (1979), pp. 361-381.

[13] K. R. REISCHUK, A fast implementation of a multidimensional storage into a tree storage, Theoret.
Comput. Sci., 19 (1982), pp. 253-266.

[14] A. L. ROSENBERG, Data encodings and their costs, Acta Informatica, 9 (1978), pp. 273-292.
[15] ., Encoding data structures in trees, J. Assoc. Comput. Mach., 26 (1979), pp. 668-689.
[16] A. L. ROSENBERG AND L. SNYDER, Bounds on the costs ofdata encodings, Math. Systems Theory, 12

(1978), pp. 9-39.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0005 $01.25/0

A GENERALIZED CLASS OF POLYNOMIALS THAT
ARE HARD TO FACTOR*

ERICH KALTOFEN,5" DAVID R. MUSSER, AND B. DAVID SAUNDERSt

Abstract. A class of univariate polynomials is defined which make the Berlekamp-Hensel factorization
algorithm take an exponential amount of time. This class contains as subclasses the Swinnerton-Dyer
polynomials discussed by Berlekamp and a subset of the cyclotomic polynomials. Aside from shedding
light on the complexity of polynomial factorization this class is also useful in testing implementations of
the Berlekamp-Hensel and related algorithms.

Key words, polynomial factorization, exponential time, Berlekamp-Hensel algorithm, Galois groups,
computer algebra

1. Introduction and summary of results. This paper generalizes a class of univari-
ate polynomials with integral coefficients attributed to H. P. F. Swinnerton-Dyer by
E. R. Berlekamp [BERL70, p. 733]. We use Galois theoretical methods to prove
their properties of interest.

These polynomials are of particular interest for the Berlekamp-Hensel factoriz-
ation algorithm [KNUD81, p. 433], which determines factors modulo p and lifts them
to find the integral factors of a polynomial. Because the polynomials in the class we
will define are irreducible over the integers but have a large number of factors modulo
p for every prime p, the Berlekamp-Hensel algorithm behaves badly on them: In
determining their irreducibility it needs a number of operations that is exponential in
the degree and coefficient lengths of the polynomials. This was also true for the
Swinnerton-Dyer polynomials, but the class we define is much larger and contains
subclasses that, unlike the Swinnerton-Dyer polynomials could make a hypothetical
algorithm (see 4) remain super-polynomial in its computing time.

Let n be a positive integer and let r be an integer _->2. By ’r we denote exp (2ri/r),
the first primitive rth root of unity. Let pl, [gn be n distinct positive prime numbers.
By fi;pl,...,p.(x) we denote the monic univariate polynomial in x whose roots are
i,,. (p:t)./,. +... + (pn)l/r with 1 <= il," in <-- r.

All f,,pl,...,,,, have integral coefficients and are irreducible polynomials of degree
r over the integers. If r is a prime number the following will be shown: If the
coefficients of f,.;pl,...,p, are projected into a field of residues modulo any prime number
q, henceforth denoted by Zq, the image polynomials fi;ol,...,p,(mod q) factor into
irreducible polynomials over Zq which have degree at most r.

If r 2 this construction gives a slightly simpler version of the Swinnerton-Dyer
polynomials which treat x/-- as an additional prime number. But our Galois theoreti-
cal proofs can be easily extended to yield this special case.

The condition of r being a prime number is not crucial for the unpleasant running
time behavior for the factorization of these polynomials. For composite r the degrees
of the irreducible factors in the modular domain are then bounded by r2 (we will
actually prove a somewhat better bound).

A modified version of these polynomials is also presented because of its closely
related properties" By fr*;l,...,, we denote the polynomial whose roots are sri +

* Received by the editors March 8, 1981.
t Rensselaer Polytechnic Institute, Troy, New York, 12181. The research of these authors was

supported by the National Science Foundation under grant MCS-7909158.
t Computer Science Branch, General Electric Research & Development Center, Schenectady, New

York.

473

474 ERICH KALTOFEN, DAVID R. MUSSER AND B. DAVID SAUNDERS

’(pl) 1/r -t-" ""t-’(pn) 1/r where 1 _-<i0, il,..., in _-<r and (io, r)= 1, meaning that the
greatest common divisor of i0 and r is 1.

Again all fr*’,,l,...,p, are integer polynomials which factor modulo any prime q into
polynomials whose degrees are bounded as for fr;,,...,,,. If r is 2, 4, 6 or an odd
integer, * is also irreducible over the integers. Otherwise these polynomialsf ;p 1,"" ,Pn

may be reducible but we can guarantee that all factors over the integers are of degree
at least 2r.

Ifn 0, *fr;e are the cyclotomic polynomials r(X). We will show that for certain
composite r the maximum degree of factors in any residue field implies a superpoly-
nomial running time for the Berlekamp-Hensel factorization algorithm. This fact is
discussed in [MUSD75, p. 302]. D. Knuth [KNUD81, p. 437] uses Berlekamp’s
algorithm to prove the modular factorization property for 8. Because these poly-
nomials can be factored modulo any prime number, P. Weinberger’s and L. Roths-
child’s algorithm [WERO76] for factoring integral polynomials over these poly-
nomials’ splitting fields becomes exponential complex. L. Kronecker’s procedure
[VdWA53, pp. 136-137], which depends on factoring an integral polynomial construc-
ted from the input polynomial and the minimal polynomial of a primitive element for
the algebraic number field, over which the factorization is to be computed, also
becomes very inefficient, if the algebraic number field is the splitting field of our
polynomials.

In 2 we introduce the number theory and Galois theory required to prove our
main theorems in 3. In 4 we give examples of these polynomials and additionally
analyze the computing time required to factor them. We conclude in 5 with a recap
of the Galois theoretical considerations underlying our results.

Notation. By Z we denote the integers and by Q the rational numbers.

2. Number theoretical and Galois theoretical background. Let r be an integer
>-2. By Ur we denote the set of residues modulo r which are relatively prime to r.
This set forms a group under multiplication modulo r and there exists a minimal
nonnegative integer , (r) such that for each s U,." s ’r 1 (mod r). (r) is called the
minimum universal exponent modulo r. It is known (see [SIEW64, p. 246]) that

(2)=1, ,(4)=2, (2)=2-2 force>-3,

/ (2%q? q-)= lcm (a (2), q (q?l), b (q"))

where the q are distinct odd prime numbers, O is Euler’s totient function and lcm
means the least common multiple. Let Pi be the ith consecutive prime number. As a
consequence of Chebyshev’s theorem p <2 for all i> 1 [SIEW64, p. 138]. This
enables us to prove the following:

LEMMA 1. Let] be an integer >-2. Then there are infinitely many positive integers
m (namely the product of the first k odd prime numbers with k sufficiently large) such
that

b(m__) > (log2 (b (m))).
A(m)

Proof. Let m=p2"’pk. Then c/)(m)=(p2-1)...(pk-1)<2+1/2-1 by the
above estimate for Pi. Therefore (log2 (& (m)))J < k 3j. Also (m)
lcm (p2- 1,..., pk- 1) < 2(p2- 1)/2... (p- 1)/2= 22-kb (m). Hence & (m)/)t (m >
2t’-Z>k 3i for k chosen large enough. Therefore for all sufficiently large
k :b (m)/A (m) > (log2 (& (m)))’.

POLYNOMIALS THAT ARE HARD TO FACTOR 475

In the proof of Theorem 2 below we will make use of the fact that for every
prime number r and for all s Ur- {1}" (s r-l- 1)/(s 1) is a multiple of r. This follows
from the Fermat theorem (a6(b)=-I (modb) for (a,b)= 1) and the fact that r is a
prime number. In order to treat composite r we generalize this matter:

LEMMA 2. Let r be a positive composite integer. By rl (r) we denote the minimum
exponent such that for each s U -{1}: (S "q(r)- 1)/(S 1) is divisible by r. Then l(r) <-

rh (r). In fact, (r)<-dh (r) where d lcm ({(s 1, r)’ s Ur- {1}}).
Proof. Since for any s, (s 1, r) divides r so must d and therefore d _-< r. We claim

that (s dx(r)- 1)/(s- 1) is a multiple of r" To prove this we first factor s ax(r)- 1 as

(S x(r) 1)(S (d-1)x(r) + S
(d-2)x(r) +" + 1).

Now the left factor is a multiple of r. It is therefore sufficient to show that the right
factor is a multiple of d since that means it can absorb any factor of r in s- 1 (by
definition of d). But sk((sX(r) 1 (mod d) for 0 <= k <= d 1 since d divides r and
thus (S(d-IX()+ "+l)=d" 1=0 (modd), as required. Therefore n (r) <= dA (r) <=
rh (r). Il

At this point the question arises what the actual value of (r) is. We have not
found an explicit formula. In Theorem 2 we will use the fact that h (d)-<_ h (r) for all
divisors d of r. This particular property remains true for as we can see by the
following argument, which we owe to A. Odlyzko. Let d be a divisor of r and let
be an integer with 1 and (t, d)= 1. We need to show that d divides

(t n(r) 1)/(t- 1), i.e. "()-1 +... + 10 (modd).

We can find integers m and e such that r dine and (d, e)= 1. The last condition
guarantees the existence of a residue b modulo e such that bd =-1-t (mod e). Let
s + bd. Thus s -= (mod d) and s 1 (mod e) which means that s 1 and (s, r) 1.
Hence s "(r)-I +... + 1---0 (mod r), by the definition of 7, and taking this equation
modulo d yields our claim. Table 1 indicates for some r the values (r) and its bounds
from Lemma 2:

TABLE

4 8 9 15 22 27 35 38 49 3.72 32. 72
n(r) 2 8 18 60 10 54 420 18 294 294 882
d, (r) 4 8 18 60 20 162 420 36 294 6,174 18,522
r,(r) 8 16 54 60 220 486 420 684 2,058 6,174 18,522

We will need some well-known properties of the cyclotomic polynomials later
and shall mention them now: Let r be an integer >_-2 and let rr be a primitive rth root
of unity. There always exist b (r) distinct primitive rth roots of unity in an extension
field of (2 or Zq provided that q is a prime number not dividing r. They are the powers
of sr whose exponents are relatively prime to r. Then

Itr(X)--" fi (X --ir)- H Xd 1) (r/d)
i=1 dlr

(i,r)=

denotes the rth cyclotomic polynomial which has all integer coefficients (or their
residues modulo q if the ground field is Zq). By d[r we mean that d is a divisor of r
and/ denotes the Moebius function’/ (n) (-1) if n is squarefree and has m distinct
prime divisors,/(1) 1, and otherwise (n) 0. (See [VdWA53, p. 112].)

476 ERICH KALTOFEN, DAVID R. MUSSER AND B. DAVID SAUNDERS

If ’r =exp(2ri/r) (i.e., the ground field is Q) then qr is irreducible over Z
[VdWA53, p. 162].

LEMMA 3. Let q be a prime number and let m and r be positive integers such that
r is relatively prime to q. Then

rq,(X)=--r(X)’(q’ (mod q).

Proof. First we notice the fact that for any integral polynomial f and any integer
_-> 0: f(x q’) f(x)q’ (mod q). Then by using the formulas for the cyclotomic polynomials

and the Moebius function given above the stated congruence can be easily shown. [3
By the Galois group of a polynomial we mean the automorphism group of its

splitting field over the field of its coefficients. Then the Galois group of over Q is
isomorphic to U under multiplication modulo r [VdWA53, p. 162].

Let f and g be two monic polynomials whose coefficients lie in some integral
domain R. Let ai, 1 _-< <_-deg (f) and/3., 1 _<-f _-< deg (g) denote their roots respectively.
Since the polynomial

deg(f) deg(g)

FI II x -, -)
i=l]=1

is symmetric in both the ai and the Bi it follows from the fundamental theorem of
symmetric functions [VdWA53, p. 79] that its coefficients also lie in R. There is a
resultant method which makes it feasible to actually compute this polynomial"

LEMMA 4. Let R be an integral domain and let f and g be monic polynomials in
R [x]. Then

(--1) deg(f)deg(g) resy (f(x- y), g(y))

is a monic polynomial in R [x of degree deg (f) deg (g) whose roots are Odi -[" i where
cti (1 <_-i <= deg (f)) are the roots of f and [3 (1 <-j <_-deg (g)) are the roots of g. By resy
we mean the resultant with respect to the indeterminate y (see [VdWA53, p. 84]).

Proof. One may apply a theorem given in [VdWA53, p. 86] for representing the
resultant of two polynomials as a symmetric function in their roots. A complete proof
is given in [LOOS82].

The next two lemmas will help explain why our polynomials split into so many
factors modulo any prime number. First we show what happens to the Galois group
when an integral polynomial is projected to a polynomial over a residue field.

LEMMA 5. Let f be a monic separable polynomial in Z[x] and let f Z[x] be
its natural projection modulo a prime number q. If f is separable (over Zo) the Galois
group of f over Zq is a subgroup (as a permutation group on the suitably arranged
roots) of the Galois group off over Q.

Proof. See [VdWA53, p. 190].
The above lemma has been generalized by [ZASH79] for the case in which f

is not separable. However, this is only the case if q divides resx (f(x), df(x)/dx) over
Z, the discriminant of f, and one must avoid those primes in order to be able to
perform the Hensel factor lifting algorithm.

LEMMA 6. Let f Z[x], q being prime. Assume that all elements of the Galois
group f (as permutations on the distinct roots of f) are written as products of disjoint
cycles. Then f does not contain an irreducible factor of degree higher than the length
of the longest cycle.

Proof. The statement follows immediately from the statement made about the
generating element of the Galois group of f in [VdWA53, p. 191] or likewise from
[GAAL73, Thm. 13, p. 230]. El

POLYNOMIALS THAT ARE HARD TO FACTOR 477

Now we mention a slight generalization of Eisenstein’s irreducibility criterion,
which can be used to show the irreducibility of some but not all of our polynomials.

LEMMA 7. Let f(x) ao + alx +" + anx Z[x]. If there exists a prime number
p and an exponent relatively prime to n such that

pi[ao, p’la, p’la-, p , an, p,/l ao

then f is irreducible over Z.
Proof. The statement is a special case of Dumas’ theorem [VdWA53, p. 76] (with

a and/3 n). It was first discovered by L. K6nigsberger [KOEN1895].
Notice that the condition (i, n) 1 in the above lemma is also necessary, because

4 3x + 4x + 8x2+ 8x + 4 (x2+ 2x + 2)2 yields a counterexample if this is not the case.
The next two lemmas constitute the key for our irreducibility proofs. By [K’F]

we denote the degree of a field K over a subfield F and by F(01,’", On) we denote
the field F extended by the elements 01, ’, 0n.

LEMMA 8. Let r be an integer >-_2, r a primitive rth root of unity, and let p
be distinct positive primes"

a) ((Pl) ,’",(pn)l/):O]=rn.
b) If r >-_3 then 2r _<_ [Q(r,, (pl)a/r, (p,)l/). Q]<_c(r)r n.

/’, (pn) 1/ O] 6(r)r n.c) If r is odd or 2, 4, or 6 then [O(r, (pl) r)
Proof. Part a) is proven in [BESI40] well as [RICI74]. Part b) follows immediately

from part a) and the fact that for r -> 3 every r is a nonreal number of algebraic degree
b(r) over O. Part c) is proven for odd r in [RICI74] which is also a special case of
[CAVB68, Thm. 10, p. 50]. If r 2 part c) is actually the same as part a) because
r2 =-1. For r 4 or 6 we combine part b) and the fact that both 4 (4) and 4 (6) are
2.

In the above lemma, the primes p1,’’ ", pn may be replaced by a more general
sequence of values. For example A. S. Besicovitch [BESI40] shows that part a) holds
for numbers pl,’"’, Pn such that there exist primes ql,’"’, qn satisfying q[p, q
and q 4"p., for /’. For a still more general condition on the p see [NARW74, Lemma
7.11, p. 354].

Also notice that part c) may not hold for even r->_ 8 depending on what primes
P ",pn are chosen. Counterexamples may be constructed using the fact that
x/ O(’8) or x/ O(’lo), etc.

LEMMA 9. Let r be an integer =2, r a primitive rth root of unity, and let
be distinct prime numbers. Then (pn)/ is not an element of the field
O(sr, (pl)l/r, (Pn_l)l/r).

Pro@ If r is 2 the fact follows from part a) of Lemma 8. By F we denote the
field Q(, (p 1) 1/r, (Pk) 1/r) with 1 <= k <= n. Now assume that r is >=3 and (Pn)1/ e Fn-
which implies that Fn Fn-1. Applying part b) of Lemma 8 we get 2r -<[Fn" Q]
[Fn-l" Q] <=c(r)rn-l, which is impossible.

We now summarize some properties of Galois fields which enable us to give an
alternate proof of Theorem 2 in 3’ Let GF(q n) be the splitting field of xq"-x as a
polynomial in x with coefficients in Zq, q being a prime number. Then GF(q n) is a
finite field with q" elements of characteristic q whose multiplicative group is cyclic.
All fields with q elements are isomorphic to GF(q n) and hence it is called the Galois
field with qn elements. The degree [GF(qn) Zq] is n and GF(q n) has exactly one
subfield GF(q ") provided that m divides n. The automorphism group on GF(q) is
isomorphic to Zn under addition, and one of its generators maps each element c of
GF(q n) into a q (the so-called "Frobenius automorphism") [VdWA53, p. 115].

478 ERICH KALTOFEN, DAVID R. MUSSER AND B. DAVID SAUNDERS

Let f be an irreducible polynomial of degree n with coefficients in Zq, q being
prime, and let a be a root of f. Since Zq(a) is isomorphic to Zo[x]/ (f(x)), the residues
modulo f, Zq(a) contains q elements and thus a GF(q"). The remaining roots of f
are a ," , a

qn--1 because of the structure of the Galois group mentioned above.
LEMMA 10. Let m Z,, q being prime, and let r be an integer greater than 1.
a) A necessary and sufficient condition for the existence of an rth root of m in Zq

(i.e., a residue b such that b m (mod q)) is that r is either relatively prime to q 1 or
m(O-1)/a=l (mod q) where d=(q-l,r) (cf. [VdWA53, exer. 2, p. 118]).

b) The polynomial xr-m in Z[x] has at least one root a such that a GF(q a)
and d divides r.

Proof. a) Let g be a primitive root of Zo, i.e., a generating element of Zo-{0}
with multiplication. Then g, ge,... gq-l= 1 are distinct residues modulo q. If (r, q-
1) 1 then gr, g2r, g(O-1)r 1 are also distinct residues and therefore exactly one
element is equal to m. If b is an rth root of m then by Lagrange’s theorem b
m (,-l/a 1 (mod q) where d (q 1, r). We finally prove that if m (-l/d =_ 1 (mod q)
then m gr (mod q) for some integer f >= 1. Assume m gi (mod q) and d does not
divide i. Then q-1 does not divide i(q-1)/d and therefore m (q-/a=

gi(O-/a 1 (mod q). Hence m ___gka (mod q) with k >= 1. Since (r/d, q-1)= 1 there
exists a j =- k(r/d)- (rood q 1) and therefore m gka g (rood q). (Notice that this
proof works also if we replace Zo by GF(qn).)

b) We use induction on r" For r 1 the statement is trivial. Assume that r > 1.
We now distinguish two cases"

Case 1. There is a factor r > 1 of r such that an rth root ml of m exists in Z.
By part a) we already know that this is always true if r 4"q- 1. Let re r/r. Then
x m =-- x r2rl m 11 =-- (x r2- ml)(X (rl-1)r2 + x(ra-2)raml nu" -+- m 1- (mod q). Applying
the induction hypothesis to xr2-mx yields the statement for r.

Case 2. r divides q- 1. Let a be a root of x r-m and let rr be a primitive rth
root of unity both of which lie in some Galois field. Let h be the minimal polynomial
of a over Zq whose constant coefficient be denoted by ho. Since h (x) divides x-m =-
(x c)(x a) (x -’ c), it follows that ho sr’ra with s deg (h) and some
positive integer. Therefore h m . If d (s, r) we can find suitable integers u, v such
that us + vr d. Then m d mUSmVr h (hom v)r d

0 m which implies that m possesses
an rth root in Zq. From part a) we conclude that m d(a-1)/r- 1 (mod q) and further
that there exists an (r/d)th root of m. If s < r then rid > 1 and we can apply Case 1.
Otherwise x r-m is already irreducible.

Case 2 of the above proof has an interesting side effect" Let q be a prime and r
an integer dividing q 1. Then x m is irreducible over Zq if m q-)/d 1 (mod q) for
all divisors d of r. As we showed in part a) of the above lemma this is true for all m
of the form gi where g is a primitive root of Zq and (i, r)= 1. Hence by picking a
random residue m the probability that xr-m does not factor in Zq[x] is 4,(r)/r.
Choosing an rth degree polynomial randomly only yields a probability of 1/r
[RABM80]. Moreover it follows from Theorem 328 in [HAWR79, p. 267] that
4)(r)/r >0.56/log log r for almost all r. Therefore in searching for irreducible poly-
nomials in Zq[x of degree r, r a divisor of q- 1, we will succeed considerably sooner
by choosing the above polynomials than entirely random ones.

3. Main results.
THEOREM 1. Let r be an integer >=2 and let pl, Pn be distinct prime numbers.

fr;Pl,’",PnThen f;pl,..,p, and * have integer coefficients and the following irreducibility
conditions hold"

POLYNOMIALS THAT ARE HARD TO FACTOR 479

a) fi;pl,...,p, is irreducible over the integers and each irreducible factor of
over the integers with r >= 3 has degree at least 2r n.

b) If r 2, 4, 6 or odd then fr*.,o,...,o, is irreducible.
Proof. Using Lemma 4 inductively we see that the coefficients of fi;p,...,o, and

f*;o,...,., are integers and that their degrees are r and ck(r)r respectively. (Notice
that qG has integer coefficients as mentioned in 1.) First we prove by induction that

/r, ", (p.)l/). We make use of(pl)l/r +... + (pn)l/r is a primitive element of Q((pl)
the construction of a primitive element given in [VdWA53, p. 126]: Let c1

(pl) 1/r +" + (pn_l) 1/r and a2, arn-1 be the remaining roots of/;p,",p.-l" By the
induction hypothesis Q(a)= Q((p)/,..., (p_)/). The minimal polynomial of
is of degree [Q(ax)" Q] which is r"- by Lemma 8. Therefore fi;p.....,,_ is this minimal

/r, [2, ", fir be the roots of x -pn which is irreducible bypolynomial. Let/3 (p,)
Eisenstein’s criterion (Lemma 7). Then a +B1 is a primitive element of Q(a,/)
Q((p)/,.,..., (p,,)/r) provided that al +fl # a +B for 1 -<i <_-r"- and 1 </’ _<-r. For
the sake of contradiction assume that this condition cannot be achieved, namely there
exist an and a]> 1 such that al-a=B-B. Since B=(kr(p,.,) "t/" for some k _->1 it
follows that a-ai (p,)X/r(1--(k) and therefore (pn)X/ (a-ai)/(1-srr) which is
an element of Q(r, (p)/","’, (Pn-)/r), in contradiction to Lemma 9.

Noticing that Wr is irreducible we can prove in exactly the same way that
(r +(P)/ +" +(p,)/r is aprimitive element of Q(,., (pl)/", ., (p,)/r). (However,
the a will be the roots of an irreducible factor of * .)fr;Pl,’",Pn--1

We now conclude that the minimal polynomials of these primitive elements are
of the same degree as the field extensions obtained by adjoining them to the rationals
which we know by Lemma 8, parts a) and c). Therefore fr;,,...,,, and, in the case that
r 2, 4, 6 or an odd integer, fr*’,Pl,"’,Prt are these minimal polynomials and hence must
be irreducible.

All irreducible factors of * have degree at least 2r" because all roots aref ;p 1,"" ,Pn

primitive elements by the argument above and the lower bound of the corresponding
field extension is known from Lemma 8b).

THEOREM 2. Let r be an integer >=2 and let pa, ,., p. be prime numbers. For any
prime number q the following factorization properties hold for the projected polynomials
fr;v, ,p. (mod q and * (modq)"fr;Pl,’" ,Pn

a) The maximum degree of any irreducible factor of both polynomials over the
residue field modulo q is at most rA (r). Special case" If r is a prime number the maximum
degree is r.

fr; (mod q)=b) If n 0 then the maximum degree of an irreducible factor of
(mod q) is h (r).

Proof. (a) We first show that the length of the longest cycle in any permutation
is at most max (r, rt(r)), where r/(r) is asof the Galois group of fi;p,...,o, or fr;p,...,t,,

defined in Lemma 2. Let tr be an automorphism on Q(’r, (p)l/r,..., (p,)/,.). As such
it has to map the roots of the polynomials q and x"-pi into roots of the same
polynomials. In particular tr(r)= where r is a primitive rth root of unity and s
is relatively prime to r. Also o’(pi)l/r’-rmi(pi) 1/r, where the mi depend also on tr

(1 <_- _-< n). (Notice that Srr generates all distinct rth roots of unity.) We now distinguish
two cases"

Case 1. s=l. Applying tr r times we get o’(r)((pi)l/r)=(pi)I/r for all l<-i<-n
and therefore O

"(r) maps each root of fi;pl,...,p, and f*.,p,...,,, onto itself which is to say
that the permutation corresponding to cr has cycles of length at most r.

Case 2. s> 1. By Lemma 2 we know that both s(r)-- l(modr) and (s(r)-

1)/(s-1)--0 (modr). A short computation shows that then tr(’(r))((r)=(r and

480 ERICH KALTOFEN, DAVID R. MUSSER AND B. DAVID SAUNDERS

0
"(n(r)) ((pi) 1/r) (pi) 1/r for all 1 <_ <- n. Therefore the cycle lengths of the permutation
corresponding to tr are at most r/(r). Cases 1 and 2 together prove the statement
made initially. If the image polynomials are separable we are finished by virtue of
Lemmas 2, 5 and 6.

But we can repeat the above arguments for automorphisms on the splitting field
of fr;pl,"’,p,, (mod q) itself because as we mentioned before the properties of rth roots
of unity carry over for ground fields of characteristic q, provided that q does not
divide r.

Finally let q be the highest power of q dividing r. By using the identity introduced
in the proof of Lemma 3 and by using Lemma 3 itself we can determine the multiplicities
of the roots of r(mod q) and x -pg(mod q) (which lie in some Galois field). Therefore

=)"(modq) and * * ("(modfr;pl, ,Pn ;Pl, ,Pn(f/ q). It fol-fi;,,,...,, (fi/, ;p,,...,p

Iows from the formula for h given at the beginning of 2 that h (r/q") divides h (r).
Then by Lemma 2 and the already proven theorem for the case that q does not divide
r we conclude that the maximum degree in this case is r/q’h (r/q m) <rh (r). If r is a
prime number the above proof together with the remark made above Lemma 2 actually
gives the degree bound r.

b) If r(mod q) is separable we know its Galois group to be a subgroup of Ur
under multiplication modulo r. (This by Lemma 5 but one may verify it directly.) The
definition of h and Lemma 6 then lead to the statement. If r(mod q) is inseparable
q necessarily divides r. Again putting together the above, Lemma 3 and the fact that
h (r/q) divides h (r) proves the theorem for this case. F1

In special cases the bound rA (r) is actually too pessimistic. Using the remark
below Lemma 2, we can actually show that a valid bound is max (r, (r)), which may
be considerably smaller than rA (r) (see Table 1 below Lemma 2). By Lemma 10a)
we also know that each p possesses an rth root in Zq if r is relatively prime to q- 1.
Then the maximum degree over Zq can be bounded by A (r) instead. (One uses the

1/r 1/r \l/rsame arguments as above but notes that r((p) (p) where (pg) denotes an rth
root of pg in Z.) The second case of Lemma 10a) applies as well.

We conclude this section with a second proof of Theorem 2 expanding ideas from
[BERL70, p. 734] with the help of Lemma 10b). However, this method does not
introduce the function / and therefore in view of the preceding remarks is somewhat
weaker.

Alternate Proof of Theorem 2. If q divides r we must apply the same reduction
as in the last part of the previous proof. Now assume that q r. We will show part b)
first’

b) Let a be a root of an irreducible factor g of r(mod q). Then g is separable
q2 qdeg(g)--I A(r)and the remaining roots are a , a ,. a However q l(mod r) and also

qX(r)
a 1 which implies a a. Therefore deg (g) -<_ h (r).

a) By Lemma 10b) and the observation about the subfields of a Galois field we
know that at least one root of each x -pg, 1 <- <- n lies in GF(q). From part b) above
we conclude that all rth roots of unity are in a GF(q s) with s _-<h (r). Therefore all
roots of xr--pg and r lie in GF(q r) and hence any sum of them does also. If
fr;p,...,p,,(mod q) or f,.*.,p,,...,p,,(mod q) had an irreducible factor g of degree >rs then
one of its roots would generate GF(qdeg(g)). But we know that this root lies in GF(qrS).
Therefore deg (g) <= rs <= rh (r).

4. Computational considerations. One may use Lemma 4 in connection with a
method to compute cyclotomic polynomials [KNUD81, p. 440] to actually generate
sample polynomials. In producing some of the following examples we used the
computer algebra systems MACSYMA and SAC2.

POLYNOMIALS THAT ARE HARD TO FACTOR 481

TABLE 2

n=0
(1) f;o(x)=8(x)=x4+l,(x)=2[KNUD81, p. 437].
(2) fl2;Q (X II12(X) X

4 + x + 1, X (12)= 2 [VdWA53, p. 115].
(3) * x x 4f15;(x)=qtls(x)=x +x +x -x+l,X(15)=4.

n=l
(4) f3";2 (X) X 3x + 6x 4 + 3x + 9x + 9.
(5) f8;2 (X)-’-(X 16 +4X 12 --16X 11 -t- 80X 9 +2x +160xT+128x6_160x+28x4

--48X3 + 128X2-- 16X + 1)(X16+4X12+ 16Xl 80X +2XS-- 160X
+ 128X6 + 160X + 28X 4 +48X + 128X2 + 16X + 1).

(6) h;.,3(X) x4- 10X + [GAAL73, p. 233].
(7) f3;2,3(x)=x9-15x6-87x3-125.
(8) f4;2,3(X) X 16-- 20X 12 + 666X8-- 3860X4 + 1.
(9) fS;2.3(X)=X25--25X20--3500XlS--57500X10+21875XS--3125.

(10) (X)= +9X +45X +126X +189X 27X --540X --1215Xf;2,3 X18 17 16 15 14+ 13 12 11

+ 1377x 1 + 15444x + 46899x8 + 90153x + 133893x6 + 125388x
+ 29160x4- 32076x + 26244x2- 8748x + 2916.

n=3
(11) f2;2,3,5(x) xS-40x + 352x4-960x + 576.
(12) f2;_l,2,3(x)=xS-16x6+88x4+ 192x2+ 144 [KNUD81, p. 625].

Table 2 illustrates very well our results: All but polynomial (5) are irreducible
over the integers. Since / O(’8) we also know that (5) must be composite. Notice
here that Lemma 7 cannot be used to show the irreducibility of (4), (9), (11) and (12).
All the polynomials (1)-(12) factor in any modular field into polynomials of smaller
degrees and make excellent test cases for implementations of the Berlekamp-Hensel
factorization algorithm. That is, polynomial (10) factors

mod 7"

mod 17"

mod 103"

mod 1979’

(x 3 + x 2 + 4x + 3)(x 3 + 2x 2 + 5x + 5)(x 3 + 2x 2 + 4x + 2)
(x 3 + x 2 + 3x + 5)(x 3 -t-- 2x 2 + 2x + 3)(x 3 + x 2 + x + 2),

(X2-[12x + 16)(x2 + 16x +7)(x2+9x + 13)(x2 + 9x +9)
(x2+ 16x + 16)(x2 + 12x +9)(x2 + 5x +7)(x2 + 16x + 1)(x +8)2,
(x 3 + 9x 2 + 27x + 25)(x 3 + 62x 2 + 1 lx + 28)(x 3 + 73x 2 + 94x + 28)
(x 3 + 39x 2 + 95x + 32)(x 3 + 92x 2 + 6x + 25)(x 3 + 43x 2 + 67x + 32),

(X 2 -[- 1823X + 1632)(X 2 + 85X + 6)(X 2 + 828X + 749)
(X2"[1069x + 6)(x2 + 1069x + 749)(x2 + 1069x + 1632)
(x 2 + 1069x + 878)(x 2 + 85x + 1744)(x 2 + 828x + 1744).

The variation of the maximum degree bound for different primes can be explained
by the remark following the first proof of Theorem 2.

The Berlekamp-Hensel factorization algorithm contains the following "bottle-
neck" [KNUD81, p. 434]: If]" is a polynomial of degree k and splits in a chosen
residue field into f irreducible factors then one must perform at least 2-1-1 trial
divisions to prove its irreducibility over the integers. In the case of fr;,l,...,,.k =.r and
f>-rn-I/A(r) and hence at least 2 r"-l/x()-a- 1 steps are executed. Fixing r gives an
O(2) lower timing bound for these inputs. We will show below that the lengths of

482 ERICH KALTOFEN, DAVID R. MUSSER AND B. DAVID SAUNDERS

the coefficients are bounded by O(k log log (k)) and thus the worst case time com-
plexity of the Berlekamp-Hensel algorithm is indeed an exponential function of the
degree and coefficient lengths of its inputs. Since the degrees of all irreducible factors
of fr;pl,...,p, are independent of n the modifications of this algorithm suggested in
[KNUD81, p. 434] do not eliminate the exponential running time behavior.

However, one additional possibility has arisen: The probabilistic version of
Berlekamp’s factorization algorithm over finite fields runs sufficiently fast for large
modular fields [RABM80]. By avoiding the Hensel factor lifting step we now can
choose a prime dividing the discriminant of the polynomial to be factored causing
multiple factors to appear in the factorization of the image polynomial. Then it may
happen (though this is quite unlikely) that there occur only a few distinct factors with
high multiplicities. (Compare this observation with the proof of Eisenstein’s criterion
in [KNUD81, p. 626].)

Unfortunately, this is certainly not possible for the cyclotomic polynomials
with m chosen as in Lemma 1" If m =p2...p, (Pi being the ith consecutive prime)
then , (mod q) is inseparable only if q lm..Therefore q =pi for some index in
{2,. , k}. Generally such a prime q is too small to justify the omission of the Hensel
lifting procedure. But even if we ignore this fact the number of trials still exceeds any
polynomial time function of the input sizes" By Lemma 3, , =-(,/q)q(modq) and
we know that ,,/q (mod q) is separable and hence has at least da(m/q)/, (m/q) distinct
factors. Writing n for b (m), Lemma 1 implies that almost all of the integers m yield
n/h(m)>(logn)4. Using the prime number distribution law (or Theorem 8 in
[HAWR79, p. 10]), we know that &(q) q 1 is of order O(k (log k)). From log2 (n) >
k-2 we conclude that 4(q) is of order O((logn)2). Since cb(m/q)/,(m/q)>
(log n)n/(q) we have at least O((logn)2) distinct factors and thus need at least
O((q + 1) (lgn)2) trial divisions to prove ,, irreducible. Of course this function is
superpolynomial in n b (m) deg (,n).

Finally we establish certain bounds for the coefficients of our polynomials when
the primes p are as small as possible. For a polynomial f, let norm (f) denote the sum
of the absolute values of the coefficients of f.

THEOREM 3. Let r be a fixed integer >-2 and let pl,’’ ", Pn be the first n primes.
a) log (norm (f))= O(deg (f)log log (deg (f)))forf=fr;,,...,, andforf=f*.,p,...,,.
b) log2 (norm (,,)) <- b(rn) for m >- 1.
Proof. Given f(x)=ao+alx+...+a_ax-a+xZ[x], let B denote the

maximum of the absolute values of the roots of f. Then, since the coefficients are the
elementary symmetric functions of the roots, it follows that lal<_- (/)B k-i for 0 _-< _-< k.
Therefore norm (f)-<_ (B + 1).

a) For f =f;o,...,, the maximum absolute value of the roots is B (pa)a/ +. +
(pn)a/ and for f* =fr*.,p,...,p, it is B* 1 +B. As noted above p is of order O(i log (i)),
so that B and B* are of order O(n2). Since r is fixed n is of order O(log deg (f)) and
O(log deg (f*)). Taking the logarithm of the previous inequality for the norm immedi-
ately establishes part a).

b) Every root of q,, has absolute value 1 and hence norm (,)-<_ (1 + 1)(’).

5. Remarks. By way of summary, we attempt to abstract from our arguments
about our class of polynomials an "intuitive" explanation of their unusual factorization
behavior. Their irreducibility over the integers seems quite plausible because a set of
roots of powers of primes is linearly independent over the field of rational numbers.
However, their Galois groups have very short cycle lengths and hence a modular
projection will preserve very little structure of these groups. Another approach exploits

POLYNOMIALS THAT ARE HARD TO FACTOR 483

an interesting property of the pure equation xr-m but we feel that these methods
are dual to each other. Therefore it seems that the extreme "compression" of the
Galois groups by taking the remainders is to be blamed for the abundance of factors
we then get.

The average behavior of the Berlekamp-Hensel algorithm is quite well understood
[COLG79]. The density theorems used for its analysis can be also applied to our
polynomials and based on them, P. Weinberger has devised an algorithm that, provided
the generalized Riemann hypothesis holds, establishes irreducibility in polynomial
time (cf. [KNUD81, p. 632]). More recently, A Lenstra, H. Lenstra and L. Lovisz
[LELL82] have replaced the exponential part of the Berlekamp-Hensel algorithm
by a polynomial time algorithm for computing a short vector in an integral lattice.
We hope that our polynomials make an interesting test case for this new algorithm.

REFERENCES

[BERL70] E.R. BERLEKAMP, Factoring polynomials over large finite fields, Math. Comput., 24 (1970),
pp. 713-735.

[BESI40] A.S. BESICOVITCH, On the linear independence of fractional powers of integers, J. London
Math. Soc., 15 (1940), pp. 1-3.

[CAVB68] B.F. CAVINESS, On canonical forms and simplification, Ph.D. thesis, Carnegie-Mellon Univ.,
Pittsburgh, 1968.

[COLG79] G.E. COLLINS, Factoring univariate integral polynomials in polynomial average time, Proc.
EUROSAM ’79, Springer-Verlag, New York, 1979.

[GAAL73] L. GAAL, Classical Galois Theory with Examples, Chelsea, New York, 1973.
[HAWR79] G. H. HARDY AND E. M. WRIGHT, An Introduction to the Theory of Numbers, Fifth ed.,

Oxford Univ. Press, Oxford, 1979.
[KNUD81] D.E. KNUTH, The Art of Computer Programming, Vol. 2, 2nd ed., Addison-Wesley, Reading,

MA, 1981.
[KOEN1895]L. KNIGSBERGER, Grundziige einer arithmetischen Theorie der algebraischen Gr6szen, J.

Reine Angew. Math., 92 (1895), pp. 53-78.
[LELL82] A.K. LENSTRA, H. W. LENSTRA AND L. LOVAgZ, Factoring polynomials with rational

coefficients, Report 82-05, Mathematisch Instituut, Amsterdam, 1982.
[LOOS82] R. Loos, Computing in algebraic extensions, Computing, Supplement 4 (1982).
[MUSD75] D.R. MUSSER. Multivariate polynomial factorization, J. Assoc. Comput. Mach., 22 (1975),

pp. 291-308.
[NARW74] N. NARKIEWICZ, Elementary and Analytic Theory of Algebraic Numbers, Polish Sci. Publ.,

Warszawa 1974. (In Polish.)
[RABM80] M.O. RABIN, Probabilistic algorithms in finite fields, this Journal, 9 (1980), pp. 273-280.
[RICI74] I. RICHARDS, An application of Galois theory to elementary arithmetic, Adv. in Math., 13

(1974), pp. 268-273.
[SIEW64] W.SIERPINSKI, Elementary Theory ofNumbers, PolishSci.Publ., Warszawa, 1964. (In Polish).
[VdWA53] B.L. VAN DER WAERDEN, Modern Algebra, Vol. 1, Ungar, New York, 1953.
[WERO76] P.J. WEINBERGER AND L. P. ROTHSCHILD, Factoring polynomials over algebraic number

fields, ACM Trans. Math. Software, 2 (1976), pp. 335-350.
[ZASH79] H. ZASSENHAUS, On the Van der Waerden criterion for the group of an equation, Proc.

EUROSAM ’79, Springer-Verlag, New York, 1)79.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0006 $01.25/0

MULTIDIMENSIONAL SORTING*

JACOB E. GOODMANS" AND RICHARD POLLACK$

Abstract. We introduce a process called geometric sorting, which can be applied to an arbitrary
configuration of points in d-dimensional space, and which encodes in compact form the order properties
of the configuration, just as the arrangement of a set of numbers in size place encodes its order properties.
We give an algorithm for carrying out this sorting procedure in time O(n a log n), which generalizes the
optimum sorting time of O(n log n) for the linear case: In addition, we give an efficient algorithm for
determining whether two randomly numbered configurations in Ra have the same order type, using a
distinguished family of orderings of each. Finally, we indicate how this new concept of sorting can be
applied to problems in pattern recognition, stereochemistry, and cluster analysis.

Key words, geometric sorting, computational geometry, efficient algorithms, planar configuration of
points, multidimensional configuration, orientation, convex hull

Introduction. Finding the vertices of the convex hull of a given set of points in
the plane, a problem that has been written about extensively in the last ten years [14],
[19], [20], generalizes in a natural way the problem of determining the maximum and
minimum of a given set of numbers on the real line. But there is much more to the
"order type" of an indexed set {xl,."’, xn} of numbers than just their maximum and
minimum; this is why finding their extremes takes just O(n) comparisons, while sorting
them--by an optimal worst-case method such as a heapsort [18]retakes O(n log n)
comparisons. In the same way, there is much more to a set of points in the plane--or
in d-space, for that matter--than their convex hull. It is this more general problem
of determing the "order type" of a given configuration of points in d-dimensional
space, and determining it by a fast, efficient algorithm, to which this paper addresses
itself.

If n numbers, xl,..., xn, are given, there is just one kind of order pattern that
they can have: that of the integers 1, 2, , r for some r =< n. The problem of sorting
them comes down to finding a mapping rr of the set {1,..., n} onto a set {1,..., r}
that is "order-preserving", in the sense that xi <=xj if and only if r(i)-<_ 7r(/’). But in
the plane, or in higher dimensions, as we shall see, a configuration of n points can
have many "patterns" or "order types". (It is a difficult problem, in fact, to find just
how many, but we shall give some bounds below.) To sort such a configuration, we
must therefore do two things: 1) determine which of the standard order patterns our
configuration ’ fits, and 2) find a mapping from into that standard pattern which
exhibits the order isomorphism. We shall describe a means of carrying out each of
these steps below.

First, what do we mean by the "order type" of a configuration of points? If n
distinct points, P,..., P,, are given on a line, sorting them can be thought of in two
ways" finding

(a) the set A(i) of points on the positive side (i.e., to the right) of each Pi, since
then the fundamental atoms of the ordering of Px,..., Pn, i.e. the ordered pairs i,/"
for which Pi < Pj, are immediately accessible, or

* Received by the editors September 30, 1981, and in revised form June 30, 1982.

" Department of Mathematics, City College of City University of New York, New York 10031. The
work of this author was supported in part by the National Science Foundation under grant MCS 82-01831.

Courant Institute of Mathematical Sciences, New York University, New York 10012. The work of this
author was supported in part by the National Science Foundation under grant MCS 82-01342.

484

MULTIDIMENSIONAL SORTING 485

(b) the number h (i) of points on the positive side (i.e., to the right) of each Pi,
since then the position of each point Pi in the ranking Pil <"" <Pin is immediately
deducible.
Furthermore, it is clear that from (b) we can read off (a), and of course (a) immediately
gives (b). In the plane, indeed in d-dimensional space, each of these has a counterpart:
the fundamental atoms of the "order pattern" made up of a planar configuration of
points, what Dreiding and Wirth [6] call chitons, are the ordered triples i,/’, k for
which Pi, Pi, Pk are positively (i.e. "counterclockwise") oriented; hence to know these
it would, as above, suffice to find

(a) the set A(i,]) of points Pk lying on the positive side (i.e., to the left) of each
directed line PiPi.
Similarly, the counterpart of (b) above would be to find

(b) the number h (i, f) of points P lying on the positive side (i.e., to the left) of
each directed line PiPi.
It is a remarkable fact that--just as on the line--(a) and (b) are equivalent, in the
sense that knowledge of one implies knowledge of the other. This result, which is not
immediately obvious even in the planar case, was first shown, in that case, in [12], by
the use of the method of "allowable sequences of permutations". Here we show by
a direct geometric argument that it holds in every dimension, and even in the case
where we allow degeneracies in our configurations" repeated points, collinear triples,
coplanar quadruples, etc.; this is the substance of Theorem 1.8 below, which we call
the "basic theorem of geometric sorting".

In 2 and 3 we present a fast algorithm for sorting, i.e. determining the h-function
of, a configuration of n points in Rd; the d-dimensional algorithm in 3 is based
on the 2-dimensional one in 2.

In 4 and 5 we address the comparison problem: How do we determine whether
two configurations of n points can be renumbered so that they are "A-equivalent",
i.e. have the same order type? Surprisingly enough, it turns out that we do not need
to check all n! renumberings, but at most n, in dimension 2, and 6n-12, in dimension
3. In higher dimensions this number grows, but it is always bounded by cn td/2. In
4 we introduce a distinguished family of orderings of the points of a configuration
in Rd, which we call the "canonical orderings of %’", and which we believe to be

of interest in their own right, in order to generate all the necessary renumberings.
We present algorithms to handle various cases which may arise; in 5 we present an
algorithm for carrying out the entire comparison process.

Finally, in 6 we discuss the optimality of the sorting algorithm, and we touch
on several potential applications of geometric sorting: to pattern recognition, to
stereochemistry, and to cluster analysis. We end with some open problems.

It should perhaps be pointed out that the notion of what we call the "order type"
of a configuration of points can be seen to be equivalent to what is known as the
oriented matroid structure determined by (see [2], [4], [5], [8]). However, its dual
expression, in terms of A and A, which forms the basis of this paper, is new here, as
are the applications that follow to efficient methods of computing and encoding the
order type of a configuration, and to the comparison problem for configurations.

(Xi

1. The basic theorem of geometric sorting.
DEFINITION 1.1. If (P0,"’ ", Pa) is a sequence of d + 1 points in d, with Pi, xia) for each i, we say they have positive orientation, written Po Pd > 0, if

det (xij) > O,
where xi0 1 for each i. P0" Pd < 0 and P0’ Pa 0 are similarly defined.

486 JACOB E. GOODMAN AND RICHARD POLLACK

Remark 1.2. If d 1, this reduces to: PoP1 > 0 whenever P1 is to the "right" of
P0. If d 2, it says that PoP,P2 > 0 whenever PoP1P2 is oriented "counterclockwise",
i.e., when P. is to the left of the directed line PoPx. And if d 3, it says that PoPIP2P3 > 0
whenever a "right-handed screw" turning in the direction PoPxP2 moves toward P3
(assuming the x, y, z-axes form a right-handed system!).

DEFINITION 1.3. If c {p,..., p} is a numbered configuration in d (with
possible repetitions among the points Pi), and if Po, ",Pi_ affinely span a hyperplane
of d, let

and let

A(io,’’’, id-) {flP, P,_f > o},

h (io,’.’, id-x)- IA(io,..., id-)[;

if Po,"’, Pie-1 are affinely dependent, we write

A(i0,"’’, id-a) lq

and

We can now define the "order type" of a numbered configuration in Re in two
different ways, according to either the number h (io, , ia-a) of points on the positive
side of each hyperplane (Pio,"’", Pid-1), or the set A(io,’’’, ia-) of these points. It
is clear that if two configurations, and ", are A-equivalent, in this sense, then they
are h-equivalent; Theorem 1.8 below shows thatmjust as on the line--the converse
is true, i.e., knowing how many points lie on the positive side of each hyperplane
(Po, ", Pid_l) determines which ones do. First we need a few lemmas.

LEMMA 1.4. If P,"" ,P. affinely span Rd, then Pio=Pq if and only if
h (io, i, f,. .,/’d-I) w for every choice off,. ., fd-.

Proof. The necessity of the condition is clear, and the sufficiency follows from
the fact that the set consisting of any two distinct points can be completed to an affine
spanning set of d + 1 points.

LEMMA 1.5. If Po, ",Pd affinely span Nd and h (0, , d 1) 0, then
h(0,. .,]-1, d,]+l,. ., d-1)>0foreach], O<=]<-d-1.

Proof. The hypothesis implies that Po"" Pd <0. Hence Po’"Pi-IPdPi/""
Pd-Pi > 0, SO that

j A(0,... ,f-l,d,j+l,..., d- 1).

LEMMA 1.6. If Po"" Pd <0 and if P’ is any point lying in the hyperplane
<Po, ", Pd-l>, then Po, Pj-P’Pj+I Pd <0 for some], 0 <-] <=d- 1.

Proof. Let Pk (xkl,"’, Xd) for each k. When we write

Y. cOP-----, with Y c 1,
O<=k<=d-1 k

we must have cj > 0 for some], 0 _<f _< d- 1. The result then follows by splitting the

MULTIDIMENSIONAL SORTING 487

determinant

1 X01 XOd

1 Xj-l,1 xj-l,a

E c Ecx 2 CkXd

1 X]+l,1 Xi+l,d

i Xdl Xdd

into a sum of determinants along its jth row by multilinearity, and noting that all the
summands give 0 except for the/’th, which gives

1 X01 XOd

1 Xdl Xdd

and this is negative.
LEMMA 1.7. Let H be a hyperplane in Rd, let Po be any point not in H, and let

Ho be the hyperplane parallel to Handpassing through Po. Finally, let Ube the halfspace
of Rd that is on the same side of Ho as H, i.e., the component of Na\Ho containing H,
and let rr U H denote projection from Po. Then one of the two orientations of H as
a (d 1)-dimensional affine space in its own right will agree with the standard orientation
of Rd in the following sense: if P1, P2, Pd are points of U, then PoP Pd will be
positively oriented, negatively oriented, or affinely dependent in Rd if and only if
rr(P1)’rr(P2)’’’ "tr(Pd) has the corresponding property in H.

Proof. Suppose PoPx Pd > 0 for some choice of Px,..., Pd in U. H has only
two orientations. Let us fix one in which r(P1) re(Pal) >0 also. Then if Qa, ., Qd
are any other points in U for which PoQ"" Qd >0, we can move the simplex
Po, P, , Pd continuously to Po, Qa, , Qd (with P0 remaining fixed and the other
vertices remaining in U) so that each intermediate configuration also has positive
orientation. Since rr(R1),.", rr(Rd) are afIinely dependent in H if and only if
Po, R x,..., Rd are affinely dependent in Nd, it follows by the intermediate value
theorem that we must have 7r(Qa)’’. rc(Qd)>0 as well, from which the assertion
follows immediately.

THEOREM 1.8. If, for a configuration c {pa,..., Pn} in Nd, the function A is
given, then the function A is uniquely determined.

Proof. The proof is by double induction" by induction on d and, for a given d,
by induction on n. Let us first note that the statement is clear for d 1, as is immediate
from Remark 1.2. Suppose, then, that d > 1. We may assume A (i0,’’’, id-)> 0 for
some io," ", id-1; otherwise the statement is trivially true. Now let us fix io, ", id-
such that A (i0,"’ ", id-1)=0; such a d-tuple must exist, since the convex hull A of
{P, , Pn} has faces that span hyperplanes, and--if necessary, by interchanging two
of the indicesmwe may select a spanning set for such a hyperplane that has no points
of c on its "positive" side. Let F be the face of A on which the points Pio,’", Pid_,
lie. If k is any index such that h(io,’’., i-1, k, i+1,"’, id-) 0 for some], 0_--<] _--<
d- 1, then the points Pio,""", P-, P, P/,""", P- also lie on a face F’ of A, and
we must have F’=F’ otherwise the result of Lemma 1.5 would be violated;
hence PeF. Conversely, if P is any point on F we must have
h (io, , i._, k, i+1, , id-) 0 for some]; this follows from Lemma 1.6 since the
points of c span Nd. Thus h determines all of the points lying on each face of h. Now

488 JACOB E. GOODMAN AND RICHARD POLLACK

by Lemma 1.4, A determines the equivalence classes of the relation

j CrPi =ej;

we can therefore coalesce each "cluster" of repeated points into a single point, and
get a configuration consisting of distinct points P1," ", Pr, with r <-n. In particular,
we know the faces of the convex hull A of ----they are just the images of the faces
of A. Hence, since an extreme point of A is an intersection of faces that has cardinality
1, we can identify the extreme points of A, and so also the extreme points of A. Say
Pn is such an extreme point, and say {P,/I,..., Pn} is the cluster of repeated points
to which P, belongs. Let H0 be a supporting hyperplane of A at P,, and let U be the
open halfspace determined by H0 which contains the points P,..., P,,. Let H be a
hyperplane parallel to Ho and lying in U, with the orientation given by Lemma 1.7;
as in that lemma, let r" U -->H be projection from P,. Then by that lemma, if we let
An (resp. A,) be the A- (resp. h-) function for the configuration c, {zr (P), , 7r (P,,)},
we have

A, (Tr(P,), , r(P,_))= A (P, P,,..., Pia_x),

for any choice of indices. This shows that the function A, is determined, so--by
induction on the dimensionA, is also. But this means, again by Lemma 1.7, that
we can determine the orientation of every d + 1-tuple of involving P,, i.e.,

we can identify those d-tuples Pio, Pia-x E fOr which
(1.1)

Pio Pi, Pn > O.

Let be the configuration {P,... ,Pro} that remains when the entire cluster of
repeated points, to which P, belongs has been deleted; then we have just shown that
the A-function A of is determined" it is given by

(io,’’’, ia-) h (io,’’’, ia-) (resp. h (io,’’’, ia-) (n m))

if Pio "Pid_lP, <= 0 (resp. > 0).

Hence by induction on the number of points of the configuration, the corresponding
function is also determined, and thereforewagain with the help of (1.1)--so is A,
which proves the theorem.

COROLLARY 1.9. If tWO configurations have the same A-function, they have the
same order type, i.e., the same orientation of (d + 1)-tuples Pio, ",Pidfor every io, , ia.

We can therefore formalize the notion of order type by stating
DZFINXTION 1.10. If c ={p,..., p,} and c,= {p,..., p,,} are numbered

configurations in Ra for which h(io, , ia-) he,(i0, ’, ia-a) for every io, ", ia-,
we say c and ’ have the same order type, or is equivalent to ’ (c ,).

By analogy with the interpretation [18, p. 4] of "sorting" a set of numbers as
meaning determining the position of each when they are arranged in increasing order,
we then have"

DEFINITION 1.11. If points P, , Pn in d are given, to sort them geometrically
will mean to determine the associated A-function.

Remark 1.12. If P1,’" ", P affinely span Rd, the sorting function A determines
not only the "d-dimensional order type" of any subset, but also the linear order of a
collinear subset, the "2-dimensional order type" of a coplanar subset, and so on--just
fill out the remaining places with points chosen in general position, and use the result
of Theorem 1.8. If Px,..., P, do not span d, however, then sorting them in the
sense above yields very little information on their actual (lower-dimensional) order

MULTIDIMENSIONAL SORTING 489

type, since the value ot’ A is either 0 or o) for each d-tuple. But in this case, by throwing
in the points (1, 0, .., 0), (0, 1, 0, ., 0), ., (0, ., 0, 1) and then sorting, we can
get all the information about the order type of the original configuration. From now
on, whenever we speak of sorting a configuration ’ in Re, we shall therefore assume
that Re is spanned by the points of .

2. An algorithm for sorting in the plane. Here is a fast algorithm for determining
the h-matrix of a planar configuration. The idea is quite simple: consider each point
Pi, in turn, as an "origin", reflect each Pj Pi in P, obtaining new points "Pn+j", and
sort the points and their reflections circularly about P, the order within each ray about
Pi being immaterial. In order to obtain A (i, f), we then have merely to count the
number of original points from the ray PPj around to the ray PPn/.

ALGORITHM 2.1.
Input: (Pi (x, y)), 1 _-< _-< n.
Output: (I (i,/’)), 1 _-< _-< n, 1 <_-/" -< n.
1. (Starting with 1) pick the next (ending with n).
2. For every/" 1, , n, let u xi x, vi yi y.
3. For every j 1, ., n, if (u., v.) (0, 0), let I (i,]) w otherwise, call] "good".
4. For every good/" 1, , n, let u,+ -u, vn+j -vi, and let m mn+j vj/u

if u. # 0.
5. Sort the indices {/" I/" is good} U {n +f If is good} into subsets, as follows:
(a) first those for which ui > 0, using mi as key;
(b) next those for which ui 0 and vi > 0;
(c) next those for which ui < 0, using mi as key;
(d) finally those for which u. 0 and v. < 0.

(In (a) and (c) we get a list of subsets; the order within each subset is irrelevant.) Say
the result is

Jl1,’ ,Jls,, ,Jr1," ,Jrs,,
where the points with indices Jg,...,J constitute an entire subset, and there are
r subsets all together.

6. For each k 1,..., r, let

n [{m I1 <=m <--Sk, Jk,, <--n}l.

7. For each good/" 1,..., n, let

k(j+n)-I

2 rlk ifk(j+n)>k(j),
k =k(])+l

X(i,/)=

nk+ 5". nk ifk(]+n)<k(]).
k =k(])+l k =1

(Note: k (]) means, of course, the number of the subset within which] lies.)
8. Return to step 1.

Analysis. Step 2 translates each point Pi, in turn, to the origin O. Step 3 calls A
"undefined" if P P, and designates P. as "good" otherwise. Step 4 reflects each
good P in P, and calculates the slope of PP. Step 5 sorts the good points and their
reflections into rays starting at O, listed in counterclockwise order, the order along
each ray being immaterial (see Fig. 1). Step 6 counts the original points in each ray.
Finally, step 7 counts the number of original points going counterclockwise from the
ray containing P to the ray containing its reflection: this gives A (i,]).

490 JACOB E. GOODMAN AND RICHARD POLLACK

o

(22)
0

(16)
o

10

o
(14)

2,7

(13,18)

5

0 (21)

0
(12)

Ii

(2O)

0 (19)

n II

FIG. 1. n 11’ Jll,"’" ,J83 11’ 12, 19; 3, 5, 21’ 9, 13, 18’ 22; 1, 8; 10, 14, 16; 2, 7, 20.

For each 1,..., n, steps 2, 3, 4, and 6 take time O(n), step 7 also takes time
O(n) if the sum for each/" is computed by correcting the sum for the previous/’, and
the sorting in step 5 takes O(n log n) if done by an optimal worst-case method, such
as heapsort [18]; hence for each the time is O(n log n). It follows that the total
sorting time is O(n 2 log n).

3. An algorithm for sorting in higher dimensions. The process of geometric
sorting is not quite so simple in higher dimensions as in the plane, if one wants to
obtain an efficient algorithm. For example, a straightforward approach would be to
project the configuration { parallel to each hyperplane (PI,, , Pid) onto a coordinate
axis transversal to that hyperplane, and simply count the number of points on each
side of the projection of the hyperplane itself. This, however, would take time O(n a+)
for fixed d, and this is precisely what we are trying to avoid, since the A-function for
a configuration in Rd occupies only O (n d) space.

It turns out that a combination of this projection method (but onto a plane instead
of a line), together with the sorting-by-slope procedure of Algorithm 2.1, reduces the
time to O(n a log n). Here is the basic idea (the details, which are a bit complicated,
are presented in the Analysis section immediately following the algorithm)’ For each
choice of d- 1 points in general position, we choose a coordinate plane II transversal
to their span :, and project the entire configuration parallel to : onto II. We then
sort the projected points and their reflections circularly around the projection of ,
precisely as in Algorithm 2.1, and the same device used there, of counting around
from a ray through a point to the ray through its reflection, then gives the value of,. A few "tricks" are used in the algorithm to shorten the execution time. These
include (a) a dilatation of the projected configuration around the "origin", which
comes from suppressing the denominators in the application of Cramer’s rule used
to find the projected configuration, and which has no effect on the order type of the
projection, and (b) finding h (i,..., id) only for il <’’" <id-2 < {id-1, id} and then
applying even permutations to the indices to find the remaining values of A; these
are explained in more detail in the Analysis section below.

MULTIDIMENSIONAL SORTING 491

ALGORITHM 3.1’.
Input: (Pi (Xil, Xid)), 1 <= <- n.
Output: (, (it, ", id)), 1 <--_ il, ", id <- n.
1. Let,(il,..., id)=W for every il, ", id, 1 <=ij <=n.
2. (Starting with il, , id-1 1," ", d- 1) pick the next i, id- with
< id- (ending with n d + 2, , n).
3. If

det
1 Xid--ll Xid_l]--I Xid-1]+l Xid_lk--1 Xid-lk+l Xid-ld

vanishes for every], k with 1 =<] < k <-d, go to step 2.
Otherwise, let (a,/3) be the first (], k) for which this determinant S0, and let cr

be the sign of this determinant.
4. For each] 1,..., n, let

1 Xill XQ,13-1 Xi1,13+1 Xild

y(j)=det "i’’’’’""Xid_l Xia_l,13--1 Xia_1,13+ Xid_ld

X] X] 13 X],13 + X]d

1 XQ1 Xil,a-1 Xil,a+l Xild

y13 (]) det ’t"; Xid 11 Xid a--1 Xid 1,a+l Xid--ld
X] Xi X],a + Xjd

5. If r +1, let u’(j) y(j) and v’(j) y13(/) for each j 1,. ., n; if o- -1,
let u’(])= y13(]) and v’(])= y,(]) for each] 1,..., n.

6. For each] 1,..., n, let u. u’(f)-u’(il) and vi v’(f)-v’(i).
Now perform steps 3 through 7 of Algorithm 2.1, modified as follows:
7. For each] 1,..., n, if (ui, vi) (0, 0), call] "good".
8. Same as step 4, but define u,+., v,+i, and m,+. only for good/" i-2 + 1, ., n

define mi for all good] 1,..., n.
9. Same as step 5, but only for the indices {] l] is good}U {n +] I] is good and

f >-- id-2 + 1}.
10. Same as step 6.
11. Same as step 7, but only for good]=id_2+l,’’’,n; call the result, (i, i-1,]).
12. For each good] id_ + 1, , n, apply every even permutation rr, in turn,

to il,’", ia-,]; let

, (rr(i), rr(id-), rr(])) (il, id-,]).
13. Return to step 2.

Analysis Algorithm 3.1 computes , (it, ia) whenever i<.. < id_2 <
{id-1, id}, provided the points Pi,,"’", Pid- are in general position, and then applies
even permutations to these ordered d-tuples of indices and records the same values
for . In this way all ordered d-tuples for which is defined have computed for
them. In all other cases, where , is undefined, we write , w to represent this. It is
therefore easier to write , w everywhere to begin with, and write over this whenever
the need arises; hence step 1. The determinant (call it A) computed in step 3 serves

492 JACOB E. GOODMAN AND RICHARD POLLACK

three purposes: (a) it determines whether the points Pil,""’, Pid_l span a (d- 2)-flat,
(b) it identifies a coordinate plane (the x, x-plane) transversal to that (d 2)-flat, and
(c) its sign reflects the orientation of the ordered (d-1)-tuple Pi,"’ ", Pid_. Step 4
comes from an application of Cramer’s rule, used to find the projection f(Pi) of each
point P parallel to the (d-2)-flat (Pi,"’ ", Pi_) into the x, x-plane. We have
suppressed the denominators that Cramer’s rule gives; doing so amounts to a dilatation
around the origin, and possibly to a reflection through the origin as well, if the
suppressed denominator is negative. This simplifies the calculation, and neither the
dilatation nor the reflection affects the collinearity or the orientation of points in the
x, x-plane. Step 5 compensates for the orientation of the points Pil,’"", Pi_; the
result of steps 4 and 5 is that the points Pi, ", Pi,_, P, Pk have positive orientation
in a if and only if f(Pi), f(P), f(Pk) have positive orientation in the u, v-plane (with
the coordinates in their natural order in both cases). This is most easily seen as follows:
Let us first check it in the special case of the points P0(0,’",0),
PI(1, 0,..., 0),...,Pal(0,..., 0, 1). Choose any a,/3 with l<-a </3 <-d, and let r
be any permutation of {0, , d} such that zr(d 1) a, zr(d) =/. Let

=det(1 X(o),l X(o),d).1 X-rr(d),l X,n’(d),d

we have A =sgn (zr), of course On the other hand, the (d-2)-flat along which we
are going to project to the x, x-plane is (P(0), , P(a-2)), so it is precisely the ath
and/th columns we must leave out to get a nonzero determinant; hence

l X.tr(O)l X-rr(O),o-I X(O).a+l Xr(O),/3-1 X.rr(O),/3+l X,n’(O)d

A =det
X,n. (d _2) X,n.(d_2)d

Expanding by its ath and/th columns, we see that h (-1)//. Now

1 .X7!o.) X(o,- X(o,+ X(oa 1
::i: ;:l’y(a) det " XTr(d-2),l X-rr(d-2)/3-1 X-rr (d-2),/3 + 2

0 0.. 0 1 0
(a)

and

1 X-rr(O)l Xr(O),a-1 X-rr(O),a+l X,rr(O)d

y,(a) =det
1 X.rr (d-2) X’rr (d-2),a- X.n- (d-2) a+l X.a’(d-2)d

0 0 0

hence expanding by the last row we get

y(a) (-1)++A, y(a) =0.

Similarly, we get

y()=0, y (/) (-1)a+eA.
It follows that the orientation of the points (0, 0), (y(a), y(a)), (y(fl), y (/)) in the
x, x-plane, with the coordinates taken in that order, is

1 0 0)det 1 (-1)a++lA 0 =(-1)++

1 0 (-1)a+A

MULTIDIMENSIONAL SORTING 493

But since we are relabeling (x, x0) either (u, v) or (v, u)--depending on whether A
is + 1 or -1 (resp.)--it follows that in the u, v-plane the orientation of the points O,
/(P), f(P0) is precisely A, i.e., matches that of the original (d + 1)-tuple Po," , Pal. A
simple continuity argument then shows that the same conclusion must hold for any
choice of Po,"’, Pd in general position. (The point is that our formulas for (y, yo)
give the correct projection to within a dilatation and/or a reflection in one or both
coordinate axes, so they preserve collinearity and either preserve or reverse orienta-
tion; the above shows that they do, in fact, preserve it.)

Step 6 translates f(Pil) to the origin, and step 7 designates f as "good" if
f(Pj) f(Pil), i.e., if Pj is not in the flat (Pi,,"" ,Pia-1)" In step 8, we compute the
reflection in the origin of only the good points P. with indices j > id-2, since these are
all for which we have to compute A (ix,’’’, ia-2, j); on the other hand we must take
into account all the points Pk, even those with lower indices, when we count those
on the positive side of (Pil,’", Pid_, Pi), hence we need all the slopes. Step 9 does
the sorting for the good indices] > id-2, and steps 10 and 11 compute A. In step 12,
finally, we extend the A-function to all ordered d-tuples; notice that every ordered
d-tuple (]1,"" ,jd) with the /’k distinct and with 1-<j <=n for every k is an even
permutation of an ordered d-tuple (il, , id), in fact of a unique one, with il <. <
id-2<{id-, id}--hence we never compute A more than once for the same set of
distinct indices. (If desired for the sake of compactness, in fact, the A-array can be
computed only for d-tuples with il <’" <id-2 < {id-, id}; however, for comparison
purposes this will not be enough, since when we renumber the points the indices will
no longer form an increasing sequence--see 5 below.)

The time required, for each i,. ., id-1 in step 3, is O(d2); in step 4 it is O(d2n)
(or faster), in steps 5, 6, 7 and 8 it is O(n), in step 90(n log n), in steps 10 and 11
O(n), and in step 12 O(d!n). Since there are O(nd-/(d 1)!) increasing (d- 1)-tuples
i,..., id-1, the total time for Algorithm 3.1 is therefore

O((nd-/(d- 1)!)(n (d + log n)))= O(n d (d! + log n)/(d- 1)!).

In particular, if we think of d as fixed and n large, the time is O(n log n), which
generalizes the time of O(n 2 log n) for Algorithm 2.1.

4. The canonical orderings of a configuration in d. If a configuration of points
is given on a directed line, there is precisely one canonical way to order them; two if
the line has no preferred orientation. But in the plane, or in higher dimensions, this
is no longer true. Of course if our space is coordinatized, we can order lexicographically,
say, by the coordinates; although such an ordering is useful for certain purposes, it
is not intrinsic to the set, and would change if we performed an orientation-preserving
affine transformation on the set; thus sets of the same "shape" or order type would
have a great many such orderings. On the other hand, we could order the points of

by letting a hyperplane sweep across them; this would give, in general, n(n- 1)
distinct orderings for a planar configuration, but two configurations of the same order
type might have different sets of these orderings, even totally disjoint ones! (see [12,
Thm. 1.7 (iv)==), (vi)] for such an example). It is, however, possible to distinguish k _-< n
of the n! possible orderings of a planar configuration c, where k is the number of
vertices of the convex hull of c, that turn out to be invariant under order-type-
preserving transformations, and that we shall find useful in 5 when we want to
compare randomly numbered configurations. These we shall call the canonical order-
ings associated to . They are defined as follows:

If {P(xl, y),’", P,(x,, y,)} is a configuration in the plane, and if Pi is any
vertex of the convex hull conv (), consider a ray with origin Pi that begins by pointing

494 JACOB E. GOODMAN AND RICHARD POLLACK

away from conv (c), and that rotates counterclockwise. We list Pi first, then the
remaining points Pj(/’ i) in the order in which the ray encounters them; if it meets
PJl,’"", Pr simultaneously, we list these in order of increasing distance from Pi. (If
there are repeated points, we list these in any order at all.) This is illustrated in Fig.
2, with 5.

7

8

IO II 3,5

FIG. 2. 3,5,8,9,12,2,7,4,1,6,11,10.

It is important to realize that if another configuration cC
{P (x, y),..., P’(x’,, y’,)} is equivalent to , for example if cC is the image of
under an orientation-preserving affine transformation, then

(1) Pi will be an extreme point of if and only if P is an extreme point of
cC, and

(2) the canonical ordering of {1,..., n} associated to Pi will agree with that
associated to PI (or will agree up to a permutation of the points within each class of
repeated points if these happen to exist).

We can do the same thing in higher dimensions, as soon as we have the notion
of a face-flag. If II is a d-dimensional polytope lying in Re, we call a sequence
(O’0,""" O’d-2) of faces of H a face-flag, if each o- is a face of o-+, and if each o- is
a face of II of dimension/’. (Note that if c {p,..., Pn} is a configuration in Rd, and
if E (tr0, , rd-2) is a face-flag of conv (c), there are points Peo, ",P- c such
that trj (Po, ",P) for each/" 0, ., d 2.) Now imagine a hyperplane H which
"rotates around" ru-2 in the positive direction (as determined by the coordinates in
the order xt,..., xa), starting in a supporting position. It meets the points of ,
perhaps several at a time, in some order c,..., r, where all the points of O’d-2 are
thought of as included in c. Each subset % is a configuration lying in a (d-
1)-dimensional space, hence the face-flag E determines an ordering of % into subsets
(il,’’’, (isi, by "rotating" a (d-2)-flat "around" O’d-3, beginning with rd-z and
moving through %. We continue inductively, lowering the dimension by 1 each time.
For the configuration illustrated in Fig. 3, for example, the ordering 3, 8, 5, 7, 2, 4,
1, 6 is induced by the face-flag (3), (3, 5).

There is another way to think of this canonical ordering, which we shall use in
Algorithm 4.1 below. If u t,"’, ua are Cartesian coordinates in Ra, with origin O,
we can define a spherical coordinate system (bl,’", cd-t, tg) by letting, for each
point P Ra, bl(P) the angle between-and the positive ul-axis, d2(P) the angle
between O-() and the positive u2-axis, where P(2) is the projection of P in the
u2,..., ua-hyperplane,..., dd_x(P)=the angle between --d-a) and the positive
ud_l-axis, where pd-x) is the projection of P in the ua-x, ua-plane, and O IoPI; in

MULTIDIMENSIONAL SORTING 495

u

2

u

5 8

FIG. 3,

each case, if O-P(i> 0, call the corresponding angle 0 also. (This generalizes the usual
spherical coordinate system in R3.) If 7/" {51,’’’, ga} is any real basis of the vector
space Re, we may interpret the 7/’-coordinates Ul,. ", ua of any point P arising from
the representation 2 uiS as the Cartesian coordinates of a corresponding point
P’ in another copy of Rd (this amounts to performing an orientation-preserving linear
transformation of Re to itself), and compute the corresponding spherical coordinates
&l,"" ", /d-1, P. In particular, if =r0,’’ ’, O’d-2 is a face-flag of conv () and if
o-j (Po, ",Pii) for every], we may choose points Pd-1, Pd such that Pi_l is on one
of the two (d- 1)-faces of cony () meeting along rd-2 and Pi is off (Pio,""", Pi_),
and such that Po,""", P has positive orientation (this determines which of the two
faces Pd_ is on!). Then take for 7/’ in the construction above the basis

PioPi, ", PioPi’..
This determines a coordinate system, hence (as above) a spherical coordinate system,
and it is easy to see that the canonical ordering of {1,..., n} determined by the
face-flag (r0,"’,tra-2 is nothing more than the lexicographic ordering by
(d-1,""’, (1, /9. In Fig. 3, for example, the face-flag (3), (3, 5) can be augmented by
the points 7, 4 (since 3, 5, 7, 4 has positive orientation in the "right-hand screw"
sense), and this gives the basis 35, 37, 34, which--in turn--produces the ordering
3, 8, 5, 7, 2, 4, 1, 6 already indicated.

It is now easy to give a fast algorithm for determining the canonical ordering of
a configuration induced by a face-flag. The idea, as already suggested, is to compute
the (generalized) spherical coordinates of each point of cg with respect to the affine
coordinate system induced by the face-flag, and to sort the points of c lexicographically
with respect to their spherical coordinates. For ease of computation, we have chosen
to use the squares of the cosines of the angles, rather than the angles themselves, as
a sorting key (see Analysis below).

ALGORITHM 4.1.
Input: (Pi(Xil, Xid)), 1, , n, and io, id-2 E {1, n}, where

((Pio," ’, Pgi)),/" 0,. ., d 2, is a face-flag of conv ({P1, ", Pn}).
Output’ rr(1),..., zr(n), the permutation of 1,. ., n that is canonically associ-

ated to the given face-flag.
1. Step 3 of Algorithm 3.1 (with io,’", id-2 in place of il," ", id-1), yielding

a,/3, or. [N.B." The determinant in question cannot vanish for all f, k.]
2. Step 4 of Algorithm 3.1, yielding y (/’), y (/’) for every/" 1,. , n.
3. If r +1, let u ’(/) y, (j) and v’(j)=yc(j) for each j 1,..., n; if cr =-1,

let u’(j) y (/’) and v’(f) y (/’) for each/" 1,. ., n.

496 JACOB E. GOODMAN AND RICHARD POLLACK

4. For each j 1,..., n, let uj u’(j)-u’(il) and vi v’(f)-v’(il).
5. For each/" 1, ., n, if (ui, v.) (0, 0), call j "good".
6. For every good j 1, , n, let u,+. -ui, vn+j -vi, and let mi m,+. vi/uj

if uiO.
7. Sort the indices {f [] is good} U {n +j If is good} into subsets, as follows:
(a) first those for which ui > 0, using mi as key;
(b) next those for which ui 0 and v. > 0;
(c) next those for which u. < 0, using mi as key;
(d) finally those for which ui 0 and vi < 0.

(In (a) and (c) we get a list of subsets; the order within each subset is irrelevant.) Say
the result is

Jll,’ ,Jlsl, ",Jr1,’" ,Jrsr,
where the points with indices Jkl,""", Jksk constitute an entire subset, and there are
r subsets all together.

8. For each k 1,..., r, let

n [{m [1 <-m <-_s,J,, <-- n}l.
9. If nl-O, let k’ be the first k with n 0 and let k"=k’+r/2-1; if nO, let

k" be (the first k with nk O)- 1, and let

k"+ r/2 + 1 if this is -<_r,
k’

1, otherwise.

10. Let ia-:]k’X, ia],,.
11. For every] 1,. ., n and every k 1,..., d, let zj xig-Xiog.
12. For every p 1, , d and every q 1,.. , d, let

Apq (-1)p+q det ((zikm)keq,,,,e,).

13. For every] 1, , n, and every q 1, ., d, let

d

w
p=l

14. For every] 1, , n and every q 1, , d, let

(-sgn wiq)Wjq-- ? v if the denominator e 0,
q Wq +.

1, otherwise.
2 215. For every/" 1, , n, let R w

16. Sort] 1,..., n lexicographically by a-1,"’ ", , R, to determine the
permutation r such that 7r(1)<_- -< 7r(n) in this lexicographic order.

17. Stop.

Analysis. Steps 1 through 8, just as in Algorithm 3.1, determine the number of
points in each ray when the configuration is projected along the flat (Pio,""",
into a coordinate plane meeting the flat transversally. Since we know in advance that
(Po,""", P- >is an edge-flat, it follows that the projected configuration has f(Po)
as an extreme point, where f is the projection. Steps 9 and 10 locate two vertices
projecting onto the edges adjacent to that extreme point, and chooses them so that
the orientation of f(Pio), f(Pia_l), f(Pi) will be positive, hence also the orientation of

MULTIDIMENSIONAL SORTING 497

P/o,"" ", Piu-2, Pia-1, Pia. Step 11 translates Pio to the origin. Ste.p 12 computes the
adjoint A of the matrix of components of the basis vectors PioPil, P.ioPid, so that
in step 13 we can get the components w1,"’, wa of each vector PioPi in terms of
this basis, using the standard change-of-basis formula from linear algebra. If Cq is the
qth spherical coordinate, 1 -< q -< d 2, as defined in the discussion preceding Algorithm
4.1, its cosine is given by

[Wq(W2q +’’"-- W)-1/2 if W20 +’’" +W 0,
COS Cq] 1, otherwise.

To avoid unnecessary computations, we can use the squares of these numbers, together
with the appropriate signs, as a sorting key, rather than the numbers themselves. In

2a similar way, we can use R =p instead of p. Since we want to sort in order of
increasing , i.e. decreasing cos , the signs have been reversed in the definition of

q in step 14, so thatmin step 16wwe can sort with respect to the increasing order
in all the variables.

The time for steps 1 through 8, as for steps 3 through 10 of Algorithm 3.1 for
a single set of indices, is O(d3+n log n), and steps 9 and 10 are shorter. Step 11
takes O(dn), step 12 takes O(dS), and steps 13, 14 and 15 take O(d2n). Step 16
takes O(dn log n), giving a total time of O(dS+d2n +dn log n) for Algorithm 4.1,
i.e. O(n log n) for d fixed.

5. An algorithm for comparing randomly numbered configurations. Except for
the way in which two sets of points on a line have been labeled, they "look" the same
from the point of view of their order. This is not true in the plane, however, or in
higher dimensions. There is no way to permute the labels on the sets in Fig. 4a and
b to get their A- or A-functions to match up. Thus, for unlabeled sets of n points in
dimension >_-2, many essentially distinct order types are possible.

(a) (b)

FIG. 4.

If and ’ are numbered configurations in [a, and we wish to compare them
to see whether--with the given numberings--they are equivalent, we need only compare
A (il,""’, ia) for every il,’’ ", id. But suppose the given numberings do not match;
how can we nevertheless determine whether they have the same order type, i.e.,
whether their points can be put in 1-1 correspondence (and in fact find all such
matchings) so that corresponding (d + 1)-tuples are similarly oriented? If they are
given in the form ={P1,... ,P,}, "={P,... ,P’}, and we have encoded their
(numbered) order types by calculating the A-function of each, it would seem that we
would have to try all the n! possible renumberings of ’ to be sure of finding all those
(if any) in which the A-function would agree with that of . But it turns out that we
can eliminate most of these renumberings from consideration before we start. Let us

498 JACOB E. GOODMAN AND RICHARD POLLACK

3

2

(a) C {P1, P6} (b) C’= {P, , P
FIG. 5.

illustrate this first by an example in the plane, where we can reduce the number of
necessary renumberings to n, at most.

Fig. 5 shows two configurations that clearly have the same order type, but not
in the numbering shown. How can we recognize this from their h-matrices? We have

o9 4 1 0 3 1 /w 1 1 1 1 2/
w4 1 1 1 209 10 4 2

(i)=
0 o9 4 1 2

(A’)=
1 3 o9 1 1 1

lOw 1 1 14 lo9 10
1 3 1 w 1 1 0 1 lw4
111109 1134009

and the problem is to find all permutations 7r of {1 n } such that
every i,/’. Consider the point Px. Since it is a vertex of c, p,) will have to be a vertex
of c, as well. And the canonical ordering induced by P’=) in c, must agree (after the
renumbering r) with that induced by Px in c, namely 125634. This means that if we
list all of the vertices of cC, and write down--for eachthe canonical ordering it
induces in c,, r will have to map 125634 to one of those canonical orderings. Here
we have 2, 4, 5 and 6 as vertices, inducing the following canonical orderings of

2’251634 5"561342

4’423156 6’643125.

Hence we need only try the four permutations

(12563) (12563) (2 5 6 3 4)25163 2315 61342

to find . Applying each of these in turn to A gives

w13111 wl1211
3 10 4 ; I 1041
1 2 o9 4 0 1 o9 1 3 1
140 o91 ! 43 o910
1041 0124
12111 1140/

43125

o911311 0911112

1
o4

1o12 3oll

i 42 o92 ! 41 o91
011 o9 011 o9

1140 1340

MULTIDIMENSIONAL SORTING 499

and we see that the last of these agrees with A’, so we must have

r=
4312

This idea extends to higher dimensions. There we must consider not only all the
vertices of conv (), but all of its face-flags, as defined in 4. Each of these induces
a canonical ordering, and two configurations c and ’ will have the same order type
under the correspondence induced by 7r:{1,...,n}-{1,..., n} only if a fixed
canonical ordering of {1,..., n} induced by the face-flag (say) is transformed, by, into the canonical ordering induced by the image =) of in ’. It is therefore
sufficient to try all the permutations S, which arise by associating to a fixed
canonical numbering of all the canonical numberings of ’ (let us call such a
renumbering of , induced by , =)); among these will be all of the matching
numberings, if any, of and ’. (If has repeated points, then any renumbering of

which merely permutes the points within the groups of equal ones has no effect on
its A-function; for this reason it is sufficient, when obtaining the canonical numbering
of a configuration associated to a face-flag, to list repeated points in any arbitrary
order.)

How many face-flags are there for a configuration of n points in d, and how do
we find them all? It is not difficult to give a sharp upper bound on the number (d, n)
of face flags, hence of canonical orderings:

dt n [(d+l)/ZJ +(d,n)N n-d n-d

This follows from the fact that there are no more than

n- [(d +)/2J
+

n -d n -d

faces of dimension d- i for a simplicial polytope of dimension d, with equality for
cyclic polytopes [15], and each such face gives rise to d! face-flags #0
of which precisely half have positive orientation; if a polytope is not simplicial,
triangulating it will only increase the number of faces in each dimension, and it is
easy to describe an injective map from the set of face-flags of the original polytope
to the set of face-flags of its triangulaion. Hence we have

PROPOSITION 5.1. A configuration of n points in the plane has n canonical
orderings, in 3-space has 6n 12, and in a [or d fixed has O(n

As to the question of how to find all the face-flags, we shall describe four methods
that can be used, depending on the circumstances:

Remark 5.2. (a) If is a configuration in the plane, its face-flags are just its
vertices, hence can be found by any algorithm which locates the vertices of the convex
hull of a planar configuration [20]. They can also be found easily during the calculation
of the A-matrix, as in Algorithm 2.1, by inserting the following additional step after
step 7:

7.1. If A (i,]) 0 and n<i) s<i), P is a vertex.

In fact, we can save time by calculating the canonical numberings themselves, during the
sorting, as follows’

(i) Test each point P to see if it is an extreme point by checking whether
A (i, 1) 0 for some] andif so--whether n(i s(i) (i.e., whether the ray containing

Pi contains no reflected points; this device is used again in method (b) below).

500 JACOB E. GOODMAN AND RICHARD POLLACK

(ii) If and j satisfy these conditions, sort the points PJkl,""’, PJk. within the
kth ray, for each k, by their distances from the origin (i.e., from Pi); let the result be
J, l, J,,s.

(iii) Record the ordering

where ix,’’ ", ip are the "bad" indices, i.e., Pil Pi, P (i will, of course, be
among them). This will be the canonical ordering associated to the extreme point P.

(b) If is a configuration in R3, its face-flags are just its directed edges, and
there are algorithms (for example [3]) which locate all the edges of the convex hull
of a 3-dimensional configuration. They can also be found during the calculation of
the h-function, by inserting the following additional steps after step 11 in Algorithm
3.1"

11.1. If I (ix, i2, f)# 0 for all], go to step 12; otherwise, let]0 be the first] for
which A (ix, iz, f) 0.

11.2. If n(.o) s (io), go to step 12.
11.3. If , ={1, 2, 3}\{c, /3 }, find/’min and]max, where

X,(/’min) min {x,(/’)I/" is not "good"}, and

x, (/’m,x) max {x, (/’)[/’ is not "good"}.

11.4. Enter the pairs (/’min,/’max) and (/’max,/’min) in the list of directed edges.

In addition, since we. need the reflections of all the points in O in order to decide
whether O is a vertex, Algorithm 3.1 should be further modified by executing steps
8, 9 and 11 for every good f, not merely those >-.ix + 1; therefore we need only execute
step 12 for the even permutations 7r that fix the last index.

(c) If c is a configuration in Re, for any d >_-2, and it is known that the points
of are in general position, i.e. that every set of k + 1 _-< d points of c spans a k-flat,
then after sorting c we can get the face-flags of c very simply from the A-function,
as follows"

Whenever (i0,"’", ia-x)= n-d, then i0,’’’, ia-2 determines a face-flag of

If we let ia be an arbitrary index io, , ia-a, then this gives, in fact, the full positively
oriented face flags

{P,o} c {P,o, Pi,} c...c {P,o, ", P,, },

so that we can omit steps 1 through I0 of Algorithm 4.1 if we wish to calculate the
canonical orderings of

Notice that if n points are given at random in Ra, they will be in general position,
in the sense above, since the set of n-tup]es of points in Ra not in general position
has measure zero in any bounded region of positive content. But all that is really
needed to use method (c) is the weaker condition that cony (cg) be a simplicial polytope,
i.e., that all of its (d- l)-faces be simplices. And it is very simple to check this from
the A-function" just check that whenever h(i0, il, i., ,ia_x)=0 then
h(ix, io, i:,..., ia_l)=n-d. Thus method (c) will be applicable in many situations
where the points of cg are generated by some process with a random component.

This can of course be checked from the A-function itself: an obvious necessary and sufficient condition
is that A(io, il, i2," ", ia-)+ A(i, io, i2,’" ",/a-x) n -d for every io," ", ia-1.

MULTIDIMENSIONAL SORTING 501

(d) If conv () is not simplicial, or is not known to be, we cannot use method
(c) to find its face-flags. If, in addition, the dimension of is greater than 3, it then
becomes necessary to resort to an algorithm, such as [3], that finds the (d-1)-faces
of conv (c), and to extend this recursively to find the complete lattice of faces of
conv (c). This will of course be rather time-consuming if d is large; it is, however,
necessary if all the canonical orderings of c are desired, since these are in 1-1
correspondence with the face-flags, as we have seen, and the complete knowledge of
these, in turn, is equivalent to the knowledge of the face lattice of conv (). Alterna-
tively, we could use Algorithm 5.6 below, with step 2 modified by replacing the words
"the first" by "each (in turn)"; this would give a time of O(n d(d+3)/2) for finding all
the. face-flags, which is undoubtedly inefficient, albeit still polynomial.

We can now give the algorithm for sorting and comparing two randomly numbered
configurations:

ALGORITHM 5.3.
Input: c-{Pl(x11,... ,Xld)," ,P(x,I," ,X,d)} and

’={Pi(x’ ,x’), P’n(x’nl,""" ,Xtnd)}.

Output: {rr S, c(), c,}.
1. Sort and ’, using Algorithm 2.1 (if d 2) or Algorithm 3.1 (if d > 2).
2. Using whichever of methods (a), (b), (c), (d) of Remark 5.2 applies, generate

one face-flag E (i0), (i0, il), , (io, , id-2) of .
3. Determine the permutation S, corresponding to E, using Algorithm 4.1.
4. Similarly, generate each face-flag E’ of ’, in turn.
5. Determine the permutation ’ S, corresponding to E’, using Algorithm 4.1.
6. Let " -’.
7. Compare he(i, , ia) and he,(w"(i), , "(id)) for every choice of i, .., id

with il <" < id- < {id-, id}. If they agree, record ".
8. Return to step 4.
9. Stop.

Analysis. We have already seen what each of these steps does. As for the time
required, it is quite variable. The sorting time (step 1), as we have seen, is O(n d log n)
for d fixed. Steps 2 and 4 can take anywhere from no appreciable extra time (if
methods (a) or (b) apply) to an (indeterminately) long time if method (d) is invoked
(but see Remark 5.5 below). In the case of a configuration in general position in d,
however (method (c)), we can always execute steps 2 and 4 in time O(nd). For each
of the O(n [d/2]) face-flags found in steps 2 and 4, steps 3 and 5 take time O(n log n)
and step 7 takes O(nU); hence steps 3, 5, and 7--executed for all the face-flags--take
O(n t3d/21). This gives a total sorting and comparison time in the plane of O(n3), in
3 of O(r/4), and in Nd(d->4)--with a configuration in general position, or at least
having a simplicial convex hullmof O(n t3d/21).

Remark 5.4. This algorithm can also be used to find all the "order-symmetries"
of a single configuration {P,..., P,} in [d, i.e., all permutations rr of the indices
giving equivalent configurations" just take c,= .

Remark 5.5. When a configuration is sorted, if it is to be compared to other
configurations, its canonical orderings should be determined at the same time. Then,
when such a comparison is to be effected, only steps 6 and 7 of Algorithm 5.3 need
be executed for each canonical ordering rr’ of ’; this will cut down the comparison
time considerably. This observation is particularly useful in applications where a
dictionary of "standard" order types is to be encoded, and new configurations are to

502 JACOB E. GOODMAN AND RICHARD POLLACK

be "looked up" in the dictionary (see for example Remark 6.4(a) below). In this case,
when each "standard" configuration c, is encoded, we can compute all of its canonical
orderings once and for all, and then whenever a new configuration is offered for
comparison it is only necessary to find one of its canonical orderings. Thus, after
preprocessing the standard configurations, each new one will take only its sorting time
O(n a log n) to process, since one face-flag can easily be found in less time than that,
no matter which of methods (a), (b), (c), or (d), is used.

Here, therefore, is an algorithm for finding one face-flag of a configuration in
dimension d-> 2, directly from the h-function of c; it can be used when method (d)
is needed"

ALGORITHM 5.6.
Input’ The h-function (h (i1, id)), 1 <-- ii <= n, 1 <= f <-- d, of a configuration %
Output: /’o,"’",/’d such that (/’0),""’, (/’o,""", fd) is a (positively oriented) face-

flag of c.
1. LetD=dandletS={1,...,n}.
2. Find the first ix, io S such that h (i, ’, iD) O.
3. Let S=F and let F={kSlh(k,i,...,iD)=O or h(ix, k, i3,...,iD)=0

or. or A (il," ", iD-1, k) 0}.
4. Let fD be the first index of S not in F.
5. For every kl, ", kD-1 F, let AF(k 1, , kD-1) the number of indices k F

such that h(kl,...,kD_l,k)=O; if h(kl,...,kD_l,k)=to for every kF, let
hF(k l, kD-1) to.

6. Replace D by D 1, and h by hF.
7. If D > 0, go to step 2.
8. Let fo the first index in F.
9. Stop.

Analysis. Step 2 gives us points PI,"’", Pd spanning a face of conv () that has
no points of on its positive side. Step 3 gives us the complete set of points lying
on that face, i.e.,

F {k [P (P, Pg,)};

this follows from Lemmas 1.5 and 1.6. Step 4 will give us the face-flag: first we find
a point off face (Pil,"’, Pgd), next a point off one of its faces, and so on, down to
dimension 0. Step 5 determines the h-function for the face F, so that we can proceed
inductively.
For each value of D from d down to 1, the time required for step 2 is O(nD), for

step 30(Dn), for step 40(n), for step 50(nD), giving O(nD) all together. Hence
the total time for Algorithm 5.6 with d fixed is O(nd).

6. Further remarks, applications, and open problems. How many different order
types of numbered configurations of n points are there in a? This is a difficult
question, but we can easily find an upper bound, and we can find evidence to conjecture
a lower bound. On the one hand, the fact that every such configuration can be
geometrically sorted, i.e., encoded by an n x n ... n d-array of integers_-< n,
implies--for information-theoretic reasons--that we cannot have more than
exp (cn log n) distinct order types. On the other hand, we venture

CONJECTURE 6.1. The number of inequivalent configurations of n points in d is
at least exp (cnd).

Let us adduce some evidence for this conjecture, at least in the planar case.

MULTIDIMENSIONAL SORTING 503

Just as the h-matrix can be used to encode the order type of a configuration of
points in R2, it can be used, more generally, to encode the order type of what is called
a generalized configuration [4], [11], [12]. This consists of n points in R2 which have
been joined pairwise by pseudolines Lej forming an arrangement, i.e., by simple curves
that are straight lines outside of a bounded region, and any two of which meet just
once (and necessarily cross there). The order type of such a generalized configuration
can be described completely in terms of the connecting pseudolines L0 [12]: the
condition that Pc, P, Pk have positive orientation amounts to saying that the connecting
pseudolines must have directions occurring in the cyclic order Lij, Lik, Lik, Li, Lki, Lki
(see Fig. 6). (Since each Lei is eventually straight we can speak unambiguously of its

FIG. 6.

direction, which we take to be opposite to that of Lli.) It follows from the main result
of [10] that every generalized configuration of 8 or fewer points has the same order
type as an ordinary configuration, while there are examples [9], [16] of 9 or more
points for which this is not the case.

Theorem 1.8, which is the basis of our sorting procedure, holds for generalized
configurations as well as ordinary ones [12], hence the order type of a generalized
configuration is completely determined by its h-matrix. While we cannot now prove
Conjecture 6.1, even in the planar case, we do have

PROPOSITION 6.2. There are at least 2/8 generalized configurations of n points
in the plane, for every n.

Proof. Consider a regular k-gon with vertices P,. , P, and draw all of its sides
and diagonals extended fully (Fig. 7a). Let these be Lt, , L,,.. , Lga, Lk,,
where Li,’", Lem, form a complete set of parallels for each i. (If k is odd, we have
m m (k 1)/2, while if k is even we have mx k/2, mz k/2-1, m3 k/2,
m4 k/2-1, etc.) Now k new points, Qa,..., Q, are to be added, and we specify
arbitrarily, for each i, which of Lia, ", Lem, are to come before Qe, say Li for f
and which after, say L0 for Ai, in the counterclockwise sense. In order to insert

504 JACOB E. GOODMAN AND RICHARD POLLACK

Q

A
i

B
i

(a) (b)
FIG. 7.

the Qi, we first bend each Li] with/" e Bi slightly in the clockwise direction, and each
L] with/" eA slightly in the counterclockwise direction, and then insert Qi after the
two sets of L’s have completely separated from each other (see Fig. 7b). Of course
we must bend the other side of each L as well, to ensure that the new Lii’s, call them
Li, still form an arrangement of pseudolines as defined above. Finally, we draw all
the remaining connecting pseudolines PiQ] and QQ, one at a time, with the help of
the Levi enlargement lemma [16], which says that a pseudoline passing through two
previously unconnected points can always be added to an arrangement to produce a
new arrangement.

Since Bi was freely chosen for each i, and since two distinct choices of B for any
clearly give inequivalent configurations, regardless of the choices of the remaining

B’s, we have produced--for each even k--

(2k/2) k/2(2k/2-1)k/2 2k2/2-/2,
and--for each odd k--

(2(k-1)/2) k 2k2/2-k/2

inequivalent generalized configurations, each having 2k points. Thus if n 2k, we see
that there are

2n2/8-n/4

MULTIDIMENSIONAL SORTING 505

inequivalent generilized configurations, each having n points, and if n 2k + 1 there
are

2n2/8-./2+3/8
such configurations. In each case, if we take into account the fact that each of the k
new points can (independently) be placed on either side of the original k-gon, giving
2k inequivalent versions of each generalized configuration, we can wipe out the linear
terms in the exponent, and the result is that, as asserted, there are at least 2n2/8

generalized configurations for every n.
Remark 6.3. By modifying the argument given, it is possible to improve the

constant in Proposition 6.2 somewhat. If Conjecture 6.1 does turn out to be true,
it will be an interesting problem to determine the constant c.

Remark 6.4. Applications. Since, as a result of Theorem 1.8 and Algorithm 5.3,
it becomes possible to use a computer to sort and compare configurations of n points
in Ra for moderate-sized n, a number of possible applications immediately suggest
themselves. Among them are:

(a) To pattern recognition. There are various methods [1] of reducing an image
to a point-pattern. Suppose we have a "dictionary" of standard images, each reduced
to a black-and-white point pattern which has been encoded by its h-matrix, and we
wish to "look up" a new image, also encoded by its h-matrix. If the transformation
that has produced the new image is an affine orientation-preserving one, or at least
one that preserves the relative orientations of points, such as a view of a solid object
from a slightly different perspective than the "standard" view, the h-matrices will
agree, and they can be compared directly. If, on the other hand, the image hasmin
additionnundergone some local perturbations, as for example in hand-printed charac-
ter analysis, its h-matrix will not agree completely with a standard one, but will correlate
highly with it. Thus one can measure the correlation of the h-matrix with each one
in the dictionary, and select the one giving the highest correlation; alternatively, if
there are too many points to make such a comparison feasible, we can abstract
properties of the standard h-matrices (such as the proportion of extreme points, the
number of hyperplanes cutting the configuration in half, and so on), and check off
the corresponding properties of our new image against them. This procedure, especially
when used in conjunction with other existing techniques (edge-detection, segmenta-
tion, noise-reduction), should prove highly useful in many scene- and pattern-analysis
problems. For further details see [13].

(b) To stereochemistry. In [6] Dreiding and Wirth have suggested a method of
encoding the order type of a configuration of points in Rd, which they call a "multiplex",
in order to provide an efficient way of distinguishing among stereoisomers, these being
chemical compounds in which the same numbers of atoms are joined but with different
orientations. (Each group of atoms that can exist in both a left- and a right-handed
form is called a chirality element, and a single molecule may contain a number of
these chemically distinguishable chirality elements.) Essentially, their encoding scheme
consists of listing all the ordered (d + 1)-tuples il,"’, id+ with i1<’" "<id+ in
lexicographic order, and writing 1 if the corresponding points are positively oriented
and 0 if negatively. This gives a binary number for each order type, which they call
its "signature", and amounts, essentially, to encoding what we called A earlier. (They
consider only configurations in general position, and suggest a triadic representation
if this is not the case.) Hence the storage (and therefore the minimum calculation
time) for the signature of a configuration of n points in d is

(nd+l) --’(nd+) ford fixed.

506 JACOB E. GOODMAN AND RICHARD POLLACK

Thus our sorting technique which consists of finding A instead of A, whose time and
storage requirement is only O(n d log n), constitutes an improvement by a factor of
cn/log n, for n large, over the signature method. If, in applications to stereochemistry,
one is interested in the orientations of only certain specified subsets (the chirality
elements), a modification of our sorting scheme could easily be implemented, in which
only each of these subsets is sorted; the result would then constitute an efficient means
of encoding the various stereoisomers within a single class, which would facilitate
their description and computer-aided identification.

(c) To cluster analysis. One of the problems in cluster analysis, for example in
the method proposed in [7], is to find an efficient way of partitioning a set of n points
in general position in Ra into two-disjoint subsets, separated by a hyperplane from
one another [17]. This can be done in

a

(n-1) 2--(= for n 1 < d)
i---0

distinct ways [17], [21], and Harding [17] suggests that an algorithm for enumerating
these partitions "without effectively considering en route the remainder of the 2"-
associations into two sets" would be of value. Such an algorithm follows immediately
from our results. For all one has to do, at least in the case Harding is interested in,
when P, .., P, are in general position, is to modify our sorting algorithm, Algorithm
3.1, by listing the points Pk on the positive side of each hyperplane (Pa, , P-, Pi)
instead of counting them (i.e. calculating A instead of h), and then adding, in turn,
each subset of {Pa,"’", P-, Pi} to the points in A(i,..., ia_, f); these will be all
the semispaces, i.e. the subsets of c lying on one side of some hyperplane, and the
repetitions will not affect the order of magnitude in n. This procedure will clearly
generate all the partitions by hyperplanes, since each hyperplane can be moved
continuously without crossing any point of until it passes through d points of .

The following are some problems that this work suggests"
Problem 6.5. Prove (or disprove) Conjecture 6.1, andif it is truefind the

value of c.
Problem 6.6. Find a criterion for a generalized configuration in the plane to be

realizable by points, i.e., to be equivalent to a configuration in RE. This problem,
which will shed light on the question of the optimality of our algorithms, can be
thought of as a special case of the coordinatizability problem for oriented matroids:
What we have been calling an equivalence class of generalized configurations is also
known [2], [4], [8] as an orientation class of acyclic oriented matroids of rank 3, and
our A-classification gives a classification of oriented matroids of every rank d / 1, as
well as of ordinary configurations in every dimension d. A matroid that corresponds
to an ordinary configuration is said to be coordinatizable over R, and it is a difficult
and long-outstanding problem to characterize these among all oriented matroids. In
particular, what proportion of generalized configurations are equivalent to ordinary
configurations? (One can conjecture that the proportion will approach zero as the
number of points increases.)

Problem 6.7. Find a fast algorithm for generating the lattice of faces of conv (c)
for a configuration c not in general position in Rd, possibly by using h. Since the
function A. carries all the information about essential to this question, it should
be possible to do this, optimally in time O(n td/2), since there are O(n td/2) faces, as
we have seen. The result will be useful, among other things, in shortening the time
needed to compute the set of canonical orderings of cg, hence for the comparison
algorithm, in the case where the configuration is not in general position.

MULTIDIMENSIONAL SORTING 507

Problem 6.8. Characterize the function A. What are its defining properties as a
function on all ordered d-tuples chosen from an n-set? How does it behave with
respect to subconfigurations, intersections, and so on? This is related, of course, to
the axiomatic description of oriented matroids in [2] and [8], and perhaps even more
to the (equivalent) axiomatic description of chirotopes in [5], but it is far from clear
how properties of the matroid structure, which are essentially properties of the function
A, will carry over to properties of the more compact function A.

Acknowledgments. We would like to express our appreciation to A. Dress and
G. Purdy for some helpful discussions, and to the referees for their suggestions on
how best to present the algorithms.

REFERENCES

[1] J. K. AGGARWAL, R. O. DUDA, AND A. ROSENFELD, eds., Computer Methods in Image Analysis,
IEEE Press, New York, 1977.

[2] R. G. BLAND AND M. LAS VERGNAS, Orientability of matroids, J. Combin. Theory Ser. B, 24
(1978), pp. 94-123.

[3] D. R. CHAND AND S. S. KAPUR, An algorithm]:or convex polytopes, J. Assoc. Comput. Mach., 17
(1970), pp. 78-86.

[4] R. CORDOVIL, Sur les matroi’des orientals de rang trois et les arrangements de pseudodroites dans le
plan projectif rdel, European J. Combin., to appear.

[5] A. S. DREIDING, A. DRESS AND H. R. HAEGI, Chirotopes, a combinatorial theory of orientation,
preprint.

[6] A. S. DREIDING AND K. WIRTH, The multiplex--a classification offinite ordered point sets in oriented
d-dimensional spaces, Match, 8 (1980), pp. 341-352.

[7] A. W. F. EDWARDS AND L. L. CAVALLI-SFORZA, A method for cluster analysis, Biometrics, 21
(1965), pp. 362-375.

[8] J. FOLKMAN AND J. LAWRENCE, Oriented matroids, J. Combin. Theory Ser. B, 25 (1978), pp.
199-236.

[9] J. E. GOODMAN AND R. POLLACK, On the combinatorial classification of nondegenerate configur-
ations in the plane, J. Combin. Theory Ser. A, 29 (1980), pp. 220-235.

[10], Proof of Griinbaum’s conjecture on the stretchability of certain arrangements of pseudolines,
J. Combin. Theory Ser. A, 29 (1980), pp. 385-390.

[11], Helly-type theorems for pseudoline arrangements in RE, J. Combin. Theory Ser. A, 32 (1982),
pp. 1-19.

[12] ., Semispaces of configurations, cell complexes of arrangements, to appear.
[13], The A-matrix: a new tool]:or pattern recognition, in preparation.
[14] R. L. GRAHAM, An efficient algorithm for determining the convex hull of a planar set, Inform. Process.

Lett., (1972), pp. 132-133.
[15] B. GRIINBAUM, Convex Polytopes, Interscience-Wiley, London, 1967.
[16], Arrangements and Spreads, CBMS Regional Conference Series in Applied Mathematics 10,

American Mathematical Society, Providence, RI, 1972.
[17] E. F. HARDING, The number of partitions of a set of n points in k dimensions induced by hyperplanes,

Proc. Edinburgh Math. Soc., 15 (1967), pp. 285-289.
[18] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[19] F. P. PREPARATA AND S. J. HONG, Convex hulls of finite sets of points in two and three dimensions,

Comm. Assoc. Comput. Mach., 20 (1977), pp. 87-93.
[20] M. I. SHAMOS, Computational geometry, Ph.D. thesis, Yale Univ., New Haven, CT, 1978.
[21] Z. ZASLAVSKY, Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyper-

planes, Memoir 154, American Mathematical Society, Providence, RI, 1975.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0007 $01.25/0

SHELF ALGORITHMS FOR TWO-DIMENSIONAL
PACKING PROBLEMS*

BRENDA S. BAKER" AND JERALD S. SCHWARZ

Abstract. This paper studies two approximation algorithms for packing rectangles, using the two-
dimensional packing model of Baker, Coffman and Rivest [SIAM J. Comput., 9 (1980), pp. 846-855].
The algorithms studied are called next-fit and first-fit shelf algorithms, respectively. They differ from
previous algorithms by packing the rectangles in the order given; the previous algorithms required sorting
the rectangles by decreasing height or width before packing them, which is not possible in some applications.
The shelf algorithms are a modification of the next-fit and first-fit decreasing height level algorithms of
Coffman, Garey, Johnson and Tarjan [SIAM J. Comput., 9 (1980), pp. 808-826]. Each shelf algorithm
takes a parameter r. It is shown that by choosing appropriately, the asymptotic worst case performance
of the shelf algorithms can be made arbitrarily close to that of the next-fit and first-fit level algorithms,
without the restriction that items must be packed in order of decreasing height. Nonasymptotic worst case
performance bounds are also investigated.

Key words, bin-packing, two-dimensional packing

1. Introduction. Two-dimensional packing problems arise in a variety of situ-
ations. For example, cutting-stock problems may involve cutting objects out of a sheet
or roll of material so as to minimize waste. The scheduling of tasks with a shared
resource involves two dimensions, the resource and time, and the problem is to pack
(schedule) the tasks so as to minimize the total amount of time used. File management
requires storing files in a storage medium, e.g., disk, while files may be created or
destroyed over time. Baker, Coffman and Rivest [5] propose a combinatorial model
for these situations. In this model, a rectangular bin with an open top (i.e., a semi-
infinite dimension) is to be packed with a finite list of rectangles, of specified
dimensions, such that the rectangles do not overlap and the total bin height used in
the packing is as small as possible. The rectangles (also called "pieces") are to be
packed with their sides parallel to the sides of the bin, and they may not be rotated.
Such a packing is called an orthogonal oriented packing in the terminology of [5]. This
model is illustrated in Fig. 1. For the cutting-stock problem, the width and height of
the bin correspond to the width and length of the roll of material. For a computer
scheduling application, where the shared resource is the main memory, the bin width
corresponds to memory, while the semi-infinite height corresponds to time. This model
is appropriate for studying the scheduling of tasks which share a resource such as
memory, where each task requires a contiguous block of the resource. The scheduling
of resources such as disk drives for which fragmentation is not an issue has been
studied by Garey and Graham [8] using a fundamentally different multidimensional
packing model.

For the Baker et al. model, the problem of determining an optimal packing of
an arbitrary list of rectangles is NP-hard [5]. Therefore, Baker et al. [5], Golan [10]
and Coffman et al. [7] studied polynomial time approximation algorithms for the
problem. These algorithms all have the property that they sort the rectangles by
decreasing height or width before packing them.

In many applications, the rectangles can be considered to form a queue which
can be joined by new rectangles at any time. For example, in the computer scheduling

* Received by the editors January 29, 1979, and in final revised form July 9, 1982.

" Bell Laboratories, Murray Hill, New Jersey 07974.
t Bell Laboratories, Whippany, New Jersey 07981.

508

ALGORITHMS FOR PACKING PROBLEMS 509

Pl

P4

P2 /

FIG. 1. A possible packing of a list (Pl, P2, P3, P4, Ps).

application with memory as the shared resource, a batch system could sort jobs by
time or memory requirements before executing them, but an on-line system must
handle jobs as they are created. In a warehouse, the boxes already there must be
stored before new boxes arrive. In these situations it is not reasonable to wait for all
the rectangles to enter the queue before packing them. Therefore, this paper studies
polynomial time approximation algorithms (called shelf algorithms) which pack the
rectangles in the order specified by the given list (queue), without sorting them first.
Unlike the previous algorithms, the shelf algorithms can pack an infinite list of
rectangles such that for any finite initial segment of the list, the height of the packing
is within a constant times the height of an optimal packing of that segment.

The shelf algorithms are appropriate for situations such as the warehouse storage
problem where (a) items to be packed are not all known in advance and (b) both
dimensions represent resources fixed over time. The shelf algorithms will not handle
applications in which one dimension is time, as in the computer scheduling application.
Baker and Cottman [4] investigate algorithms for the situation where (a) items to be
packed arrive over time, (b) one dimension is time and (c) preemption is allowed.
The case in which items are not known in advance, one dimension is time and no
preemption is allowed awaits further research.

Section 2 describes two kinds of shelf algorithms called next-fit and first-fit shelf
algorithms. These are modifications of the next-fit decreasing height (NFDH) and
first-fit decreasing height (FFDH) algorithms studied by Coffman et al. [7], but without
the restriction of the previous algorithms that pieces be packed in order of decreasing
height. Each shelf algorithm takes a parameter r, 0 < r < 1, which is a measure of how
much space is allowed in each shelf to handle variations in height of rectangles to
come. The next-fit and first-fit algorithms with parameter r are called NFSr and FFS,
respectively.

Section 3 investigates the worst case bounds for NFS and FFS on lists of
rectangles. The bounds obtained for the shelf algorithms fall into two classes: absolute
worst case and asymptotic worst case. Let A (L) denote the height used by algorithm
A in packing list L, and let OPT (L) denote the height of an optimal packing of L.
If a, fl and H are constants such that for every list L of rectangles of height at most

510 BRENDA S. BAKER AND JERALD S. SCHWARZ

H, A(L)<=a OPT (L)+/H, then a is called an asymptotic worst case bound for A.
If a is a constant such that for every list L of rectangles, A (L)<_-a OPT (L), a is
called an absolute worst case bound for A. The absolute worst case bound appears
to be a better measure of performance when the number of rectangles to be packed
is small, while the asymptotic bound is a better measure when the number of rectangles
is large. Theorem 1 states that NFS has a tight asymptotic worst case bound of 2/r.
Corollary 1.1 obtains a tight absolute worst case bound of 2/r + 1/r(1-r) for NFS.
Corollary 1.2 states that this absolute worst case bound is minimized at r =.634, at
which value the bound is approximately 7.46. The main theorem is Theorem 2, which
states that FFS has a tight asymptotic worst case bound of 1.7/r. This theorem is
important because it shows that we can get asymptotic performance arbitrarily close
to the bound of 1.7 for FFDH [7], without the FFDH restriction that rectangles must
be packed in order of decreasing height. Corollary 2.1 shows that 1.7/r + 1/r(1-r)
is a tight absolute bound for FFS. Corollary 2.2 shows that this absolute worst case
bound is minimal at r 622, at which value it is approximately 6.99.

Section 4 investigates the worst case bounds for NFS and FFS on lists of squares.
Theorem 3 proves a tight absolute worst case bound of 1/r + 1/r(1-r) for NFS and
FFS on lists of squares. Note that this bound is lower than the absolute bound for
arbitrary lists of rectangles. Corollary 3.1 shows that this absolute worst case bound
for lists of squares is minimal at r .586, at which value it is approximately 5.83.
Proposition 1 and Theorems 4-6 investigate asymptotic worst case bounds on the
NFS and FFS packings for squares. The bounds obtained are not tight, but they
suggest that the asymptotic worst case performance is not significantly better for
squares than for rectangles in general.

2. Shelf algorithms. Since the shelf algorithms are a modification of the next-fit
and first-fit level algorithms, we begin by describing these.

The next-fit decreasing height (NFDH) level algorithm packs pieces in rows in
order of decreasing height. The bottom of each row is called a level. The first level
is the bottom of the bin. Pieces are packed from left to right, with their bottoms at
the current level, until the next piece is too wide to fit. At this point, a new level is
created along the horizontal line which coincides with the top of the tallest piece in
the current level and packing continues at the new level. An NFDH packing is shown
in Fig. 2a. For every list L of rectangles of height at most 1, NFDH (L) <= 2 OPT (L) + 1,
and this bound is tight [7]. However, for any k > 1, there is a list L such that the
height of the NFDH packing of L is at least k OPT (L) if the pieces are packed in
the order given by L rather than in order of decreasing height (for a bin of width 1
and sufficiently small e, let L (to, So, rl, sl, , rk, Sk), where each rg has height
1 + (i- k)e and width e, while each st has width 1 and height e).

The first-fit decreasing height (FFDH) level algorithm is similar to the NFDH
algorithm except that each piece is packed on the lowest level where it will fit, rather
than on the top level; a new level is created when a piece won’t fit on any existing
level. An FFDH packing is shown in Fig. 2b. For every list L whose rectangles have
height at most 1, FFDH (L) -< 17/10 OPT (L)+ 1 [9]. However, if pieces are packed
in the order given by L rather than by decreasing height, the performance can be
arbitrarily bad compared to optimal.

In order to get algorithms which pack rectangles in a reasonable fashion without
sorting first, we design our shelf algorithms to waste space purposely so that taller
pieces arriving later can be accommodated. The name shelf algorithm is chosen by
analogy with bookshelves, which can be filled in any order. Each shelf algorithm takes
a parameter r, which is a measure of how much wasted space can occur. The shelf

ALGORITHMS FOR PACKING PROBLEMS 511

7"
P3 -----’-’/

//

level 3

level 2 level 2

P3
P5 P6

!////

a) NFDH packing

level level

b) FFDH packing

FIG. 2. NFDH and FFDH packings of a list L (Pl, P2, P3, P4, Ps, P6).

algorithms pack pieces in rows (shelves), but each shelf is given a fixed height of r k

(for some integer k) when it is created. A rectangle of height h, r k+l h < r k, must
be packed into a shelf of height r k. The next-fit shelf algorithm with parameter r
(denoted by NFSr) packs each rectangle R as far left as possible into the top shelf of
the appropriate height, if such a shelf exists and has room for R. Otherwise, a new
shelf of the appropriate height is created on top of the top shelf in the bin, and R is
placed at the left end of this shelf. An NFS.5 packing is shown in Fig. 3a. The first-fit
shelf algorithm with parameter r (denoted by FFSr) is similar except that each rectangle
R is placed as far left as possible in the lowest shelf which is of the appropriate height
and has room for R, if such a shelf exists, and into a new shelf of that height, otherwise.
An FFS.5 packing is shown in Fig. 3b. It will be shown that as r approaches 1, the
asymptotic performance of NFSr and FFSr improves. In fact, Theorem 2 shows that
appropriate choice of r can bring FFS arbitrarily close to the asymptotic bound of

shelf 4

shelf 3

shelf 2

shelf

a) NFS.5 packing b) FFS.5 packing

FIG. 3. NFS.5 and FFS.5 packings of list L (pl, P2, P3, P4, Ps, P6, P7, Ps).

shelf 4

shelf 3

shelf 2

shelf

512 BRENDA S. BAKER AND JERALD S. SCHWARZ

17/10 obtained for the FFDH algorithm [7], even though the restriction of packing
in order of decreasing height has been removed.

To simplify the proofs, it will be convenient to divide the shelves into two groups.
The last shelf created for each height will be called sparse; the other shelves will be
called dense. Let Hs denote the sum of the heights of the sparse shelves, and Ho the
sum of the heights of the dense shelves.

3. Worst case bounds for lists of rectangles. This section investigates the
asymptotic and absolute worst case bounds for NFS and FFS,

THEOREM 1. For any constant r, 0 < r < 1, and any list L whose rectangles have
height at most H, NFS(L)<(2/r)OPT(L)+H/r(1-r). Moreover, the asymptotic
bound of 2/r & tight.

Proof. We will show that Hs <H/r(1- r) and that Ho < (2/r) OPT (L). Let the
bin width be w.

First, we consider the sparse shelves. Let h be the size of the tallest sparse shelf.
Within each shelf, the height of each piece is greater then r times the height of the
shelf. Thus, H > rh and

h H
Hs<h ri=<.

i=0 1-r r(1-r)

Now, we consider the dense shelves. For any dense shelf S, the next shelf $’ of
the same height as S contains a piece which would not fit in S. Consequently, the
total width of the pieces in S and S’ is at least w. Since each piece is taller than r
times the height of its shelf, the total area of the pieces in S and S’ is greater than
r/2 times the area of S and $’. If we pair the shelves of each height in this manner
(including the sparse shelf if the total number of dense shelves of that height is odd),
we see that the total area of the rectangles (including the ones in the sparse shelves)
is greater than (rw/2)HD and cannot be packed in a height less than (r/2)HD. Con-
sequently,

2 OPT (L)
Ho <

To show tightness, let the bin width be 1 and consider lists of the form L
(rl, sl, r2, ’, r,, sn), where n > 0, each ri has width 1/2 A (for some A, 0 < A < 1/3n),
each si has width 3A and all pieces have height r + e (for some e, 0 < e < 1-r). The
NFSr packing places the r{s and &’s in pairs in shelves of height 1, using a total height
of n 1 + r + e. An optimal packing is no worse than first packing the r{s two to a row
and then packing the s{s in a single row on top for a total height of at most
(In/2] + 1)(r +e). For a <2/r and/ any constant, there exist sufficiently large n and
sufficiently small e thatn-l+r+e >a([n/2] +l)(r+e)+[3(r+e). U

Note that if H r for any integer i, the tallest shelf has height at most H rather
than H/r, and the additive constant in Theorem 1 becomes H/(1-r) rather than
H/r(1-r).

COROLLARY 1.1. For any constant r, 0 < r < 1, and any list L of rectangles,

NFSr (L) < + OPT (L).

Moreover, this bound is tight.

ALGORITHMS FOR PACKING PROBLEMS 513

Proof. Since H -< OPT (L),

NFS (L) < OPT (L) + -< + OPT (L)
r r(1-r)- r(1-r)

by Theorem 1. To show tightness, we will construct a list L such that in the NFSr
packing, the sparse shelves have a total height close to 1It(I-r), the area of the
dense shelves is close to r/2 times the area of the rectangles packed in them and the
height of the optimal packing is close to the height of the tallest piece. Let the bin
width be 1.

Let k be a positive integer. Let n 2Jr-k]. Choose A and e so that 3nA < 1 and
e < r k r k + 1. L will consist of pieces (p 1, p2, Pk, tl, S 1, t2, $2, tn, sn), where each
pi has width A/k and height r +e, each ti has width 1/2-A and height rk+l q-e and
each si has width 3A and height r+1 + e.

In the NFSr packing, each pe goes by itself in a shelf of height r i-1, and the ti’S
and s’s are packed in pairs in shelves of height r (t+l will not fit into the shelf with
t and si since their total width is 1/2 + 2A). The packing is shown in Fig. 4a. Thus,

k-1

NFSr (L)_-> r +nrk-(rk-(r+l+e))
i=0

k

1-r 1-r

1 r t
>_-- I-2--(rk --rk+l).
--1--r 1--r

--+ 2 [r-]r -(r -(r+1 + e))

An optimal packing of L is no worse than the following, depicted in Fig. 4b.
Pack the p’s at the bottom left of the bin, using width A and height r + e. To the right

a) The NFS.5 packing

FIG. 4. Packings used in the proof of Corollary 1.1 with .5, k 3.

b) An optimal packing

514 BRENDA S. BAKER AND JERALD S. SCHWARZ

of the pi’s, pack the ti’s in rows of width 1-2A and height rk+l-be. Since two of the
ti’s fit in each row, the t’s use at most height (n/2)(rk++e)<--(l+r-k)(rk++e)<--
rk+-br+(l+r-k)e. Finally, pack the s’s in a row above the other pieces, using
height rk+X-e. The total height used is at most 2r+ +r +(2 -br-k)e. For any 8 >0, by
taking k sufficiently large and e sufficiently small, we get NFSr (L) >
[2/r + 1/r(1-r)-3] OPT (L). [l

It is interesting to note that the asymptotic performance of NFSr is nearly as good
as that of NFDH, which has-a tight asymptotic bound of 2 [7]. In fact, r can be chosen
to bring the asymptotic performance as close as desired to 2, without the NFDH
restriction that pieces be packed in order of decreasing height. Unfortunately, the
absolute worst case performance gets worse as the asymptotic performance gets better.
However, absolute worst case performance is crucial only for small numbers of pieces,
and the shelf algorithms are intended for packings of large numbers of pieces.

Since the bound of Corollary 1.1 is tight, we can find the value of r with the best
absolute worst case performance by differentiating the expression for the bound to
find its minimum.

COROLLARY 1.2. The value of r, 0<r < 1, for which the absolute worst case
performance bound of NFSr is minimal is (3 /)/2 .634, at which value NFSr (L)
7.46 OPT (L) for every list L of rectangles.

One’s intuition might suggest that the algorithm ought to do best at r 1/2. In
fact, Theorem 2 shows that at r- 1/2, NFS (L) can be arbitrarily close to 8 OPT (L),
so that Corollary 1 gives a noticeable, if not large, improvement over r 1/2.

THEOREM 2. For any r, 0 < r < 1, and any list L of rectangles of height at most H,

1.7 H
FFSr (L) < OPT (L)+

r r(1 -r)"

Moreover, the asymptotic bound of 1.7/r is tight.
Proof. The proof is a modification of a proof from one-dimensional bin-packing.

The one-dimensional bin-packing problem has a list L of numbers in the range (0, 1)
which are to be packed in bins, each of which can hold a total of at most 1, and the
goal is to minimize the number of bins used. This problem is equivalent to the
two-dimensional problem with the restriction that all rectangles have the same height.
In particular, the first-fit (FF) one-dimensional algorithm is equivalent to FFDH when
all the rectangles have the same height. Garey, Graham, Johnson and Yao [9] showed
that FF (L) -< 1.7 OPT (L)+ 1 for every list L, where FF (L) and OPT (L) represent
the number of bins used by FF and an optimal packing, respectively. We generalize
the proof to handle shelves of different heights. Since the one-dimensional proof deals
with bins which can hold at most 1, we assume without loss of generality that the bin
width has been normalized to 1.

The original proof uses the following weighting function W" [0, 1 [0, 8/5].

[-65a for 0<_-c <_--,
/9

w()

+ for1/2<a_-<l.

The original proof showed that if W represents the sum of the weights of all pieces
in L, then FF (L) -< W + 1 and W <= 1.7 OPT (L). We extend the weighting idea of two
dimensions by considering weighted areas. For each piece p, let w(p) and h(p)

ALGORITHMS FOR PACKING PROBLEMS 515

represent the width and height of p, respectively. Let A pL W(w(p))h(p). We will
show that FFSr (L)<A/r +H/r(1-r) and A _<-1.7 OPT (L), and the result follows.

The original proof showed that for any packing of any list L, the sum of the
weights of the pieces in any bin is at most 1.7 and deduced from this that W<_-
1.7 OPT (L). We can instead apply their proof along any horizontal line through the
bin to find that the sum of W(qi) for the pieces qi along this line is at most 1.7 and
then integrate over the height of the optimal packing to obtain A _<- 1.7 OPT (L).

It remains to show that FFSr <A/r +H/r(1-r). For k _->0, let Nk be the number
of shelves of height r k. For k _-> 0, let L be the sublist of L consisting of pieces whose
heights are in the range (r to+l, rk]. If L;, is the list of widths of pieces in L, then
FF (L,)= Nk. By [9],

Z W(w(P)) >-FF(L)-I=N-I.
PLk

Since each piece is greater than r times the height of the shelf it is packed in,

Z W(w(p))h(P)>-r+(Ng-1)
pLk

Consequently, if the tallest shelf has height r ,
.>-- 2 ., W(w(p))h(P) >- , r+a(Nk -1)

k =i pLk k =i

i+1r H
r FFS (L)-> r FFS (L)-

(l-r) (l-r)

and

FFS (L) <_---+
r r(1 -r)"

Johnson et al. [11] proved that for every positive integer n, there is a list L for
which OPT (L)- n and the one-dimensional first-fit (FF) algorithm has FF (L) ->

1.7n-8. If we turn L into a list of rectangles by letting each rectangle have height
H r + e, where e is sufficiently small, we get FFSr (L) _-> 1.7n + r + e -9 and OPT (L)
n (r + e). Thus, for every a < 1.7/r and every constant/, there are sufficiently large n
and sufficiently small e that FFSr (L) > a OPT (L) + fill.
Note again that if H r for some integer i, the tallest shelf has height at most H and
the additive constant in Theorem 2 becomes HI(1- r) rather than H/r(1- r).

COROLLARY 2.1. For every constant r, 0 < r < 1, and every list L of rectangles,

[1.7 1 r)]FFSr (L) < + OPT (L)
r r(1

Moreover this bound is tight.
Proof. Since H -< OPT (L),

1.7
FFS (L) < OPT (L) +

r r(1-r)- r(1 Lr) OPT (L)

by Theorem 2. We know from [11] that for every r and every positive integer n, there
exists a list L of rectangles, all of the same height d, such that the number of shelves
used by FFSr to pack L is at least 1.7n -8 while an optimal packing is no worse than
placing the pieces in n rows each of height d. Let k and be positive integers, k < t,

516 BRENDA S. BAKER AND JERALD S. SCHWARZ

and let e < r t-1 r’. Let n [rl-]. If we take d r + e, we have

FFSr (L) _-> (1.7n 9)r ’-1 + r + e, OPT (L) n (r + e).

Let P1 and Pz be the FFSr packing of L and an optimal packing of L, respectively.
Let m be the maximum number of rectangles which appear in any single shelf in P1.
For some x > 0, the width of the empty area at the bottom right end of each shelf is
smaller by at least x than every piece packed higher. Choose A so that A <x/(m + 1)k.
Form a list L’ from L by shrinking the width of each piece by k A. If we replace each
piece in Px by its corresponding piece in L’, the total extra space in each shelf has
width at most mkA < x, so that no piece packed in a higher shelf will fit into a lower
shelf. Therefore, FFS (L’) uses the same number of shelves as FFS (L). In P2, if we
replace each piece by its corresponding piece in L’ and push each piece as far left as
possible, we get an empty region of width kA at the right end of the bin.

Now, let L"= (sx, Sz,’’", Sk) where si has height r+ e and width A. Let L0 be a
list consisting of the pieces of L’ followed by the pieces of L".

An optimal packing of L0 is no worse than packing L" into the bin using
width 1 k A and height n (r + e), and then packing s 1, sz, , sk left to right into the
remaining space of width k A. Thus, OPT (Lo) <-_ n (r + e) [r -t] (r + e) <-

(r- + 1)(r + e <- r + r + ra-te + e.

Now, FFS packs each st alone in a shelf of height r g-1. These shelves use a total
height of

kt, 1 r

= 1-r l-r"

The remaining shelves use a total height of at least (1.7n -9)r t-a + r + e. Thus,

1 r t’

FFSr (Lo) ->- + (1.7n -9)rt-+r +e
1-r 1-r

1 r k
>_ --+(1.7r-’-9)rt-
-1-r 1-r

1 r k
> t- 1.7 9r t-a

1-r 1-r

For any 6 >0 and sufficiently small e and sufficiently large k and t, we obtain

FFSr (L0) >[1.7/r + 1/r(1-r)-8] OPT (L0). [3
We have seen that the asymptotic performance of FFS, can be made as close as

desired to 1.7, which is the asymptotic bound for FFDH [7], without the FFDH
restriction of packing pieces in order of decreasing height. For the absolute worst case
performance, we can find the minimal value of the bound of Corollary 2.1 by
differentiating to get the following Corollary.

COROLLARY 2.2. The value of r, 0 < r < 1, for which the absolute worst case bound

of FFSris minimal is r .622. At this value oft, for every listL, FFSr (L) 6.99 OPT (L).

4. Worst case bounds for lists of squares. Many two-dimensional packing
algorithms have been found to have lower worst case bounds for lists of squares than
for arbitrary lists of rectangles. For absolute worst case bounds, this pattern also holds
for FFSr and NFS,

THEOREM 3. Let O < r < l. For any list L of squares, NFS(L)<_-
[1/r + 1/r(1-r)] OPT (L) and FFS (L)<=[1/r + 1/r(1-r)] OPT (L). Moreover, these
bounds are tight.

ALGORITHMS FOR PACKING PROBLEMS 517

Pro@ Without loss of generality, let the bin width be 1. Let P be an NFSr or
FFSr packing of a list L of squares, and let]PI denote the height used by P. For k _-> 0,
let Ht‘ denote the total height of shelves of height r k and let At‘ denote the total area
of squares packed in shelves of height r k. Suppose the height of the highest shelf is
r p. Define h rp. Let A k At‘ be the total area of squares in L.

First, note that if rt‘+l> 1/2, then every shelf of height r contains a square of
size at least r+1 > 1/2 and At‘ >=(r/2)H,.

Next, we claim that if there are/" > 1 shelves of height rt‘, then At‘ >- (r/2)H,. Note
that the total width of squares packed in any two successive shelves of height r k is at
least 1 and each square on such a shelf has height at least r+1. Consequently, if] is
even, At‘ >= (r/2)Ht‘. So suppose/" is odd. Pairing the first/’-3 shelves of height r
shows that the total area of squares in them is at least (r/2)(Ht‘- 3rt‘). If shelf/"-2
is filled to width at least 1/2, then this shelf plus the last pair of shelves contain squares
of area at least (r/2)(3rt‘) and A >-(r/2)Hk. So suppose shelf/’-2 is filled to width
less than 1/2. Then rt‘+l< 1/2, shelf/’-1 contains a square of size at least 1/2+6,
for some t > 0, and the total width of squares in shelves/"- 1 and/" is at least 1. The
total area of squares in these three shelves is at least

(1/2 6)r k +1 + (+ 6)z + (1 (1/2 + 6))r +1 >__ (_ 6)r +1 + (1/2 + 6)r +1 + (1/2 + 6)6 + (1/2- 6)r +1

_-> (- 3)r t‘+l +(rk+l +3) +r

> -r k + l.
Again, we have At‘ >-(r/2)Ht‘.

Suppose that either there are m > 1 shelves of height h r or rh > 1/2. From above,
A, >= (r/2)H,. By pairing the shelves of other heights, we see that for k >p, A _->
(r/2)(Ht‘-r). Recall that the sums of the heights of the sparse and dense shelves
are denoted by Hs and Ho, respectively. Consequently,

r k r r
A= E At, > Y’. (Ht‘-r)+ h >

t‘>=, =- >_, - =- (Ho + h).

Since Hs <= i=0 rih h/(1 r), we have

h 2A rh 2A
+-h=Iel=ns+n<---1-r r i-r r

[1 r2_]-< + OPT (L)
1 r

[1 1]-+ OPT (L),
r r(1-r)

which is the desired result.
So we may assume that there is only one shelf of height h and rh < 1/2. Define

r(1 -r)Hs
OPT (L)"

Since Hs <= h/(1 r) <= OPT (L)/r(1 r), we know that 0 < c <- 1.
Note that each dense shelf has height at most rh and hence is filled to width at

least 1- rh. Moreover, the (sparse) shelf of height h contains a square of size at least

518 BRENDA S. BAKER AND JERALD S. SCHWARZ

rh. Consequently,

and

OPT (L)>-A >-_r(1-rh)HD +(rh)2

>-_ r(1 rh)HD + r2h (1 r)Hs

>-r(1-rh)HD +rha OPT (L),

Then

HD 1 arh
OPT (L) r(1 rh)"

1 -arh ozIPI HD +Hs< +
OPT(L) OPT(L) r(1-rh) r(1-r)

1
r(l-rh)

Since rh < 1/2,

1
r(1 -r)

and from 0 _-< a =< 1, we have

IPI
OPT (L)

[1 hir(1-r) 1-rh

h 1 2rh + r2h
1-rh r(1-r)(1-rh)

>0,

1 1 hHs +HD<+
OPT(L)-r(1-rh) r(1-r) 1-rh

1 1
r r(1- r)"

It remains to show that the bound of I/r+ lit(l-r) is tight. Let and u be
positive integers, and let k be a positive integer such that r k < 1- r. Let 0 < e << 1. The
list L consists of two groups of squares. The first group has squares s 1, , st, where
si has size r k+i-1 + e. The second group contains [r-k-2t-2u squares of size rk+t+u + e.

Let P be an NFSr or FFSr packing of L. Each square si of the first group is packed
into a shelf of height rk+i-2 in P. Let s [1/(r k+t+u +e)J. Exactly s squares of the
second group are packed into each shelf of height r +t+u-1. Let y [[r-k-Et-EU]/S].
Note that if e is sufficiently small,

-k -t-u -k -t-ur -2<=s<r

and
-k -2t-2ur +1

r <-Y<- -k-t-u +1.
r -2

Let IP] denote the height of P. Since the top square in P has its top above the
bottom of the top shelf,

t--1

[PI--> E rk+i-2+(y--1)(rk+t+u-1) =rk-1 E ri+(Y--1)(rk+t+u-1)
i=1 i=0

rk-1 l,k +t-1

1-r 1-r
t- (y 1)(rk+t+u-1).

ALGORITHMS FOR PACKING PROBLEMS 519

An optimal packing of L is no worse than the following. By choice of k and
sufficiently small e, the squares of the first group can be packed in a row of width
<=rk/(1-r) across the bottom of the bin. The squares of the second group can be
packed in rows wherever they fit to the right and above the squares of the first group.
For any 6 > 0 it is possible to pick k and u large enough to make the total width and
area of the first group small enough and the squares of the second group small enough
for the total height of the packing to be at most y(r k+t+u +e)+6. Thus, we have

k-1 k+t-1r r

[PI >l-r 1-r
--+(y 1)(r +’+--x)

OPT (L)- Y (r +t+. + e + 8
k k+t-1r r

r(1 -r) 1 -r
-k-2t-2u + 1

+

(rr_k_t_ _2
+ 1)(r k+t+u +e)+6

(y 1)(r +t+u-x)
y(rk+t+"+e)+a"

For any n > 0 and 8’ > 0, it is possible to pick sufficiently small 8 and e and sufficiently
large k, and u such that OPT (L)> n and

1 1IPI >+__,.
OPT(L)-r(1-r) r

Therefore, the asymptotic bound of 1/r(1-r)+ 1/r is tight, fi
COaOLLAaY 3.1. The value of r, 0<r < 1, for which the absolute worst case

performance bound of NFSr and FFSr is minimal on lists of squares is 2 + x/-. At this
value of r, NFSr, FFSr 5.83 OPT (L) for every list L of squares.

The above theorem shows that the absolute worst case performance bounds of NFS
and FFS improve from 2/r+ 1/r(1-r) or 1.7/r+ 1/r(1-r), respectively, to I/r+
lit(l-r) for lists of squares. We do not have tight asymptotic worst case bounds of
FFS and NFS on lists of squares. However, we will prove a number of lower bound
results that are summarized in Tables 1 and 2. These results suggest that the asymptotic
bounds are not in general much better for lists of squares than for arbitrary lists of
rectangles.

TABLE
Lower bounds on the asymptotic worst case bound of NFSr on lists of squares for

various values of r. Note that the asymptotic worst case bound for NFSr on arbitrary
lists of rectangles is 2/r.

> 1/2, root of 1/2

> 1/2, not a root of 1/2

r= 1/2

r<1/2

root of 1/k

result

Theorems 4, 6

Theorem 5

Theorem 4

Proposition

Theorem 4

squares LB

1.6/r, 1.7

2.0

3.2

l/r>2

(k + 1)/kr

520 BRENDA S. BAKER AND JERALD S. SCHWARZ

TABLE 2
Lower bounds on the asymptotic worst case bound of FFSr on lists of squares

for various values of r. Note that the asymptotic worst case bound for FFSr on arbitrary
lists of rectangles is 1.7/r.

root of 1/3 or 1/6

not a root of 1/3 or 1/6

root of 1/2

root of 1/3

root of 1/k

not a root of l/k, for
any integer k > 0

result

Theorem 6

Theorem 6

Theorem 4

Theorem 4

Theorem 4

Proposition

squares LB

1.69

1.7

1.6/r

1.36/r

(k+l)/k

1/r

THEOREM 4. Let k be a positive integer, and let r be a positive root of 1/k. Let a
and fl be constants such that for every list L of squares of size at mostH

FFSr (L) <_- a OPT (L) //H

or for every list L of squares of size at mostH

NFSr (L) -<_ a OPT (L) + fill.
Then

1 k-1 k+l
ce__>- >.

r i=lki-1 kr

Proof. Let 0<e << 1. For integers j, n >0, the list Lnj will contain (k-1)kin
squares of size 1/k + e for 1 _-< -<f. If e is sufficiently small, NFS or FFS will pack
the squares of size 1/k +e into [(k-1)kn/(k-l)] shelves of height 1 Thus,
the total height IPI of the packing P is at least

r 1 -7 /-/ ri=lki-1
For sufficiently small e, (k 1) Y’,=I (1/k +e)< 1, and an optimal packing of

is no worse than the following. For 1 -<i =</’, pack the (k 1)k’n squares of size 1/k + e
in k- 1 columns of equal height, with all of the/’(k- 1) columns side by side. The
total height of the packing is at most

max k in(i + e) n + kine.

Thus,

n_ k-1
r i=1 f’/-- i

OPT (L)- n + kne

ALGORITHMS FOR PACKING PROBLEMS 521

For any n and any 6 >0, /" can be chosen sufficiently large and e can be chosen
sufficiently small such that

1k-1IPI
OPT (L)- r i=1 ki-1

Therefore,

Letting

f(k) E
i=0

and

k-1 1
fz(k E E i-1 1’ok -1 = k +k +...+k+

we see that

ki-a+ki-2+...+l
fl(k)-f2(k)= ,=21 :-- 2-+

Consequently,

f2(k)>
k2

fl(k)=
k 2 i k

< fl(k).
,=lk

and

1 k+l
a >---f2(k) > 71

r kr

For k 1/2, 1/3 and 1/4,

evaluates to more than 1.6/r, 1.36/r and 1.26/r, respectively. Since 1.6/r is very close
to 1.7/r, which is the asymptotic worst case bound of FFSr on rectangles, it appears
that FFS, does not perform significantly better in the worst case for squares than for
rectangles.

For values of r that are not roots of 1/k for some integer k, the following
proposition gives a simple lower bound.

PROPOSITION 1. Let O<r < 1, and let a and 13 be constants such that for every
list L of squares of size at most H,

FFS, (L <- a OPT (L + flH

or for every list L of squares of size at most H

NFSr (L) _-< a OPT (L) + fill.

Then a >= 1/r.

522 BRENDA S. BAKER AND JERALD S. SCHWARZ

Proof. For e > 0 and any integer n > 0, consider a list L of n [1/(r + e)] squares
of size r + e. An NFS or FFS packing P uses height at least n- 1 + r + e, while an
optimal packing uses height at most n (r + e). Thus, for any 6 > 0 and for sufficiently
large n and sufficiently small e,

n-l+r+e 1IPI >
OPT(L)- n(r +e) r

The next two theorems are different from the last two results in that the lower
bounds are constants rather than constants divided by r. Tables 1 and 2 show that
these theorems are weaker for some values of r than the above, but stronger for other
values of r.

THEOREM 5. Let 0 < r < 1, where r is not a root of 1/2. Let a and [3 be constants
such that for any list L of squares of size at most H,

NFS (L) <_- a OPT (L) / fill.
Then a >-2.

Proof. Let 0 < e << 1. Let L, consist of 2n squares s, s2,’’ ", s2, such that for
/" _-> 1, SEi- has size 1/2 -re and SEi has size 1/2 + (/" + 2)e. For sufficiently small e, all
of these squares will be packed in shelves of the same height h. Note that SEi- + s.
1-je +(/’+2)e > 1 and $2]-["$2]+1-’$2]Ar-$2(]+1)-1 1/2+(f+2)e + 1/2-(/’+ 1)e > 1.
Therefore, NFS packs each square alone in a shelf of height h > 1/2 and NFS (L) ->n.

An optimal packing is no worse than the following. Pack s and s3 next to each
other, then for 1 =</" < n 2 pack the pairs s2i and s2+3 next to each other and finally
pack s2.-2 and s2. on top. This packing uses a height of (n + 1)/2 + O(ne).

For any 8 > 0, sufficiently large n and sufficiently small e can be selected such that

NFS n/r> >2-6.
OPT(L) (n+l)

+O(ne)
2

The next result shows that the asymptotic bounds for NFS and FFS for lists of
squares are at least 1.6 for all r and at least 1.7 for values of r other than roots of
1/3 or 1/6. Note that 1.7 is the limit of the asymptotic bound 1.7/r of FFS as r 1.

Define

tx 2, t2 3, t+ t(t 1)+ 1 for i_->2

and

Define

ai ti- 1 for ->_ 1.

1
=Y--.

i=1 ai

The above sequence has been studied in [3], [6], [11] and is closely related to sequences
studied in 1].

THEOREM 6. Let 0 < r < 1, and let a and be such that for every list L of squares
of size at most H,

FFSr (L) -< a OPT (L) + flH
or for every list L of squares of size at most H,

NFSr (L) -< a OPT (L) + fill.

ALGORITHMS FOR PACKING PROBLEMS 523

Ifr is not a root of 1/3 or 1/6, then a >- 1.7. If r is a root of 1/3 or 1/6, then a _-> /> 1.69.
Proof. First, we show that for every r, 0 < r < 1, a > 3/. Then we show that if r is

not a root of 1/3 or 1/6, a _>- 1.7.
First, suppose r < 2/3. Let 0 < e << 1. For n _-> 1, let L, be a list containing n squares

of size 2/3 and [1/3e [2n/3e] squares of size e. Note that OPT (L,)= 2n/3. Since
FFSr and NFSr pack the large squares into shelves of height 1 and the small squares
into shelves of total height at least [1/3e[[2n/3e[e2>-_(1/3e-1)(2n/3e-1)e 2=
2n/9-O(e)+O(e2),

FFS (L,)= NFS (L,)>n-O(e)-O(e2).
Thus, for any 8, e may be packed sufficiently small such that

FFSr (L,,,) NFSr (L,,,)
OPT (L) OPT (L)

Since this is true for every n > 0, FFS and NFSr cannot have an asymptotic bound <%
Now, suppose r -> 2/3. Let e << 1. For n, s => 1, define L.,s to be a list containing

nti squares of size 1/ti +eli, 1 <=i <=s. It may be easily verified that Yi=I 1/ti 1. Thus,
for sufficiently small e, L..s size 1/ti + eli, 1 <= <=s. It may be easily verified that
Y.i= 1/ti 1. Thus, for sufficiently small e, Ln, can be packed into s columns, such
that the ith column contains the squares of size 1/ti + eli. Thus, OPT (L..) <=n + nt/se.

Now, consider a NFS or FFS packing of L... For => 1 and sufficiently small e,

1 E

ti+l .i + l
1 E

ti

2

Therefore, squares of distinct sizes are packed into shelves of distinct heights. Since
only ti 1 squares of size 1/ti + e/i can fit into a shelf,

rtti (iNFSr (L.s) FFS (L,) ->_ +
i= ti:l

i=lti--1 i=li(ti 1) i=lai

Consequently, for any 8 > 0, there are a suciently small e and suciently large s
such that

NFSr (L) FFS (L)
n
= -t

=>>-8.OPT(L) OPT(L) n(l+e)

Since this is true for any n, FFS and NFS cannot have an asymptotic bound smaller
than .

Now, consider any r which is not a root of 1/3 or 1/6. We modify the list used
in the proof that the asymptotic bound for FF is at least 1.7 [11]. Let n be a positive
integer divisible by 17 and let 0<8<< 18-n/. For 1NiN6n/17, define
18(/-8. For 1Ni N 6n/17, define

a0 1/6 + 338i, agi 1/6 138,

a 1/6 38i, asi 1/6 + 9,

ai =a 1/6-78i, ai =ai =ai =ag 1/6- 2.

524 BRENDA S. BAKER AND JERALD S. SCHWARZ

The first part of L will consist of squares of size no1, a11,""’, a91, no2,""", a92,

ao(6n/17),’’’, a9(6n/17). Note that for sufficiently small 8, FFSr will pack all of these
squares into shelves of the same height, since r is not a root of 1/6. Also, note that

Y.’=o aji 5/6+ 38i and =5 aji 5/6 +8. Since 5/6 +8g 5/6+ 188i+1, aik will not fit
into a shelf containing ,=oaii or =saii for k>i. Therefore, for 1<=i<-6n/17,
a 1, , a4g are packed by FFSr into shelf 2i 1 and asg, ’, a9i are packed into shelf
2i. Thus, the total height used for these shelves is at least 2n/17.

For 1 <- <= 3n/17, define

bo 1/3 + 4682i,

bli 1/3 3482i,

b2i b3 1/3 + 682i,

b4i 1/3 + 1282i,

bsi 1/3- 1082i,

b6i b7i b8i b9i 1/3 + 82i.

Note that for each i, bo + bli b2i + bai 2/3 + 1282 and b4i + bs b6i + b7i
bsi + b9i 2/3 + 282i. For k > i, 2/3 + 282i > 2/3 + 3682k and bk cannot fit into a shelf
already containing b., b/l for/" even. Also, bk cannot be packed into a shelf
containing five ars’s, for r, s >_-0. Therefore, FFS packs each group bo," ", b9i into 5
successive bins, using a total height of at least 5(3n/17)(1/3)= 5n/17.

The remainder of the list consists of 20n/17 squares of size 1/2 +&The shelves
for these squares use height at least 10n/17.

The total height used by the FFS packing is thus at least 2n/17/5n/17/
lOn/17=n.

An optimal packing is no worse than the following. Pack the squares of size
1/2 / 8 in a column at the left side of the bin. The remaining squares will be packed
next to these n groups of three, with a pair of squares of size about 1/6 packed one
above the other next to a square of size about 1/3. The groups of three are as follows:

(a) ai(2i-1), ai(2i), bii, j 2, 3, 4, 6, 7, 8, 9, 1 <-i _-<3n/17,
(b) a5(2i-1), a5(2i), bs(i-1), 1 <i _-<3n/17,
(C) ao(2i-1, ao(2i, b1(i-1), 1 <i -< 3n/17,
(d) a1(2i-1, a1(2i, bo(i+l, 1 <-i <3n/17,
(e) a1(6n/17-1), al(6n/17), bs(3n/17).

Note that each triple requires height at most 1/3+6681, and the above 7(3n/17)+
3(3n/17-1)+1 triples use height <- (30n/17 2)(1/3 + 6681). This leaves as1, a52,

aol, ao2, b1(an/17) and bol. The hi(an and bol can be packed above each other using
height at most 2(1/3+4681). At this point, the right side of the packing uses height

(30n/17 2)(1/3 + 6681) + 2(1/3 + 4681)

10n/17 + (30n/17- 2)(6681) + 9281

10n/17 +[(30n/17-2)66+9218 18 (6n/17)-1

which is greater than the height of the left side, which is (20n/17)(1/2+8)=
10n/17 + (20n/17)& The remaining 4 ai’s can be packed above everything else using
height 1/6+ 3381. Thus, the total height is at most 10n/17+1/6+
(30n/17)668.18 (6n/17)-1.

Since FFSr (L)-> n and 8 may be picked to be as small as desired, the asymptotic
bound cannot be less than 17/10. [3

5. Conclusions. Theorem 2 shows that the asymptotic performance of FFS is
no worse than (1.7/r) OPT (L)+H/r(1-r), where H is the height of the tallest piece.
Thus, we can get asymptotic performance arbitrarily close to the 1.7 bound of FFDH

ALGORITHMS FOR PACKING PROBLEMS 525

[7] without having to sort the rectangles first. Corollary 2.1 shows that the absolute
worst case performance is worse than for FFDH (Golan [10] proved that NFD (L)<=
3 OPT (L) and the same proof works for FFDH). Absolute worst case bounds are a
good measure of performance only for small numbers of rectangles. For large numbers
of rectangles, the asymptotic bounds are a better measure. The shelf algorithms are
intended primarily for situations requiring packing large numbers of rectangles, and
the absolute worst case performance is not a primary consideration.

The previous papers on two-dimensional packing problems have not required
that rectangles be packed in the order given; the algorithms order the lists before
packing them. Since the FFSr algorithm can pack pieces in any order, it is natural to
ask whether ordering the lists would improve its worst case bounds.

In one-dimensional bin packing, the first-fit algorithm has an asymptotic bound
of 17/10 if, the pieces are packed in the order given, and 11/9 if they are packed in
order of decreasing size [11]. Now, the decreasing size of the one-dimensional case
corresponds to decreasing width in the two-dimensional case. The one-dimensional
results suggest that packing rectangles by decreasing width using the FFS algorithm
might obtain asymptotic bounds better than 17/10. Unfortunately, it is easily seen
that even using decreasing width, the asymptotic bound of FFSr cannot be better than
3/2 for any r (consider, for example, lists with n pieces of height 1 and width e/2
and n [1/e pieces of height 1/2 and width e). Since the up-down algorithm [2] has
an asymptotic bound of 5/4, such an asymptotic bound would not be an improvement
over existing algorithms which reorder the pieces before packing them.

Acknowledgment. The authors would like to thank D. S. Johnson for his com-
ments and especially for generalizing their original version of Theorem 3.

REFERENCES

[1] A. V. AHO AND N. J. A. SLOANE, Some doubly exponential sequences, Fibonacci Quart., 11 (1973),
pp. 429-437.

[2] B. S. BAKER, D. J. BROWN AND H. P. KATSEFF, A 5/4 algorithm for two-dimensional packing,
J. Algorithms, 2 (1981), pp. 348-368.

[3] B. S. BAKER AND E. G. COFFMAN, JR., A tight asymptotic bound for next-fit decreasing bin-packing,
SIAM J. Alg. Discr. Meth., 2 (1981), pp. 147-152.

[4] B. S. BAKER AND E. G. COFFMAN, JR., A two dimensional bin-packing model of preemptive, FIFO
storage allocation, J. Algorithms, to appear.

[5] B. S. BAKER, E. G. COFFMAN, JR. AND R. L. RIVEST, Orthogonal packings in two dimensions,
SIAM J. Comput., 9 (1980), pp. 846-855.

[6] D. J. BROWN, A lower bound for on-line one-dimensional bin packing algorithms, Tech. Report
ACT-19 (1979), Coordinated Science Laboratory, University of Illinois, Urbana, Illinois.

[7] E. G. COFFMAN, JR., M. R. GAREY, D. S. JOHNSON AND R. E. TARJAN, Performance bounds for
level-oriented two-dimensional packing algorithms, SIAM J. Comput. 9 (1980), pp. 808-826.

[8] M. R. GAREY AND R. L. GRAHAM, Bounds on multiprocessing scheduling with resource constraints,
SIAM J. Comput. 4 (1975), pp. 187-200.

[9] M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND A. C. YAO, Resource-constrained scheduling
as generalized bin packing, J. Comb. Theory 21 (1976), pp. 257-298.

[10] I. GOLAN, Orthogonal oriented algorithms for packing in two dimensions, draft, 1978.
[11] D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM, Worst-case

performance bounds for simple one-dimensional packing algorithms, SIAM J. Comput., 3 (1974),
pp. 299-326.

[12] F. M. LIANG, A lower bound for on-line bin packing, Informat. Processing Lett., 10 (1980), pp. 76-79.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1203-0008 $01.25/0

ON THE SELECTION OF TEST DATA
FOR VECTOR-VALUED RECURSIVE SUBROUTINES*

JOHN H. ROWLAND" AND LESLIE E. SHADERS

Abstract. This investigation deals with the selection of test data for vector-valued sequences which
can be generated by a linear first order system of difference equations with rational coefficients of limited
degree. Let (v, k, l, m) be the class of u-dimensional sequences y which satisfy an equation of the form
P(n)y(n+l)=A(n)y(n)+R(n) where A,P, and R are polynomial matrices of degree_<k,/, and m,
respectively, and P is diagonal. It is shown that there is a finite sample which uniquely identifies members
of (u, k, 1, rn). A finite sample also exists for the case where y is considered to be a function of its initial
value. If y satisfies two distinct equations of the above type, then there is a transformation under which
certain coordinates must eventually be rational functions, or even polynomials if P is the identity.

Key words, testing, sampling, verification, difference equations

1. Introduction. This paper deals with the selection of test data for vector-valued
sequences which can be generated by means of a linear first order system of difference
equations with polynomial or rational coefficients of limited degree. The general
philosophy is to assume that the desired program and the program to be tested both
produce sequences which satisfy difference equations of the above type. It will be
shown that a finite sample exists which uniquely identifies such sequences; hence any
errors which do not violate the basic assumptions will be detected by testing on this
sample. A more complete discussion of this philosophy as well as further background
on the theory of testing can be found in [6], [5], [3], and [2].

The results presented here generalize those in [6] where it was shown that a finite
sample can be used to identify sequences generated by a single difference equation
with polynomial coefficients, or by a system with constant coefficients and polynomial
forcing function. Our theory is also applicable to linear higher order equations with
polynomial or rational coefficients because these equations can be converted to a first
order system of equations [6].

2. Mathematical background. The symbol N will denote the nonnegative
integers, k the polynomials of degree _-< k, and Cv complex u-dimensional space. By
an initial segment of N we will mean a finite consecutive set of integers starting with
zero; the symbol I(M) will denote the initial segment {0, 1,..., M}.

The concept of a polynomial matrix (often called a A-matrix in the literature) is
central to this paper. A polynomial matrix A is a matrix whose entries are polynomials;
that is,

A(n) (aii(n)), 1, 2,. ll, j 1, 2,’" ", U2,

where each aij is a polynomial in n. For our purposes the coefficients of the polynomials
will be from the field of complex numbers. The degree of A is the maximum degree
of the aij’s and the rank is the size of the largest square submatrix whose determinant
does not vanish identically.

Our polynomial matrices occur as coefficients in systems of difference equations.
Consider the system

(2.1) P(n)y(n + 1)=A(n)y(n)+R(n),

* Received by the editors October 13, 1981, and in revised form August 5, 1982.
5" Departments of Computer Science and Mathematics, University of Wyoming, Laramie, Wyoming

82071.
t Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071.

526

TEST DATA FOR VECTOR-VALUED RECURSIVE SUBROUTINES 527

where A is a u by u matrix of degree _-< k, P is a u by u diagonal matrix of degree _-< l, R
is a v by 1 matrix of degree _-< m, and y is a complex-valued u-dimensional sequence.
In order to simplify various arguments we will consider changes of variable having
the form

y(n)= V(n)w(n),

where V is a polynomial matrix whose inverse is also a polynomial matrix. Assuming
p-1 exists, this leads to the equivalent system

(2.2)

where

w(n + 1)=F(n)w(n)+ T(n),

F(n)= V-(n + 1)P-a(n)A(n)V(n),
T(n)= V-a(n + 1)P-a(n)R(n).

The polynomial matrices will be reduced to certain special forms (diagonal,
triangular, etc.) in order to simplify the system (2.1). This is carried out by the Gauss
reduction algorithm described in Gantmacher [1]. We will be interested in the simul-
taneous reduction of one matrix to diagonal form and another to lower Hessenberg
form. (A polynomial matrix A is in lower Hessenberg form if aij --0 for f > + 1.) We
will also want to determine the degree of the matrices involved in these reductions.

Gantmacher [1] describes three types of elementary row transformations:
(i) interchange of two rows,

(ii) multiplication of one row by a constant,
(iii) addition of a polynomial multiple of one row to another.

For each of these transformations Gantmacher displays a corresponding elementary
polynomial matrix whose determinant is a nonzero constant and whose inverse is a
polynomial matrix of the same type and degree. We will refer to a product of these
elementary matrices as an elementary product matrix. Column operations are defined
in a like manner with analogous elementary matrices used on the right instead of the
left.

The fundamental operation in our reduction process will be to replace all entries
except the first in one row of a matrix by zeros. This process is described in Gantmacher,
but we must compute the degree of certain matrices involved in the reduction. Consider
an arbitrary polynomial matrix B of degree -< k. By interchanging columns if necessary
we may assume that b lx has the smallest degree of the nonzero entries of row 1. Let
the elementary product matrix Ta be defined by

1 -q12 ql

T1 ?
(2.3) ; I

where qxj and rx. are determined by the division algorithm to satisfy
The first row of BT1 is (bll, r12,""", rl). Repeated application of this process gives
after at most k + 1 steps a first row of the form (d, 0,..., 0), where d is the greatest
common divisor of bl," ", b. Let Pi be the permutation matrix which interchanges
columns at the th step or let Pi I if no interchange is needed. Also let T I for
> io if the process terminates in io steps. Let V P1T1P2T2 Pk/Tk/

has the desired form. Let r/0 and r/i be the smallest degree of the nonzero elements
in the first row of B and BPITI’.. Pi, respectively. We observe the following

528 JOHN H. ROWLAND AND LESLIE E. SHADER

concerning the degrees of the polynomials involved in this process:
(i) degPi=0, i=l, 2,...,k+l,

(ii) deg T1 <-k -r/o, deg Ti/l --< r/-l- r/i, 1, 2,. ., k,
(iii) deg V1 =< k r/k =< k,
(iv) deg BV <_- 2k.

Part (iii) follows from (ii) by observing that y,k--o deg T/I is bounded above by the
telescopic sum

k
g -o+ (n--n).

i=1

Using these facts we can establish the following lemma.
LEMMA 2.1. Let A and C be v by v polynomial matrices of degree <- k and suppose

C has nonzero entries in only the first row. Let P be a diagonal v by v polynomial matrix

of rank v and degree <= I. Then there exists an elementary product matrix V and a
polynomial d of degree <= k such that

C(n)V(n)=diag (d(n), 0,..., O)

and

F(n)= V-l(n + 1)e-l(n)A(n)V(n)

is in lower Hessenberg form (with rational function entries). Furthermore, each rational
function fi has a representation of the form fi i/, where i and are polynomials
satisfying the conditions

(i) deg aii _-< 3-213k + (u- 1)/],
(ii) deg flii --< (u 1)/,

(iii) deg i,i+a <- 3i-[3k + (u- 1)/].
Proof. Let V be the matrix which produces zeros in the first row of C and hence

reduces C to diagonal form. Then CV-diag(d,O,...,O) where d-
gcd (c 11, , c 1). Thus deg d _-< k. Let Po be the product of the diagonal elements of
P and note that poP-1 is a polynomial matrix of degree _-< (v 1)/. Let

A*(n) V- (n + 1)po(n)P-l(n)A(n)Vl(n).

Note that deg A*-< 3k + (u- 1)1. Partition A* in the form

AA* a *-,1,
\ a*.l a* * /v2 avv

Let T2 be a matrix (analogous to T1 in (2.3)) for whichA T2 has zeros in the off-diagonal
positions of the first row and define

Now CVIV2--CV because the first row of V2 is (1, 0,..., 0) and CVI=
diag (d, 0,..., 0). Note that

0

TEST DATA FOR VECTOR-VALUED RECURSIVE SUBROUTINES 529

Thus since the first row of A*(n)V2(n) has Hessenberg form, so does V] (n +
1)A*(n)V2(n) because the first row of V is (1, 0,..., 0). Next, form the partition

V (n + 1)A*(n)V(n)=

011 012

where c11 and c1 are defined by this equation and the *’s represent elements or
submatrices whose values are not important to our discussion. Now continue the above
procedure inductively for ,- 2 steps. Let V V1V... V-I. Then

V--l(n + 1)po(n)e-l(n)A(n)V(n)=(ij(n))
is in lower Hessenberg form and CV =diag (d, 0,..., 0). But the scalar 1/po(n)
commutes with any matrix and does not change any zero elements; so

F(n)
po(n)

V-l(n + 1)po(n)P-l(n)A(n)V(n)

is also in lower Hessenberg form. Define/3o by

(2.4) /0 =p0

and note that fii /[3.
It remains to bound the degrees of the polynomials in question. Note that the

degrees of A*, Vz, and a 12 are bounded by 3k + (u- 1)/. Thus

deg V] (n + 1)A*(n)V2(n)<-3[3k +(u- 1)/].

This implies that the degrees of V3 and a23 are bounded above by 313k +(u-1)/]
and hence

deg V (n + 1)V-12 (n + 1)A*(n)V(n)V3(n)<=3Z[3k +(t, 1)/].

Inequalities (i) and (iii) are then obtained by induction. Part (ii) follows from (2.4)
and the proof is complete.

We will also need to bound the degree of the polynomials involved in reducing
a matrix to lower triangular form.

LEMMA 2.2. If C is a u by u polynomial matrix of degree <-k, then there exists an
elementary product matrix Vsuch thatH CV is in lower triangular form. Furthermore,
deg hj <- 2-1k and degH -< 2"-1k.

Proof. Apply the Gauss reduction procedure in a manner similar to that used in
Lemma 2.1.

Finally, let us show that any equation of the form (2.1) can be converted to a
homogeneous equation.

LEMMA 2.3. Any equation of the form (2.1) can be converted to an equivalent
homogeneous system involving u + m + 1 variables.

Proof. The key here is the fact that the powers of n satisfy a homogeneous system
of difference equations with constant coefficients. This system can be appended to
(2.1) and each coordinate of R can be replaced by a linear combination of the powers

530 JOHN H. ROWLAND AND LESLIE E. SHADER

of n to obtain a homogeneous system. Specifically, let

yi(n)=n i-’-1 i=u+l,.., u+m+l

From the binomial theorem we see that

where

gij
I

i-u-1

yi(n + 1)= E ggin= E g0y+’+l (n),
=o =o

and gii 0,/" u, , m.

i=u+l,...,u+m+l, /=0,... ,i-v-l,

Let the coefficients of R be represented by hgj so that

(2.6) Ri(n)= hiin= hiiy,,+a+i(n),
=o =o

i=I,...,; j=O,...,m. Combining (2.1), (2.5), and (2.6) we obtain the
homogeneous system

O(n)y(n + l)=E(n)y(n),

where -G) and O=().
The proof is completed by noting that E and O are u + m + 1 by u + m + 1 matrices
of degree-< k and l, respectively.

3. Main results. In this section we will investigate linear first order systems of
difference equations whose coefficients are rational functions of limited degree. Each
equation in such a system can be multiplied by the least common denominator to
clear fractions; so we will consider two systems of the form

P(n)y(n + 1)=A(n)y(n)+R(n),

0 (n)z (n + 1) B (n)z (n) + S (n),

where P, Q are u by u diagonal polynomial matrices of degree =< l, A, B are u by u

polynomial matrices of degree-<k, and R, S are u by 1 polynomial matrices of
degree =< m. Let (u, k, l, m) represent the collection of all sequences which can be
generated by (3.1) as the entries of A, P, and R vary over k, , and m, respectively.
Our principal theorem states that if two sequences from (u, k, l, m) agree on a
sufficiently large initial segment and the diagonal matrices have no singularities on
the nonnegative integers, then the two sequences agree forever. Let us first consider
the uniqueness properties of solutions to (3.1).

THEOREM 3.1. Let C and let no be the first member of N for which P(no) is
singular (or no o ifP is never singular on N). The system (3.1) has a unique solution
on I (no) which satisfies the intial condition y (0) t.

Proof. For n I(no-1) we can multiply both sides of (3.1) by P-(n) to obtain
the equivalent equation

(3.3) y(n + 1)=P-(n)[A(n)y(n)+R(n)].

TEST DATA FOR VECTOR-VALUED RECURSIVE SUBROUTINES 531

If y and z both satisfy (3.3) and y(0)=z(0)=t, then it follows inductively that
y(n)=z(n), n =0, 1, no.

If P(no) is singular, then (3.1) does not have a unique solution on I(no + 1). To
see this consider the equation

P(no)y(no+ 1)=A(no)y(no)+R(no).

Since P(no) is singular, this equation will either be inconsistent or there will be infinitely
many values for y (no + 1) which satisfy the equation. Thus (3.1) has either no solution
or infinitely many solutions on I(no + 1).

The system (3.1) can be converted to a homogeneous system by the method
described in Lemma 2.3. Let us now consider two homogeneous systems,

(3.4) P(n)y (n + 1) A (n)y (n),

O(n)z(n + 1)=B(n)z(n),

where A, B are u by u polynomial matrices of degree =< k, and P, (2 are u by u diagonal
polynomial matrices of degree -< l.

THEOREM 3.2. Suppose y and z satisfy (3.4) and (3.5), respectively. Let

M (k + 1), + [3 2t, 1][3k + (, 1)l]/4,

mo, no be the first members ofN which are singularities of P and (2, respectively, and
let No be the initial segment I(min (too, no)). If y (n) z (n), n 0, 1, .., M, then
y(n) z (n]:or all n No.

Proof. Note that PO QP since both P and Q are diagonal. Multiply (3.5) by
P, (3.4) by Q, and subtract to obtain

(3.6) C(n)y(n)=O, n =0, 1,... ,M-l,

where C PB- QA. If C is identically zero, one can multiply (3.5) by P to obtain

(3.7) e(n)O(n)z(n + 1)=P(n)B(n)z(n)=O(n)A(n)z(n).

But 0-1 commutes with P, so multiplication of (3.7) by 0-1 yields the equivalent
equation

P(n)z(n + 1)=A(n)z(n).

Thus z satisfies (3.4) and the result follows from Theorem 3.1.
Now suppose C is not identically zero. Let us temporarily suppose that C has

nonzero entries in only one row which for convenience we will take to be the first
row. Let V be the elementary product matrix from Lemma 2.1 which converts C to
diagonal form and A to lower Hessenberg form. Let y Vw and z Vx. Now V(n)
is nonsingular for every n so w (n) x (n) if and only if y (n) z (n). Note that w and
x satisfy the equations

(3.8) w(n+l)=F(n)w(n),

(3.9) x (n + 1) G (n)x (n),

where F(n)= V-l(n + 1)e-l(n)A(n)V(n) and G(n)= V-l(n + 1)O-l(n)B(n)V(n).
Furthermore, we have from (3.6)

(3.10) D (n)w (n O, n =0, 1,... ,M-l,

where D CV is diagonal and zero except in the first row; say D diag (d, 0, ., 0).

532 JOHN H. ROWLAND AND LESLIE E. SHADER

Now F is in lower Hessenberg form. Let r u if none of the elements fi.i+x
immediately above the diagonal vanish identically; Otherwise, let r be the first index
for which fi.i+l is identically zero. Let fij aij//3j as in Lemma 2.1 and define

r-1

60(n) I] d (n +i),
/’=0

r--i-1

(n)= 1-I ,+(n+/),
i=0

r-1

(n)= 1-I ,(n).
i=O

From Lemma 2.1 we see that

It follows that

i=l, 2,...,r-1,

deg o -< kr, deg g _-< (r i)3i-113k + (u 1)1].

r-1

deg -< kr + Y (r i)3-[3k + (u 1)/].
i=1

Since r-< u, we can replace r by u and use the formulas for the sum of a geometric
progression and its derivative to obtain

3-2u-1
deg _-< ku + [3k + (u- 1)/].

4

Note that 4, e M-, SO there is an index n*e I(M-u) such that (n*) 0. From
(3.10) we have for all n I(M-1),

d(n)wx(n)=O.

Butn*+r-l<=n*+u-l<=M-landda(n*+f)O,f =0, 1,... ,r-l. It follows that
wl(n*+/’)=0, /’=0, 1,..., r-1. From the fact that .+=-0 and F is in lower
Hessenberg form we have

x(i)

(3.11) wi(n + 1)= Y [ii(n)wi(n), 1,..., r,
i=l

where A (i) + 1 for < r and A (r) r. In particular

w(n* +f + 1) =/la(n* +[)w(n* +f)+f2(n* +/’)w2(n* +/’)

for] 0, 1,... ,r-2. Butf2(n*+])rsOandw(n*+f+l)=O=w(n*+f);sow2(n*+
f) 0,/" 0, 1,. ., r 2. Continuing in this fashion we infer that

wi(n*+f)=O, /’=0,1,...,r-i, i=l, 2,...,r.

In particular, w(n *) O, 1,2, ., r. It follows inductively from (3.11) that w(n
0, 1, 2, , r if n * <= n -< min (too, no). Thus D (n)w (n) 0, n * <- n =< min (too, no),
and hence (using (3.10)) for all n No. Note that G(n)-F(n)=
V-(n + 1)O-(n)P-(n)D(n). Thus

[G(n)-F(n)]w(n)=O

for n No. If x (n) w (n), then

x(n + 1)= G(n)x(n)= G(n)w(n)=F(n)w(n)= w(n + 1).

It follows by induction that x (n) w (n) and hence y (n) z (n) for all n No.

TEST DATA FOR VECTOR-VALUED RECURSIVE SUBROUTINES 533

Finally, we must remove the restriction that QA and PB differ in only one row.
To this end let B. be the matrix consisting of the first/" rows of B and the last u-/"
rows of A; and let Qj consist of the first/" rows of Q and the last ,-f rows of P. Let
z be the solution to the equation

(3.12) Q(n)z(n+l)=B(n)z(n), z(0) z (0).

Now on I(M-1) y satisfies both (3.4) and (3.5); hence it must satisfy (3.12) for any
]. But OlA and PBI differ in only one row; so y(n) zl(n) for all n eN0. Continuing
in this fashion we see that

y(n) z(n)= z(n) z(n) z(n)

for all n e No and the proof is complete.
Next, we consider nonhomogeneous equations.
THEOREM 3.3. Let

M= (k + 1)(u + m + 1) + [3+"+1- 2(u + m)- 3][3k +(u + m)l]/4.

If y, z eg(u,k,l,m) and y(n)=z(n) for n=0,1,...,M, then y(n)=z(n) for all
tlNo.

Proof. This follows from Theorem 3.2 and Lemma 2.3 after noting that the
number of variables in the equivalent homogeneous system is , + m + 1.

The fact that the sample set starts with zero is unimportant, but the fact that it
contains a consecutive set of integers is crucial. To see this consider the one-dimensional
example:

y(n +1) 1-y(n), y(0) 1,

z(n +1)= 1, z(O) 1.

Note that y (n) z (n) when n is even, but y (n) z (n) when n is odd.
It was shown in [6] that a one-dimensional sequence y satisfies two different first

order linear equations with polynomial coefficients if and only if y is eventually a
polynomial. (That is, there exist a polynomial p and an index n * such that y (n)=p (n)
for all n -> n*.) One would not expect as strong a result for higher dimensional systems
since the equations might be uncoupled and generate factorials and exponentials in
some coordinates and polynomials in others. We will show that if the coefficients of
the systems are rational, there is a change of variable under which the coordinates of
the solution corresponding to equations which differ in the two systems are eventually
rational functions. Furthermore, if the coefficients of one of the systems are poly-
nomials, (that is, P or O is the identity matrix) then after an appropriate change of
variable these coordinates are eventually polynomials.

THEOREM 3.4. Suppose y satisfies both the equations (3.1) and (3.2) for all n N.
Let C PB- OA and let r be the rank of C. Then there is a transformation y Vw,
where V is an elementary product matrix, under which

(i) w i, wz,’",wr are eventually rational functions with numerators and
denominators of degree <= (2 2)(k + l) + + m and (2 1)(k +/), respectively.

(ii) The equations for wr+x,..., w can eventually be uncoupled from those for
w, w, and these equations are identical in both systems.

Proof. According to Lemma 2.2 there exists an elementary product matrix V
such that CV is in lower triangular form. Multiply (3.2) by P and (3.1) by O and
subtract to obtain Cy T, where T OR -PS. This leads to the equation

(3.13) H(n)w(n)= T(n),

534 JOHN H. ROWLAND AND LESLIE E. SHADER

where H CV is in lower triangular form, has rank r and deg hij =< 2i-l(k + l). The
proof of part (i) is completed by solving (3.13) for Wl, w2, , wr.

To prove part (ii) note that w satisfies both the equations

(3.14) w(n + 1)=F(n)w(n)+ U(n),

(3.15) w(n + 1)=G(n)w(n)+X(n),

where F(n)= V-(n + 1)e-(n)A(n)V(n), U(n)= V-(n + 1)P-(n)R(n), G(n)=
V-(n + 1)Q-(n)B(n)V(n), and X(n)= V-(n + 1)Q-(n)S(n). Now CV has zeros
in columns r + 1 through u; so

G(n)-F(n)= V-(n + 1)P-(n)Q-l(n)C(n)V(n)
has zeros in the same columns. Thus we can rewrite (3.14) and (3.15) in the form

(3.16) w,(n +1)= f(n)w(n)+ f(n)wj(n)+ U(n),
j=l j=r+l

(3.17) wi(n +1)= gii(n)wi(n)+ fii(n)wi(n)+Xi(n),
/=1 /’=r+l

1, 2,..., u. Note that (3.16) and (3.17) imply

/=1 /=1

1, 2,..., ,. Furthermore, these quantities are eventually rational functions. Let
b(n) be the rational function which is eventually the same as =1 fii(n)wi(n) + Ui(n).
Then we eventually have from (3.16) and (3.17)

wi(n+l)= fii(n)wi(n)+i(n), r=r+l,...,u
j=r+l

for both systems and the proof is complete.
We would like to show that w1,..., Wr are eventually polynomials if one of the

systems has polynomial coefficients. This will follow from the next lemma which shows
that none of the coordinates of the solution to a polynomial system can be a proper
rational function.

LEMMA 3.5. Let y be a solution to the equation

(3.18) y(n + 1)=A(n)y(n)+R(n)

for all n N. If one of the coordinates of y is eventually a rational function, then that
coordinate is eventually a polynomial.

Proof. For convenience of notation assume that y is eventually rational; say
y x(n) bl(n)/(n) where and p are polynomials. Let V be the elementary
product matrix from Lemma 2.1 which converts A to lower Hessenberg form and
leaves the first coordinate of y unchanged. Make the change of variable y Vw; then
eventually Wl yl 1/. Now w satisfies the system

(3.19) w(n + 1)=F(n)w(n)+ U(n),

where F(n)= v-l(n + 1)A(n)V(n) and U(n)= V-(n + 1)R(n). As in the proof of
Theorem 3.2, let r be the first index for which f./l vanishes identically or r u if

fi.+ is always nontrivial. Then we have
A(i)

(3.20) wi(n + 1)= Y fi(n)w(n)+ Ui(n), 1, 2,..., r,
i=l

TEST DATA FOR VECTOR-VALUED RECURSIVE SUBROUTINES 535

where A(i)=i + 1 for <r and A(r)=r. Letting 1 in (3.20) we see that W2 is
eventually rational, say w2 2/2. Continuing in this fashion we see that w 1," ", w,
are all eventually rational, say w=i/i, i= 1,2,...,r, where i and are
polynomials.

Let */p* represent the rational function Oi/O after common factors, if any,
have been removed. Eventually wi */*, so (3.20) yields. (n) + U,(n),(3.21) * (n + 1)_ x’ *0* (n + 1) .1 fi(n) * (n)

1, 2, , r. Now (3.21) holds for infinitely many integers; so it must hold in the
entire complex plane except for the zeros of *,..., ,*. We claim that 4’,’’", ,*
must be constants. To see this suppose the contrary and let *, be the denominator
having the zero, say zo, with smallest real part of all the zeros of a*,.. ’, ,*. Define

x() x()

[(z)= II ,*(z), [I(z)= II ,*(z).
i=1 i=1

Clearing fractions from the txth equation in (3.21) and setting n z0-1, we obtain

* (zo)II(zo- 1)
x()

(3.22) =4*(Zo) Y f,i(Zo-1)IIi(zo-1)?(Zo-1)+II(zo-1)U,(Zo-1).
i=1

* and * have noNow the right side of (3.22) vanishes, but ,* (Zo) 0 because , ,,
common factors, and II(z0-1) 0 because z0 has the smallest real part of all the
zeros of 4*," ", ,*. This contradiction shows that 41",’", 6,* are constants. It
follows that w1," ’, w, are eventually polynomials and (since y w l) the proof is
complete.

COROLLARY 3.6. Suppose the hypotheses of Theorem 3.4 are satisfied. If P or Q
is the identity matrix, then w, w, are eventually polynomials.

Proof. Suppose for definiteness that P is the identity. Then the system (3.14) has
polynomial coefficients, and the result follows from Lemma 3.5 and the fact that
w,..., Wr are eventually rational.

We will now turn our attention to sequences in (u, k, l, m) considered as a
function of their initial value. Let y(., t) and z(’, t) be sequences which satisfy (3.1)
and (3.2), respectively, along with the initial conditions y(0)= z(0). Let No be as
defined in Theorem 3.2. We will show that there is a finite sample J of integers and
T of complex vectors such that y(n, t)=z(n, t) for all n eJ and e T implies that
y(n, t)= z(n, t) for all n e No and e Cv. Let us first consider homogeneous systems.

THEOREM 3.7. Let T {t, t2, ", tv} be a basis for Cv, M be as in Theorem 3.2,
and suppose y and z satisfy (3.4) and (3.5), respectively. If y(n, t)= z(n, t) for all
n el(M) and e T, then y(n, t)= z(n, t) for all n eNo and e C.

Proof. We will first show that y and z are linear in the second variable. Let a,/3
be complex numbers and t, u e C. Then

e(n)[cey (n + 1, t) + fly (n + 1, u)]

=P(n)[aP-(n)A(n)y(n, t)+flP-l(n)A(n)y(n, u)]

A (n)[cy (n, t) +/3y (n, u)].

536 JOHN H. ROWLAND AND LESLIE E. SHADER

Thus ay (n, t) + fly (n, u) satisfies (3.4). But ay (0, t) + fly (0, u) at + flu so the initial
condition is also satisfied. Thus

y(., at+flu)=ay(., t)+/3y(., u).

Theorem 3.2 implies that y (n, ti) z (n, tj) for all n No. Let be an arbitrary vector
from Cv. Then can be expressed in the form Yq=laiti, where ai,’", av are
constants. For any n No,

y(n, t)= i aiY(n, ti)= i aiz(n, ti)= z(n, t)
i=1 i=1

and the proof is complete.
THEOREM 3.8. Let T be a basis for C, M1 and M2 be the values given for M in

Theorems 3.2 and 3.3, respectively, and suppose y and z satisfy (3.1) and (3.2),
respectively. If y(n, 0)= z(n, O) for all n I(Ma) and y(n, t)= z(n, t) for all n I(M1)
and T, then y (n, t) z (n, t) for all n No and C.

Proof. Define u and v by

u (n, t) y (n, t) y (n, 0),

v(n,t)=z(n,t)-z(n,O).

Note that u and v satisfy the homogeneous equations (3.4) and (3.5), respectively;
hence by Theorem 3.7, u(n,t)=v(n, t) for all n N0 and tC. By Theorem 3.3,
y (n, 0) z (n, 0) for all n No and the result follows.

4. Examples. Let us present some examples to illustrate our theory.
Example 4.1. Consider the Taylor series whose partial sums are given by

y l(n (] + 1)x i.
1=0

Note that y can be generated by the system

(4.1)
yl(n + 1)= yl(n) + (n + 2)yz(n), yl(0) 1,

y.(n + 1) xya(n), y.(0) x.

This system is homogeneous and has polynomial coefficients of degree =< 1. For x fixed,
Theorem 3.2 would suggest that a program for this computation be tested for n
0, 1,..., 7 (u 2, k 1, =0). The theory given here does not provide a test to
determine whether or not x is handled correctly. However, the equation for ya is
uncoupled from yl; so Theorem 3.6 of [6] would suggest that y_ be tested for

n O, 1, x 1, 2, y2(O) O, 1.

It is interesting to note that the partial sums of this series can also be generated
by

(4.2)
zl(n + 1)=zl(n),+z(n), Z 1(0) 1,

n+3
z(n + 1) xz(n), z(0) 2x.

n+2

The question arises as to whether one can show that (4.1) and (4.2) are equivalent
by sampling. One cannot directly apply Theorem 3.2 because yz(n) # zz(n). However,
by attaching the equation for ya to (4.2) and the equation for za to (4.1) (and

TEST DATA FOR VECTOR-VALUED RECURSIVE SUBROUTINES 537

renumbering the coordinates), one can obtain two 3 by 3 systems to which Theorem
3.2 can be applied. Thus one can show (4.1) and (4.2) are equivalent by sampling on
the initial segment I(31) (u 3, k 1).

Example 4.2. Levy and Lessman [4, p. 234] derive the difference equation

U,,+==(n+I)[U,,+U,,+]

for the number of ways n parcels and n labels can be so muddled that no parcel has
its own label. Letting yl(n)= U, and y.(n)= U,/I we obtain the polynomial system

y(n + 1) y(n),

y2(n + 1)= (n + 1)y(n) + (n + 1)y2(n).

Theorem 3.2 would suggest that a program for this equation should be tested on the
initial segment I (7) (u 2, k 1, 0).

Example 4.3. Let us illustrate Theorems 3.4 and 3.6 by the two systems:

(4.3)

(4.4)

y(n + 1)= yl(n)+ny2(n)+ 1,

y2(n + 1)= (n + 1)yz(n),

z(n + 1)--(n + 1)z(n)+n + 1,

z2(n + 1) (n + 1)z2(n),

yl(O) 1,

y2(0) 1,

Zl(O) 1,

z2(O) 1.

These two systems have a common solution; namely, yl(n) zl(n) n! +n, y(n)
z.(n) n!The matrix C PB- QA from Theorem 3.4 is given by

C=
0 0’

This can be transformed to lower triangular form if we multiply on the right by

V=
0 1’

After making the change of variable y Vw we obtain (3.13) with

H(n)= (10 00), T(n)= (n).
This implies that w(n)=-n. Since w=y we have w2(n)=n!. After computing
F, G, U, and X we obtain from (3.14) and (3.15) the new systems:

(4.5)

(4.6)

w(n+l)=w(n)-l,

w(n + 1) (n + 1)w2(n),

w(n+l)=-(n+l),

w(n + 1)-- (n + 1)w(n),

w(0) 0,

w2(0) 1,

wI(O) O,

w(O) 1.

Note that wx is a polynomial, and the equations for W2 are the same in (4.5) and (4.6).

$. Concluding remarks. Bounds have been given for the size of an initial segment
which can be used to uniquely identify solutions to systems of difference equations
with polynomial coefficients of limited degree. These bounds are given in the spirit
of existence theorems; it would be interesting to know whether they are sharp.

The forcing function R in (3.1) can be any function which satisfies a linear first
order polynomial system of difference equations. To see this simply imbed the system

538 JOHN H. ROWLAND AND LESLIE E. SHADER

which generates R into a larger system as was done in Lemma 2.3. It would be
interesting to know whether the coefficients of A could also be taken to be functions
satisfying polynomial difference equations. Another direction for further research
concerns the case where the coefficients are functions of a parameter as illustrated by
Example 4.1 and [6, Thm. 4.8].

REFERENCES

[1] F. R. GANTMACHER, The Theory ofMatrices, Vol. 1, Chelsea, New York, 1959.
[2] J. B. GOODENOUGH AND S. L. GERHART, Toward a theory of test data selection, IEEE Trans.

Software Engng., SE-1 (1975), pp. 156-173.
[3] W. E. HOWDEN, Elementary algebraic program testing techniques, Tech. Rep. 12, Computer Science

Dept., Univ. California at San Diego, La Jolla, CA, 1976.
[4] H. LEVY AND F. LESSMAN, Finite Difference Equations, Pitman, London, 1959.
[5] J. H. ROWLAND AND P. J. DAVIS, On the use of transcendentals for program testing, J. Assoc. Comput.

Mach., 28 (1981), pp. 181-190.
[6] ., On the selection of test data for recursive mathematical subroutines, this Journal, 10 (1981), pp.

59-72.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0009 $01.25/0

ONE STEP TRANSFORMATION OF PERIODIC SEQUENCES
BY CELLULAR AUTOMATA*

HISAO YAMADAS" AND MASATOSI IMORIS"

Abstract. Consider a cellular automaton in one dimension, having m letters as the states of the
constituent finite state automata, called cells. It is shown that, once the number of neighbors connected to
each cell is fixed, there exist periodic sequences in m letters such that the cellular automaton is not capable
of transforming them in one step into periodic sequences in (m- 1) letters, preserving at the same time
their primitive periods, regardless of the choices of transformation functions. Our proof is by the construction
of sequences which prevent any given cellular automaton from performing the task.

Key words, alphabet reduction, cellular automata, multiple neighborhood, prime pattern, primitive
period, periodic sequence, sequence mapping, transformation

1. Introduction. In this note, we shall study a property of the simplest and perhaps
the most basic cellular automata, namely, those in one dimension having contiguous
neighbors for each constituent cell. In particular, we are concerned with a connective
property of periodic configurations in such automata. Since the next state which each
cell of a cellular automaton will assume is determined in terms of the state information
of a fixed number of its neighbor cells, there is an intrinsic connection between periodic
sequences constituted by the states of cells and the behavior of the cellular automaton
having such a repetitive structure in its cell interconnections. Hence we regard as one
of its basic properties what a cellular automaton is or is not capable of doing with
repetitive sequences.

In the present note, we shall study the following question. Suppose the set of all
periodic sequences in an alphabet of rn letters is given, rn-> 3. Does there exist a
one-dimensional m-state cellular automaton with the neighbors of a finite and fixed
number of contiguous cells such that, when its configuration is a periodic sequence,
the cellular automaton is always capable of transforming in one step the given periodic
configuration into another periodic configuration consisting of m 1 letters and having
the same primitive period as before, by a suitable choice from its possible transition
maps.

As stated, the type of cellular automaton we consider here is not autonomous;
that is, we may choose any transformation among all possible ones, after the present
configuration is given.

For degenerate cases where the number of neighbors connected to each cell is
one (i.e., the cases which are shift equivalent to the one in which each cell is isolated
without having any other neighbors but itself), we have given a negative answer as
well as the greatest lower bound on the primitive periods of those sequences which
elude the action of such cellular automata (Imori and Yamada (1981)).

In what follows, a negative answer is given also for the cases where the number
of the neighbors is any fixed integer. The proof is by exhibiting for any given cellular
automaton a way to construct an example of periodic sequences which will baffle its
action. However, we have not yet succeeded in obtaining the greatest lower bounds
for these primitive periods.

The negative results we have obtained are not surprising after the fact, because a
cellular automaton has a fixed neighborhood size for all cells, yet it is required to

* Received by the editors August 14, 1981, and in revised form September 9, 1982.
5 Faculty of Science, University of Tokyo, Bunky6-ku Hong6, Tokyo 113, Japan.

539

540 HISAO YAMADA AND MASATOSI IMORI

process in one step any sequence whose primitive period is not bounded. However,
our overall proof is not a simple one. It is along the line of a lengthy proof for the
degenerate case worked out in our previous note mentioned above.

In recent years interest in theoretical aspects of uniform arrays seems to have
declined in spite of the fact that most of what has been shown in the theory so far
appears to have solid substance and beauty. The reason for such a waning may
be that theoretical treatment of cellular spaces is tedious and difficult because it
demands concurrent processing of unbounded numbers of parallel elements. In order
to develop a well coordinated theory of cellular spaces in all directions, we feel that
systematic examination of this parallelism from the elementary structure upward is
first needed. At the most fundamental level of this lies the study of parallel actions
of maps, namely the case for the neighborhood size of one, although this obvious fact
is often overlooked in the study of cellular spaces. Our previous work mentioned
above was an attempt into such a direction, and the present note is its extension to
cases for a larger neighborhood.

2. Cellular spaces and cellular automata. Cellular spaces and cellular automata
have been defined in several different ways. In what follows, we shall use basically
the same definition as in Yamada and Amoroso (1971), but only in one dimension,
and also with certain constraints, which will serve for the present purpose.

Let Z be the set of integers. A one-dimensional cell space, also denoted by Z,
is defined as the set of all integer coordinates, which may be called cells, in one-
dimensional Euclidean space. Let X be a finite subset of Z called an index set of
neighbor cells, or a neighborhood index. For any cell z Z, set {z + x Ix X} is called
the set of neighbor cells of z with respect to X.

When X is fixed, we have a mapping from a cell to the set of its neighbor cells as"

explicitly defined by

N Z ZIxl

N(z)={z+xlxX} for allzZ.

A polyautomaton is a system which consists of regularly connected identical or
similar automata. A cellular automaton is a polyautomaton in which each cell is a
finite state semiautomaton with alphabet A, called state set (whose members are
interchangeably called states, symbols, or letters) and with the input consisting of the
states of its neighbor cells. Hence the transition function of the semiautomaton is a map

o-:A Ixl A.

When we have a need, we shall express the cardinality m of A as its subscript, i.e.,
Am when IAml- m. (Note that this definition implies the deterministic nature of the
semiautomaton.)

Furthermore, all cells of a cellular automaton, one at each z Z, are required to
change their states according to the same transition function r at any given step in time,
although o- may be different at different time steps.

In order to describe such global transitions of cell states, we employ the notion
of configurations which are distributions of states over all of Z. Namely, for a given
state set A of finite state semiautomata, a configuration over Z is a map

c:ZA.

TRANSFORMATION OF PERIODIC SEQUENCES 541

The set of all such configurations is represented by

C=AZ={clc. ZA}.
Hence a transition in the cell space is a transition among configurations.

Let ’:C C be a transition function on configurations. Then - may be defined
in terms of N, X and o- as

N zIxI c)Xl

7"(c) =c’:c"Z AIxl A,

where

c I’l[z I,1] c I)[{z, Z2," ZlXI}]

={c(z),c(z2)," ,c(zlxl)} (zieN(z), 1--<i--< IxI).
r and - are called a local map and a parallel map (or a global map), respectively.
The term "cellular automaton" is sometimes used to define a more restricted system
with a fixed neighborhood index and a single parallel function for all cells for all time
steps. In such cases, our present system with a fixed neighborhood index but with a
set of parallel functions to be used at different time steps is called a tessellation
automaton. We shall use cellular automaton to refer to both.

In summary, a cellular automaton is a system to be defined by a 4-tuple

MA,X (A, Z, X, T),

where

A nonempty state set,
Z one-dimensional cell space,
X neighborhood index, X Z,
T the set of all parallel functions -" C - C, arising from A and X.

In this note, the interconnection pattern among cells is arbitrarily chosen so that cell
receives interconnections from (n 1) cells; cells (i-n + 1), (i-n +2),.. , (i- 1),

for n _-> 1. (However, as long as n neighborhood cells are contiguous, they may be
shifted in either direction for any distance with the resulting image shift.) It follows
then that cell is connected to cells (i + 1), (i + 2), ., (i + n- 1). The information
transmitted through each connection is the present state of the cell from which the
interconnection originates. Each cell also utilizes its own present state in addition to
the state information from (n 1) other cells. Hence cells (i -n + 1), (i -n + 2), ,
are the neighbor cells of cell i, called the neighborhood collectively, and IXI n.

Furthermore, it suffices to write M]AI.IxI, instead of Ma,x. Hence we also write X,
for X with IXI n.

3. Sequences and the problem. Because of the nature of the problem we will
study, configurations will be called sequences, which they are, for one-dimensional
cases.

The image of Z under the sequence c is written c(i), and referred to as the
ith letter of the sequence. When it is necessary to explicitly indicate the size of alphabet
A, we shall use a subscript, for example, A,, for A. By a pattern, we mean a partition
of Z. For any aic(Z), let B--c-l(ai), then B (, Bil")Bi= Q if if, and
(-J,,z) B Z. Hence c- defines a partition II(c) on Z, called pattern c. Bi is called
a block of H(c). Conversely, for a given tn block partition Hn of Z (i.e., a pattern),
there exists a sequence c 6A z., such that H(c)= II’), which is unique up to the

542 HISAO YAMADA AND MASATOSI IMORI

permutation of letters in A,. Hence, in the following sections we will often study
sequences in terms of their patterns. However, we on occasion retain nomenclatures
from sequences.

For any S

Z and k Z, we let S + k denote {x + k lx S}, which is a translation

of S by k. Let the period set of c be defined by P(c) {k I(Vz Z) (c (z + k) c (z))}.
Similarly the period set of B, by P(B)= {klB + k B}. Whenever it is convenient, we
denote by tk a translation by k, i.e., a mapping z z + k. Unless explicitly so stated,
we assume from now on that tk is not the identity translation. Define the period set
P(1-I) of a pattern II by {kl(VBiII)(t(Bi)=Bi)}. Clearly, for any sequence c Az,
P(rI(c)) P(c). It is easy to see that these period sets are free modules with operator
ring Z. For each c Az, define the primitive period, denoted by zr(c), as the smallest
positive element of P(c). If such zr(c) does not exist, i.e., P(c)= {0}, we may let zr(c)
be w, the smallest transfinite ordinal. However, we assume zr(c) w throughout the
rest of this note. Similarly, the primitive period zr(B) of B and the primitive
period zr(II) of rI are defined. Let Z={clcAZ and 7r(c)o}. The elements of
Az are called periodic sequences. Note that c with 7r(c)= 1 are also included.

Let T,,.n be the set of all parallel maps. The choice of parallel maps available to
M,,,n may be thought of as the input to Mm, originating external to Mn.,. Viewed
in this way, a cellular automaton may also be represented as M,,. (A Zm, T,,.n), where
Az is the set of all configurations and T,, is the set of all inputs which cause transitions
among configurations. If m => 2, then M,,.n is a semiautomaton with a nondenumerable
state alphabet and a finite input alphabet. Our study herein is on a particular problem
of the connectivity among periodic configurations of this semiautomaton.

Formally, the problem is’ Given m and n, does there exist c in A,, such that for
any parallel map r with m symbol alphabet and contiguous neighborhood of size n,
either ’(c) has fewer than m symbols and the primitive period of ’(c) is smaller than
that of c, or else -(c) has all m symbols?

Intuitively, we are concerned with whether or not the number of constituent
letters of periodic sequences can be reduced by a cellular automaton without changing
the periodicity. For example, if we take the sequence

AABICACBAACBCAABICAC

of primitive period 12, consisting of {A,B, C}, and consider mappings {A, B, C}-->
{A, B}, {A, C}, or {B, C}, (which may be collectively thought of as a cellular automaton,
having IXI n 1), then,

(1) {A -->B, B -->B, C ->C} reduces it to

BBBICBCBBB ICBCBBB ICBC
Similarly

(2) {A ->C, B ->B, C -->C} to

CCB CCCB CCCB CCCB CCC

(3) {A ->A, B ->A, C -->C} to

AAA CACAAA CACAAA CAC

(4) {A-->A, B-->C, C->C} to

AAC CACCAACCCAAC CAC

TRANSFORMATION OF PERIODIC SEQUENCES 543

(5) {A -->A, B -->B, C-->A} to

AAB]AAAB[AAAB[AAABIAAA
(6) {A -->A, B -->B, C --B} to

AAB[BABBAABBBAAB[BAB
The cases where n 1 are reported in Imori and Yamada (1981). For the case

where m 2, the nonexistence of such c is obvious for any n because all c e Az have
~Zperiod 1. We shall show below that, for all m _-> 3 and n -> 2, a c e A,, exists whose

primitive period is reduced by any z of the parallel maps if the cr reduces the number
of letters.

4. Prime patterns and channel matrices. Let M,.,n (A", Z, Xn, T,.,.) be a cellular
automaton, each cell of which has the state alphabet of m letters, and n contiguous

’Zneighbor cells. We say that an m letter sequence c e A" is an (m, n)-prime pattern if,
~Zfor any r e T",. such that z(c)eA"_l, z(c) has a smaller primitive period than that

of c. In the next section, we shall establish the existence of (m, n)-prime patterns for
any m -> 3 and n > 1. The proof is by showing a procedure for the construction of an
(m, n)-prime pattern for any such m and n, which we now begin.

Let L",n be the set of all local maps tr’A-A", from which the set of parallel
maps T.,n are derived. Define L and L’, which are subsets of L",. such that

(i) tr e L =>tr(A) A",
(ii) L’=L",.-L.

Then
PROPOSITION 4.1. The number z of distinct maps in L’ is given by

z L’= m (m 1)"".

Proof. There are m" possible combinations of letters for n arguments. Since
cr eL’ can have at most (m- 1) letter values for each of these, there are (m- 1)""
different assignments of letter values. Also there are m different choices for the missing
letter.

We shall assume that all maps of L’ are arbitrarily ordered, then indexed in that
order.

Let A be the set of all semi-infinite sequences, to the left, of letters in A,,, and
let A +" be likewise to the right. For any o" e L’, let r be its parallel map. Then

PROPOSITION 4.2. (Ix eA) (=:lk >-n) (/veA
(u (a) #- u (2) and z,(xu(1)vy) "r,r(xu(2)vy)).

Proofs. In the images z,(xu(1)vy) and -,(xu()vy), the subsequences of the image
of x from the left are obviously identical. Hence the possible difference starts from
the leftmost point of u on. Take the image subsequences from there to the end of
the images of u (1) and u (2) Since u (1) and u (2) e A k (1) (2)u and u may be chosen from

km possible choices for any fixed veA"-1,. On the other hand, the number of
all possible choices of the images of u(X)v and u(2)v, whose length is k +n-l, is
(m 1)k+"-1. Hence, if we choose the smallest k such that

k)k+n-1m >(m-1

which may be always satisfied by choosing k large enough, then there is at least one
image which has at least two distinct preimages having the same right end of length
n-1.

We shall make use of this k below.

544 HISAO YAMADA AND MASATOSI IMORI

We will make use of a De Bruijn sequence of order m and degree n below,
which is the shortest sequence consisting of m letters such that every possible length
n sequence in m or less letters appears at least once as its subsequence (De Bruijn
(1946)). It may be given in a circular form, or it may be opened into a finite linear
sequence.

PRO’OSITION 4.3 (Good (1946)). The shortest linear De Bruifn sequence o] order
m and degree n has the length m + n 1.

The first step of the construction of an (m, n)-prime pattern is to set a framework
for the pattern. For any given cellular automaton M,,,, (A,,, Z, X,, T,,,n), take a
[(k + n 1) m (m 1)"" + m + n 1] x q matrix, called a channel matrix, where q
is to be determined later. Its rows are partitioned into region I, consisting of (k + n-
1).m. (m- 1)’’" rows, and region II, consisting of m +n- 1 rows. Each row will
be called a channel. Region I is in turn partitioned into z m. (m- 1)"" bands
consisting of k + n- 1 channels. The overall structure of these channels is shown in
Fig. 1. Note that the number of bands is the same as the number of maps in L’ and
k + n- 1 is the length of u (i)v in Proposition 4.2.

Next, take band consisting of n + k 1 channels in region I, 1 =< -< z, and look
at the first two columns, referring to Fig. 2. In order to fill these two columns, assume
that the lower (left) ends of the first two columns of band i- 1 are filled with the
identical vertical sequence vi-1 of length n- 1. Using this v-i as the tail end of x in
Proposition 4.2, determine u (1)i ,Ui(2) and (arbitrary) v for o’iEL’ as was done in the

Co umn s

1112 Channel s Bands Regi ons

k+P,-! 1

I k+n-i 2

k+n-i

k+n-i m(m-l) mn

mn+n-i

FIG. 1. Structure of channel matrix.

TRANSFORMATION OF PERIODIC SEQUENCES 545

Co umn s

Vi_l

all o12 a13
a21 022 023

all a]2 aj2

0 S a S a S

a t a t a t

pr(i) pr(i)

Channe s

a a a o

a (] O (]

1

2

aj2 ajl aj2 aj2

a S a S o S a S

aj2

0S

a t a t a t a t a t

a].2 a22 aj2 as
--all o21 ajl as

ak+n_ i, 2

ak+n-l, ull)

t=k+n

1

,V

,V

FIG. 2. Structure of band in region I.

(1 (2)_proof of the proposition, and fill columns 1 and 2 respectively with u i)vi and u v
vertically. Clearly this procedure fills the lower ends of column 1 and 2 with the
identical vertical sequence vi of length n 1, satisfying the assumption for band + 1.
Hence, if we only assume that the first two columns of band 1 are vertically preceded
by an identical sequence of length n- 1, a (al A,), then the assumption induc-
tively holds down to the last band, and we are able to fill the first two columns
completely from band 1 down to band z.

In order to complete the filling of region I, start from band 1. For band i, choose
the th smallest prime number p, and check channel by channel whether or not the
letter in column 1 is the same as that of column 2. If not, fill the channel from the

(pi--1)left by the repetition of aa2 up to column q 1-I= p, where z is the number of
bands, pi is the th prime, ai, and a are the letters found in columns 1 and 2,

(m-) denotes the (pi- 1) repetition of letter a.. Using the same p,respectively, and a
do similarly for all channels of the band having different letters in columns 1 and 2.
If two letters found are identical, say a, between channels 1 and 2, then the entire
channel will be filled with a. This procedure is repeated for all bands from 1 to z.

546 HISAO YAMADA AND MASATOSI IMORI

Co umn

n

bI b1
b2 b2
b3 b3

b b

oI o1
oI o1

,al al

2 3 (toq)

bI
b2
b3

b

(]1
oI

1

-n+2

;-n+3

=mn+n-1

I b2 b bB n a-I

J De Bruijn sequence ;nding in VO=aI-I
FIG. 3. Structure of channels in region II.

In order to fill the channels of region II, take a linear De Bruijn sequence of
order m and degree n, and fill with it each column of region II vertically from the
top to the bottom (see Fig. 3). The number of channels thus required is ran+ n- 1,
as was stated by Proposition 4.3. Any one of the De Bruijn sequences of order m
and degree n will suffice, and the one we choose in Fig. 3 is the one which ends in
n-1 n--1 (li)/.)al in order to match with the arbitrarily chosen a end of the prefix for u

of band 1, for that is what this De Bruijn sequence would become in the construction
below.

Referring back to Fig. 1, we now have the entire channel matrix filled. Each of
m + n 1 channels of region II is filled with an identical letter. In addition, there are
at least (n- 1). m (m- 1)"n channels of region I so filled because of the existence
of vi, 1 <= -<_ m (m 1) ran, whose length is n 1. Hence:

PROPOSITION 4.4. There are at most k m (m 1)"*n channels in the matrix which
contain periodic sequences whose primitive periods are prime numbers, distinct from
band to band, but identical among channels within a band.

Let us call the actual number of such channels r,

(2)r Y D(ul) Igi < k m (m 1)""
i=1

where D (x, y) is the distance between sequence x and y (i.e., the ntimber of locations

TRANSFORMATION OF PERIODIC SEQUENCES 547

where x and y have different letters). Furthermore let d be the actual number of
channels which are filled with a respective single letter, then

r+d=(k +n-l) m (m- 1)’" +mn +n-1.

If we take q =PP(z), which denotes the product of first z prime numbers, where
z m (m 1)’", the number of bands, then all periodic sequences appearing among
the channels of Fig. 1 would for the first time end their periods on the qth column
together. Therefore, if we continue periodic sequences in channels to the (q + 1)th
column on, the same channel matrix would repeat itself to the right over every q
columns.

5. (m, n)-prime patterns. In order to construct an (m, n)-prime pattern, refer
to the completed chanel matrix of Fig. 1, and let w. be the sequence made up of letters
of column] from the top down. By a standard pattern (with respect to a channel
matrix), we shall mean the (infinite) periodic sequence h made up of the repetition of

f--" W1W2" Wj Wq

where f is the concatenation of all column sequences wj in the order of column
numbers, and q =PP(z) as discussed in the preceding section. We shall call this
concatenating process the multiplexing of channels.

The standard pattern h thus constructed here is a specific example of a more
general class of patterns called d-diluted R-patterns, which we have studied in Imori
and Yamada (1981), where d is the number of channels consisting of single letters,
as discussed in the preceding Section, and R is a set of positive integers which are
relatively prime in pairs. In the present case, R is the set of the lengths of basic
sequences from which the sequences of those channels containing periodic patterns
are generated. Thus, in the present case, R is the set of the smallest z prime numbers,
leading to :R =’ z, where z was first given in Proposition 4.1.

PROPOSITION 5.1. The primitive period of standard pattern h is given by rr(h)=
(r + d) PP(z).

Proof. Take a channel in the channel matrix.which contains more than one letter
in it, namely a channel whose sequence is a repetition of, say ajlai2ai2...ai2 (see
Fig. 2), to be denoted by blbE"’bei. After the multiplexing of channels to form h,
the letters of this blb2 "_bei_have their respective places in the multiplexed sequence
h, to be denoted by hi, bE," ",b-er Now take /71 and translate it by r(h),

-,then we naturally find another one of the same letter b there, to be denoted by b 1.

It arose through multiplexing from one of the channels in the channel matrix. Denote
by b the "preimage" of letter/;1 with respect to the multiplexing.

Next, take the original bE and repeat the same procedure, and find bE, b and
b. Since/71 and b-2 are (r + d) apart after multiplexing,/7 and/7 are also (r + d) apart,
hence b and b must be on the same channel in the matrix. Continuing the same
procedure to the last Dei and then repeating the whole procedure once more, we will

,)2obtain (b’b’2 ’’’bei on the same channel of the matrix as its subsequence. Clearly
is the same as that ofb’b’2...be=ailaj2 ..a2 and the period of b’b’2"’be,

ajla a. Hence the channel for bib2 be and the channel for b ’b b ei belong
to the same band, because each band is given a unique prime number for the period
of the sequences in the channels. We denote by p the period of the band.

Let the channel for bib2"" bei be row m in the channel matrix and the channel
forbb...b’ be rowm’ We show that m=m’ If m m ’, then all the channels
for row m + n d, where d m- m’, 0 < Idl < k and n e Z, have the prime number p
as the period of the sequences. But there exists no such that the channel for row

548 HISAO YAMADA AND MASATOSI IMORI

m + no’ d belongs to a band which has prime number p’ not equal to p as the period
of the sequences in the channels, which is a contradiction. Hence the channel for
blb2"’bej and the channel for b’b& ""bej are the same one. This means that r(h)
is a multiple of (r + d)ej, and, as far as channel/" is concerned, translation t(r+a)ej by
(r + d)ej maps its sequence onto itself, and (r + d)e is the smallest such displacement.

Each of those channels which consist of a single letter is clearly mapped onto
itself by translation t(r/a) although (r + d) may not be the smallest such displacement
for some channels.

Finally, 7r(h) is the smallest common multiple of the displacements of all channels
in the matrix, which is clearly (r + d). PP(z).

PROPOSITION 5.2. The primitive period 7r(c) of a standard pattern is reduced to
some number less than 7r(c) by the parallel map ’ induced by any local map in L’,
the set of maps r A A,-I, for all A,-I Am.

Proofi From the construction of the channel matrix, there exists for each O"

a corresponding band in its region I (see Fig. 1). Again from the construction, band
contains at least one channel whose columns 1 and 2 contain distinct letters which

will map onto an identical letter under -, (see channel/" in Fig. 2). Let us say that
the length of sequence ala2a2...a2 of the channel is a prime number, pr(i). This
means that the primitive period of the standard pattern after the application of
reduces at least by the factor pr(i), which may be arrived at by an argument similar
to the one in the proof of Proposition 5.1.

POPOSITON 5.3. A standard pattern does not reduce the number of letters in it

after the transformation by the parallel map - which is induced by any local map in
L, the set of surfections

cr’A Am.

Proof. Region II of the channel matrix consists of columns of a De Bruijn sequence
of order m and degree n, containing as its substrings all possible sequences of length
n, consisting of m distinct letters or less. Since cr is a surjection, each letter of A,
must appear somewhere in the image of the De Bruijn sequence, which makes up
parts of the standard pattern, in fact q PP(z) times, after the multiplexing. [3

THEOREM 5.4. A standard pattern is an (m, n)-prime pattern, with primitive period
(r + d) PP(z).

Proof. Any tr L will induce a parallel map r which is ineffective to reduce the
number of letters of the pattern, by Proposition 5.3. On the other hand, any parallel
map r, induced by tr L’ reduces the primitive period of the standard pattern by
Proposition 5.2, as well as the number of letters. 71

Note that region II is incorporated into the standard pattern in order to cope
with the possibility, though unlikely, that the pattern generated b the multiplexing
of region I alone might retain the primitive period and yet reduce the number of
letters when acted upon by - arising from one of tr L.

If we compute values r and r + d for m 3 and n 2, we obtain r + d 4618 and
z 1536. Since PP(54) 7.09 x 101, PP(1536) is beyond our imagination. However,
this upper bound is a very generous one, arising from the fact that we wanted to show
a simplest construction procedure of an (m, n)- prime pattern first and chose a standard
pattern as a possible such example.

As an attempt to produce a shorter (m, n)-prime pattern, we note that, although
#L’ is m (m- 1)’n as we saw in Proposition 4.1, we do not have to give a band to
all tr in L’. Because of the symmetry, if we take only those maps L’m

TRANSFORMATION OF PERIODIC SEQUENCES 549

{tr]tr :A A, {a,,}}, then all other maps which would map into A, -{ai} for ai

ai a,, will be automatically taken care of.
Now take a channel matrix which has taken the above factor into consideration,

construct a pattern from it by multiplexing, and call it a reduced S-pattern. Then;
PROPOSITION 5.5. A reduced S-pattern is an (m, n)-prime pattern with primitive

period w PP(z’), where

w-(k+n-1).(m-1)’n+mn+n-1, z’=(m-1)"n.
For this reduced S-pattern, m =3 and n =2 gives z’=512, which is better

than the above, and the effect of the smaller z’ will be much more pronounced for
larger n.

We further note that the k we used in the discussion above does not have to be
a common constant for all bands, and it may be changed from band to band.

In Yamada and Imori (1982) we show a much more "economical" example of
(3, 2)-prime patterns with the primitive period of 2.33 1039, based on 58 channels
and 26 primitive generator sequences, which most likely is not the minimal, although
far shorter than the value obtained from the procedure described above.

6. Concluding remarks. We have established in this note that for any given
one-dimensional cellular automaton M,,.n of m states and n neighbors, m _-> 3 and
n _-> 2, there exist periodic sequences such that no transformation of M,. can reduce
the number of distinct letters in those sequences, without at the same time reducing
their primitive periods. So far we have failed to obtain the exact value of the minimal
primitive period of such (m, n)-prime patterns, except for n- 1 which is shown in
Imori and Yamada (1981). Even for such restricted cases, our proof is involved and
its extension to the general (m, n) case is expected to be much more involved.

M. Nasu has pointed out to us the following two facts:
(1) Although we have investigated the effect, on the period, of only those functions

which reduce the number of letters of periodic sequences by one, the technique we
used can be extended to include also those functions which preserve the number of
letters but have mutually erasable configurations (i.e., those configurations having the
same image) (Moore 1962), Myhill (1963) and Richardson (1972)).

(2) Region II of Figure 1 was used to place all possible sequences of length n in
the form of a De Bruijn sequence. However, by increasing the number of channels
in each band to k + n, we may transfer all m subsequences of length n in region II
to region I as the tail part of length n in arbitrary chosen m" of m (m 1)m" bands.

There are a number of interesting related problems which we have not investi-
gated. Some of them are:

(A) When m _-> 3 and n _---2 are given, what is the shortest primitive period which
admits an (m, n)-prime pattern? For n--1, we have shown in Imori and Yamada
(1981) that it is ,,C2" PP(,,C2). However, the bound we gave in Proposition 5.5 herein
is much larger than the minimum because it is a mere by-product of a specific
construction procedure we employed.

(B) When m _-> 3, n _-> 2 and k Z are given, what is the necessary and sufficient
condition Pm.z for k such that, for all c A,, if zr(c) k, then there exists M., which
maps c into A,_I while retaining the primitive period? One obvious example of k is
that k is a prime number (in this case for all m and n), but very little is known beyond
this trivial fact.

(C) In a more general formulation, let A, (k) be the set of all periodic sequences
in m letters whose primitive period is k. Then, eachA,(k) may be partitioned according

550 HISAO YAMADA AND MASATOSI IMORI

to destination under each transformation of M,,.n, for each n => 1, and the cardinalities
of each class be found.

(D) As the counterpart of (C) above, prime sequences may be classified according
to their structural properties, and their relation to the classification of (C) above may
be studied. The study of general properties of periodic sequences may be a prerequisite
to this study.

(E) In this note we have been concerned with one-step transformations. However,
a more general problem is first to transform sequences within A z. by a successive

A,,-1, all the whileapplication of various transformations, then reduce them into -z

keeping the primitive period intact. (This is a problem of the connectivity of periodic
configurations of M,,,n. The connectivity question has been studied by some authors,
but mostly within the set of "finite" configurations.)

(F) The above problem (E) may be restricted to a repetition of a single transforma-
tion in L {r]cr" A 7. A,.}. That is, the study of M,,. to see, after c z is given
whether or not r exists such that the successive application of r will take c into

,.-1, while keeping the primitive period intact.

Acknowledgment. We would like to extend our sincere appreciation to Professor
Masakazu Nasu of the Research Institute of Electrical Communication, T6hoku
University, who carefully read an earlier version of this report and pointed out some
errors in the original proof. We are also very much indebted to two anonymous
referees who have carefully read our manuscript and made numerous suggestions to
improve it.

REFERENCES

[1] N. G. DE BRUIJN (1946), A combinatorial problem, Nederl. Akad. Wetensch. Proc., 49, pp. 758-764.
[2] I. J. GOOD (1946), Normal recurring decimals, J. London Math. Soc., 21, pp. 167-169.
[3] M. IMORI AND H. YAMADA (1981), A noninjective mapping ofperiodic sequences by cellular automata,

Proc. 4th Australian Computer Science Conference, Brisbane, Queensland, Australia, May 11-13,
1981, pp. 222-250. (Also available as Technical Report 81-11, Dept. Information Science, Faculty
of Science, Univ. of Tokyo, April 1981.)

[4] E. F. MOORE (1962), Machine models of self reproduction, Proc. Symp. Appl. Math, 14, pp. 17-33.
[5] J. MYHILL (1963), The converse of Moore’s Garden of Eden theorem, Proc. Amer. Math. Soc., 14,

pp. 685-686.
[6] D. RICHARDSON (1972), Tessellations with local transformations, J. Comp. System Sci., 6.
[7] H. YAMADA AND S. AMOROSO (1971), Structural and behavioral equivalences of tessellation automata,

Inform. Contr., 18, pp. 1-31.
[8] H. YAMADA AND M. IMORI (1982), One-step transformation ofperiodic sequences by cellular automata,

Technical Report 82-06, Dept. Information Science, Faculty of Science, University of Tokyo,
March 1982.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0010 $01.25/0

TREE TRAVERSAL RELATED ALGORITHMS FOR GENERATING
INTEGER PARTITIONS*

TREVOR I. FENNERt AND GEORGHIOS LOIZOU"

Abstract. We define and characterize orderings of the set of partitions of a positive integer n obtained
by traversing the binary tree of the set of partitions of n in each of the three principal orders. Loop-free
algorithms for generating the set of partitions in each of these three orders and also in the three corresponding
reverse orders are derived. The asymptotic behaviour of each of these six algorithms is examined and
compared.

Key words, integer partitions, binary tree traversal orders, asymptotic analysis, loop-free algorithms

1. Introduction. In [5] a representation of the partitions of an integer n as a
binary tree T, was obtained. It was shown that preorder traversal of T, yields , the
set of partitions of n, in lexicographic order and this relationship was then utilized to
obtain a loop-free algorithm for generating , in this order. It was further shown
how the same approach could be used to derive an algorithm for generating , in
the order corresponding to the inorder traversal of T,.

In this paper, extending the results of [5], we derive these and other algorithms
in a unified manner and compare their asymptotic behaviour. After 2, which is
mainly devoted to definitions, in 3 we systematically examine and characterize the
orderings of induced by the traversal of T, in the three principal orders 1-9, p. 316].
Then, in 4, we proceed to derive loop-free algorithms for generating , in each of
these orders as well as in the three corresponding reverse orders. In 5, following
the approach employed in [7], we investigate the asymptotic behaviour of each of
these algorithms for large n.

Finally, in 6, we conclude that the asymptotic costs of all six algorithms will be
fairly similar for any reasonable computational model, although in the nonasymptotic
case this may not be so, even for quite large values of n.

2. Preliminaries. A partititon of a positive integer n is a finite sequence a

(a 1, a2," , ak) of positive integers (the parts of a) such that

(1) Og "" Og 2 "+" "}" Ogk

(2) c1 _-> c2 ->’’ ’->a.
We use , to denote the set of partitions of n. We will usually find it more convenient
to use a multiplicity representation in terms of the distinct parts of the partition a and
their respective multiplicities, i.e. if c has tnl parts equal to ill, m2 parts equal to
and so on, and if d is the number of distinct parts of a, then instead of (1) and (2)
we have

(3) m lfll + m2f12 +" -t- mdfld n,

(4) 1>/2 >’" ">rid, mi>=l for l<=i<=d,

and we write

(5)

* Received by the editors August 25, 1981, and in revised form July 27, 1982.
t Department of Computer Science, Birkbeck College, University of London, Malet Street, London

WC1E 7HX, England.

551

552 TREVOR I. FENNER AND GEORGHIOS LOIZOU

A variant of this notation that we will utilize in 4 is to express a as

(6)

where A_> 0 is the number of distinct parts greater than 1 and/x ->_ 0 is the number
of parts equal to 1, i.e.

A=d-1,
(7)

Thus (3) and (4) are now replaced by

(8) ml/1 + m2/2 +" + ma/3a +/x n,

(9) B >/2 >’ > fla > 1, rn ->_ 1

tz md if/3d=l,

/x =0 if/3d > 1.

for l <_- <_- A, /z->_O.

We refer to the three notations above as a-notation, -notation and -notation,
respectively.

The number of cases in the algorithms that we derive in 4 is reduced if we
define Bo and mo so that Bo>n and too> 1 (cf. [11, p. 193]). It is also convenient to
define ao to be the same as Bo. We therefore let

(10) ao=/30=m0=n +1.

A partition is a subpartition of a if the multiplicity of any distinct part of c
does not exceed its multiplicity in a. Y., denotes the subpartition of a represented by
fl ’/2 fit so that for any l, 0 < < d,

/+1 d

where 0 is understood to be the vacuous partition of zero.
If rg (a) is some condition on a then ,[rg (a)] denotes the subset of , satisfying

g(a), i.e. ,[g(a)]={ e,lg(a)}. Furthermore, given two conditions gx(a) and
g2(a), we write ,[gx(a), g:(a)] for the subset satisfying both conditions, i.e. {a e
,lg(a) and g:(a)}. We also extend this notation to more than two conditions, e.g.
,[Ba 1, ma 1, Ba-x > 2] is the set of partitions of n > 1 which have one part of
size 1 and no parts of size 2.

P, denotes #,, the cardinality of ,, and, similarly, we denote the cardinality
of .[(a)] by P.[(a)], etc. Hardy and Ramanujan [8] derived a number of
asymptotic formulae for P., the simplest of these being

1 42n/3

4n
where the relative error is O(n-/2). Starting from a more refined asymptotic formula,
we have shown [7] that, for small values of independent of n,

In [5] we obtained a representation of . as a binary tree T,. For any a n,
we define the left and right sons of a, L(a) and R (a), respectively, as follows:

L(a) is the partition obtained from a by replacing two parts of size 1 by one
part of size 2, but L(a)= nil if a has fewer than two parts of size 1.

TREE TRAVERSAL ALGORITHMS FOR INTEGER PARTITIONS 553

R (a) is the partition obtained by removing one part of size 1 and adding 1 to
the smallest part greater than 1 provided its multiplicity is unity (i.e. ma-1 1),
but R (a)= nil if a has no part of size 1 or if rna-1 > 1.

In 4, L(a) and R (a) are defined formally in terms of/3ix-notation.
We have shown [5] that these two functions, L and R, determine a binary tree

Tn, with root 1 n, which contains each of the partitions in 9n, i.e. for each a n there
exists a unique sequence of functions or l, r2,"’ ’, rt such that each ri, 1 <= i-< t, is
either L or R and

o’1(o’2(’’’ (o’t(ln))))=a.

3. Traversal orders of T,,. We now consider the orderings of , induced by the
traversal of T, in the three principal orders, viz. preorder, inorder and postorder [9,
p. 316]; the corresponding induced orderings of , are designated L-order, M-order
and P-order, respectively, and are denoted by <L, <M and < e. Although preorder
has been investigated in [5], we include these results in the present unified treatment
for completeness.

For any a , we define [a to be the closure of {a } under L and R, excluding
nil. Thus, from the remarks at the end of 2, we observe that [1"] ,.

The following lemma from [5] characterizes [a].
LEMMA 1. Let a (al, az,’’’, ak) and 3’ (71, yz,’’’, %) be any partitions in,, and let h be the number of parts of a greater than 1, i.e. h k- Ix. Then 3’ [a if

and only if
3"i ai for 1 <= <- h 1, 3"h =>ah.

From the definition of L and R, we then have:
COROLLARY 1. / [L(a)] if and only if

for 1 <= <= h, 3",+1 >= 2.

COROLLARY 2. 3’ [R (a)] if and only if
3"i Oli for 1 <- <- h 1, 3"h >- ah + 1.

We extend the relations <L, <M and <p to subsets of by defining, for any 111,
1-I2

_ ,,
II1 < II2 :>zrl < 7r2 for all 7rl e II1, 7r2 e H2.

(We also write 7rl < 1-I2 if II1 {7rl}, etc.)
We first consider L-order. For any a , for which L(c) nil and R (a) nil,

by the definition of <, we have

(12) c < [L(a)]< [R (c)].

If just one of L(a) and R(a) is different from nil, then (12) degenerates to either
c <[L(c)] or a <L[R (a)], respectively. (We observe that <t is characterized by (12)
since, by induction on the number of nodes in the subtree rooted at c, it follows that
there is a unique order on , satisfying (12) for all a ,.)

We have shown in [5] that < is in fact the lexicographic order on n (i.e., with
a and 3" defined as in Lemma 1, c <3" if and only if there is some l, 1 =< <-min (k,
s), such that ci 3"i for 1 =< < and O < 3"1); this result can be derived directly from
(12) with the aid of Corollaries 1 and 2.

Turning now to M-order, corresponding to (12), we now have

(13) [L(c)] <MC <M [R (c)].

554 TREVOR I. FENNER AND GEORGHIOS LOIZOU

If either L(a) nil or R (a) nil then either the left- or right-hand inequality disappears
from (13). (As with L-order, we note that <M is characterized by (13).) Again with
the aid of Corollaries 1 and 2, it is straightforward to show that (13) is satisfied if <M
is a lexicographic order in which the underlying collating sequence utilized is
2, 3, 4,.. n, 1 instead of the usual collating sequence 1, 2, 3,..., n. We thus obtain
the following characterization:

Remark 1. If a and 3’ are defined as in Lemma 1 then a <My if and only if
there is some l, 1 -< <- min (k, s), such that

and

for 1 -< < l,

either 1 < at < 3, or a > , 1.
MRemark 2. If we define a 1-1 mapping on n by a a where

M a/ {a, ira,> 1}n+l ifa=l
for l <_- -<_ k,

M Mthen a <My if and only if a <L3’
Finally, we consider P-order. In this case, corresponding to (12), we have

(14) EL(a)] <e ER (a)]

As expected, this degenerates to [L(a)]<pa or [R(a)]<pa if R(a) or L(a) is nil.

(Again we note that <p is characterized by (14).) This case is rather more involved
than the two preceding cases. However, a careful examination of the conditions
required for (14) to hold yields the following characterization:

Remark 3. If a and 3’ are defined as in Lemma 1 then a <p3" if and only if there
is some l, 1 <-- <-min (k, s), such that

(15) ai=3, forl<-i<l,

and either

(16) 1

or

(17) al > 3,1 3,/+1 1.

It is straightforward to show that the order characterized by Remark 3 is a total order
on n and, by using Corollaries 1 and 2, that it satisfies (14). This proves Remark 3,
since <p is characterized by (14).

The following lemma relates <p to <. in a similar manner to the relationship of
<M to < given by Remark 2.

LEMMA 2. Let a (a l, a).,..., ak) and 3" (3"1, 3"2,’’’, 3"s) be any partitions in
and let h’ max (1, the number of parts of a greater than 1), with h defined

similarly. If a 1-1 mapping on 9 is defined by a - a P, where

p p {Ol.i irish’}(18) O (01, Eel," 0), 0/P-" fOl" 1 < <k,
2n-ai ifi=h’

P 3"P.then a <p 3" if and only if <
(We note that (18) is just one of several similar mappings for which this result

holds.)

TREE TRAVERSAL ALGORITHMS FOR INTEGER PARTITIONS 555

Pro@ Let us assume that a <py. Then by Remark 3, there exists l, 1 <-_ l-<
min (k, s), such that (15) and either (16) or (17) hold. Suppose first that (16) holds.

> 1. It thus follows that a " a Yl ya. this togetherWe then have h’ > + 1 and h v
P Pwith (15) implies that a <cy Next suppose instead that (17) holds. We now have

l- 1 thenthat h’ > and h’v 1- 1 or 1. If h
O I-1 a I-1 ")/I-1 < 2n ’)/I-1 Y 1,

P PP P. =l then a<2n-al<2n-y=y, so again a <t.yso a <L Similarly, if h v
P PConversely, if a <y then O (p since (p is a total order on , and <L is a

Ptotal order on the image of , under the transformation a - a 71
The following remark follows directly from Remarks 1 and 3.
Remark 4. If l, the least value of for which ag # 7, is such that a+l> 1 and

y+l> 1, then the relationship between a and 7 is the same for each of the orders
<, <M and <p.

4. Algorithms for generating .. We now describe algorithms for obtaining the
successor of an arbitrary partition a s , for the various orders. , may then be
generated by repeated application of any of these algorithms. For any order, we define
the successor of the last partition to be nil. Moreover, for symmetry, it is convenient
to define the successor of nil to be the first partition in the relevant order, although
the algorithms do not check for this case.

4.1. L-order, M-order and P-order. In [6] concise algorithms were obtained for
finding the preorder, inorder and postorder successors of a node in a triply linked
binary tree (i.e. one having additional pointers from each node to its father). If L(v),
R(v) and F(v) denote the left son, right son and father of the node v, respectively,
then these algorithms take the form

procedure Presucc (v) :result is v
if L(v) nil then v L(v)

else while R (v) nil do Ascend (v)
vR(v)

procedure Insucc (v) :result is v
if R (v) nil then Descend (v)

else Ascend (v
procedure Postsucc (v):result is v

if isrightson(v) then v F(v)
else v - F(v

while R (v) nil do Descend (v),

where the procedures Descend and Ascend are defined by

procedure Descend (v
v-R(v)
while L (v) nil do v - L(v)

procedure Ascend (v
while isrightson(v) do v F(v)
v,--F(v)

and the predicate isrightson is defined by

isrightson (v (v R (F(v))).

(Algorithms for traversing triply linked binary trees presented in a rather different
form from those above may be found in [1].)

We now turn to the case when the tree to be traversed is T,. First we give formal
definitions of L and R in terms of /3/x-notation. However, in order to reduce the

556 TREVOR I. FENNER AND GEORGHIOS LOIZOU

number of cases in the various algorithms derived in this section to manageable
proportions, it is convenient to express the resulting partitions using a relaxed form
of B/z-notation in which (9) is replaced by

(19) fll=>fl2->...=>/a>l, m;_->0 for l _--< _--< A, /z_-->0.

We refer to this relaxed form as nonstandard//z-notation to distinguish it from the
standard ritz-notation defined in 2. For the remainder of this section we assume that
n => 4, although some of the algorithms are also applicable for smaller values of n.

From (6) we immediately see that

a21 lt*-2 if/z _-> 2,
L(a)=

nil otherwise,

+ 1) 1 "- if/Z _-> 1 ^ ma 1,
R (a)

nil otherwise.

Also, if a # 1", isrightson (a) is true if and only if/3a > 2, in which case

F(a) R-l(a)= A-Ia-1 (A-- 1) 1 +1.
It is now straightforward to verify that the effects of the procedures Ascend and
Descend, for a ,-{1"}, are

(20) Ascend (a)" a ---,A--I a-I 1 +Ba,
(21) Descend (a): a * Xa-x(a + 1)2-1,
where, for brevity, we introduce the notation : =/(/z + 1)/2J, h (/z + 1) rood 2.

Notes. (a) Descend (a) is only defined if R (a) nil.
(b) In the three successor algorithms, Ascend(a) is only ever invoked when

R (a) nil and Descend (a) when R (a) nil.
Using the above results, we now derive versions of Presucc, Insucc and Postsucc

for v a T. We call these L-succ, M-succ and P-succ, respectively.
L-succ. When/z -> 2 the result is immediate. If either/z I or if/z 0 and m> 1,

then Ascend is performed m- 1 times. However, if/z 0 and m I then, in general,
A> 1 and Ascend is performed ma-x times; when A 1 then a is n which has no
preorder successor. We thus obtain

L-succ (a) eond

(L1) /z ->2 -+ a21-2

(L2) /z 1 v ma> 1 "-> h_l(h + 1)11 +ea(ma-1)-I

(L3) A-> 1 -+ Xa-2(/a-1 + 1)11 -1("--’-1)+-1

(L4) true -+ nil

end.

M-succ. On using (20) and (21) and the definition of Insucc, we obtain

M-succ (a) cond

(M1) /z _>- 1 ^ma 1 -*---A--I(/A "+" 1)12-11 x

--1

(M3 true - nil

end.

TREE TRAVERSAL ALGORITHMS FOR INTEGER PARTITIONS 557

P-succ. If/a > 2, then the result is immediate. Otherwise, if/a 2, Descend is
performed zero or more times, beginning with the partition F(a)= Ea_12"-11/
until this partition is transformed into a partition a * for which R (a *)= nil. If ma >
then R (F(a))= nil, so Descend is not performed; this is also the case if ma 1 and
either A 1 or ma-1 > 1. Otherwise Descend is performed at least once and the first

+application transforms F(a) to a where

+ {a_312 1 if mA 2,
a

Ea-2(/a- + 1)2 1 if ma 1.

Now R (a +) nil unless K <= 1 and A 1, i.e. unless/x 0 or 2. For R (a +) to be nonnull
in the case/x 0, we also require/a- > 3 if ma 2 or/a-2 >/a- + 1 if ma 1. In
these cases Descend now yields a partition a* with no parts of size 1, so R (a*)= nil.
We therefore see that Descend is performed at most twice and thus we obtain

P-succ (a) cond

(P1)

(,)

(P3)

(P4)

(PS)

(P6)

(PT)

(P8)

(P9)

.-> nil

a-/3 -1 (/3- 1)1’+

ma>2v(ma=lAma_>l) a-2m’x-ll
eond

0 a- > 3 a_14

=2 a_3

true a_132 1 x

end

cond

N 0 a-2 >a- + 1 a-(a- + 2)

2 a-2(a- + 1)13
true a-(a-1 + 1)2 1 x

end

end.

4.2;. The three reverse orders. The traversal algorithms for an arbitrary binary
tree in the three reverse orders can be obtained immediately by interchanging the
roles of left and right in Presucc, Insucc and Postsucc. This yields the following
procedures.

procedure Prepred (v): result is v
if isleftson (v) then v -F(v)

else v F(v
while L(v) nil do R-Descend(v)

procedure Inpred (v): result is v
if L(v) nil then R-Descend(v)

else R-Ascend (v

558 TREVOR I. FENNER AND GEORGHIOS LOIZOU

procedure Postpred (v): result is v
if R (v) nil then v <- R (v)

else while L(v)= nil do R-Ascend (v)
v<--L(v),

where the procedures R-Descend and R-Ascend are defined by

procedure R-Descend (v
v<--L(v)
while R (v) nil do v <-- R (v)

procedure R-Ascend (v
while isleftson(v) do v (--F(v)
v<--F(v)

and the predicate isleftson is defined by

isleftson (v =- (v L(F(v))).

Note. Prepred is obtained by interchanging the roles of left and right in Postsucc,
and similarly for Postpred and Presucc.

When v c Tn we call these predecessor procedures L-pred, M-pred and P-pred,
respectively.

It is easy to see that isleftson (a) is true if and only if/3a 2, in which case

F(a) L-1 (a) Za_12"-1"+2.

Thus the effects of the procedures R-Ascend and R-Descend for a n are

(23)

Notes. (a) R-Descend (a) is only defined if L(a) nil.
(b) In the three predecessor algorithms, R-Ascend (a) is only ever invoked when

L(a) nil and R-Descend() when L(a) nil.
(c) R-Ascend(a) is not defined when A 0 or when/x 2, but in these cases

L(a) is nil only when/x -0 or 1, i.e. when a is the first partition in both M-order
and P-order.

L-pred. When /3a 2 the result is immediate. Otherwise, starting with F(a),
R-Descend is initially performed [(/z + 1)/(/3a- 1)1 times, and if (/z + 1) mod (/a- 1) >
1 it is then performed one further time. We thus obtain

L-pred (c) cond

(RL1) A 0 --> nil

(RL2) t3a 2 --) Za_12 ma-ll"+2
(RL3)

(RL4)

(a- 1)1(/ 1) --> Za_/’- (/a- 1) +("+1)/(-)

(fla- 1),(/.t + 1)-> a_lfla- (/a 1) +l("+)/(ta-1)l

((/z + 1 mod (/a 1))

end.

TREE TRAVERSAL ALGORITHMS FOR INTEGER PARTITIONS 559

M-pred. On using (22) and (23) and the definition of inpred, we obtain

M-pred(a) =cond

/z _-> 2 --, cond

(RM1) tx </a ;atx

(RM2) /x ->/a Ea_l/’a+ 1

end

< 2 cond

(RM3) a> 2 +a_-(a- 1)1"+

(RM4) &> 1 +a_2e- (fla-- 1)1++2

(RM5) true + nil

end

end.

P-pred. If x -> 1 and ma 1 then the result is immediate. Similarly, if t >- 2 then
R-Ascend is not performed and the result is immediate. Otherwise, since each
R-Ascend increases the number of parts of size unity, after at most two invocations
of R-Ascend the resulting partition will have a left son. Thus R-Ascend will be
performed either just once if/a 2 or/x 1, or twice if/a > 2 and Ix 0. The result
then follows on applying L to the resulting partition. We thus obtain

P-pred (a) cond

(RP1) ix _->1 ^ma 1 2,a_(/3a+ 1)11"-
(RP2) /x ->2 a211-2

(RP3) /3a=2^A> 1 -Y_,a_2/’i-l-l(/a_l-1)2l -+2"a

(RP4) /3a 2 nil

ma-1(RP5) /x 1 Y--a-x/a (/3a- 1) 2

(RP6) /a 3 ^ ma> 1 Za_13’-Z2Zlz

(RP7) /3a 3 Y-,a-z/3 ’i-1-a (/a-x 1)a2lz

--1(RP8) /3a > 3 Z-laa (/a_2)2
end.

It is quite easy to subdivide certain of the cases in any of the above algorithms,
by means of additional tests, so that they yield the resulting partitions, in standard
B/x-notation. Similarly, it is straightforward to rewrite the algorithms for/-notation"
in some cases this will necessitate further tests in order to separate the cases z 0
and/x > 0.

In order to generate , in any of the three orders, ,or the corresponding reverse
orders, we can use a scheme of the form

a rstpartition
while a nil flo Process (a); a Succ (a).

560 TREVOR I. FENNER AND GEORGHIOS LOIZOU

The value of firstpartition is In for L-succ and n for L-pred; for M-succ and P-succ
the corresponding value of firstpartition is 2 t"/z 1 "a 2 and for M-wed and P-pred it
is 1 .

4.3. The relationship between the successor and lredeeessor algorithms. It is
possible to show that, for any of the three orders, the corresponding successor and
predecessor algorithms, as well as being functional inverses, are also, in a certain
sense, structural inverses. We now explain briefly the nature of this relationship and
illustrate this by stating the results for one case. Fuller details of how to derive such
results may be found in 4 of [7].

We first partition , on the outcome of the various tests in the algorithm under
consideration. As an illustration we consider the algorithm M-pred" in this case we
obtain five disjoint subsets, which we denote by [RM1], [RM2], [RM3], [RM4] and
[RM5], using the numbering of the different cases in the algorithm. Thus, for example,

[RM3] ,[0 -< tz -< 1,/3a > 2].

Considering similarly the subsets corresponding to M-succ, it is not difficult to show that

M-succ [M1] [RM3] U [RM4],

M-succ [M2] [RM1 U [RM2],

where the extension of the successor and predecessor functions to sets of partitions
is defined in the usual way. If we now define

[Mla] [M1] (3 ,[tz -<2], [Mlb] [M1] (3 ,[/ >2],

[M2a] [M2] ,[ma 1], [M2b] [M2] 0 ,[ma> 1],

the results in Table 1 then follow in a simlar fashion. Corresponding results can be
obtained for the other two pairs of algorithms. Moreover, similar results also exist

TABLE

M-succ[nii] [RM5]
M-succ[Mla] [RM3]
M-succ[Mlb]=[RM4]

M-succ[M2a] [RM1
M-succ[M2b] [RM2]
M-succ [M3] nil.

for each of the corresponding pairs of standard/3-notation algorithms as well as for

the/3-notation algorithms. (Details of the correspondence between L-succ and L-pred
for the/3-notation algorithms are given in 4 of [7].)

5. Asylnptotie analysis. As we shall see, the asymptotic behaviour (i.e. for large
n) of each of the algorithms in 4 is determined by the single case which, for large
n, will be selected for almost all partitions a n. For example, if we consider the
cases of L-succ, it is easy to show that #ILl]= P,-2; thus the proportion of the P,
possible partitions a , for which (L1) will be selected is Pn-2/Pn 1--O(n -/2) by
(11). If an algorithm has such a case, which is selected for (1 0 (1))Pn of the partitions
a n, we call this case the (asymptotically) dominant case. Accordingly, in order to
investigate the asymptotic behaviour of the algorithms, it is sufficient to consider solely
the dominant case provided one exists.

In employing the algorithms, one would obviously require that the result be
expressed in either/3-notation or standard/3-notation. We choose to use/3-notation,
although very similar corresponding results can be obtained in a similar fashion for

TREE TRAVERSAL ALGORITHMS FOR INTEGER PARTITIONS 561

standard B/z-notation. The reason for our choice is that the former notation is, in
some sense, both more symmetric and natural than/3/z-notation and, moreover, almost
all references in the literature to multiplicity notations for partitions use/3-notation
(see [5], [10] and [11]).

For the purposes of our asymptotic analysis, it is not necessary to express the
whole of each algorithm in/3-notation" it is sufficient to identify the dominant case
(which will, in general, be a subcase of the dominant case of the corresponding
nonstandard B/z-notation algorithm) and express both the tests which define it as well
as the result using/3-notation. In order to identify the dominant case of any of the
algorithms (for any of the notations), we observe that, for large n, almost all partitions
in 9, have several parts of size 1 and several parts of size 2. In fact, by using the
Hardy-Ramanujan asymptotic formulae for P, (see [2] and [8]), it is possible to show
that, for any 0 < 1/2, the number of partitions in , having at least n o parts of size
1 and at least n 0 parts of size 2 is (1 o (1))P,.

In addition, we obtain counting formulae for the number of partitions a , for
which the dominant case is selected. In this context it is convenient to introduce the
following notation: if Q is a set of partitions each of which contains the partition c
as a subpartition, then Q/d denotes the set of partitions obtained by removing the
subpartition c from each partition in Q. Thus, obviously, #(Q/d)= #Q.

We now consider each of the algorithms in turn.
L-succ. By the remarks above, the dominant case of L-succ is (L1). In order to

transform (L1) into the dominant case of the corresponding B-notation algorithm, the
test/z => 2 must be replaced by/3a 1 ^ ma >= 2; in addition, we need to test whether
ma 2 and, when d > 1, whether/3a-1 2. It is clear that the dominant case will satisfy
ma > 2 and/3a-1 2. (We note that/3a- # 2 if d 1; moreover, if/3a-a 2, then we
must have/3a 1). The tests which determine the dominant case and the successor
partition for this case can therefore be expressed in the form

(LI*) me > 2 ^/3a- 2 --> Ea_22"d-l+ 1 ,,d-2.

Thus

[LI*] ,,[/3a 1, ma > 2, d > 1,/3a-1 2].

It is now easy to verify that [Ll*]/2l3= ,-5, so #[LI*] =P,_5.
For the remaining algorithms, we abbreviate the derivation of the dominant cases

of the corresponding B-notation algorithms, since they are obtained in a similar manner
to that for L-succ.

M-succ. The dominant case of M-succ is (M2) and, corresponding to (LI*), the
dominant case for the/3-notation algorithm is

/3a 1 ^ d > 1 ^ ma_ > 1._> Za_:/3" -d 1 ma+t3a-.(M2*)

We now have

[M2*] .[/3a 1, d > 1, rod-1 > 1]

,[/3a 1]- ,[/3a 1, d > i, ma_x 1]-{I"}.

Consider adding 1 to the single part of size #d-1 for each partition in ,[/3d 1, d >
1, ma-x 1]; this gives a bijection between this set and ,+1[/3a 1, d > 1,/3a-1 > 2].
Hence, since

in+l[itd 1, d > 1, itd_l > 2] n+l[#d 1]--n+1[/3d 1, d > 1, id_l 2]-- {1"+1},

562 TREVOR I. FENNER AND GEORGHIOS LOIZOU

we see that

#[M2*] P.[a 1]-P.+l[fla 1]+Pn+l[a l, d > 1, d-1 2].

As it is easy to see that

.[/3a 13/11 .-1, .+1[/3a 1]/11=
.+1[/3d 1, d > 1,/3a-1 2]/2111

it follows that #[M2*] P.-2
P-succ. The dominant case of P-suet is (P3) and for the B-notation algorithm

the corresponding dominant case is

(P3*) fld-1 2 ^ md-a ::> 2 Zd_22 ma-a-ll me+2.
Thus

[P3*] .[fld 1, d > 1, fld-1 2, me-1 > 2],

SO #[P3*] P.-7 since [P3"]/2311 .-7.
L-pred. The dominant ease of L-wed is (RL2) and, correspondingly, for the

B-notation algorithm we obtain

(RL2*) d-1 2 ^ md-1 > 1 -+ d_22ma-a-11 rod+2,

Thus

[RL2*] .[/3a 1, d > 1,/3a-1 2, mcl-1 > 1],

and consequently, since [RL2"]/2211 ,-5, it follows that #[RL2*] P,-5.
M-pred. The dominant case of M-pred is (RM2) and, correspondingly, for the

B-notation algorithm we obtain

(RM2*) 13a 1 ^ ma > d-1 -’) -’d-2 ,+1

We thus have

[RM2*] .[/3a 1, d > 1, ma >

Removing/3a-1 parts of size 1 and replacing them by one part of size/3-1 for each
partition in [RM2*] yields a bijection between this set and .[/3a 1, d > 1, me-1 > 1].
This latter set is [M2*], hence #[RM2*] P.-z +P.-I-P..

P-pred. The dominant case of P-pred is (RP2) and, correspondingly, for the
/3-notation algorithm we obtain

(RP2*) md > 2 ^ fld-a 2 ^ me-1 > 1 - d_22ma-a+11 ma-2.
Thus

[RP2*] ,[/3d 1, md > 2, d > 1, fld-1 2, md-12> 1],

and it is easy to see that [RP2"]/2213= ,-7, so #[RP2*] Pn-7.
It is interesting to observe that the dominant cases above for the /3-notation

versions of the successor and predecessor algorithms are functional inverses in the
sense of 4.3, viz.

L-succ [L1 *] [RL2*], M-succ [M2*] [RM2*], P-succ [P3*] [RP2*].

TREE TRAVERSAL ALGORITHMS FOR INTEGER PARTITIONS 563

We also see that

[RP2*]
_
[LI*] __c [RM2*],

[P3*]

IRE2*]

[M2*].

Moreover, (RP2*) is a subcase of (LI*) and (RM2*) since, when/9a-1 2, the right-hand
sides of these three cases are all identical. Furthermore, since (RP2*) is a dominant case, it
follows that for almost all partitions

L-succ (a M-pred(a P-pred (a

Similar comments hold for the other three algorithms.

6. Discussion. In order to accurately compare (for the purpose of generating 9n)
the asymptotic performance of the six successor and predecessor algorithms, it would
be necessary to know the computational costs of the basic computer operations
involved. However, by examining the dominant cases of each of the algorithms (viz.
(LI*), (M2*), (P3*), (RL2*), (RM2*), (RP2*)), it appears that, under any reasonable
assumptions for the computational costs, the asymptotic costs will be fairly similar for
all six algorithms; moreover, the ratio of the cost of the most expensive algorithm to
that of the least expensive is unlikely to exceed 1.5.

It should be borne in mind, however, that even for quite large values of n the
proportion of partitions for which the dominant case is selected will not be particularly
large, e.g., for n 200, Pn 4 1012 but the corresponding proportions for the L-,
M- and P-orders are 0.65, 0.76 and 0.55, respectively. The reason for this is that
(11) tends to 1 rather slowly as n increases. In order to examine the behaviour of
the algorithms for moderate values of n, it would be necessary to obtain counting
formulae for each of the nondominant cases of the algorithms. Although such formulae
have been derived for L-succ and L-pred in [7], and similar techniques can be used
to obtain corresponding formulae for the other algorithms, we refrain from pursuing
this further here because of the large number of cases involved, e.g. the/-notation
version of P-pred has over two dozen cases. As well as using such counting formulae
to compare the performance of the different algorithms, they could also be used to
optimize the ordering of the tests in each of the algorithms in order to reduce the
average number of tests.

We note that all six algorithms of 4 are loop-free [4]. However, if the algorithms
are rewritten for partitions represented in a-notation (i.e. using a k-tuple instead of
a multiplicity representation), then none of the resulting algorithms are loop-free.
Moreover, it is straightforward to show that no a-notation algorithm for generating
successors or predecessors in any of the three orders can be loop-free. In [5] we
observed that if a mixed representation is used, with parts greater than 2 represented
using a-notation together with the (possibly zero) multiplicities of parts of size 2 and
1, e.g. the partition 6341322415 is represented as the triple ((6, 6, 6, 4, 3, 3), 4, 5), then
the corresponding M-succ algorithm is loop-free. It is easy to see that this is also the
case for the corresponding P-succ, M-pred and P-pred algorithms, although the L-succ
and L-pred algorithms cannot be loop-free for this representation.

Another possible representation is to use a-notation for parts greater than 1
together with just the multiplicity of parts of size 1, e.g. the partition 634322415 is
represented as the pair ((6, 6, 6, 4, 3, 3, 2, 2, 2, 2), 5). Again, with this representation,
the L-succ and L-pred algorithms cannot be loop-free and, at first sight, the other
four algorithms are also not loop-free. However, under suitable assumptions, these
algorithms can be rewritten in a loop-free form. For the M-succ and P-succ algorithms,

564 TREVOR I. FENNER AND GEORGHIOS LOIZOU

if the parts greater than 1 are stored in an array ai, 1 <-i-< [n/2J, and the index h
specifies the number of parts greater than 1, then we require that, at any time, the
unused elements of the array, viz. ah+l, ah+2, a tn/2l, all contain the value 2 and
that these elements are not changed between successive invocations of M-succ or
P-succ. For M-pred and P-pred, however, we only require that an additional count
be kept of the number of parts of size 2. It is then straightforward to obtain loop-free
implementations of the four algorithms under these assumptions.

In addition to the algorithms of 4, it is interesting to note that none of the
algorithms in the literature (see the references in 1 of [5] and [7]) succumb to a
loop-free implementation for partitions represented in a-notation, i.e. the standard
k-tuple representation. It is at present an interesting open question whether or not
there exists some loop-free algorithm for generating n in c-notation.

Note added in proof. We thank one of the referees for pointing out that the
application of Algorithm NEXT to Family 6 [10, 2nd ed. 1978, p. 105] can be viewed
as a binary tree traversal algorithm. Unlike Tn, in this binary tree (which is not explicitly
defined but is implicit in the description of the algorithm) only the terminal nodes
represent partitions, and these are scattered among many levels of the tree (in fact,
approximately between levels 2x/ and n). The algorithm, however, is not loop-free
and, moreover, it can be shown that the average number of steps per partition
in generating n is f/(b (n)) for any function b for which b (n)= o (x/-n).

REFERENCES

[1] E. N. ADAMS III, Another representation of binary tree traversal, Inform. Process. Lett., 2 (1973),
pp. 52-54.

[2] G. E. ANDREWS, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976.
[3] C. BERGE, Principles of Combinatorics, Academic Press, New York, 1971.
[4] G. EHRLICH, Loopless algorithms for generating permutations, combinations, and other combinatorial

configurations, J. Assoc. Comput. Mach., 20 (1973), pp. 500-513.
[5] T. I. FENNER AND G. tolzow. A binary tree representation and related algorithms for generating

integer partitions, Comput. J., 23 (1980), pp. 332-337.
[6],A note on traversal algorithms for triply linked binary trees, BIT, 21 (1981), pp. 153-156.
[7],An analysis of two related loop-free algorithms for generating integer partitions, Acta Inform.,

16 (1981), pp. 237-252.
[8] G. H. HARDY AND S. RAMANUJAN, Asymptotic formulae in combinatory analysis, Proc. London

Math. Soc., 17 (1918), pp. 75-115.
[9] D. E. KNUTH, The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading, MA, 1973.

[10] A. NIJENHUIS AND H. S. WILF, Combinatorial Algorithms, Academic Press, New York, 1975.
[11] E. M. REINGOLD, J. NIEVERGELT AND N. DEO, Combinatorial Algorithms: Theory and Practice,

Prentice-Hall, Englewood Cliffs, NJ, 1977.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1203-0011 $01.25/0

POSITIVE RELATIVIZATIONS OF COMPLEXITY CLASSES*

ALAN L. SELMAN,’ XU MEI-RUI$ AND RONALD V. BOOK

Abstract. Due to the work of Baker, Gill and Solovay [SIAM J. Comput., 4(1975), pp. 431-442] and
others, it has become a paradigm that important open questions about complexity classes do not relativize.
This paper develops restrictions of the standard oracle machine model for which, in contrast, positive
inclusion relationships do relativize. Our results are obtained by uniform simulation techniques. As a
consequence, the new oracle machine models exhibit the same computational power as do the corresponding
nonrelativized devices.

Key words, complexity classes, polynomial time, polynomial space, determinism vs. nondeterminism,
positive relativizations, oracle Turing machines

1. Introduction. Baker, Gill and Solovay [2] argue on the basis of their relativiz-
ation results that traditional methods, diagonalization in particular, will not settle
questions such as P ? NP and P ? PSPACE. They say,

It seems unlikely that ordinary diagonalization methods are adequate for producing an example
of a language in NP but not in P; such diagonalizations, we would expect, would apply equally
well to the relativized classes, implying a negative answer to all relativized P ? NP questions,
a contradiction. On the other hand, we do not feel that one can give a general method for
simulating nondeterministic machine by deterministic machines in polynomial time, since such
a method should apply as well to relativized machines and therefore imply affirmative answers
to all relativized P ? NP questions, also a contradiction.

However, oracle computations can be so powerful that the combinatorial difficulties
of resource-bounded machines are effectively overwhelmed. Therefore, one must be
very careful about the conclusions drawn from relativization results. To quote Baker,
Gill and Solovay again, "resolving the original question requires careful analysis of
the computational power of machines." This paper is a contribution to such an analysis.

We consider refinements of PSPACE (A) and NP (A) so that with respect to
these refinements positive inclusion relationships do relativize. One principal result
here settles affirmatively a conjecture raised by Book in [5]. Let PQUERY (A) be
the class of languages accepted relative to set A by deterministic oracle machines that
operate in polynomial space and that permit in any computation at most a polynomial
number of queries. We prove that P PSPACE if and only if for every set A, P (A)
PQUERY (A). Also, a new relativization of NP is introduced here in order to obtain
a positive relativization of the P ? NP question.

Book and Wrathall [5,7] introduced the nondeterministic analogue of
PQUERY (.), called NPQUERY (.), and showed in [5] that NP PSPACE if and
only if for every set A, NP (A)= NPQUERY (A). However, the proofs in [5], [7]

* Received by the editors October 20, 1981, and in final revised form September 13, 1982. This
research was supported in part by the National Science Foundation under grants MCS77-23493 and
MCS80-11979. The research reported here was performed while the first author visited the Department
of Computer Science, Technion, Haifa, Israel, with funds provided by the United States-Israel Educational
Foundation (Fulbright Award), and while the second author visited the University of California at Santa
Barbara.

Department of Computer Science, Iowa State University, Ames, Iowa 50011. Research done at:
Department’of Computer Science, Technion, Haifa, Israel, supported by funds provided by the United
States-Israel Educational Foundation (Fulbright Award).

Harbin University of Science and Technology, Harbin, Heilongjiang, People’s Republic of China.
Research done at: University of California at Santa Barbara.

Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California
93106.

565

566 ALAN L. SELMAN, XU MEI-RUI AND RONALD V. BOOK

involved heavy use of the "algebraic" techniques of formal language theory and
applied only to classes specified by nondeterministic machines.

All the proofs in this paper will be via effective machine simulations. We depend
on techniques established in [13] that relate efficient acceptors with efficient computa-
tion of functions. The techniques are described in 2. As a consequence of our
algorithmic methods, the oracle machines considered here exhibit the same computa-
tional power as do the corresponding nonrelativized devices.

A theme that has recently emerged in related work recurs here. The power of
oracle Turing machines can be attributed to the number of queries that may be made,
and under the restriction that the number of queries to an oracle is polynomially
bounded some fundamental inclusion problems about complexity classes have equal
answers for the standard case and for arbitrary relativizations. Investigations [6], [8],
[18] made subsequent to [5], [7] have shown that the bound on the number of queries
allowed is the factor that allows many of the diagonalization arguments used in [1]-[3],
[15] to separate classes by time-bounded machines to be applied to classes specified
by space-bounded machines.

Our main relativization results are found in 3. Of course, the kind of
restrictions studied here are not entirely new. A characterization of polynomial
time-bounded truth-table reducibility involves placing a polynomial bound on the
number of queries permitted in a computation [11]. Thus, relativizations based on
truth-table reducibilities are also studied (4). Generalizations and extensions to other
models and other sets of bounds are summarized without proof in 5.

Kozen [9] and Kozen and Machtey [10] also contain analyses of the Baker, Gill,
and Solovay phenomena, but they lie in completely different directions.

We conclude this introduction with a few remarks concerning notation. Namely,
notation is standard and consistent with the prior papers. Unless specified otherwise,
all sets are languages over the finite alphabet Y_, {0, 1}. The length of a string x in
E* is denoted]x l.

An oracle Turing machine is a multitape Turing machine with a distinguished
query tape and three distinguished states QUERY, YES, and NO. We will be interested
in oracle Turing acceptors and in oracle Turing transducers. Transducers will be
described in the next section. Given an oracle Turing acceptor M and an oracle set
A, L(M, A) will denote the set of input strings accepted by M with A as its oracle.
Oracle machines may operate within time bounds or space bounds. If an oracle
machine operates within a space bound S, then we require that the query tape, as
well as the ordinary work tapes, be bounded in length by S.

Given a complexity class and a reducibility -< a set L is =< r-hard for if for
every set A ’, A =< rL. If a set L is -<_P-hard for ’, then L is said to be -hard.
(This notation is consistent with the generally accepted usage of "NP-hard" for
"-< -hard for NP." Garey and Johnson [19] contains a useful discussion and termino-
logical history.)

2. Computation of functions. The proofs of our main results employ techniques
that relate efficient set acceptors with efficient computation of functions by transducers.
These techniques will be described here, and they have independent interest.

A nondeterministic oracle Turing transducer is a nondeterministic oracle Turing
machine with distinguished accepting states and a distinguished output tape. A trans-
ducer M computes a value y on an input string x relative to an oracle set A if there
is an accepting computation of M on x with oracle A for which y is the final contents
of M’s output tape. In general, a nondeterministic oracle Turing machine transducer

POSITIVE RELATIVIZATIONS OF COMPLEXITY CLASSES 567

M computes a partial multi-valued function. We will be especially interested in the
case that M computes a partial single-valued function; i.e., every accepting computa-
tion of M on an input string x relative to an oracle A produces the same contents of
the output tape.

Space bounds for oracle Turing machine transducers apply to all work tapes
including the query tape and the output tape.

For every set A, consider the following three classes of partial single-valued
functions: let PF (A) be the class of functions computed relative to A by deterministic
polynomial time-bounded oracle transducers; let NPF (A) be the class of functions
computed relative to A by nondeterministic polynomial time-bounded oracle trans-
ducers; and let PSPACEF (A) be the class of functions computed relative to A by
deterministic polynomial space-bounded oracle transducers.

Let M be an arbitrary oracle Turing machine. Define the partial multi-valued
function NEXT-CALLer on configurations ofM by" J is a value of NEXT-CALLer (I)
if some computation of M beginning in configuration I reaches configuration J, in
configuration JM is in the QUERY state, and in that computation no configuration
between I and J is in the QUERY state.

It is clear that if M is deterministic, then NEXT-CALLM is single-valued. If M
is deterministic and operates in polynomial time, then NEXT-CALLer is in .PF; if M
is deterministic and operates in polynomial space, then NEXT-CALLer is in PSPACEF.

The functions NEXT-CALLu will be used throughout the next section as well
as in the following definition.

Define an oracle machine M to be confluent if NEXT-CALLer is single-valued.
If M is confluent and NEXT-CALLer (I)= J, then there can be only two types

of computation paths branching out from/--those that lead to the query configuration
J and those that do not lead to queries at all. It is clear that if M is nondeterministic
and confluent, and M operates in polynomial time, then NEXT-CALLer is in NPF.

One can also define the class of functions computed by nondeterministic oracle
transducers that operate within polynomial space. However, using the techniques of
[12], [14], it can be shown that for every set A, only functions in PSPACEF (A) are
obtained.

A function f:Z* E.* is polynomial-bounded if there is a polynomial p such that
for all x in the domain of f,]f(x)l <= P (Ix 1).

Clearly, for every set A, every function in PF (A), NPF (A), and PSPACEF (A)
is polynomial-bounded.

For a partial function f:E* - Z*, let graph (f)={(x, y)lf(x)- y}.
The proof of the following fact is left to the reader.
LEMMA 2.1. Let f:Z* - E* be a function.

(i) Iff is polynomial-bounded, then f NPF (graph (f)).
(ii) If f is polynomial-bounded and for some set A, graph (f)NP (A)

(PSPACE (A)), then f is in NPF (A) (resp., PSPACEF (A)).
(iii) If f PF (A) (NPF (A), PSPACEF (A)), then graph (f) P (A) (resp.,

NP (A), PSPACE (A)).
For each partial function f:Z*-,Z*, define code (f).to be the set of triples

(cr, x,k){0, 1}E*E*, where k is the binary representation of a number n(k),
defined as follows:

(0, x, k) code (f) if and only if f(x) has an n (k)th bit;

(1, x, k) code (f) if and only if the n (k)th bit of f(x) is 1.

568 ALAN L. SELMAN, XU MEI-RUI AND RONALD V. BOOK

LEMMA 2.2. Let f:Z* -* be a function.
(i) Iff is polynomial-bounded, then f PF (code (f)).

(ii) Iff is polynomial-bounded andfor some set A, code (f) e P (A) (PSPACE (A)),
then f is in PF (A) (resp., PSPACEF (A)).

(iii) IffePF (A) (NPF (A), PSPACEF (A)), then code (f)eP (A) (resp., NP (A),
PSPACE (A)).

This notion will be used repeatedly. Because clause (i) of Lemma 2.2 is stronger
than that of Lemma 2.1, it is frequently more useful than the usual graph encoding.
Selman [13] has explored in depth the notion of a function being polynomial-bounded
and the usefulness of code (f) for such functions f.

Relationships between complexity classes of sets and of functions are given by
the following theorem.

TI-mORM 2.3.
(i) P NP if and only if PF-- NPF.
(ii) P PSPACE if and only if PF PSPACEF.
(iii) NP PSPACE if and only if NPF PSPACEF.
Proof. In each case, the proof from right to left is immediate. To prove (i) from

left to right, assume P=NP and let f eNPF. By Lemma 2.2 (iii), code (f)NP.
Therefore, code (f) e P. Thus, Lemma 2.2 (ii) applies, and f e PF. Clause (ii) is proved
the same way.

To prove (iii) from left to right, assume NP PSPACE, let [PSPACEF, and
apply Lemma 2.1. Then, graph (f)e PSPACE. Hence, graph (f)e NP, from which it
follows that NPF. F1

The following lemma collects some trivial observations that will be needed in the
next section. (Perhaps this lemma is worth a moment of reflection. Despite the intense
effort these past ten years to discover NP-complete and NP-hard problems, the more
challenging task is to discover some set that is not NP-hard.)

LEMMA 2.4.
(i) P NP if and only if every set A is NP-hard.
(ii) P PSPACE if and only if every set A is PSPACE-hard.
(iii) NP PSPACE if and only if every set A is <= P-hard]:or PSPACE.

3. Principal results. For every set A, let PQUERY (A) (NPQUERY (A)) be the
class of languages accepted relative to A by deterministic (resp., nondeterministic)
oracle machines that operate in polynomial space and that make at most a polynomial
number of oracle queries in any computation.

Clearly, PQUERY (A)_ NPQUERY (A)_ PSPACE (A), for every A. It is well
known that there exist sets A and B such that P (A)= PSPACE (A) and P (B)#
PSPACE (B) [1]-[3], [15]. In contrast, we will prove (see Corollary 3.2 below) that
P PSPACE if and only if for every set A, P (A)= PQUERY (A). In addition, our
results will be organized so as to display an important role that hard sets play in this
context.

Classes of the form PQUERY (A) and NPQUERY (A) were introduced by Book
and Wrathall in [5], [7] where it was shown that there exist sets C and D such that
PQUERY (C) # NPQUERY (C) and NPQUERY (D) # PSPACE (D).

For every set A, let PQUERYF (A) (NPQUERYF (A)) be the class of functions
computed relative to A by deterministic (resp., nondeterministic) oracle transducers
that operate in polynomial space and that make at most a polynomial number of
oracle queries in any computation.

Clearly, for every A, PQUERYF (A)_ NPQUERYF (A)_ PSPACEF (A).

POSITIVE RELATIVIZATIONS OF COMPLEXITY CLASSES 569

THEOREM 3.1. For every set A, the following are equivalent:
(a) A is PSPACE-hard
(b) P (A) PQUERY (A);
(c) PF (A) PQUERYF (A).
Compare the equivalence of (a) and (b) with the observation (essentially) made

in 12] that if A is PSPACE-complete, then P (A) PSPACE (A).
Proof. It is obvious that (c) implies (b). To prove (b) implies (a), assume P (A)=

PQUERY (A). Note that PSPACE c_PQUERY (A)= P (A). Thus, A is PSPACE-
hard.

It suffices to prove that (a) implies (c). Let A be a PSPACE-hard set. Let M be
an oracle transducer that operates in polynomial work space and that makes at most
a polynomial number of queries in any computation. Let f be the function in
PQUERYF (A) computed by M relative to A. We will show that f PF (A).

Recall that NEXT-CALLM is a partial function in PSPACEF. Therefore, code
(NEXT-CALLM) belongs to PSPACE. Since A is PSPACE-hard, code (NEXT-
CALLM) is in P (A) and, by Lemma 2.2, NEXT-CALLM is in PF (A).

Define a partial function FINALM on configurations of M as follows"

[the final configuration of M following/,
FINALM (I)= if NEXT-CALLM (l) is defined;

I.undefined otherwise.

Notice that NEXT-CALLM(I) is undefined if and only if (0, L 1)
code(NEXT-CALLM). Also, since M operates in polynomial space, code (NEXT-
CALLM) is in PSPACE. Thus, it follows that FINALM is in PSPACEF. Therefore,
as above, FINALM is in PF (A).

The following procedure determines for any input string w, the value (if any) of
f(w). The basic idea is to simulate M on w by iterating instances of NEXT-CALLM
until a configuration I is reached so that NEXT-CALLM (I) is undefined. Then,
FINALM (I) is computed and checked. The simulation is successful because the number
of oracle calls is polynomial-bounded.

input w
I :=Io; {M’s initial configuration on input w }
while (0, L 1) code (NEXT-CALLM)
{i.e., NEXT-CALLM (I) is defined}
do begin

! :=NEXT-CALLM (I);
Use I and the oracle A to determine the next configuration J;
I:=J
end;

I:=FINALM (I);
| I is an accepting configuration

then output the string on the output tape encoded in I
else f(w) is undefined.

The loop is executed at most a polynomial number of times, because M makes
at most a polynomial number of queries in any computation. Both NEXT-CALLM
and FINALM are in PF (A) and code (NEXT-CALLM) is in P (A). Hence, this pro-
cedure operates in polynomial time relative to A. Thus, f PF (A).

570 ALAN L. SELMAN, XU MEI-RUI AND RONALD V. BOOK

COROLLARY 3.2. The following are equivalent:
(a) P PSPACE;
(b) PF PSPACEF;
(c) for every set A, P (A) PQUERY (A);
(d) for every set A, PF (A) PQUERYF (A).
The corollary is obtained from Theorem 3.1 by means of Lemma 2.4. However,

the proof of Theorem 3.1 also yields a direct proof of the corollary. Since the simulation
shows PQUERYF (A)___ PF (A) under the hypothesis PSPACE

P (A), it also shows

’A PQUERYF (A)
_
PF (A) under the more general hypothesis PSPACE

P.

A proof that P PSPACE must entail a proof that P (A) PQUERY (A), for
some set A. By the theorem, this would be equivalent to the discovery of a set A
that is not PSPACE-hard.

The classes just compared, P (.) and PQUERY (.), are both deterministic. There-
fore, for oracle machines M that recognize sets in these classes, NEXT-CALLer is
single-valued, and a simulation of M based on successive applications of NEXT-
CALLM is already deterministic. In the proof of Theorem 3.1 the assumption
PSPACE

P (A) yielded NEXT-CALLer PF (A), and it was only necessary that M

make at most a fixed polynomial number of queries in order to insure a polynomial
bound on the number of applications of NEXT-CALLM.

Now we will develop a positive relativization of the P ? NP problem, and to
do so we will use the notion of confluent machines. This time we will compare a
nondeterministic class with a deterministic class. The basic idea once again is to exploit
single-valuedness of NEXT-CALLM. If M is a nondeterministic confluent polynomial
time-bounded oracle Turing machine, then a nondeterministic simulation based on
iterative applications of NEXT-CALLer can be given. If P NP is assumed, then
NEXT-CALLer becomes computable deterministically in polynomial time and all
other instances of nondeterminism in the simulation of M can be eliminated as
well.

For every set A, let NPC (A) be the class of languages accepted relative to A by
nondeterministic polynomial time-bounded confluent oracle machines.

There exist sets A and B such that P (A)= NP (A) and P (B) NP (B) [2]. We
will prove (Corollary 3.5) that P NP if and only if for every set A, P (A) NPC (A).
This time we will see the significance of NP-hard sets. First, let us note the following
fact.

THEOREM 3.3. For every set A, NPC (A)

PQUERY (A).

Therefore, a nondeterministic confluent machine can be simulated by a deter-
ministic machine with a polynomial limit to the number of queries. In contrast, it is
shown in [5] that there exists a set A such that NP (A) PQUERY (A).

Let NPCF (A) be the class of functions computed relative to A by nondeterministic
polynomial time-bounded confluent oracle transducers.

THEOREM 3.4. For any set A, the following are equivalent:
(a) A is NP-hard
(b) P (A) NPC (A);
(c) PF (A) NPCF (A).
Proo[. It is obvious that (c) implies (b). To prove (b) implies (a), assume P (A)=

NPC (A). Then, NP

NPC (A) P (A); thus, A is NP-hard.

Now we show that (a) implies (c). Let A be an NP-hard set. Let [be a function
in NPCF (A) and let M be a confluent oracle transducer that witnesses this fact.

Using Lemma 2.2 and the hypothesis that A is NP-hard, we note that NEXT-
CALLM is in PF (A) and code (NEXT-CALL,t) is in P (A).

POSITIVE RELATIVIZATIONS OF COMPLEXITY CLASSES 571

Define a unary relation ACCEPTer on configurations of M by ACCEPTer (I)=
true if some computation ofM starting in configuration I enters an accepting configur-
ation without going through a query configuration. Clearly, ACCEPTer NP. Hence,
ACCEPTer P (A).

Assume (without loss of generality) that M has a unique accepting configuration
except for output values, e.g., a unique accepting state and blank query tape and work
tapes. Define a partial function FINALM on configurations of M as follows"

FINALM (I)=

an accepting configuration of M reachable from
configuration I by means of a computation of M that
starts with I and does not pass through a query configuration

if such a configuration exists,
undefined otherwise.

Clearly, FINALM is in NPF and so FINALM PF (A).
We give an iterative procedure for computing f(w) that is similar to the one used

in the proof of Theorem 3.1. The important difference is that prior to each execution
of NEXT-CALLer (I), we first determine whether I leads to an accepting configuration
without going through a query configuration (by an application of ACCEPTu (I)).

input w;
I:=I0; {M’s initial configuration on input w}
while - ACCEPTer (I) and (0, L 1) code (NEXT-CALLer (I))

{i.e., NEXT-CALLu (I) is defined}
do begin

I:=NEXT-CALLer (I);
Use ! and the oracle A to determine the next configuration J;
I:=J
end;

{if NEXT-CALLM (I) is defined, then ! leads to an accepting configuration without
going through a query configuration}

if ACCEPTer (I)
then begin

I:=FINALM (I);
output the string on the output tape encoded in I
end

else f(w) is undefined.

Since M operates in polynomial time, the loop is executed a polynomial number
of times. Each step takes at most polynomial time relative to A, because ACCEPTu
and code (NEXT-CALLM) are in P (A) and both FINALt and also NEXT-CALLer
are in PF (A). Thus, f

COROLLARY 3.5. The following are equivalent:
(a) P NP;
(b) PF NPF;
(c) for every set A, P (A) NPC (A);
(d) for every set A, PF (A)= NPCF (A).
Once again, the simulation given in the proof of the theorem will yield the

corollary directly. But the route taken yields the observation that a set A is NP-hard
if and only if e (A) NPC (A).

572 ALAN L. SELMAN, XU MEI-RUI AND RONALD V. BOOK

The proof of Theorem 3.4 can be altered so as to strengthen Theorem 3.3.
Consider confluent oracle machines and define classes of the form NPOUERYC (A)
in the obvious way. Since nondeterministic polynomial space is identical to determinis-
tic polynomial space, we have the following fact.

COROLLARY 3.6. For every set A, PQUERY (A) NPQUERYC (A).
In contrast, it is shown in [5] that there exists a set A such that PQUERY (A)

NPQUERY (A). In this sense PQUERY (A) and NPQUERY (A) behave more like
classes specified by time-bounded machines than like classes specified by space-
bounded machines.

Confluent machines are also useful in studying classes specified by space-bounded
machines.

For each space bound S and set A, let NSPACEC (S, A) be the class of languages
L such that L NSPACE (S, A) is witnessed by a nondeterministic confluent oracle
machine that operates within space $.

It is easy to show that the following is true.
THEOREM 3.7. For every space bound S, the following are equivalent"
(a) DSPACE (S)- NSPACE (S);
(b) for every set A, DSPACE (S, A) NSPACEC (S, A).
The proof of Theorem 3.4 also yields a positive relativization of NP ? co-NP

which is due to Timothy Long.
THEOREM 3.8. NP co-NP if and only iffor every set A, NPC (A) co-NPC (A).
Proofi The proof from right to left is immediate. For the proof in the other

direction, assume NP =co-NP. Let A be an arbitrary set and let L s NPC (A) be
witnessed by a confluent oracle machine M.

Next we rewrite the canonical procedure for simulating M, with a slight alteration,
so that this time we have an acceptor for L.

input w;
I :=Io; {M’s initial configuration on input w}

(1) while - ACCEPTer (I) and (0, L 1) code(NEXT-CALLer (I))
do begin

(2) I:=NEXT-CALLer (I);
Use I and the oracle A to determine the next configuration J;
I:=J
end;

(3) if ACCEPTer (I) {i.e., w
(4) then halt without accepting
(5) else accept.

Recall that NEXT-CALLer NPFand that code (NEXT-CALLM) andACCEPTer
are in NP. Therefore, since we are assuming NP co-NP, -code (NEXT-CALL,t)
and ACCEPTt are in NP. The test on line 1 is executed by simultaneous
executions of NP-machines for ACCEPTer(I), -ACCEPTt(I), (0, L1)
code (NEXT-CALLM (I)), and (0, L1)code(NEXT-CALL(I)). Call these
machines N1, N2, N3, and N4, respectively. Line 1 becomes true if N2 and N3 both
accept their inputs, and becomes false if either N1 or N4 accepts. In all other cases
the procedure terminates. The test on line 3 is implemented similarly. Line 2 is
implemented by a polynomial number of simultaneous calls to code(NEXT-
CALLer (I)) and to code (NEXT-CALL (I)). In each instance, continuation occurs
only if one of the two calls accepts. Therefore, for every string w there is a computation
that leads either to line 4 or to line 5. Thus, there is an accepting computation of the
procedure on input w if and only if w is in L.

POSITIVE RELATIVIZATIONS OF COMPLEXITY CLASSES 573

We conclude that the procedure describes a nondeterministic polynomial time-
bounded acceptor for L relative to the oracle A; i.e., L NPC (A). Thus, NPC (A)
co-NPC (A) for all A.

How does one relativize PSPACE in order to study NP= ? PSPACE? This
question was considered in [5] where the equivalence of parts (a) and (c) of Corollary
3.10 are shown. The proof of Theorem 3.9 is left to the reader.

THEOREM 3.9. For any set A, the following are equivalent:
(a) A is <= rP-hard]=or PSPACE;
(b) NP (A) NPQUERY (A);
(c) NPF (A) NPQUERYF (A).
COROLLARY 3.10. The following are equivalent:
(a) NP PSPACE;
(b) NPF- PSPACEF;
(c) for every set A, NP (A) NPQUERY (A);
(d) for every set A, NPF (A) NPQUERYF (A).
If NP PSPACE, then it is still possible that PSPACE is equal to the union of

the polynomial-time hierarchy. We can relativize this question by considering NP (.)
and NPQUERY (.).

First we review some definitions.
For every set A, Let E(A) NP (A), EP+I(A)= t3{NP (B)IB E(A)} for >0,

Pand NP* (A) U i>o,i(A). For every set A, let EP(A) NPQUERY (A), Ei+I(A)=PQ

U(NPQUERY (B)[B s zP(A)} for > 0, and NPQUERY* (A) t_J >oE’(A).
PFor every set A, the structure E’(A)_Z2(A)_ is the polynomial-time

POhierarchy relative to A, and the structure E’(A)___E2 (A)_ is the polynomial-
query hierarchy relative to A.

Write Z,P. for E,P.(d) and NP* for NP* (d).
The polynomial-time hierarchy and its relativized versions have been well studied

[1], [3], [16], [17]. The relativized versions of the polynomial-query hierarchy were
introduced in [7]. The polynomial-query hierarchy collapses to PSPACE when relativ-
ized to d, i.e., zP(d) NPQUERY* (d) PSPACE.

It is known [3] that there is a setA such that E(A) zP2(A) E(A) and it is noted
in [7] that the proof of this fact can be used to show that there is a set B such that

For every set A the class of polynomial-time hierarchy functions computed relative
to A is defined as follows" ZF (A)= NPF (A), EP+aF (A)= LI (NPF (B)IB EP(A)} for
> 0, and NP*F (A)= LI i>0 E,PF (A). For every set A the class of polynomial-query

functions computed relative to A is defined as follows: E’F (A)= NPQUERYF (A),
PQE+IF(A)={NPQUERYF(B)IBEP(A)} for i>0, and NPQUERY*F(A)=
U i>o E/PF (A).

LEMMA 3.11. NP*= PSPACE if and only if for all sets A, PSPACE_ NP* (A).
THEOREM 3.12. For any set A, the following are equivalent:
(a) PSPACE NP* (A);
(b) NP* (A)= NPQUERY* (A);
(c) NP*F (A) NPQUERY*F (A).
Therefore, we have the following corollary.
COROLLARY 3.13. The following are equivalent:
(a) NP* PSPACE;
(b) NP*F PSPACEF;
(c) for every set A, NP* (A) NPQUERY* (A);
(d) for every set A, NP*F (A) NPQUERY*F (A).
The equivalence of (a) and (c) of this corollary was established in [7].

574 ALAN L. SELMAN, XU MEI-RUI AND RONALD V. BOOK

Proof of Theorem 3.12. It is clear that (c) implies (b) and that (b) implies (a). We
will show that (a) implies (c).

Suppose that PSPACE
_
NP* (A) for some set A. Let M be a nondeterministic

polynomial space-bounded oracle Turing machine transducer that operates in such a
way that in every computation only a polynomial number of oracle calls are made.
Let]" be the function in E’F (A) computed by M relative to A.

Let NEXTt be the relation on configurations such that NEXTt (/, J) holds if
and only if there is a computation of M beginning with configuration I that eventually
reaches configuration J, configuration J is either a final (halting) configuration or is
a query configuration, and during this computation no configuration I’ occurring
strictly between I and J is a final configuration or a query configuration. Notice that
graph (NEXT-CALL,t)_ NEXTt. Since M operates in polynomial space, it is clear
that NEXTt is in PSPACE and hence is in NP* (A) by hypothesis. Let > 0 be the
least integer such that NEXTt is in EP, (A).

Determine for any input string w the value (if any) of f(w) by using the following
routine.

input w
I :=Io; {M’s initial configuration on w}
while :lJ such that NEXTt (L J) holds
do begin

nondeterministically guess a configuration J
if NEXTt (/, J) holds

then if the configuration J is in the QUERY state
then begin

use J and the oracle for A to determine the next configuration I’;
I:=I’;
end

else if the configuration J is an accepting configuration
lhen output the value encoded in J and halt
else halt

else halt
end.

Since M makes at most a polynomial number of oracle calls in any computation,
the loop is executed at most a polynomial number of times. Thus, relative to an oracle
for the relation NEXT,t, this nondeterministic routine operates in polynomial time.
Since NEXTM is in EPt(A), the function f computed by this routine (and by M) relative
to A is in ziP+ F (A).

The argument so far yields the fact that PSPACENP* (A) implies that
F (A)

__
NP*F (A).

PQSuppose for some that E/PF (A)_ NP*F (A). Let f be a function in Z+F (A).
Then there is a set B 5:’ (A) such that/EP (B). By the induction hypothesis
z/PF (A)_ NP*F (A) it follows that z/ao (A)=NP* (A). Thus, B NP* (A). By the
first part of the proof, f NP*F (B). It is now easy to see that f s NP*F (A).

Hence, by induction, E’F (A) for every i. Thus, NPQUERY*F_ NP*F (A) as
desired.

4. Reducibilities. In this section we consider restrictions of P(.) and
PQUERY (.). To begin, we recall the following characterization of polynomial time-
bounded truth-table reducibility.

POSITIVE RELATIVIZATIONS OF COMPLEXITY CLASSES 575

For a deterministic oracle machine M, let Q (M, A, w) denote the set of all strings
queried by M on input w with oracle set A. Let Q(M, w)= A Q(M, A, w). Let
Q(M, w) be the cardinality of Q(M, w).

For every set A, let PTT (A) be the class of languages accepted relative to A by
deterministic oracle machinesM that operate in polynomial time and have the property
that there is a function fPF such that for all input strings w of M, f(w)=
z%z2%...%z,,whereQ(M,w)={z,...,z}.

From [11] we see that PTT (A) is the class of sets that are truth-table reducible
to A in polynomial time.

The following question arises. If B <- A is witnessed by a deterministic oracle
machine M and if there is a polynomial p such that for all input strings w of M,
#Q(M, w)<--p(Iwl), then is B PTT(A)? We are interested also in the analogous
question about space-bounded oracle machines.

For every set A, let PB (A) (PBQUERY (A)) be the class of languages accepted
relative to A by deterministic oracle machines M that operate in polynomial time
(resp. space) and have the property that there is a polynomial p such that for all input
strings w of M, # Q(M, w) _-< p (Iw

LEMMA 4.1. Let M be a deterministic oracle machine that operates in polynomial
work space and has the property that there is a polynomial p such that for all input
strings w of M, # Q(M, w)-<p(Iwl). Then there is a function f PSPACEF such that
for all input strings w of M, f(w)=z % z2% % z,, where Q(M, w)={Zl,’’’ ,z,}.

Proof. Let M satisfy the hypothesis. A deterministic machine (without an oracle)
can simulate all computations of M on input w and record on some work tape the
strings z in Q(M, w). When all computations have been simulated, Q(M, w) can be
copied onto the output tape. Thus, this new machine computes a function f in
PSPACEF that for every w has value Q(M, w). 1-1

Thus, ifA e PBQUERY (B) via oracle machine M, then Q(M, w) can be computed
for each w by a function f e PSPACEF. Can Q(M, w) be computed in polynomial
time? That is, is the function f in PF?

Define PTTQUERY (A) to be the class of languages accepted relative to A by
deterministic oracle machines M that operate in polynomial space and have the
property that there is a function fePF such that for all input strings w of M,
f(w)=z1% z2% % z,, where Q(M, w)={zl, z2,"’,

TI-IEOREM 4.2.
(i) For every set A, PTT (A)

PB (A) c__ p (A) and PTTQUERY (A)

PBQUERY (A) __c PQUERY (A).
(ii) There exists a set A such that PTT (A) # P (A) and PB (A) # P (A).
(iii) There exists a set A such that PTTQUERY (A)#PQUERY (A) and

PBQUERY (A) # PQUERY (A).
The proof in [11] of the existence of A such that PTT (A) P (A) shows that

PB (A) # P (A), and this proof can be trivially modified to yield (iii).
The proof of Theorem 3.1 can be trivially modified to show the following fact.
THEOREM 4.3. The following are equivalent:
(a) P PSPACE;
(b) for every set A, PTT (A)= PTTQUERY (A);
(c) for every set A, PB (A) PBQUERY (A);
(d) for every set A, PTTQUERY (A)

P (A);

(e) for every set A, PBQUERY (A)

P (A).

The questions of whether for all A, PB (A)= PTT (A) and whether for all A,
PTTQUERY (A)= PBQUERY (A), are difficult, as shown by the next result. These
are the only inclusions listed in Theorem 4.2 that are not specified as proper.

576 ALAN L. SELMAN, XU MEI-RUI AND RONALD V. BOOK

THEOREM 4.4. If P=PSPACE, then for every set A, PB (A)=PTT (A)=
PTTQUERY (A) PBQUERY (A).

Proof. Using Theorem 4.3, it is sufficient to show that P PSPACE implies that
for every set A, PBQUERY (A) PTTQUERY (A). Using the equivalent hypothesis
PF PSPACEF, this result follows from Lemma 4.1. VI

For completeness’ sake, we also set down the following modification of Corollary
3.10.

THEOREM 4.5. The following are equivalent:
(a) NP PSPACE;
(b) for every set A, PSPACE

NP (A);

(c) for every set A, PQUERY (A)

NP (A);

(d) for every set A, PBQUERY (A)
_
NP (A);

(e) for every set A, PTTQUERY (A)
_
NP (A).

5. Extensions. In this section we are interested in resource bounds other than
just the set of polynomials and in classes specified by simultaneous bounds on time
and space. Consider a complexity class that is specified by machines that operate
simultaneously within time bounds from a set 3- and space bounds from a set Y. How
large must the space bounds be in order to obtain all of the languages specified by
machines that operate within time bounds from 3? How large must the time bounds
be in order to obtain all of the languages specified by machines that operate within
space bounds from 5? To study such questions the following classes are defined.

(i) For every set A, let DTISP (, 6, A) be the class of languages accepted
relative to A by deterministic oracle machines that operate within time bound T for
some T and, simultaneously, within space bound S for some S .

(ii) For every set A, let DQUSP (, , A) be the class of languages accepted
relative to A by deterministic oracle machines that operate within space bound S for
some S and, simultaneously, can make a number of oracle queries bounded by
some T in any computation.

(iii) For every set A, let DTIQS (3, 5, A) be the class of languages accepted
relative to A by deterministic oracle machines that operate within time bound T for
some T and, simultaneously, every configuration in state QUERY has every work
tape (including the query tape) bounded by some S 6 in any computation.

Notice that for any T and 6, DQUSP(’,,b)=DSPACE(6) and
DTIQS (-, S, d) DTIME (). Classes NTISP (, , A), NQUSP (-, 6, A), and
NTIQS (, 6, A) are studied in [6] where the notions of "QUSP" and "TIQS" are
introduced.

A function $ is constructible if there is a deterministic Turing machine M such
that on every input string w, M’s computation on w halts having used work space
S(lwl) and exactly S([w[) tape squares are marked on some work tape.

A function T is a running time if there is a deterministic Turing machine M such
that on every input string w, M’s computation on w halts in exactly T(Iwl) steps.

If T is a running time and S is constructible, then the pair (T, S) is compatible
if there is a deterministic machine that makes no oracle queries and that simultaneously
witnesses the fact that T is a running time and S is constructible.

If a pair (T, S) is compatible, then it is the case that for some c > 0 and all n >-0,
S(n) <- T(n)_-<2cs". Obviously, DSPACE (S)_DTISP (2cs", S(n)). Therefore, we
are interested in situations where T(n)=O(2sn) or $(n)=O(T(n)). For example,
let T(n) n k for some interer k and let S(n) n.

POSITIVE RELATIVIZATIONS OF COMPLEXITY CLASSES 577

Let be a set of functions. A function g is 0() if there is some f - such that
g is O(f).

For our results we require that the sets and Y’ of bounds satisfy the following
conditions.

Condition 5.1. Let be a set of running times and let S be a set of constructible
space bounds satisfying the following conditions:

(i) for every T T and $, the pair (T, S) is compatible;
(ii) for every TT(S) and integer c>0, the function T’(n)=cT(n)

(S’(n) cS(n)) is in - (resp.,
(iii) if T1, TEe if, then the function T(n)= T(n)T2(n) is O(ff);
(iv) if T - and S , then the function T’(n) T(S(n)) is O(’);
(v) if S, $2 5, then the function S(n)=S(SE(n)) is O(6).
Using the techniques of 3, including the introduction of classes of

functions specified by these controlled relativizations, one can prove the following
theorems.

THEOREM 5.2. Let (,) be a pair satisfying Condition 5.1. The following are
equivalent"

(a) DTISP (-,)= DTIME ();
(b) for every set A, DTISP (’, , A) DTIQS (if, , A).
THEOREM 5.3. Let (, St’) be a pair satisfying Condition 5.1. The following are

equivalent"
(a) DTISP (Y,)= DSPACE (6e);
(b) for every set A, DTISP (, 6e, A) DQUSP (, 6a, A).
Let poly={nklk>0 an integer} and lin={knlk>0 an integer}. Is

DTISP (poly, lin) P? Is DTISP (poly, lin) DSPACE (lin)? By Theorem 5.2,
DTISP (poly, lin)= P if and only if for every oracle set A, every language accepted
relative to A by a deterministic oracle machine that runs in polynomial time and uses
only linear work space in those configurations that query the oracle is also accepted
relative to A by a deterministic oracle machine that simultaneously runs in polynomial
time and uses linear work space. Similarly, Theorem 5.3 tells us that DTISP (poly, lin)
DSPACE (lin) if and only if for every oracle A, every language accepted relative to
A by a deterministic oracle machine that uses linear work space and can make only
a polynomial number of oracle calls in any computation is also accepted relative to
A by a deterministic oracle machine that simultaneously runs in polynomial time and
uses linear work space.

Since it is known that P#DSPACE (lin) [4], either DTISP (poly, lin)#P or
DTISP(poly, lin)#DSPACE(lin). Therefore, there is a set A such that
DTIQS (poly, lin, A) # DQUSP (poly, lin, A) and for this set A, at least one of these
two classes is different from DTISP (poly, lin, A).

Consider confluent oracle machines and define classes of the form
NTISPC (, 6e, A) in the obvious way.

THEOREM 5.4. Let (, Y’) be a pair satisfying Condition 5.1. The following are
equivalent"

(a) DTISP (, Se) NTISP (,);
(b) for every set A, DTISP (if, Y’, A) NTISPC (if, 6e, A).
THEOREM 5.5. Let be a set of functions such that (Y,) satisfies Condition

5.1. The following are equivalent:
(a) DTIME (if)= NTIME (Y);
(b) for every set A, DTIME (if, A) NTIMEC (Y, A).

578 ALAN L. SELMAN, XU MEI-RUI AND RONALD V. BOOK

Examples of pairs (-, O) such that Theorems 5.1-5.5 hold are the following:
(a) -= {nklk > 0 an integer} and

5" {kn Ik > 0 an integer};
(b) = {n’[k >0 an integer} and

{n (log n)k Ik > 0 an integer};
(c) " {n k log, k > 0 an integer} and

6t’ {kn Ik > 0 an integer};
(d) {n log, k > 0 an integer} and

5e {n Ik > 0 an integer};
(e) = {n log, k > 0 an integer} and

6 {n (log n) Ik > 0 an integer};
(f) {2Clg")k[k > 0 an integer} and

5 {kn Ik > 0 an integer};
(g) r {2" "lk > 0 an integer} and

5e {n Ik > 0 an integer};
(h) ={2lg")klk >0 an integer} and

6 {n (log n)k Ik > 0 an integer}.

6. Discussion. There exist sets A, B, C, and D such that P(A) NP (A), P (B) #
NP (B), P (C)=PSPACE (C), and P (D)#PSPACE (D) [1]-[3], [15]. Since these
results were obtained, it has become a paradigm that important open questions about
complexity classes do not relativize. Furthermore, on the basis of these results (cf.
the Introduction) one argues that traditional techniques will not settle these open
questions.

In this paper we developed "positive relativizations" of these questions by placing
restrictions on the standard oracle machine model. Are the resulting relativizations
natural7 It seems that naturalness for an oracle machine model is not an intrinsic
notion, but depends on the purpose for which it is designed. Consider PQUERY (.).
Since our results are proved by general simulations, PQUERY (.)-machines have as
much computational power as do the nonrelativized PSPACE-machines. If an efficient
simulation were to prove P PSPACE it would prove P(D) PQUERY (D) for every
D, as well. Moreover, one approach to proving P # PSPACE is to construct, by
diagonalization perhaps, a set C such that P (C) # PQUERY (C). We have seen that
the latter task is equivalent to the construction of a set C that is not PSPACE-hard.

On the other hand, let us consider the standard oracle machine model PSPACE (.)
together with the well-known construction of Baker, Gill, and Solovay [2] as it applies
to the construction of a set C such that P (C)# PSPACE (C). They apply the oracle
property "x L(C)" if and only if "C contains a string of length Ix[." A polynomial
space-bounded machine can accept L(C) relative to C because it can search a set of
size 2Ixl. Intuition says that no deterministic oracle machine can perform this search
in polynomial time, and of course the proofs bear this out. It is commonly believed
that P # PSPACE precisely for the reason that PSPACE-machines can perform certain
kinds of complete searches that polynomial time-bounded machines apparently cannot
perform. Nevertheless, the "standard" relativized machine model for polynomial space
is explicitly given the ability to search an oracle set of size 2Ixl, and this same ability
is explicitly withheld from the "standard" relativized machine model for polynomial
time. When this ability is withheld from PSPACE (.)-machines, the result is
PQUERY (.).

For other results on PQUERY (.) and NPQUERY (.) and related classes, see
[5], [6], [7], [18]. New positive relativizations of complexity classes will appear in [20]

POSITIVE RELATIVIZATIONS OF COMPLEXITY CLASSES 579

and [21]. In [20] it is shown that P=NP if and only if for every set A, every
nondeterministic polynomial time-bounded oracle Turing machine M for which
Q(M, A, x) is bounded by a fixed polynomial has a deterministic polynomial time-
bounded simulation. Notable about [21] is a positive relativization of the P= ?
NP co-NP problem.

REFERENCES

[1] D. ANGLUIN, On counting problems and the polynomial-time hierarchy, Theoret. Comput. Sci., 12
(1980), pp. 161-173.

[2] T. BAKER, J. GILL, AND R. SOLOVAY, Relativizations of the P= ? NP question, this Journal, 4
(1975), pp. 431-442.

[3] T. BAKER AND A. SELMAN, A second step towards the polynomial-time hierarchy, Theoret. Comput.
Sci., 8 (1979), pp. 177-187.

[4] R. BOOK, On languages accepted in polynomial time, this Journal, (1972), pp. 281-287.
[5] Bounded query machines: on NP and PSPACE,Theoret.Comput. Sci., 15 (1981), pp. 27-39.
[6] R. BOOK, C. WILSON, AND XU MEI-RUI, Relativizing time, space, and time-space, this Journal, 11

(1982), pp. 571-581.
[7] R. BOOK AND C. WRATHALL, Bounded query machines: on NP and NPQUERY (), Theoret.

Comput. Sci., 15 (1981), pp. 41-50.
[8] J. DONER, Relativized complexity classes, submitted for publication.
[9] D. KOZEN, Indexings of subrecursive classes, Theoret. Comput. Sci., 11 (1980), pp. 277-301.

[10] D. KOZEN AND M. MACHTEY, On relative diagonals, unpublished manuscript, 1981.
[11] R. LADNER, N. LYNCH AND A. SELMAN, A comparison of polynomial time reducibilities, Theoret.

Comput. Sci., (1975), pp. 103-123.
[12] W. SAVITCH, Relationships between nondeterministic and deterministic tape complexities, J. Comput.

Syst. Sci., 4 (1970), pp. 177-192.
[13] A. SELMAN, Polynomial time enumeration reducibility, this Journal, 7 (1978), pp. 440-457.
[14] I. SIMON, On some subrecursive reducibilities, Ph.D. dissertation, Stanford University, Stanford, 1977.
[15] I. SIMON AND J. GILL, Polynomial reducibilities and upwards diagonalizations, Proc. 9th ACM

Symposium Theory of Computing, 1977, pp. 186-194.
[16] L. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1976), pp. 1-22.
[17] C. WRATHALL, Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1976),

pp. 23-33.
[18] Xu MEI-RUI, J. DONER AND R. BOOK, Refining nondeterminism in relativizations of complexity

classes, J. Assoc. Comput. Mach., to appear.
[19] M. GAREY AND D. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-Complete-

ness, W. H. Freeman, San Francisco, 1979.
[20] R. BOOK, T. LONG AND A. SELMAN, Quantitative relativizations of complexity classes, manuscript,

1982.
[21], Qualitative relativizations of complexity classes, manuscript, 1983.

SlAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0012 $01.25/0

TWO RESULTS ON POLYNOMIAL TIME TRUTH-TABLE
REDUCTIONS TO SPARSE SETS*

ESKO UKKONENS

Abstract. Inspired by the recent solution of the Berman-Hartmanis conjecture [SIAM J. Comp., 6
(1977), pp. 305-322] that NP cannot have a sparse complete set for many-one reductions unless P NP,
we analyze the implications of NP and PSPACE having sparse, hard or complete sets for reduction types
more general than the many-one reductions. Three special cases of truth-table reductions are considered.
First we show that if NP (PSPACE) has a tally -<_7--hard set, then P NP (P PSPACE). Here
denotes a subcase of polynomial time Turing reducibility in which, for some constant k, the reducing Turing
machine is allowed to make at most k queries to the oracle. We also show that if co-NP (PSPACE) has a
sparse hard set for conjunctive polynomial time reductions, then P NP (P PSPACE).

Key words, truth-table reduction, Turing reduction, polynomial time, hard set, sparse set

1. Introduction. This paper is one in a series initially stimulated by a conjecture
of L. Berman and J. Hartmanis [1] that all sets -<P-complete for NP are polynomial
time isomorphic; i.e., that between any two such sets there is a polynomial time
bijective reduction with polynomial time inverse. Because the conjecture implies that
P # NP, it understandably is still open.

Another implication of the conjecture is that all =<P-complete sets have similar
density. Since all the known complete sets have exponential density [1], Berman and
Hartmanis additionally conjectured that no sparse set (a set with polynomial density)
could be =<P,P,-complete for NP unless P NP. Recently, this conjecture was proved
by Mahaney [8]. However, the first significant step towards the solution was made
already by P. Berman [2], who proved that if NP has an =<P-complete set in 1" (a
tally complete set), then P=NP. Fortune [3], and later Meyer and Paterson [9],
improved Berman’s result by showing that if NP has a co-sparse -<P-complete set,
then P NP.

With the Berman-Hartmanis conjecture solved for -< P-complete sets, it is natural
to consider implications of NP having sparse, hard or complete sets with respect to
reductions more general than =<P,,. Particularly interesting is the polynomial time
Turing reduction -<-, since, as noted by Meyer (see [1]), NP has polynomial size
circuits if and only if NP has a sparse =< -hard set. For Turing reductions, it is known
[5] that if NP has a sparse =<-hard set (or equivalently, polynomial size circuits),
then the polynomial hierarchy collapses to E2Pfq 1-I. Mahaney [8] establishes a related
result by showing that if the sparse -<-hard set for NP is actually in NP, then the
polynomial hierarchy collapses to A2P. Finally, Long [7] proves a companion result
that the polynomial hierarchy equals A’ if NP has a co-sparse =< -complete set.

Thus the question of whether the existence of a sparse (or co-sparse)=< -hard
set for NP implies P NP, is still open. Instead of the -<-reducibility, which is the
most general form of polynomial time reducibilities, we consider in this paper some
more restricted reductions which still are properly more general than <=,,.P First we
consider polynomial time Turing reductions restricted to machines which may make
at most a constant number of queries to the oracle. Such reducibility is a special case

* Received by the editors October 16, 1981, and in revised form September 10, 1982. This work was
supported by the Academy of Finland and by the Finnish Cultural Foundation. Partial support was provided
by the National Science Foundation under grant MCS 79-15763 at the University of California, Berkeley.

t Department of Computer Science, University of Helsinki, Tukholmankatu, SF-00250 Helsinki 25,
Finland.

58O

REDUCTIONS TO SPARSE SETS 581

of polynomial time truth-table reducibility and is denoted by --<’-7-, where k is the
integer constant limiting the number of queries. We show, generalizing an original
result of P. Berman [2], that if NP has a _-<’_7--hard tally set (i.e., a set over a
one-symbol alphabet), then P NP. We also consider two other subcases of truth-table
reductions--the polynomial time conjunctive and disjunctive reductions < P and <p

---’12 "’d

It is shown, generalizing a result of Fortune [3], that if co-NP has an _-<P-hard sparse
set (or, equivalently, NP has an _-<aP-hard co-sparse set), then P- NP. These proofs
are easily modified to show that if PSPACE has a tally _-<P_r-hard set or sparse
-< P-hard set (or co-sparse -<_ aP-hard set), then P--PSPACE.

Results closely related to ours have been recently derived by Yesha [12] (this
issue, pp. 411-425).

2. Polynomial time reducibilities. We assume familiarity with classes P, NP,
co-NP and PSPACE, and with the concepts of hardness and completeness for a class
of languages with respect to a given form of reductions between languages [4]. Unless
specified otherwise, all sets are languages over a fixed finite alphabet E of at least two
elements. In particular, sets in 1", i.e., sets over a one symbol alphabet, are called
tally languages. For A c E*, denotes the complement of A in E*. For a string x, [xl
denotes the length of x.

An oracle Turing machine is a deterministic multitape Turing machine acceptor
with a distinguished oracle tape and three special states Q, YES, NO. By an acceptor
we mean a machine where final states are divided into accept and reject states. When
the oracle machine enters state Q, the next state is YES or NO depending on whether
or not the word currently on the oracle tape belongs to the oracle set. In this way,
the machine with an oracle set B receives an answer to a test of the form "x B?"
in one step. The set accepted by the oracle Turing machine M with B as its oracle
set will be denoted by L(M, B).

A set A is Turing reducible to a set B in polynomial time (A _-< B), if A L(M, B)
for an oracle Turing machine M that runs in polynomial time.

Set ,4 is many-one reducible to set B in polynomial time (A -< P,B), if there is a
function f: E*--> E*, computable in polynomial time, such that for all x s E*, x s,4 if
and only if f(x B.

The computations of an oracle Turing machine M, which operates with input x,
can be described by a binary computation tree T T(M, x). The root of T is labeled
x. Every leaf is labeled either "accept" or "reject". Every internal node is labeled
with a query. Every right branch is labeled "yes", and every left branch is labeled
"no", corresponding to whether the state following the query state is YES or NO. A
path from the root to a leaf is called an accept path (reject path) if the leaf is labeled
"accept" ("reject").

In what follows, we analyze three restricted forms of the Turing reductions. The
first one is simply the -<Pr-reduction, limited to oracle machines that, independently
of the input and the oracle, may ask only a constant number of questions. In more
detail, let A-<_-B via a machine M, so that, for some fixed integer k, the height of
the computation tree T(M, x) is at most k for every input x. Then we write A --<’-TB
and say that A is k-question Turing reducible to B in polynomial time. Thus, indepen-
dently of the current oracle, any computation of M contains at most k queries.

To give the two remaining reductions, we say that a set A is disjunctive reducible
to a set B in polynomial time, A <-B, if A _<-B via an oracle Turing machine whose
accept states contain only the YES state. Furthermore, a set A is conjunctive reducible
to a set B in polynomial time, A <-PB, if A-<_B via a machine whose reject states
contain only the NO state. These definitions are more convenient to work with than

582 ESKO UKKONEN

the equivalent definitions in the literature (e.g. [6]). Note that if A =<B via a machine
M, then in every computation tree of M, the path leading to the leftmost leaf is the
only reject path. Similarly, if A =<B via M then the only accept path is the path
leading to the rightmost leaf.

For completeness, we will recall from the literature some additional forms of
reducibility between languages and compare them with those given above. First, an
oracle Turing machine is called positive, if whenever an oracle set B is a subset of
another oracle set B’, then L(M, B)_ L(M, B’). Set A is positive reducible to a set B

ein polynomial time, A <=pB, if A-<-B via a pogitive Turing machine [11]. Clearly,
both <P and < are positive reductions

Next recall that, according to the original definition [10], a set A is truth-table
reducible to a set B (A -<ttB) if there is a recursive function f that on input x computes
a list of queries q1,’’ ", qk, and a boolean function a such that x A if and only if
a(CB(ql),’" ", CB(qk))= 1, where Cn is the characteristic function of the set B.

The following characterization of <-,t is useful from the complexity theoretic point
of view [11]. Let c be a symbol not in {0, 1}. Then A <=ttB if and only if there is an
oracle Turing machine M such that A --<TB via M, and a recursive function f: {0, 1}*
(c{0, 1}*)* such that, for each input x to M, M makes queries to B from only the list
f(x). If here M operates in polynomial time and is polynomial time com-
putable, then we say that A is truth-table reducible to B in polynomial time (A <=B). In
addition, if M is positive, then A is positive truth-table reducible to B in polynomial time

P(A <=pttB), and if f: {0, 1}* (c{0, 1}*)k for some fixed integer k (thus the length of
f(x) is always k), then A is k-question truth-table reducible to B in polynomial time
(A < B)--tt

The basic relations between these reducibilities are now outlined. Note that the
reductions -< -T, -< Pc and < we will consider in the sequel are instances of truth-table
reducibility =< . From [6] we first quote:

THEOREM 1 [6].

A <PBZ:i, A <=ecB P P

A <-_B A <=pub

We also have:
THEOREM2. A <P.,B ::> A =<-ttB

A <=.B.
Proof. All the implications in the theorem are almost trivial. We show here only

the second and the third one.
Let A <=[-ttB via a machine M. For each input the list of allowed queries is of

length k. Hence M may ask the oracle only k different questions. This does not
necessarily mean that the number of queries in every computation is <-k, because the
same question may occur several times. However, by providing M with an extra tape
for bookkeeping queries and answers, we obtain a polynomial time machine which
needs to ask each different query at most once. This shows that A -< [-TB.

If A <=[-TB via a machine M, then every computation tree T(M, x) contains at
most 2 1 queries. Let .f(x) denote a list of such queries. Then we can compute f(x)
in polynomial time O(2t:p(Ixl) by simulating each of the, at most, 2 paths from the
root to a leaf in T(M, x). Hence A

3. k-question Turing reducibility and tally oracles. Now we are ready to general-
ize the original result of P. Berman [2] to the <’_r-reducibility. Technically, we
follow, when appropriate, the exposition of [8]. The proof is based, besides on
properties of < ’_T, on the following selpreducibility structure of satisfiable boolean

REDUCTIONS TO SPARSE SETS 583

formulas" the problem of deciding the satisfiability of a formula F reduces to problems
of whether either of Ft and Fr is satisfiable, where Ft(Fr) is the result of setting the
first variable in F to true (false) and simplifying. It is important that then
and IFrl-<_

THEOREM 3. If NP has a tally <-_T-hard set, then P NP.
Proof. Let SAT be the set of satisfiable boolean formulas. Since SAT is

-<_P-complete for NP, it suffices to prove that if SAT <-----TB for some B
_

1", then
SAT P.

Suppose that B_ 1" and SAT<-__TB via a machine M. Let F be a boolean
formula whose satisfiability is to be decided. The self-reductions of F form a binary
tree with F as the root, and with F, and Fr, as defined above, as the left and right
sons of the root, and so on. The leaves will simply be true or false. If F has m variables,
then the tree will have 2"/1-1 nodes.

We perform a depth-first search on this tree and use properties of M and B to
prune the search so much that the time requirement is only polynomial in IFI. The
search will either find a satisfying assignment or determine that none exists.

At every node G encountered during the search we simulate all the computations
presented by the tree T(M, G). During the simulation we form a list (ll, 12," lp)
such that the list has an element li for each rejecting computation found in T(M, G).
Since T(M, G) contains at most 2k computation paths from the root to acceptance or
rejection, we have p _-< 2 k. Each li is of the form [i ((ql, a), (q2, a2), (qr, at)). Here
q 1" is the/’th query in the computation represented by li, and at 1 or 0 depending
on whether the computation takes after the/’th query the YES branch or the NO
branch. Since M is a k-query machine, we have r -<_ k. We label node G with l(G).
All this can be accomplished in time O(2p(IGI)), where p is the polynomial bounding
the time requirement of M. Since IGI -< [FI for every formula G in the self-reducibility
tree of F, we obtain O(2p(lF[)). Thus the search needs a polynomial
time at each node.

For a node G, its label l(G) is called a refect label, if we know that G is not in
SAT. During the search we can infer that certain labels are reject labels as follows"

(1) /(false) is clearly a reject label.
(2) If l(Gr) and l(Gt) are reject labels, then l(G) is also a reject label, since then

Gr as well as Gt are not in SAT, which means that G cannot be in SAT.
The search is pruned by not searching below a node whose label is already known

to be a reject label. Observe that if l(G) is a reject label by rule (1) or (2), then all G’
such that l(G’)= l(G) have a reject label, of course. This conclusion is correct only
if we can now infer that every such G’ is not in SAT. Because G is not in SAT,
machine M with oracle B must follow some reject path of T(M,G). Let
((ql, al), (q2, a2),’’’, (qr, at)) be the encoding of this path in the label l(G). Thus
each q B if and only if ai 1. Since l(G) l(G’), a reject path with the same encoding
occurs in T(M, G’). With oracle B, machine M must follow this path and will reject
G’. Thus G’ is not in SAT.

The search stops when either a leaf with formula "true" is found or when l(F)
is found to be a reject label. In the former case the path from the root to the "true"
leaf indicates a satisfying assignment. In the latter case F cannot be satisfiable.

To complete the proof, we must show that the outlined searching algorithm runs
in polynomial time. The following lemma establishes this.

LEMMA 4. Let F be a formula with m variables, and let p be a polynomial bound
of the running time of M. Then the algorithm above visits at most m +m
(2(p(IFI) + 1))g’Ek interior nodes of the self-reducibility tree for F and therefore runs in
polynomial time.

584 zsro UKKONEN

Pro@ If G and G’ are two unsatisfiable formulas with the same label (i.e.,
l(G)- l(G’)) occurring in the interior of the pruned search tree, then they must be
on the same branch from the root. Otherwise, one of the formulas, say G, would be
searched first, and its label l(G) would be determined to be a reject label. But then
the depth-first search would not go below G’, contradicting the assumption that G’
is not a leaf.

Thus the number of distinct paths from the root to unsatisfiable interior nodes
is bounded by the number of distinct reject labels. This number surely is at most equal
to the number of all possible labels. This in turn equals (2(p(IF])+ 1)) k’2k, because
each label l(G) is of the form (l,..., l), where p _-__2, and each l is of the form
((q, a), (q2, a2), ", (q, a)), where r -< k, and each q s 1" is of length at mostp (Ial) --<
p(IFI), and each a equals 0 or 1. Since the tree has height m, there are at most
m x (2(p(IFI)+ 1)) interior nodes with reject labels. A satisfying assignment visits
at most another m nodes. 71

The method presented in the proof of Theorem 3 above for deciding the satisfiabil-
ity of a boolean formula can easily be adopted for deciding in polynomial time the
validity of a closed quantified boolean formula; cf. [3]. Since the set of valid such
formulas is -< P-complete for PSPACE, we obtain"

THEOREM 5. I" PSPACE has a tally <-_T-hard set, then P PSPACE.
Proof. We sketch the changes needed in the proof of Theorem 3. Let QFB denote

the set of closed valid quantified boolean formulas. Suppose that QFB <=f-TB via a
machine M for some B

1". We show that then QFB is in P.

Let F QixiQ2x2"’" Q,x,H(x,.", x,.,), where each Qi is V or ::l, be a closed
quantified boolean formula whose validity is to be decided. Denote by Ft and Fr the
formulas obtained by setting x in F to true and false and simplifying. The problem
of deciding the validity of F reduces to the problem of whether Ft and Fr are valid
when Q1 is V, and to the problem of whether Ft or Fr is valid when Q1 is ::l. Since
IF[=< IF[and IFrI -< IFI, we again have a self-reducibility structure.

The validity of F can be decided in polynomial time during a depth-first search
over the tree describing the self-reducibility structure of F. At every node G encoun-
tered during the search, we simulate all the computations presented by T(M, G) and
form two lists, and l’. List is as in the proof of Theorem 3, and list l’= (l, l’2, ,lp,)’
is as list l, but l’ contains an element II for each accepting computation found in
T(M, G). We label node G with two labels, l(G) and l’= l’(G).

Label l(G) is the proper label of G if we know that G is in QFB, and l’(G) is
the proper label of G if we know that G is in QFB. Thus at most one of l(G) and
I’(G) may be proper. During the search we can infer the proper label for certain
nodes as follows:

(1) /’(true) and/(false) are clearly proper labels.
(2) If l’(Gr) and l’(G,) are proper labels, then l’(G) is the proper label of G

(independently of the leading quantifier of G); if l’(Gr) or l’(G,) is a proper label and
the leading quantifier of G is ::1, then l’(G) is the proper label of G; if l(Gr) or
is a proper label and the leading quantifier of G is ’, then l(G) is the proper label
of G.

(3) If l(G’) equals the proper label of another node G, then l(G’) is the proper
label of G’, and if l’(G’) equals the proper label of G, then l’(G’) is the proper label
of G’.

Correctness of rules (1) and (2) should be obvious. As for rule (3), suppose
that the proper label L for G has been chosen correctly. This means that the path in
T(M, G), which M follows with oracle B and input G, must be in L. If now (G’) L
for some node G’ whose proper label is still unknown, a path with the same encoding

REDUCTIONS TO SPARSE SETS 585

must occur among the reject paths of T(M, G’). With oracle B, machine M must
follow this path and will reject G’. Hence l(G’)- L is the correct proper label for G’.
The case where l’(G’)- L, and therefore an accept path is followed in T(M, G’), is
similar. It is also easy to show by contradiction that rule (3) cannot give two proper
labels for G’.

The search is pruned by not searching below a node whose proper label is already
known. The search stops when the proper label for the root F is found. Formula F
is in QFB if and only if l’(F) is proper.

To estimate the time requirement of the search, let F be a formula with m
variables, and let p be a polynomial bounding the running time of M. Then the search
visits at most m (2(p(IFI)+ 1)) k’Ek interior nodes of the self-reducibility tree for F
and hence takes a polynomial time in IFI. That is, if G and G’ are formulas with the
same proper label occurring in the interior of the pruned search tree, then, exactly
as in the proof of Lemma 4, they must be on the same path from the root. The number
of different proper labels is again <(2(p(IFI)+ 1))k’2k. Since the tree is of height <=m,
the upper bound follows.

Moreover, the generalization of Fortune’s [3] results given by Meyer and Paterson
[9] also applies to our proof of Theorem 3. Thus every language which has a
self-reducibility property in the precise sense defined in [9], and which -< ’_7--reduces
to a tally language, can be recognized in polynomial time.

4. Conjunctive reducibility and sparse oracles. In conjunctive and disjunctive
reductions, a Turing machine uses its oracle in a very limited way. Therefore for these
reductions, we may obtain a result similar to Theorem 3 without a restriction to
k-question machines. Also, the restriction to tally oracles can be relaxed. It suffices
to assume that the oracle is sparse, that is, there is a polynomial q such that the
number of elements in the oracle of length at most n is at most q (n).

PTHEOREM 6. [f co-NP has a sparse =c-hard set (or equivalently, NP has a
co-sparse <--hard set), then P NP.

Proof. We first note that because A -<PB if and only if ft, <-/, the two alternative
premises of the theorem really are equivalent.

The set of nontautological boolean formulas, SAT, is =<P-complete for co-NP.
P y_,.Hence it suffices to prove that if SAT_-<c B, where B c is sparse, then SAT P.

Then also SAT P, which means P NP, as required.
PLet SAT =c B via a Turing machine M whose only reject state is the NO state,

and whose running time is bounded by a polynomial p. Let F be a boolean formula
whose satisfiability is to be decided. We again perform a similar depth-first search on
the tree of self-reductions of F as in the proof of Theorem 3. The labeling function
must be modified as follows: The label of a node corresponding to a formula G,

l(G), equals the list of all queries occurring in the tree T(M, G). The list is easy to
form because it is the sequence of queries on the (rightmost) path on which each
query to the oracle is answered "yes". So l(G) is of the form l(G)= (q 1,"" ’, qr),
where each qiY-,p(IFI) and r<-p(IGI)<-p(lFI). Hence, l(G)can be computed in time
O(p(IFI)).

As in the proof of Theorem 3, a label l(G) is called a reject label if we
know that G-<SAT. (Actually, machine M will accept such a formula G, but
we prefer to stick to the old terminology.) Now we have three possibilities (1)-(3)
below to infer that certain labels are reject labels ((1) and (2) are as in the proof of
Theorem 3):

(1) l(false) is a reject label.
(2) If l(Gr) and l(Gt) are reject labels, then l(G) is also a reject label.

586 ESKO UKKONEN

(3) If each element qi in the label l(G) (ql, ’, qr) occurs in some reject label,
then l(G) is also a reject label.

If l(G’) is a reject label, then M accepts G’, which is possible only if M obtains
the answer "yes" to every query it makes for input G’. So every element of l(G’)
must be in the oracle set B. This also implies that the new rule (3) is correct. Suppose,
namely, that l(G) is to be a reject label by rule (3), i.e. that each element of l(G)
occurs in some other reject label found so far. Then we know (formally, by the
induction hypothesis) that every element of l(G) must be in B. This implies that M
must accept G, and hence G SAT.

Now the search procedure can be completed as in the proof of Theorem 3" The
search is pruned by not searching below a node whose label is already known to be
a reject label. In this way, either a satisfying assignment is found, or l(F) is found to
be a reject label, in which case F SAT.

In the following lemma we show that the running time of the pruned search is
polynomially bounded. 71

LEMMA 7. Let F be a formula with m variables. Let p be a polynomial bounding
the running time of M, and q a polynomial bounding the density of the sparse oracle
set B. Then the algorithm above visits at most m + m q(p(]FI)) interior nodes of the
self-reducibility tree for F and therefore runs in polynomial time.

Proof. We will again show that the number of distinct paths from the root of the
pruned search tree to an interior node is polynomially bounded. Because now the
number of different labels of nodes does not necessarily have a polynomial bound,
the proof of Lemma 5 must be modified.

Let be a path in the pruned tree from the root to a leaf corresponding to an
unsatisfiable formula. Suppose moreover that the interior nodes of are not properly
contained in the interior nodes of any other path. Let G be the last interior node of
t. Then all sons of G must be leaves.

Consider the moment when the search reaches a node G. Denote by A the set
of those strings in E* which occur in some label known to be a reject label. Since G
is an interior node, at least one element q of l(G) must be outside A. Otherwise we
could infer by rule (3) that l(G) is a reject label, and the depth-first search would not
go below G, contradicting the assumption that G is not a leaf.

Hence the search goes below G. When returning back to G, l(G) is determined
to be a reject label. The current set A therefore will also contain q. So each path
must increase the size of A by at least one. On the other hand, A must always be a
subset of the sparse oracle B. The length of each element of A is at most p (IF]). There
are at most q(p(IF])) such elements in B. Thus q (p (IF])) is an upper bound for the
number of distinct paths t. Then, since the tree has height m, there can be at most
m q(p(IFI)) interior nodes with reject labels. A satisfying assignment again visits at
most another tn nodes.

As for Theorem 3, we also have in this case the following related result"
THEOREM 8. If PSPACE has a sparse <-P-hard set (or equivalently, a co-sparse

<--hard set), then P- PSPACE.
Proof. The two alternative premisses are equivalent, becauseas already men-

Ptioned--A_-<B if and only if -</, and because PSPACE is closed for com-
plementation.

PLet B E* be a sparse _-<P-hard set for PSPACE. Then QFB _-< B via a machine
M, and QFB _-<PB via a machine M’, since both QFB and QFB are in PSPACE.
Let F be the quantified boolean formula whose validity is to be decided. As in the
proof of Theorem 5, we perform a depth-first search on the tree of the self-reductions

REDUCTIONS TO SPARSE SETS 587

of F. At every node G encountered during the search, we form two lists, l(G) and
l’(G). List l(G) equals the list of all queries occurring in the tree T(M, G), and list
l’(G) equals the list of all queries occurring in the tree T(M’, G). Both lists can be
formed as described in the proof of Theorem 6.

The definition of the proper label for G is as in the proof of Theorem 5. Also
rules (1) and (2) for inferring the proper label remain unchanged. Rule (3) should be
replaced by the following:

(3’) If each element q in l(G)= (ql,’" ", q) occurs in some proper label, then
l(G) is the proper label of G; if each element q in l’(G) occurs in some proper label,
then l’(G) is the proper label of G.

Rule (3’) is correct, since all elements in proper labels must be members of B.
The search over the tree of self-reductions of F proceeds and stops as described

in the proof of Theorem 5. The time requirement is polynomial in IFI, since the search
visits at most rn x q(p(lFI) interior nodes of the tree, where rn is the number of
variables in F, p is a polynomial bounding the running time of M and M’, and q is
a polynomial bounding the density of B. The proof is similar to the proof of Lemma
7, if "reject label" is replaced by "proper label." [-1

Moreover, the generalization in [9] applies to the proof of Theorem 6. Thus every
language which has the self-reducibility property of [9], and the complement of which
<P=-reduces to a sparse language, can be recognized in polynomial time.

REFERENCES

[1] L. BERMAN AND J. HARTMANIS, On isomorphisms and density of NP and other complete sets, this
Journal, 6 (1977), pp. 305-322.

[2] P. BERMAN, Relationship between density and deterministic complexity of NP-complete languages,
Automata, Languages and Programming (Fifth Int. Coll., Udine, Italy, July 1978), Lecture Notes
in Computer Science 62, Springer-Verlag, Berlin-Heidelberg-New York, 1978, pp. 63-71.

[3] S. FORTUNE, A note on sparse complete sets, this Journal, 8 (1979), pp. 431-433.
[4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, W. H. Freeman, San Francisco,

1979.
[5] R. M. KARP AND R. J. LIPTON, Some connections between non-uniform and uniform complexity classes,

Proc. 12th ACM Symposium on Theory of Computing, 1980, pp. 302-309.
[6] R. E. LADNER, N. A. LYNCH AND A. L. SELMAN, A comparison of polynomial time reducibilities,

Theoret. Comput. Sci., 1 (1975), pp. 103-123.
[7] T.J. LONG,A note on co-sparsepolynomial time Turingcomplete setsfor NP, Manuscript, Dept. Computer

and Information Science, Ohio State University, Columbus, 1980.
[8] S. R. MAHANEY, Sparse complete sets for NP: Solution of a conjecture ofBerman and Hartmanis, Proc.

21st Annual IEEE Symposium on Foundations of Computer Science, 1980, pp. 54-60.
[9] A. R. MEYER AND M. S. PATERSON, With what frequency are apparently intractable problems

difficult? MIT Technical Report MIT/LCS/TM-126, Massachusetts Institute of Technology,
Cambridge, MA, 1979.

10] E. L. POST, Recursively enumerable sets of integers and their decision problems, Bull. Amer. Math. Soc.,
50 (1944), pp. 284-316.

11 A. L. SELMAN, Analogues ofsemirecursive sets and effective reducibilities to the study of NP complexity,
Manuscript, Computer Science Dept., Iowa State University, Ames, 1981.

[12] Y. YESHA, On certain polynomial-time truth-table reducibilities of complete sets to sparse sets, this
Journal, this issue, pp. 411-425.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0013 $01.25/0

A SHORTEST-PATH ALGORITHM WITH EXPECTED TIME
O(n 2 log n log* n

PETER A. BLONIARZ*5"

Abstract. We present an algorithm which determines the shortest distances between all pairs of points
in a nonnegatively weighted directed graph in average time O(n log n log* n). This algorithm, which uses
a search strategy similar to Dantzig [Management Sci., 2 (1960), pp. 187-190; Linear Programming and
Extensions, Princeton Univ. Press, 1963] and Spira [SIAM J. Comput., 2 (1973), pp. 28-32] executes in
the stated time over quite general classes of probability distributions on such graphs.

Key words, graph, algorithm, shortest path, computational complexity, expected time, average time

1. Introduction. We consider the problem of finding the shortest distance
between all pairs of nodes in a nonnegatively weighted directed graph. For the
worst-case measure of complexity, the fastest known algorithm for solving this problem
is due to Fredman [10]. His algorithm has a running time of O(n 3 (log log n)1/3/
(log n)l/3), a slight improvement over the O(n 3) algorithms of Dijkstra [6] and
Floyd [8].

In this paper, we examine the expected time to solve this problem, where we
assume the existence of a probability distribution on the set of nonnegatively weighted
directed graphs, and evaluate the average running time under this distribution.

Spira [15] first posed this problem under the assumption that the edge weights in
the graph were independent identically distributed random variables from an arbitrary
distribution. He proposed an algorithm which has an average running time2 of
O(n 2 log2 n). The main result of this paper is an algorithm for this problem, which
for a class of probability distributions which includes that of Spira, has expected
running time O (n 2 log n log* n).

The strategy of this algorithm and those of Spira [15], Dijkstra I-6] and Dantzig
[5] is basically the same. A single source node is specified, and the algorithm computes
the shortest distance from the source node to all other nodes by searching out from
the source node along paths of increasing length. The improvement in average running
time of this and Spira’s algorithms over the basic paradigm of Dantzig results from
not unnecessarily considering long paths in the graph. Our improvement over Spira’s
algorithm is to avoid considering short paths which lead to nodes to which we already
know the distance.

* Received by the editors September 10, 1980, and in revised form August 5, 1982. This research
was supported by the National Science Foundation under grant MCS78-04346. A preliminary version of
this material appeared in the Proceedings of the 12th Annual ACM Symposium on Theory of Computing,
April, 1980, pp. 378-384.

5" Department of Computer Science, State University of New York at Albany, Albany, New York 12222.
We use the following notation in this paper. All logarithms are to the base e, and

times

log* n min {i N log log. log n -< 1}.

For any finite set S, IsI is the number of elements in S, and for any real number r, [r] is the least integer
greater than or equal to r.

Spira’s analysis of his algorithm neglected the possibility of equal-length paths and edges, which may
lead to slow implementation in certain instances [3]. A corrected version of his algorithm, together with
a proof of the stated average time for the class of probability distributions described in this paper, is
contained in [2].

588

SHORTEST-PATH ALGORITHM 589

Using this general strategy, the new algorithm obtains the shortest distance from
a single source node to all other nodes in expected time O(n log n log* n). However,
the algorithm requires that the graph be presented as lists of edges from each node
in sorted order, and the conversion to this representation, if necessary, requires
O(n 2 log n) time on the average to sort. Since Dijkstra’s algorithm computes the
shortest distance from a single source node to all others in worst-case time O(g2),
our algorithm is practical only if one desires the shortest distance between all pairs
of nodes in the graph.3

The class of probability distributions for which the results hold is quite general.
Informally, we require that the cost of an edge in the graph be independent of the
node to which it points (though it may depend on the node from which it points). The
formal definition is contained in 4.

Empirical studies of this algorithm are reported in 6. In [4], it was shown that,
for randomly chosen graphs, Yen’s implementation of Dijkstra’s algorithm [16] is
superior to Spira’s algorithm for graphs of fewer than 100 nodes after which Spira’s
is superior. Our studies indicate that the average running time of this algorithm is
superior to that of Yen for graphs with 25 nodes or more, and that Spira’s algorithm
need not be as inefficient as was previously reported.

Algorithms which solve related graph connectivity problems with small expected time
may be found in [3], 12], [13].

2. Graph definitions. We assume that the reader is familiar with standard graph
terminology as contained in [1]. In particular, a graph will be a labelled directed graph
with nonnegative edge weights; that is, a triple G (V, E, c), where V {1, 2,.. , n}
is a set of nodes, Ec Vx V is a set of edges, and c:E{r Nlr-->O}t-J{c} is a
function giving the cost or weight of each edge in the graph. For simplicity, we assume
that E V x V, and represent the absence of an edge by an edge with cost

A graph may be represented in several standard ways. One is to present the cost
function c as the n x n adjacency matrix of edge costs. Another is the adjacency list
representation, in which for each node V we have a list Li of the edges emanating
from node i. For this algorithm, we will use the sorted adjacency list representation
in which each adjacency list Li is ordered by increasing cost. Although many structures
for storing lists could be used, we assume in our description that the sorted adjacency
lists are stored as a pair of n x n matrices TAIL and COST, where

TAIL (i, k) is the node index of the kth most expensive edge emanating from node i,

and

COST (i, k) is the cost of this edge, namely c (i, TAIL (i, k)).

A graph presented as either an adjacency matrix or (unsorted) adjacency list may be
converted into a sorted adjacency list representation in time O(n log n) using a
sorting algorithm such as heapsort [1].

The possibility of equal-weight edges on an edge list is a complicating factor. For
definiteness, we assume that the endpoints of equal-weight edges on an edge list are
in random order. This restriction is actually unnecessary, as we will discuss in 5.

A path in a graph from node to node/" is a finite sequence of edges (v0, v i),
(VI, U2), (/)2, V3),""’, (/)k-l, /)k) such that v0 and vk =/’. The cost of a path is the
sum of the costs of the edges which comprise it; in particular, in any graph there is

The initial sort required in this algorithm may be eliminated to solve the single-source shortest path
problem in O(n 2) average time, but O(n log n) worst-case time.

590 PETER A. BLONIARZ

a path of no edges from any node to itself of cost 0. We define the minimum cost (or
shortest-path) matrix MIN of a graph G by

MIN (i, f)= minimum {cost (P)[P is a path from to/’ in G}.

Since all edge costs are nonnegative, all entries in MIN are well-defined.
The problem of constructing the shortest-path matrix MIN for a graph is the

all-pairs shortest-path problem. The single-source shortest-path problem is that of
computing one row of this matrix, namely computing the shortest distance from a
single source node to all other nodes in the graph.

3. The algorithm. To solve the single-source shortest-path problem, the
algorithms of Dantzig [5], Spira [15] and this paper all follow the same general strategy.
In these algorithms, successively longer paths from the source are investigated until
the shortest paths to all nodes are discovered. We begin by describing Dantzig’s
algorithm.

Let G be a graph and SOURCE be a node in G. To find the shortest distances
from SOURCE, the algorithm maintains a set NEAR of modes which satisfies two
properties: If J NEAR, then the distance MIN (SOURCE, J) has been determined
by the algorithm. Furthermore, the nodes in NEAR are those closest to SOURCE;
i.e. for all J NEAR and K NEAR, MIN (SOURCE, J) <_- MIN (SOURCE, K). An
element of NEAR will be termed a NEAR node and all others will be called FAR
nodes.

Dantzig’s algorithm initializes NEAR to {SOURCE} and iteratively adds nodes
to NEAR until all nodes are included. To do this, it considers certain paths leading
to FAR nodes. For each NEAR node J, the algorithm maintains a path defined as
follows:

END (J) is the FAR node closest to J by a single edge; i.e., END (J) NEAR
and c (J, END (J)) minimum {c (J, K)IK NEAR}.

PATH (J) is the path from SOURCE to END (J) consisting of a minimal-
length path from SOURCE to J followed by the edge from J to END (J).

COSTPATH(J) is the cost of PATH(J), i.e.,
MIN (SOURCE, J) + c (J, END (J)).

The algorithm is based on the following observation:
LEMMA 1 [5]. If Jo is a NEAR node such that

COSTPATH (J0) minimum {COSTPATH (J)lJ NEAR},
then

a) PATH (Jo) is a path of minimum cost from SOURCE to END (J0); i.e.,

MIN (SOURCE, END (J0)) COSTPATH (J0).

b) MIN (SOURCE, END (Jo)) --< MIN (SOURCE, K) for all K NEAR.
Thus, if node J0 satisfies the hypotheses of Lemma 1, then the node END (Jo)

may be added to NEAR while preserving the properties we require of NEAR.
Dantzig’s algorithm repeatedly uses Lemma 1 to add nodes to NEAR until all nodes
are included, at which point the algorithm has determined the minimum distance from
SOURCE to all other nodes.

In implementing Dantzig’s algorithm, one must maintain the condition that, for
all NEAR nodes J, END (J) be a FAR node. When a node END (Jo) is added to
NEAR, all NEAR nodes J whose PATH terminates at END (Jo) must have their
END and COSTPATH values changed since END (J) is now a NEAR node. This

SHORTEST-PATH ALGORITHM 591

requires finding the next-cheapest edge from J to a FAR node, and may be performed
efficiently if the graph is represented by a sorted adjacency list. If a pointer POIN-
TER (J) to the edge from J to END (J) is maintained for each edge list, then the
least-cost edge from J to a FAR node is obtained by advancing POINTER (J) along
the Jth row of TAIL until an edge to a FAR node is encountered.

A PASCAL-like encoding of Dantzig’s algorithm is contained in Fig. 1. UPDATE
maintains the correctness of the END and COSTPATH vectors.

DANTZIG (SOURCE):
NEAR {SOURCE};
For all J e V do POINTER (J) 1;
MIN (SOURCE, SOURCE) 0;
UPDATE (SOURCE);

LOOP: While NEAR V do begin
J MINPATH;
E END (J);
NEAR NEAR U {E};
MIN (SOURCE, E) COSTPATH (J);
UPDATE(E);
For all K such that END (K) E do UPDATE (K) end;

End DANTZIG.

MINPATH: Returns node Jo such that COSTPATH (Jo) minimum {COSTPATH (J)lJ NEAR}.

UPDATE (K):
If NEAR V then begin

While TAIL (K, POINTER (K)) NEAR do
POINTER (K)POINTER (K)+ 1;

END (K)TAIL (K, POINTER (K));
COSTPATH (K) MIN (SOURCE, K)+COST (K, POINTER (K)) end;

End UPDATE.

FIG. 1. Dantzig’s algorithm.

The dominant factor in the running time of Dantzig’s algorithm is the cost of
searching adjacency lists in UPDATE. In the worst case, all NEAR nodes may need
to be UPDATED in each iteration of LOOP resulting in a O(n 2) running time. The
average running time has the same asymptotic behavior.

Spira improved the time on the average by reducing this searching of adjacency
lists. This was accomplished by relaxing the requirement that each path PATH (J)
terminate in a FAR node. In this algorithm, NEAR, PATH and COSTPATH are
defined as in Dantzig’s algorithm, but END satisfies the following weakened constraint:

END (J) is a (NEAR or FAR) node such that

c (J, END (J)) <- minimum {c (J, K)IK NEAR}.

Spira’s algorithm is based on the following analogue to Lemma 1.
LEMMA 2 [15]. Suppose Jo is a NEAR node such that

COSTPATH (Jo) minimum {COSTPATH (J)lJ NEAR}.

If END (J0) NEAR then:
a) PATH (Jo) is a path of minimum cost from SOURCE to END (Jo); i.e.,

MIN (SOURCE, END (Jo)) COSTPATH (Jo).

b) MIN (SOURCE, END (Jo)) --< MIN (SOURCE, K) for all K ! NEAR.

592 ,zrz A. BLONIARZ

Spira’s algorithm uses Lemma 2 to expand NEAR by repeatedly selecting the
NEARnodeJo with minimumCOSTPATH and, ifEND (J0) NEAR, addingEND (Jo)
to NEAR. The weakened assumption about the END values has two implications.
Upon expansion of NEAR, it is no longer necessary to update all END values so that
all PATHs terminate at FAR nodes. However, application of Lemma 2 will not add
a new node to NEAR in the event that END (Jo) is already a member of NEAR.

To avoid the latter problem, when the NEAR node Jo with minimum COSTPATH
is selected, its PATH is updated. To avoid searching Jo’S edgelist, POINTER (Jo) is
merely advanced by one to the next-most-costly edge from node Jo, and END (Jo)
and COSTPATH (Jo) updated to refer to this edge. When a node E is newly added
to NEAR, its POINTER is merely set to the first edge on its edge list. A straightforward
argument demonstrates that, ultimately, repeated applications of Lemma 2 and this
UPDATE rule will enlarge NEAR, and the correctness of the algorithm follows. A
detailed encoding of the algorithm is in Fig. 2.

SPIRA (SOURCE):
NEAR {SOURCE};
For all J V do POINTER (J) 0;
MIN (SOURCE, SOURCE) 0;
UPDATE (SOURCE):

LOOP’ While NEAR V do begin
J MINPATH;
E END (J);
If ENEAR do begin
NEAR NEAR IA {E};
MIN (SOURCE, E)COSTPATH (J);
UPDATE (E) end;

UPDATE (J) end;
End SPIRA.

MINPATH: Returns node J0 such that COSTPATH (Jo) minimum {COSTPATH (J)lJ s NEAR}.

UPDATE (K):
if NEAR V then begin

POINTER (K)- POINTER (K)+ 1;
END (K)- TAIL (K, POINTER (K));
COSTPATH (K) MIN (SOURCE, K) + COST (K, POINTER (K)) end;

End UPDATE.

FIG. 2. Spira’s algorithm.

In the worst case, Spira’s algorithm may execute LOOP 0(rt 2) times, but its
average case performance is better than Dantzig’s algorithm. Under the assumptions
on the probability distribution on graphs cited in 4, Spira’s algorithm executes
LOOP O(n log n) times on the average [2], [15]. If the nodes in NEAR are maintained
in a heap [1] by their COSTPATH values, then each iteration of the loop takes
O(log n) time, yielding a total average time of O(n log2n).

The algorithm presented in this paper is a synthesis of Dantzig’s and Spira’s
algorithms. We preserve Spira’s idea of allowing PATHs to terminate at NEAR nodes
(and hence avoid searching all edge lists for FAR nodes). Spira’s limit on the search
of edgelists in UPDATE to the next edge on the list (which may be in NEAR), is
overly conservative, however. This results in a larger number of assignments of PATHS
that terminate at NEAR nodes than is necessary. Each assignment of COSTPATH
involves a heap operation which takes 0(log n) time, and these unnecessary heap
operations can be avoided.

SHORTEST-PATH ALOORITHM 593

In the new algorithm, when Spira’s algorithm would update a node K’s PATH
value, we do a bounded search of K’s edge list attempting to find the next-cheapest
edge to a FAR node. This search terminates when either [log n] edges have been
examined or when an edge from K to a FAR node has been found. END (K) is set
to either the FAR node discovered or the endpoint of the last edge encountered. The
algorithm SHORT is identical to that of SPIRA with the modified UPDATE procedure
of Fig. 3. The algorithm may be easily proven correct using Lemma 2.

UPDATE (K):
If NEAR V then begin
POINTER (K) POINTER (K) + 1;
COUNT 1;
While COUNT< [log n] and TAIL (K, POINTER (K)) e NEAR do begin
POINTER (K)*- POINTER (K)+ 1;
COUNT COUNT+ end;

END (K)TAIL (K, POINTER (K));
COSTPATH (K)- MIN (SOURCE, K) + COST (K, POINTER (K)) end;

End UPDATE.

FIG. 3. Revised UPDATE .for SHORT.

Having UPDATE search only [log n] edges guarantees that each iteration of
LOOP still executes in total time O(log n). In the next section we obtain bounds on
the expected number of times LOOP is executed in SHORT under suitable probability
distributions and implementation restrictions.

4. Analysis ot the algorithm. Algorithm SHORT can easily be shown to take
f(n 2 log n) time in the worst case; the average time it takes depends both on the
probability distribution we place on the set of graphs and on the fairness of the
subroutine MINPATH. If several NEAR nodes have equal and minimal COSTPATH
values, biased tie-breaking by MINPATH can lead to poor execution time of this and
similar algorithms (see [2], [3]). Accordingly, we impose the following "fairness"
constraint on MINPATH:

P1) In the case of nodes with equal COSTPATH value, the value Jo returned
by MINPATH is independent of the value of END (J0) and depends only
on the sequence of previous queue operations.

In the proof below, we assume that, in the case of ties, the value J0 returned is the
node of minimal index with minimal COSTPATH. A similar proof would work with
any tiebreaking rule satisfying P1. More will be said about MINPATH in 5.

We characterize the class of probability measures for which our average-time
analysis holds as follows. Let qgn be the set of n node graphs, and suppose P is a
probability measure on c.gn. Through the representation of adjacency matrices, we may
identify fin with the set of all n x n matrices with entries in {r Nlr _-> 0} LI {}. P
is uniquely characterized by its distribution function Fp n [0, 1] defined by Fp(G)
P({G’ N]c,(i,])<-_c(i,]) for l<-i,]<-n}) for any Gn.

Suppose i,/’, and k are arbitrary nodes of V. We define the mapping (i,/’, k)"
by defining the graph (i,/’, k)(G) to be identical to G with the exception that the costs
of the edges (i,/’) and (i, k) are interchanged. The set of functions {(i,/’, k)[i,] k V}
generates a group 3- of transformations on n under the operation of composition.

We call a probability measure endpoint-independent if every z e 3n is a measure-
preserving transformation on the probability space (c,p); that is, if Fp(G)=

594 PETER A. BLONIARZ

Fp((i, f, k)(G)) for all G s , and all i,/’, k V. Intuitively this means that exchanging
endpoints of edges from any fixed node doesn’t affect the probability.

Many natural probability measures on c, are endpoint-independent. For example,
for each {1, 2,. ., n}, if Pi is an arbitrary probability measure on , define P to
be the measure on , obtained by selecting each entry of the adjacency matrix c(i, f)
independently according to distribution Pi. Then P, being the product measure gener-
ated by the Pi, is endpoint-independent. This class includes those distributions defined
by Spira [15].

As another general example, if R is an arbitrary probability measure on a set S,
and f: c, _> S is a function such that f - f for each z e Tn, then the induced probability
measure R f on , is endpoint-independent. Specific such examples include having
a distribution on the weights of edges from each node, a distribution on the sum of
the weights of the edges leaving each node, or a distribution on the maximum weight
of any edge in the graph, with the property that each arrangement of endpoints be
equally likely.

The primary property of endpoint-independent measures which we exploit is the
following. Suppose a particular edge is selected from the sorted edge list Li by virtue
of either its position on the list or the value of its cost. If P is endpoint-independent,
then the endpoint of this edge is independent of the edge’s selection; every endpoint
is equally likely. Note that this is true even if the graph has edges of equal weight by
our requirement that equal-weight edges be stored with endpoints in random order.

For any real-valued function f on the probability space (n, P), let Ep(f) be the
expected value offi If SOURCE is a fixed node, for any G n, we define T(G) to be the
time taken by algorithm SHORT (SOURCE) on G. The main result of this paper is the
following.

THEOREM. If P is an endpoint-independent probability measure on f,, and
SOURCE is a fixed node, then

Ep(T) O(n log n log* n).

Proof. In the remainder of this section, we assume that n > 1, that P is an
endpoint-independent probability measure and that SOURCE is a fixed node. The
theorem is established by obtaining a bound on the expected number of calls to
MINPATH in SHORT. We partition these calls to MINPATH into two classes and
establish bounds on each class separately. Define a call to MINPATH which returns
node Juseful if, at the previous time node J’s PATH had been established in UPDATE,
END (J) NEAR at the time of assignment of END (J). This corresponds to a search
in UPDATE which discovers an edge from J to a FAR node. All other calls to
MINPATH will be termed useless.

To bound the number of useless calls to MINPATH, we first show that the portion of
the sorted adjacency list examined in algorithm SHORT is not much larger than that
examined in SPIRA.

Suppose G q,. Define ti to be the point in the execution of SHORT on G at which
MINPATH is called for the ith time. We define the following parameters of the execution
of SHORT:

Ji is the node returned by MINPATH at time ti
Ei is the value of END (Ji) at ti
NEAR/is the value of NEAR at ti
STATUSi is the triple (Ji, Ei, NEAR/)
OLDNEARi is the value of NEAR at the most recent call to UPDATE (Ji) prior

to ti

SHORTEST-PATH ALGORITHM 595

POINTERi (K) is, for any node K, the value of POINTER (K) at ti
PATHCOSTg (K) is, for any node K, the value of PATHCOST (K) at t.
DefineTRACE (G) to be the ordered sequence (STATUS/I1 -< <-TL (G)), where

TL (G) is the number of times LOOP is executed in running algorithm SHORT on G.
In a similar fashion, we define symbols tsPmA, TRACEsPmA (G), etc. for the

computation of SPIRA on G.
LEMMA 3. TRACE (G) is a subsequence of TRACEsPIRA (G). Moreover, if

&:{1, 2,..., TL (G)} {1, 2,..., TLseIRA (G)} is the correspondence, then
SPIRAPOINTER6(/) (K) _-< POINTERi (K) <POINTERA (K) + log n

for all K V.
Pro@ By induction on ti. The initial call to UPDATE (SOURCE) in SHORT

sets POINTER (SOURCE) to either 1 or 2 depending on whether the edge from
SOURCE to itself is cheapest among all edges from SOURCE. The first call to
MINPATH in SHORT yields J1 SOURCE, NEAR1 ={SOURCE}, and E1 the
endpoint of the shortest nonreflexive edge from SOURCE. This is either
STATUSsPIRA or STATUS2sPIRA. The bounds on POINTERs are easily verified in
the basis case.

SPIRAInductively, suppose the correspondence between STATUS_I and STATUS6(_)
lllE2ADSPIRAhave been established Since NEARi_ ,.(i_), either both algorithms termin-

ate or both continue computing after this point. If computation continues, define

b(i) least > b(i- 1) such that POINTERsPmA (j,SPmA)= POINTER/(Jrsr’RA).

We know that such a exists due to three facts:
1) POINTERsPIRA

6g_) (K)-< POINTERg_I (K) for all K e V (by induction),
2) TAIL (K, p) NEAR for SPIRAPOINTER6(_I (K)-<_p < POINTER (K) for all
K V (by the operation of SHORT),

3) SPIRA terminates only when all nodes have been included in NEAR.
lrSPIRAIf we let J0 J6g then since SPIRA increments POINTERS by 1 at each UPDATE

we know

POINTERsPIRA
6(i> (K)_-< POINTER/(K) for all K Jo.

Hence
SPIRAPATHCOST6(/) (K) <- PATHCOST (K) for all K J0,

and

SPIRAPATHCOST() (Jo) PATHCOSTi (Jo).

Thus Jo is also the node of minimum PATHCOST and minimum index in SHORT,
SPIRAand is returned by MINPATH at t in SHORT. Thus STATUS/= STATUS6()

The bounds on POINTERs follow from the operation of UPDATE in both
algorithms. [3

We can use Lemma 3 to bound the number of edges on edge lists examined by
SHORT. For each node K, let LEN (K, G) denote the value of POINTERTL((K)
upon termination of SHORT. Let

LEN (G)= LEN (K, G).
K=I

596 PETER A. BLONIARZ

Similarly define LENsPIRA.
In [3], [15] is proven the following bound on the average behavior of SPIRA.
LEMMA 4. Ep(LENsPIRA) N n log n + O(n).
COROLLARY 5. Ep(LEN) -<_ 2n log n + O(n).
Proofi Upon termination at time r TL (G), by Lemma 3 we know that

POINTER, (K) < POINTERsPmg() (K) +log n

for all K 6 V. Hence

LEN (K, G) < LENsPIRA (K, G) + log n

for all K V, and summing over all nodes we obtain

LEN (G) < LENsPIRA (G) / n log n.

Taking expectations of both sides establishes the result. 13
We can proceed to establish bounds on Ep(TL). Given G c,, let
A(G)= the number of useless calls to MINPATH in TRACE (G),
B (G)= the number of useful calls to MINPATH in TRACE (G).
LEMMA 6. Ep(A) <- 2n + o (n).
Proof. Each useless call of MINPATH which returns J incremented POINTER (J)

by log n in the immediately previous call to UPDATE (J). Hence

A(G) log n <-LEN (G)

and Corollary 5 establishes the bound on the expectation. [3
We use the following fact from [7, p. 224].
LEMMA 7. Suppose we have a sequence ofindependent trials with possible outcomes

in {SUCCESS, FAIL}, and the probability of SUCCESS is p. Then the expected number
of trials until the first SUCCESS is p-1.

We now bound the number of useful calls to MINPATH. While a useful call to
MINPATH which returnsJ guarantees that END (J) NEAR at the time of assignment
of PATH (J), there is no guarantee that when J is returned by MINPATH a new
node will be added to NEAR. However, this happens with sufficiently high probability
as demonstrated by the following.

LEMMA 8. Ep(B)<-2n log* n +O(n).
Proofi Let

f(i)=e i,

and define

n0=n-1,

ni for 1, 2, ., log* n.

Suppose G ft,. For 0 =< =<log* n- 1, define (i) to be the least such that, in
TRACE (G),]NEARr] n-n. Define (log* n)= TL (G)+ 1. If B(G) denotes the
number of useful calls to MINPATH during the period of time =
{(i), (i)+ 1, , (i + 1)- 1}, then

log*

(1) B(G) ., B,(G).
i=O

SHORTEST-PATH ALGORITHM 597

To bound Ee(Bi), suppose is fixed. We will say a time in i is favorable if the
call to MINPATH at time is useful and if node Jt was returned by MINPATH at an
earlier time in . Let (Sl, Sz,’’ ", st) denote the ordered sequence of favorable
times in i. Observe that

(2) B(G)<=I+n,

since the first time a node is returned by MINPATH in -; is not a favorable time.
For any 5e, the fact that Jt is returned by MINPATH at time is independent

of Et due to our fairness constraint on MINPATH. Since P is endpoint-independent,
when the assignment of Et to END (J,) was made, every node not in OLDNEAR, had
an equal probability of being assigned to END (J,). Hence the probability that, at time
t, a new element is added to NEAR is at least

n

n IOLDNEAR, I"
Since is favorable, we know that NEARvi>

_
OLDNEAR

_
NEARt, so this probabil-

ity is at least

n INEAR,] n]NEAR,[
n [NEAR,(i)[//i

Thus, the expected number of favorable times in 0g until a new node is added to
NEAR is no greater than ni/(n]NEARt]) by Lemma 7. Thus,

ni ni ni rti (
n, _)Ep(l)<---+ + +’.’+=ni .

ni rti- 1 ni-2 ni+l + 1 k=ni+l+l

If log* n 1, then n -< n/log n, so

Ep(l) <= n (log (n) + 1) =< (n/log n)(log (n/log n + 1) < 2n.

Otherwise,

If 0, then

Ep(1) <=ni (log (ni)-log (hi+l)).
If > 0, then

<
n

(log ([(i + 1))-log (f(i))+ 1)Ee(t) =f(i)

=(f(i)-f(i- 1)+ 1)_-<n.
f(i)

Ep(t) <= (n l) (log (n -1)-log ([]))
<= (n 1)(log (n 1) log n + 2) < 2n.

Equations (1) and (2)imply that

Ee(B) < 2n (log* n 1) + 6n,

thus establishing the lemma. [3

Proof of main theorem. Suppose G n. There is a constant c such that

T(G) <= c log nTL(G) + O(n)

c log n (A (G) +B (G)) + O(n),

598 PETER A. BLONIARZ

where the log n factor accounts for the heap operation and edge list searches invoked
in each iteration of LOOP. Lemmas 6 and 8 establish the result.

COROLLARY 9. The shortest distance matrix MINmay be computed for a graph in
any of the indicated formats in expected time O(n 2 log n log* n) for any endpoint
independent probability measure on

Proof. Algorithm ALLPATHS works as follows. We first convert to the required
sorted adjacency list format, which can be done using heapsort [1] in O(n 2 log n) time
on the average. Then SHORT (SOURCE) is executed for each SOURCE V for a
total expected time of O(n 2 log n log* n) by the main theorem.

5. Implementation details. Algorithm ALLPATHS may easily be modified to
compute an actual path of shortest cost between any pair of nodes. To do this, an
n n matrix PREV of node indices is added with initial value PREV (/, J)--L When
node E END (J) is added to NEAR, PREV (SOURCE, E) is set to J. Following
the execution of ALLPATHS, if we define

Ko-K,
Ki/l PREV (SOURCE, Ki) for -0,

least such that Ki SOURCE,
then a simple inductive argument demonstrates that Kt, Kt-1, ’, Ko is a path of least
cost from SOURCE to K.

As specified earlier, we required that edges of equal weight on an adjacency list

Li be in random order. In fact, the algorithm computes correctly without this assump-
tion, and the randomness was only necessary for the proofs of timing in 4. The
running time of search-type algorithms can vary tremendously if this requirement is
relaxed. For example, in [3] it is shown that, if the edges of equal weight are stored
in increasing order of the indices of their endpoints, then quite natural implementations
of Spira’s algorithm can have (n 3 log n) average running time rather than the
O(n 2 log2n) time originally claimed. A similar phenomenon will hold for this
algorithm.

To ensure that algorithm SHORT will operate in the stated average time when
the edges of equal weight are not presented in random order, we make one additional
requirement on the priority queue of COSTPATH values, namely

P2) if J is returned by MINPATH, and the immediately subsequent call to
UPDATE (J) does not change the value of COSTPATH (J), then the next
call to MINPATH also returns J as value.

By implementing the priority queue as a heap, both P1 and P2 may be satisfied.
A straightforward extension of the proofs of 4, similar to [2], [13], show that under
these criteria the main theorem and its corollary hold regardless of the order of edges of
equal weight.

6. Empirical studies. Earlier studies [4] have reported that Yen’s implementation
of Dijkstra’s algorithm [16] has the least average time of published algorithms for
solving the all-pairs shortest-path problem on nonnegatively weighted directed
graphs, for graphs with fewer than 100 nodes. Spira’s algorithm was reported superior
on the average to Yen’s on larger graphs. An empirical study of the efficiency of
ALLPATHS was undertaken. In this study, each graph was presented as an adjacency
matrix, and the shortest distance matrix MIN was computed for each graph. For
Spira’s algorithm and ALLPATHS the sorted adjacency matrix was obtained by using
a hybrid of quicksort and straight insertion sort [14]. The priority queue was imple-
mented as a heap with external leaves. All procedure calls with the exception of

SHORTEST-PATH ALGORITHM 599

quicksort were coded in-line. The algorithms were written in Algol-60 and executed
on the UNIVAC 1100/82 computer using the NUALGOL compiler.

Graphs of varying size were randomly generated with varying percentages of
missing edges. Edge weights were assigned randomly, uniformly chosen from the
integers from 0 to 100. Table 1 gives some results of this comparison with Spira’s
and Yen’s4 algorithms on graphs in which all edges are present, with 100 graphs of
each size being tested.

This data suggests that the earlier data on Spira’s algorithm may be overly
pessimistic as, in this study, its expected time is superior to Yen’s algorithm on graphs
with 35 or more nodes, rather than the crossover point of 100 nodes previously
reported. The most likely factor in this discrepancy is the fact that most subroutines
were coded in-line, avoiding the overhead of stack manipulation.

As can be seen from Table 1, the average time of ALLPATHS is superior to
Spira’s and Yen’s algorithms for graphs with at least 25 nodes. Further studies were
undertaken to study the effect of changing the density of the graph. As the density
of the graphs decreases, the point at which ALLPATHS is superior to Yen’s gradually
increases; with only 10% of the possible edges being present, the new algorithm is
superior on the average to Yen’s for graphs with 35 or more nodes.

TABLE
Comparison of three algorithms.

CPU time in msec, all edges present, uniform distribution of edge weights.

Number of YEN SPIRA ALLPATHS
nodes Ave. Min. Max. Ave. Min. Max. Ave. Min. Max.

5 2 2 2 3 3 4 4 3 5
10 14 13 15 21 17 27 21 18 25
15 42 41 46 59 46 87 55 45 73
20 101 99 104 139 102 245 122 100 188
25 187 177 198 222 160 380 185 153 266
30 306 301 326 320 238 481 265 226 341
35 483 473 518 468 366 677 380 330 524
40 706 695 762 671 515 1098 535 450 755

7. Conclusion. We have presented an algorithm for finding all shortest paths in
a nonnegatively weighted directed graph which has average time O(n 2 log n log* n)
over a wide class of probability distributions on graphs. Empirical studies indicate
that for the all-pairs shortest-path problem ALLPATHS is faster on the average than
previously published algorithms for this problem for graphs of at least 25 nodes.

Fredman [9] has shown that a different modification of Spira’s algorithm solves
the problem with only O(n 2 log n) comparisons on the average, but at the expense
of increasing the total running time to f(n 3) on the average. An interesting open
question is whether there exists an O(n 2 log n) average-time algorithm for this prob-
lem. Frieze [11 has recently announced such an algorithm if the edge costs are drawn
from a uniform [0, 1] distribution.

Acknowledgments. I would like to thank Albert Meyer, Richard Goldstein,
Andrew Yao, and the referees for their helpful comments. David Goldhirsch and
Richard Farina assisted in the empirical studies of this algorithm.

4 Yen’s algorithm was modified slightly to take advantage of missing edges in the graph.

600 PETER A. BLONIARZ

REFERENCES

[1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] P. BLONIARZ, A. MEYER AND M. FISCHER, Some observations on Spira’s shortest path algorithm,
Computer Science Dept. Tech. Report 79-6, State University of New York at Albany, 1979.

[3] P. BLONIARZ, M. FISCHER AND A. MEYER, A note on the average time to compute transitive closures,
Third International Colloquium on Automata, Language and Programming, S. Michaelson and
R. Milner, eds., Edinburgh University Press, Edinburgh, 1976, pp. 425-434.

[4] J. CARSON AND A. LAW, A note on Spira’s algorithm for the all-pairs shortest-path problem, this
Journal, 6 (1977), pp. 696-699.

[5] G. B. DANTZIG, On the shortest route through a network, Management Sci., 2 (1960), pp. 187-190.
The method also appears in G. B. Dantzig, Linear Programming and Extensions, Princeton
University Press, Princeton, NJ, 1963.

[6] E. W.. DIJKSTRA, A note on two problems in connexion with graphs, Numer. Math., (1959),
pp. 260-271.

[7] W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd edition, John
Wiley, New York, 1968.

[8] R. W. FLOYD, Algorithm 97: Shortest path, Comm. ACM, 5 (1962), p. 345.
[9] ., On the decision tree complexity of the shortest path problems, 16th IEEE Symposium

on Foundations of Computer Science, 1975, pp. 98-99.
[10] M. FREDMAN, New bounds on the complexity of the shortest path problem, this Journal, 5 (1976),

pp. 83-89.
11] A.M. FRIEZE, On random shortestpath problems, Dept. Computer Science and Statistics Report, Queen

Mary College, London, 1982.
12] R. KARP AND R. E. TARJAN, Linear expected-time algorithmsfor connectivity problems, J. Algorithms,

(1980), pp. 374-393.
[13] C. P. SCHNORR, An algorithm for transitive closure with linear expected time, this Journal, 7 (1978),

pp. 127-133.
[14] R. SEDGEWICK, Implementing quicksort programs, Comm. ACM, 21 (1978), pp. 847-857.
[15] P. SPIRA, A new algorithm for finding all shortest paths in a graph of positive edges in average time

O(n log n), this Journal, 2 (1973), pp. 28-32.
[16] J. YEN, Finding the lengths of all shortest paths in N-node nonnegative-distance complete networks

using 1/2N additions and N comparisons, J. Assoc. Comput. Mach., 19 (1972), pp. 423-424.

SIAM J. COMPUT.
Vol. 12, No. 3, August 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1203-0014 $01.25/0

ON THE COMPLEXITY OF GENERAL GRAPH FACTOR PROBLEMS*

D. G. KIRKPATRICK" AND P. HELL

Abstract. For arbitrary graphs G and H, a G-factor of H is a spanning subgraph of H composed of
disjoint copies of G. G-factors are natural generalizations of 1-factors (or perfect matchings), in which G
replaces the complete graph on two vertices. Our results show that the perfect matching problem is
essentially the only instance of the G-factor problem that is likely to admit a polynomial time bounded
solution. Specifically, if G has any component with three or more vertices, then the existence question for
G-factors is NP-complete. (In all other cases the question can be resolved in polynomial time.)

The notion of a G-factor suggests a natural generalization where G is replaced by an arbitrary family
of graphs. This generalization gives rise not only to further NP-completeness results but also to new
polynomial algorithms and duality theorems extending results of the traditional theory of matching. An
indication of the nature and scope of these new results is presented.

Key words, algorithms, complexity, factor, graph, matching, NP-completeness

1. Introduction. Let H denote an arbitrary graph with vertex set V(H) and edge
set E(H). A matching in H is any subset M of E(H) such that no two elements of
M have a vertex in common. A matchingM is perfect (also called a 1-factor) if exactly
one element of M is incident with each vertex in V(H). If H is a weighted graph,
then the weight of a matching M is just the sum eMweight (e).

The notion of a matching in a graph has numerous applications in such diverse
areas as transversal theory, assignment problems, network flows, multiprocessor
scheduling, shortest path algorithms, and the Chinese postman and traveling salesman
problems [3], [10], [12], [13], [16], [17], [22], [31], [33], [36]. The existence of
polynomial time bounded algorithms for the construction of matchings of maximum
cardinality (and hence determining the existence of perfect matchings) or maximum
weight is well known [6], [7], [8], [9], although the exact complexity of the problems
is not yet settled and work continues on this aspect of the problem [23], [26]. In
addition there is a rich mathematical theory that has developed about the matching
problem that includes characterizations of graphs that admit perfect matchings [39]
and (more generally) duality theorems on maximum matchings [1], [8], [12], [17],
[32], [33], [34].

A matching in H may be viewed as a collection of disjoint subgraphs of H, each
isomorphic to K2.1 In a perfect matching the vertex set V(H) is completely partitioned
by the vertex sets of the subgraphs. This suggests the following natural generalization:
Let G be an arbitrary graph. A G-packing of a graph H is a set {G1,"’, Ga} of
disjoint subgraphs of H such that each Gi is isomorphic to G. (Note that we do not
require the Gi’s to be induced subgraphs; that variant of the problem is discussed
later in the paper). A perfect G-packing or G-factor of a graph H is a G-packing
such that the sets V(G) partition V(H). Clearly, a K2-packing is just a matching and
a K2-factor is a perfect matching.

* Received by the editors August 17, 1981, and in final revised form September 8, 1982. A preliminary
version of the main result was presented at the Tenth Annual ACM Symposium on Theory of Computing,
[301

" Department of Computer Science University of British Columbia, Vancouver, British Columbia,
Canada V6T lW5. The research of this author was supported by the Natural Sciences and Engineering
Research Council grant A3583.

Departments of Computing Science and Mathematics, Simon Fraser University, Burnaby, British
Columbia, Canada V5A 1S6. The research of this author was supported by the Natural Sciences and
Engineering Research Council grant A5075.

1Kt denotes the complete graph on vertices.

601

602 D.G. KIRKPATRICK AND P. HELL

We were motivated to study this generalization of matching by both practical and
theoretical considerations. Graph partitioning problems arise in a number of applica-
tions [2], l4], [11], [15], [21], [24], [29]. Our original motivation [19], [30] stemmed
from the study of examination scheduling. After an assignment of courses to examin-
ation periods, eliminating what could be called first-order conflicts (essentially a graph
coloring problem), has been accomplished, the problem arises of assigning the examin-
ation periods to real time periods, under fairly standard constraints (normally some
k examination periods are scheduled in sequence each day). The objective here is to
minimize second-order conflicts (or inconveniences). Typically, this might include an
occurrence of a student writing two examinations on the same day or perhaps two
consecutive examinations on the same day. Suppose H is the graph whose vertex set
is the set of examination periods {pill--< <_-t} and whose edge (pi, pj) is weighted by
the number of students common to courses examined in periods Pi and pj. Then
minimization of the types of second-order conflicts illustrated above corresponds to
the construction of minimum weight K3- and P32-factors in H.

As we shall see, our investigation of generalized matching can also be viewed as
furthering our understanding of the perceived threshold between NP-complete and
polynomial time solvable problems [5], [14], [27], [28]. Specifically, it is of interest
to know which members of this family of problems admit polynomial, time bounded
algorithms and which, like the general subgraph isomorphism problem of which they
are all special instances, are NP-complete. We are able to provide a complete charac-
terization (in the above sense) of the complexity of finding a G-factor. This characteri-
zation is similar, in spirit, to the results of Schaefer [38], Yannakakis [40] and Lewis
[35] each of which establishes NP-completeness results over a broad family of
interesting problems.

While our results here are essentially negative, it should be noted that an extension
of the notion of G-packings and G-factors (replacing G by a family of graphs) has
pointed the way to a very natural setting in which to extend the traditional theory of
matching, giving rise to new polynomial algorithms and simple duality results 19], [20].

2. Generalizations of matching. Our notion of a G-packing (and G-factor) is by
no means the only natural extension of the familiar concept of matching. Indeed, in
5, we introduce and motivate the notion of a -packing (and -factor), where

denotes a family of graphs. This extension subsumes, and should not be confused
with, the notion of F-factor introduced by Muhlbacher [37].

If the concept of matching is extended in the natural way to hypergraphs the
problem of determining the existence of a perfect matching .is known to be NP-
complete. Karp [27] describes what is probably the simplest version of this problem
as three-dimensional matching:

INSTANCE: An integer p and a set U

{1, 2,..., p}3.
QUESTION: Is there a subset W

_
U of cardinality p such that no two elements

of W agree in any coordinate?
It should be clear that the k-dimensional matching problem (replace three by k

above) is also NP-complete, when k -> 3. The two-dimensional matching problem is
equivalent to the matching problem for bipartite graphs.

Expressed as a language recognition problem, the existence problem for G-factors,
which we denote FACT(G), becomes"

INSTANCE: A graph H.
QUESTION: Does H admit a G-factor?

Pt denotes the path on vertices.

COMPLEXITY OF GRAPH FACTORING 603

The problem FACT (K1) is trivial since every graph admits a K1-factor. Further-
more, FACT (K2) is just the question of existence of a perfect matching, and hence,
FACT (Ke) e P. More generally, if G a. K1 LI ft. K2, that is the disjoint union of a

copies of K1 and copies of Ke (or, equivalently, if each connected component of
G has at most two vertices), then H admits a G-factor if and only if V(H)I is divisible
by Iv()l and H admits a matching with at least [31V(H)[/IV(G)[edges. Thus the
usual algorithms for finding a maximum matching (e.g., [7], [34]) may be used to
answer FACT (G) in polynomial time. Our central result suggests that all other
problems FACT (G) are unlikely to admit efficient solutions.

THEOREM 4.2. If G is not of the form a "K1 (.J "K2, then FACT (G) is NP-
complete.

Two important instances of this result, G =K3 and G P3, were established earlier
by T. Schaeffer [14], [28] and D. S. Johnson [25].

The proof of Theorem 4.2 is deferred to 4. The following lemma allows us to
restrict our attention to problems FACT (G), where G is a connected graph.

LEMMA 2.1. Let G be a graph and G’ any component of G with the maximum
number of edges. Then, FACT (G’)-<p FACT (G).

Proof. Suppose G’ has p vertices and suppose G has r distinct components
isomorphic to G’. If H is any graph with dp vertices, then let T(H) denote the graph
H (.Jd(G-G’). Obviously, if H admits a G’-factor, then T(H) admits a G-factor.
Suppose T(H) admits a G-factor F. F must contain exactly dr components isomorphic
to G’. But, by the maximality of G’, the restriction of F to d(G-G’) contains at
most d (r- 1) components isomorphic to G’. Hence the restriction of F to H must be
a G’-factor of H. Thus H admits a G’-factor if and only if T(H) admits a G-factor. Iq

3. Basic modules and their properties. Our objective in this and the next section
is to demonstrate how, for an arbitrary connected graph G on k vertices, the k-
dimensional matching problem can be polynomially reduced to the problem FACT (G).
Our construction is component based (cf. [14]) in nature; in this section we describe
the components (which we call modules) and their properties that we exploit in the
general construction.

3.1. Modules and coherences. A module is a graph M with nonempty subset
C
_
V(M) of distinguished vertices. We call the elements of C (respectively V(M) C)

connector vertices (respectively interior vertices) of M. A G-module is any module
that admits a G-packing covering all of its interior vertices (plus some, possibly empty,
subset of its connector vertices).

A modular extension of the moduleM is any graph H, containingM as an induced
subgraph, in which no interior vertex of M is adjacent to a vertex of H-M (that is,
M is connected to the rest of H only through its connector vertices). Let zr {G1,"’,
Gd} be any G-packing of some modular extension H of M. A vertex v of M is said
to be bound to M by zr, if v V(Gg) implies V(Gg)

_
V(M). A G-module M is

internally G-coherent if every G-factor of every modular extension of M binds to M
all of its interior vertices (that is, it respects the modularity of M).

The simplest example of internally G-coherent G-module is the (connected) graph
G itself with any one vertex v V(G) designated as a connector vertex. We depict
this schematically in Fig. 1.

3.2. Diamond modules. If G is any connected graph and v V(G), then the
graph, formed from G by splitting v into two nonadjacent vertices Va and Vb, each of
which is adjacent to all of the neighbors of v in G, is called a G-diamond and is
denoted DIG; v]. We depict DIG; v] schematically in Fig. 2.

604 D. G. KIRKPATRICK AND P. HELL

a

FIG.

If va and Vb are taken as connector vertices, then D[G; v] is a G-module. Its
coherence, it turns out, depends on the choice of vertex v, but a choice ensuring
G-coherence always exists. Specifically, let v* be any vertex of G that is not a cutpoint
and belongs to a biconnected component of G containing at most one cutpoint. Every
graph G is guaranteed to contain at least one such vertex (cf. [18, p. 36]).

LEMMA 3.1. The module DIG; v*] with v* and v’ as connectors is internally
G-coherent.

Proof. Let H be any modular extension of DIG; v*] and let be any G-factor
of H. induces a partition zr of the interior vertices of DIG; v*]. Since D[G; v*]
has exactly two connector vertices and each graph in is connected, r has at most
two cells. All of the vertices of DIG; v*] that do not belong to the same biconnected
component as v* must belong to the same partition of zr (otherwise there must be
two vertex-disjoint paths from this set to v* in G, contradicting the choice of v*).
Hence, if zr has two cells then some element of must contain all of the vertices of
DIG; v*] that do not belong to the same biconnected component as v* either v* or
v*, and at least one vertex of H-D[G; v*]. But this component has at least one
more cutpoint (namely v a* or v’) than G, a contradiction. Thus, 7r has exactly one
cell and hence DIG; v*] is internally G-coherent. I-]

We can summarize the relevant properties of diamond modules as follows"
Property 3.2. (a) Every G-factor of every modular extension of D[G;v*] binds

to D[G; v*] its interior vertices plus exactly one of its connector vertices.
(b) The graph D[G; v*] minus either one of its connector vertices admits a

G-factor.
Thus, diamond modules, wherever they appear in a larger graph, force a "choice"

of one or the other of their connector vertices.

DIG;v]:

FIG. 2

COMPLEXITY OF GRAPH FACTORING 605

3.3. Star modules. A G-star, denoted S[G;v], is the graph formed from G by
identifying, with each vertex w V(G), the va-connector of a distinct copy of DIG; v].
If the vb-connectors of the V(G)I G-diamonds used in the construction, relabelled
as x l, Xlv(G)I, are taken as connector vertices, then S[G; v] is a G-module. We
depict S[G; v] schematically in Fig. 3.

X2

X1

S[G’v]:

FIG. 3

S[G; v] can be seen as a modular extension of V(G)I disjoint copies of D[G; v].
As would be expected the coherence of S[G; v depends on the coherence of DIG; v].
Specifically,

LEMMA 3.3. I1D[G; v] is internally G-coherent, then so is S[G; v].
Proo] Let H be any modular extension of S[G;v] and let be any G-factor of

H. H must also be a modular extension of each of the V(G)[copies of DIG; v] used
in the construction of S[G; v]. Since D[G; v is internally G-coherent, it follows that
all of the interior vertices of S[G; v that are internal to one of the copies of DIG; v]
must be bound to $[G; v] by q. Since none of the remaining interior vertices of
S[G; v] are adjacent to any of the connectors of S[G; v l, it follows that (binds to
$[G; v all of its interior vertices.

COROLLARY 3.4. S[G v*] is internally G-coherent.
In fact, S[G; v*] satisfies the following somewhat stronger property. A G-module

M is G-coherent if it is internally G-coherent, if every G-factor of every modular
extension of M binds to M either all or none of its connector vertices, and if in
addition, both M and M-C admit G-factors. G-coherence places a strong restriction
on the G-modularity of M. It is clear from the definitions that G-coherent modules
M, wherever they appear in a larger graph, can be viewed as forcing a "choice" of
either all or none of their connector vertices (both of which are possible). Our central
construction rests on the following"

LEMMA 3.5. S[G, v*] is G-coherent.
Prool. Let q be any G-factor of any modular extension of S[G, v*]. Note that

S[G, v*] contains v(a)l vertices of which V(G)I are connectors. Since $[G, v*] is
internally G-coherent and the total number of vertices bound to $[G, v*] by (must
be a multiple of V(G)I, it follows that either all or none of the connector vertices
must be bound to $[G, v*] by q.

4. The general construction. We are now prepared to state and prove our central
lemma.

LEMMA 4.1. If G is a connected graph, then IV(G)l-dimensional matching
-<-e FACT (G).

606 D. G. KIRKPATRICK AND P. HELL

Proof. Let p be any positive integer and U
_

{1, 2,..., p}k, where k Iv(G)I. It
suffices to show how to construct (in polynomial time) a graph R (U) with the property
that R(U) admits a G-factor if and only if U admits a k-dimensional matching.

R (U) contains, among others, an independent set of kp vertices labelled by the
pairs (i, j), where 1 _-< _-< k and 1 _-< j _-< p. For each k-tuple (t,..., tk) U, R (U) contains
a distinct copy of S[G; v*] whose k connector vertices are arbitrarily identified with
the k vertices labelled (1, t),..., (k, tk).

Suppose that U admits a k-dimensional matching W. We construct a G-factor
of R(U) as follows. To those copies of S[G; v*] associated with k-tuples in W,
binds all of their vertices (in particular, their connector vertices). To all other copies
of S[G; v*], binds only their interior vertices. Thus, binds the vertex (i, f) to the
star module associated with that unique k-tuple in W containing/’ in position i. It
follows that q is a G-factor of R(U).

Conversely, suppose that R (U) admits a G-factor . We construct a k-dimensional
matching W of U as follows. Call a copy of S[G; v*] in R (u) "chosen" if q binds
to that copy all of its connector vertices. By Lemma 3.5 q chooses exactly p of the
star-modules in R (u). Let W be the set of k-tuples associated with chosen star modules.
Since each vertex (i,/’) is bound to exactly one chosen star module, it follows that
exactly one element of W contains / in its ith component. Hence W is a k-dimensional
matching of U. lq

We now restate and give a direct proof of our central result.
THEOREM 4.2. If G is not of the form a "K1U f3 "K2, then FACT (G) is NP-

complete.
Proof. It is clear that all problems FACT (G) are in NP. By Lemma 2.1, it suffices

to show that if G is a connected graph with at least three vertices, then FACT (G)
is NP-complete. But this is immediate from Lemma 4.1 and the NP-completeness of
k-dimensional matching, for k => 3.

Thus virtually all uniform factoring problems (with the exception of matching)
are NP-complete. A similar characterization holds for what we call "strict" G-factors.

A G-packing (or G-factor) of H is strict if each Gi belonging to the packing is
an induced subgraph of H. Corresponding to FACT (G) we have the question S-
FACT (G) expressed as"

INSTANCE: A graph H.
QUESTION" Does H admit a strict G-factor?
Note that H admits a strict G-factor if and only if its complement H admits a

strict G-factor. Then S-FACT (G) and S-FACT (G) are polynomially equivalent, and
it is sufficient to consider problems S-FACT (G) for connected graphs G only. Clearly,
if G has fewer than three vertices a polynomial algorithm for S-FACT (G) follows
from algorithms for maximum matching (e.g., [7]). As with FACT (G) all other cases
appear to be intractable.

THEOREM 4.3. If G has at least three vertices, then S-FACT (G) is NP-complete.
Proof. Observe that, in the proof of Lemma 4.1., the graph R(U) admits a

G-factor if and only if it admits a strict G-factor. (This follows from the construction
of star modules.) Hence, Lemma 4.1 also proves that IV(G)l-dimensional matching
-<p S-FACT (G). Thus, the result follows from the obvious fact that S-FACT (G) NP
and the NP-completeness of k-dimensional matching for k => 3.

5. Family packings and factors. We introduced G-packings and G-factors as a
generalization of conventional matchings and have reached the unfortunate conclusion

COMPLEXITY OF GRAPH FACTORING 607

that this is an unlikely direction in which to generalize the rich theory--most notably
the exsistence of polynomial time bounded algorithmsmthat is associated with the
matching problem. However, a straightforward extension of the notion of G-packing
suggests itself as another natural generalization of matching. While negative results
still abound, this extension does give rise to a number of positive results which hint
at a new generalized theory of matching including both polynomial algorithms and
elegant duality results.

We extend the notion of G-packing by replacing G by a family (q of "packing"
graphs. A f-packing of a graph H is a set {G1,’", Ga} of disjoint subgraphs of H
such that each Gi is isomorphic to some element of . A (q-factor is defined similarly.
The existence problem for d-factors, denoted FACT (), becomes’

INSTANCE: A graph H.
QUESTION: Does H admit a -factor:
As an example, if Ct denotes the cycle on vertices and {K2, C3, C4, C5,’’’ },

then FACT (J) can be solved as an assignment problem, [33].
The NP-completeness of many problems FACT (d) stems directly from our earlier

constructions. As a simple example, consider:
Example 5.1. FACT ({g, lt _-> 3}) is NP-complete.
Proof. It suffices to observe that the graph used in our reduction of three-

dimensional matching to FACT (g3) contains no complete subgraphs of order four.
Thus any {g, lt >-3}-factor must also be a K3-factor.]

It is interesting to note that H has a {Kilt >= 3}-factor if and only if its complement
has a coloring in which each color class contains at least three vertices. This connection
with coloring is explored in more detail in [19]. Example 5.1 is subsumed by the
following theorem whose proof will appear elsewhere.

THEOREM 5.2. LetCbe any subsetof {Kt[t >-_ 1}.ILK1 orK2 , then FACT ()
is in P, otherwise FACT (@) is NP-complete.

One further example should help to substantiate our claim that the study of family
factorizations is a fertile setting in which to generalize the traditional theory of
matching.

Example 5.3. FACT ({Kx.tlt _-> 1}) is in P.
Proof. It is straightforward to confirm that a graph H admits a {Kl.[t ->_ 1}-factor

if and only if it contains no isolated vertices.
The facility location (or domination number) problem [4], [11] can be viewed as

trying to find a minimal {Kl,t[t >= 1}-factor. Our framework makes it natural to express
the related problem of determining the existence of factors using only a restricted
subset of facilities (star graphs). Example 5.3 is just one special case of the following:

THEOREM 5.4. Let be any subset of {Kl.,]t _-> 1}./f for some >- 1, Kl,t: c and
KI.,+ if, then FACT (c) is NP-complete. Otherwise FACT (c) is in P.

The proof of Theorem 5.4 also includes a duality result analogous to the theorems
of Tutte [39] and Berge [1, p. 159] for star matchings; it will appear elsewhere. We
have similar results for any set of complete bipartite graphs.

6. Conclusions. Our results completely classify the complexity of factorization
problems. The vast majority of them are NP-complete. The few remaining cases can
be reduced to the maximum matching problem and hence admit polynomial time
algorithms. The results of 5 suggest that the study of the more general family
factorization problems is a fruitful direction in which to pursue a generalized theory
of matching, including new polynomial algorithms.

608 D.G. KIRKPATRICK AND P. HELL

REFERENCES

[1] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[2] F. T. BOESCH AND J. F. GIMPEL, Covering the points of a digraph with point-disjoint paths and its

application to code optimization, J. Assoc. Comput. Mach., 24 (1977), pp. 192-198.
[3] N. CHRISTOFIDES, Worst-case analysis of a new heuristic for the travelling salesman problem, GSIA,

Carnegie-Mellon University, 1976.
[4] E. COCKAYNE, S. GOODMAN AND S. HEDETNIEMI, A linear algorithm for the domination number

of a tree, Inform. Processing Letters, 4 (1975), pp. 41-44.
[5] S. A. COOK, The complexity of theorem-proving procedures, Proc. Third ACM Symposium on Theory of

Computing, pp. 151-158.
[6] W. H. CUNNINGHAM AND A. B. MARSH, III, A primal algorithm]:or optimum matching, Math.

Programming Study, 8 (1978), pp. 50-72.
[7] J. EDMONDS, Paths, trees, and flowers, Canad. J. Math., 17 (1965), pp. 449-467.
[8],Maximum matching and a polyhedron with (0, 1) vertices, J. Res. Nat. Bureau of Standards,

69B (1965), pp. 125-130.
[9] J. EDMONDS AND E. L. JOHNSON, Matching: a well-solved class of integer linear programs, in

Combinatorial Structures and their Applications, R. K. Guy et al., eds., Gordon and Breach, New
York, 1970, pp. 89-92.

[10], Matching, Euler tours, and the Chinese postman, Math. Programming, 5 (1973), pp. 88-124.
11] M. FARBER, Domination and duality in weighted trees, Congressus Numerantium, 33 (1981), pp. 3-13.
12 L. R. FORD, JR. AND D. R. FULKERSON, Flows on Networks, Princeton University Press, Princeton, NJ,

1962.
[13] M. FuJII, T. KASAMI AND K. NINAMIYA, Optimal sequencing of two equivalent processors, SIAM J.

Appl. Math., 17 (1969), pp. 784-789; Erratum, ibid., 20 (1971), p. 141.
14] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, W. H. Freeman, San Fransisco, 1979.
[15] L. L. GARNISHTEYN, The partitioning of graphs, Engineering Cybernetics, (1969), pp. 76-82.
[16] P. C. GILMORE AND R. E. GOMORY, Sequencing a one-stage variable machine: a solvable case of

the travelling salesman problem, Oper. Res., 12 (1964),pp. 655-679.
[17] M. HALL, Distinct representations of subsets, Bull. Amer. Math. Soc., 54 (1948), pp. 922-926.
[18] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1968.
19] P. HELL AND D. G. KIRKPATRICK, Scheduling, matching and coloring, in Algebraic Methods in Graph

Theory, G. R. Szasz et al., eds., Colloq. Math. Soc. Janos Bolyai, Hungary, 1981.
[20], On generalized matching problems, Inform. Processing Letters, 12 (1981), pp. 33-35.
[21] L.J. HERBERT, Some applications ofgraph theory to clustering, Psychometrika, 39 (1974), pp. 283-309.
[22] A. J. HOFFMAN AND H. M. MARKOWITZ, A note on shortest path, assignment, and transportation

problems, Naval Res. Logist. Quart., 10 (1963), pp. 375-380.
[23 J.E. HOPCROFTAND R. M. KARP, An n /2 algorithm formaximum matchings in bipartite graphs, SIAM

J. Comput., 2 (1973), pp. 225-231.
[24] A. K. HOPE, Component placing through graph partitioning in computer-aided printed-wiring-board

design, Electronic Letters, 8 (1972), pp. 87-88.
[25] D. S. JOHNSON, private communication, August 1977.
[26] O. KARIV, An O(n 2"5) algorithm for finding maximum matching in a general graph, Ph.D. Thesis,

Weizmann Institute, Rehovot, Israel, 1976.
[27] R. M. KARP, Reducibility among combinatorial problems, in complexity of Computer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.
[28] On the complexity of combinatorial problems, Networks, 5 (1975), pp. 45-68.
[29] B. W. KERNIGHAN AND S. LIN, An efficient heuristic procedure for partitioning graphs, Bell System

Tech. J., 49 (1970), pp. 291-307.
[30] O. G. KIRKPATRICK AND P. HELL, On the completeness of a generalized matching problem, in Proc.

Tenth Annual ACM Symposium on Theory and Computing, 1978, pp. 240-245.
[31] J. M. KLEIN AND H. TAKAMORI, Parallel line assignment problems, Management Sci. 19 (1972), pp.

1-10.
[32] D. KONIG, Graphs and matrices, Mat. Fiz. Lapok, 38 (1931), pp. 116-119.
[33] H. W. KUHN, The Hungarian method for the assignment problem, Naval Res. Logist. Quart., 2 (1955),

pp. 83-97.
[34] E. L. LAWLER, Combinatorial Optimization, Holt, Rinehart and Winston, New York, 1976.
[35] J. M. LEWIS, On the complexity of the maximum subgraph problem, Proc. Tenth Annual ACM

Symposium on Theory of Computing, 1978, pp. 265-274.
[36] L. MIRSKY, Transversal Theory, Academic Press, New York, 1971.

COMPLEXITY OF GRAPH FACTORING 609

[37] J. MOHLBACHER, F-factors of graphs: a generalized matching problem, Information Processing Lett.,
8 (1979), pp. 207-214.

[38] T. J. SHAEFER, The complexity of satisfiability problems, Proc. Tenth Annual ACM Symposium on
Theory of Computing, 1978, pp. 216-226.

[39] W. T. TUTTE, The factorisation of linear graphs, J. London Math. Soc., 22 (1947), pp. 107-111.
[40] M. YANNAKAKIS, Node- and edge-deletion NP-complete problems, Proc. Tenth Annual ACM

Symposium on Theory of Computing, 1978, pp. 253-264.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1204-0001 $01.25/0

THE RANKS OF m x n x(mn-2) TENSORS*

M. D. ATKINSON" AND S. LLOYDS"

Abstract. It is shown that there is essentially only one m n (ran-2) tensor of rank mn- 1. It is
also proved that, except for this tensor, all m n p tensors with p <= mn- 2 have rank at most mn- 2.
The main tool is Kronecker’s theory of matrix pencils which has already been applied directly by Ja’Ja’
[SIAM J. Comput., 8 (1979), pp. 443-462] to study the ranks of rn n 2 tensors. We show that each
nondegenerate rn n (rnn 2) tensor is determined by a related m n 2 tensor and apply the Kronecker
theory to this related tensor.

Key words, computational complexity, bilinear forms, tensor rank

A classical problem in algebraic computational complexity is to determine the
minimal number of nonscalar multiplications required to evaluate some set Yi. aijkxyj,

k 1,2,..., p, of bilinear forms in noncommuting variables xl,.’ ’, x,,, yl,"’", yn.
This number can be variously described as the complexity of the set, the rank of the
defining 3-tensor (aijk) or as the minimal number of rank 1 matrices whose linear
span contains the m n matrices Ak (ajk), k 1,2, , p [2].

The problem is rather trivial if p 1 when the complexity is simply the matrix
rank of A 1. It has also been completely solved if p 2 for algebraically closed fields
by the Kronecker theory of matrix pencils (see [31 which also summarizes Kronecker’s
results). For p >-3 there is no corresponding theory and it seems unlikely that the
tensor rank can in general be described in terms of simpler invariants of the tensor.

When working with some unknown m n p tensor defined by m n matrices
A 1, , Ap it is common to assume that the tensor is nondegenerate (3-nondegenerate
in the terminology of [4], i.e., the matrices are linearly independent). If the tensor
was degenerate it would reduce to one of size smaller than m n p. The assumption
of nondegeneracy obviously implies that p <= mn; moreover, if p ran, the tensor rank
is rnn. The observations in this paper centre on nondegenerate tensors over algebrai-
cally closed fields which have p just less than ran. The case p mn- 1 has already
been treated in [1], where it was shown that every m n (ran- 1) tensor has rank
at most mn- 1 (and hence the nondegenerate tensors have rank precisely mn- 1). It
then follows that a nondegenerate rn n (ran 2) tensor has rank mn 1 or mn 2.
We shall classify those m n (ran 2) tensors of rank mn- 1. Somewhat surprisingly
it turns out that, among the infinitely many different tensors, only one of them has
this rank. As a consequence we shall prove that every m n (ran- 3) tensor has
rank at most mn- 2 (this result was given in [1] but the proof, which at that time
required very extensive calculations, was omitted). Both of these results depend on
the following proposition for which we require two definitions:

1. A space of m n matrices is said to be perfect if it is generated (as a vector
space) by rank 1 matrices. (Notice that the above remarks imply that spaces of
dimension mn or rnn 1 are necessarily perfect.)

2. Two spaces , of m n matrices are said to be equivalent if there exist
nonsingular rn m, n n matrices P, Q such that

PQ {PXQ" X }.

* Received by the editors August 25, 1981.

" Department of Computing Mathematics, University College, Cardiff, United Kingdom.

611

612 M.D. ATKINSON AND S. LLOYD

PROPOSITION If is a vector space of m x n matrices of dimension mn- 2, then
is perfect unless it is equivalent to the space of all matrices (xi/) for which xl1 + X22 0

and x 12 0.
The lemmas which lead up to the proof of this proposition all use the same

general technique and notation. Let b be the bilinear mapping on the space of all
m n matrices defined by

b (X, Y) trace (XY’)

(where Y’ denotes the transpose of Y). With respect to 4 every k-dimensional space
of m n matrices has an annihilator space ,’* of dimension mn- k, namely

* {Y: b(X, Y) 0}.

Of course ** . Also, a routine check shows that, if P and Q are nonsingular, the
annihilator of PQ is (p,)-.(Q,)-I and hence equivalent spaces have equivalent
annihilators. We eventually exploit this fact to prove the proposition by taking * to
be defined by a pencil in Kronecker canonical form. In preparation for this our first
three technical lemmas consider special cases for *; these special cases are the
building blocks of a general Kronecker canonical form. Note that the annihilator of
the exceptional space in the proposition is generated by EI +E22 and E12 (where, in
general, Eq is the matrix with a 1 in the (i,/’) position and zeros elsewhere).

LEMMA 1. Lets be the (rE + r 2)-dimensional space of r x (r + 1) matrices whose
annihilator is defined by the matrix pencil

Then sg is perfect.

Lr =aX +flY

a /3 0

Proof. By definitionM is the set of all matrices (ai/) for which Y’.-- a, Y’._ ai./
0. An obvious calculation verifies that the following r2+ r- 2 matrices are all rank 1,
linearly independent and satisfy the conditions for membership of M"

{Ei" /’, + 1 /}

U{Eu +Ei,i+x +Ei,i+2-Ei+x,i-Ei+a,i+a -Ei+1,i+2" 1,2," r- 1}

I-J{Eii-Ei,i+l +Ei,i+2 +Ei+x,i-Ei+,i+x +Ei+l,i+2" 1,2,’--, r-l}.

Similarly the transposed space " of (r + 1) r matrices is also perfect.
LEMMA 2. Let be the space of r x r matrices whose annihilator is defined by the

matrix pencil

Then, if r 2, is perfect.
Proof. The notation is intended to include the case r- 1 when the lemma holds

for trivial reasons. If r 2 is not perfect (and this is why the proposition has an
exceptional space). We now take r > 2. In this case is the set of all (ai) for which

i=x a, 2..i=1 ai.i+a 0 and M has dimension r2 2. The following set is a basis of

RANKS OF m n (ran- 2) TENSORS 613

rank 1 matrices"

{Eo" #i, + 1 #]}

{Eu +Ei,i+l +Ei,i+2 -Ei+l,i-Ei+l,i+l -Ei+l,i+2 1,2," r-2}

[..J{gu-gi,i+l +gi,i+2 +gi+l,i-Ei+l,i+l +Ei+l,i+2: 1,2,’’’ ,r-2}

[-J{Er-2,r-1 -Er-2,r +Er-l,r-1 -Er-l,r +Er,r-1 -Err}.

LEMMA 3. Let be the space of 4 x 4 matrices whose annihilator is defined by the
matrix pencil

J(A) @Yu(/z aX +/3Y

+3x 3 0 0
0 a +3A 0 0
0 0 a +3tt fl
0 0 0

Then sg is perfect.
Proof. s is the set of all 44 matrices which satisfy y,.4=laii=

h (a1 + a22) 4-/ (a33 4- a44) 4- a 12 4- a34 0. The following set is a basis of rank 1 matrices:

{Eo.: i, (i,/’) # (1,2) or (3, 4)}

1

U 0
0 0
0 0
0 0
0 0

0
0 0 0 0

,0 1 0 1

% O0 /x-h 0 %’-10

0 1 0 1 0

! -1 0
0 0

1 -1 1
0 0 0

-1 1 -1
-1 1

LEMMA 4. Let be a space of m x n matrices of dimension mn- 1 or mn- 2 all
partitioned in some fixed way as [’ D] where A is an r s matrix. Suppose that
contains all m n matrices of the form [] and suppose also that the subspace, {[’] e} is perfect but not of dimension rs. Then itself is perfect.

Proof. Let

{[]} (a subspace of by hypothesis),

: {[g]},
1 {[]" [g] e for some

Then and both have dimension at least (m -r)(n -s)-2. In fact is perfect.
For if this were not the case would have dimension (m -r)(n -s)- 2 and so would
be equal to . But then would be the image of under the linear mapping
[g] [g] and @ would be its kernel from which we would obtain
; it wouqd follow that M had dimension rs contradicting the hypotheses.

Consequently we may take a basis of consisting of all Ei , a basis of rank
1 matrices of M (since M is perfect), together with certain matrices of the form [],
where each matrix D has rank 1. These latter matrices [] may not have rank 1
and to complete the proof we show that by adding a suitable matrix in M to every
such matrix we can obtain a new basis of consisting entirely of rank 1 matrices.

614 M.D. ATKINSON AND S. LLOYD

Consider then any one of these basis matrices [Ao g]. If [0A 0] ’ we may replace
[0A g] in the basis by [0]-[0A 0]=[0]. If [0A 0] then (, [’ 0])has dimension
rs or rs- 1 and so is perfect, generated say by the basis of 4 and one further rank 1
matrix [0 0]. Then we have [0] 0[0 0] + [0s] with [0] s4, 0 .0, and hence [0A 0

0[ff o]+[oS 0]. Since OT and D each have rank 1 we may let OT UlVl, D u2v2 for
suitable column vectors Ul, u2 and row vectors vl, v2. The matrix M [u2][VlV2] has
rank 1 and

D U2Vx 0 0

Consequently [o] can be replaced in the basis by M. Since this can be done for
each of the basis matrices ["] the proof is complete.

Proof of proposition. We begin by replacing T by an equivalent space chosen so
that T* is spanned by two matrices which define a pencil in Kronecker canonical form
[3] without any infinite elementary divisors. By hypothesis the pencil decomposition
is not of the form

+/3X / 0112(X)0 aX +/Y a

0 0

and therefore we may take it to be

c
X2 +t3 0 Y:’

where the subpencil aX1 +Y1 is one of the pencils which figure in Lemmas 1,2,3.
By definition of W* the space contains all matrices of the form [] and the
subspace 4 of all [o o] in g has, as its annihilator, the space defined by the pencil
aX1 +/3 Y1. therefore satisfies the conditions of Lemma 4 and consequently is perfect.

An immediate consequence of the proposition is that any nondegenerate rn n x
(ran 2) tensor of rank mn- 1 is equivalent to the one defined by the mn 2 matrices
{Ell +E22}J{Eii: (i,]) r (1, 1), (1, 2), (2, 2)}. In fact the assumption of nondegeneracy
can be dropped. For suppose A 1, ’, A,,,,-2 are linearly dependent matrices defining
some degenerate m n x(mn-2) tensor. Then the annihilator of the space
(A 1,"" ", A,,,-2) is of dimension more than 2, and it is easy to prove that it contains
a two-dimensional subspace not equivalent to the one generated by Ell +E22 and
E12. Hence (A 1,’", Amn-2) is contained in a perfect space of dimension mn -2 and
so its tensor cannot have rank more than mn- 2. In particular, every m x n (ran 3)
tensor has rank at most mn- 2.

Finally we note that the assumption about algebraic closure cannot in general be
omitted. For example, with m n 2, the two-dimensional space of all matrices [-b b]
contains no real rank 1 matrix so, over the real field, is neither perfect nor equivalent
to the one generated byE +E22 and El2.

Our results can be summarized as follows: For m x n (mn -2) tensors which do
not reduce to smaller tensors we have completely solved the ranking problem in the
case of algebraically closed fields. Hitherto the only other nontrivial class of tensors
for which the ranking problem had been solved was the case of m x n x 2 tensors [3].
Both solutions rely on Kronecker’s theory of pencils but apply it in very different ways.

RANKS OF m n (ran 2) TENSORS 615

REFERENCES

[1] M. D. ATKINSON AND N. M. STEPHENS, On the maximal multiplicative complexity o] a family of
bilinear forms, Linear Algebra and Appl., 27 (1979), pp. 1-8.

[2] R. W. BROCKETT AND O. DOBKIN, On the optimal evaluation of a set ofbilinear forms, Linear Algebra
and Appl., 19 (1978), pp. 207-235.

[3] J. JA’JA’, Optimal evaluation of pairs of bilinear forms, this Journal, 8 (1979), pp. 443-462.
[4] J. KRUSKAL, Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to

arithmetic complexity and statistics, Linear Algebra and Appl., 18 (1977), pp. 95-138.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1204-0002 $01.25/0

OPTIMIZING CONJUNCTIVE QUERIES THAT
CONTAIN UNTYPED VARIABLES*

D. S. JOHNSONt AND A. KLUG*

Abstract. This paper addresses questions of efficiency in relational databases. We present polynomial
time algorithms for minimizing and testing equivalence of what we call "fan-out free" queries. The fan-out
free queries form a more general and more powerful subclass of the conjunctive queries than those previously
studied. In particular, they can be used to express questions about transitive properties of databases,
questions that are impossible to express if one operates under the assumption, implicit in previous work,
that each variable has an assigned "type," and hence can only refer to one fixed attribute of a relation.
Our algorithms are graph-theoretic in nature, and the equivalence algorithm can be viewed as solving a
special case of the graph isomorphism problem (by reducing it to a series of labelled forest isomorphism
questions).

Key words, relational databases, query optimization

1. Introduction. There has been much recent work addressing the problem of
optimizing queries in the relational database model of Codd [5]. Such work has been
motivated by the fact that, in the relational data model, it is easy to express queries
whose natural implementation would be very inefficient. Thus there could be great
value in a method for converting queries into equivalent ones with more efficient
implementations. From a complexity-theoretic point of view, the seminal papers in
this area are those of Chandra and Merlin [4] and Aho, Sagiv and Ullman [2], [3],
which concentrated on the natural class of "conjunctive queries."

For conjunctive queries (which we shall define later), the main factor in the
efficiency of the implementation is the number of conjuncts contained in the query.
Thus the query optimization problem becomes simply the problem of finding an
equivalent query involving the minimum possible number of conjuncts. Moreover,
the problem of telling whether two minimal queries are equivalent can be reduced to
a simple syntactic test. Unfortunately, as shown in [4-1, that "simple syntactic test" is
equivalent to the presumably intractable problem of graph isomorphism, and the
conjunct minimization problem is NP-hard and hence even more likely to be intract-
able. (For a discussion of NP-hardness and intractability, see [1], [6].)

Chandra and Merlin [4] faced this obstacle by designing exponential time
algorithms for the problem, arguing quite reasonably that since queries might well be
applied to very large databases, the savings resulting from a more efficient implementa-
tion of a query might well justify spending a large amount of time optimizing the
query. Queries typically only involve a few conjuncts and so exponential time with
respect to query length may still be smaller than, say, linear, quadratic or some higher
order polynomial time with respect to database size. Also, the same query may be
run many times, thus amortizing the cost of optimization.

Aho, Sagiv and Ullman [2], [3] took the alternative route of looking for special
cases that could be solved efficiently, i.e., in polynomial time. As a first step, they
restricted attention to typed queries, i.e., queries in which each variable has a specific
attribute of the database associated with it as its "type," and can only refer to entries

* Received by the editors March 29, 1982, and in final form October 25, 1982. A preliminary version
of this paper appeared, under a slightly different title, in the Proceedings of the 22nd Annual Symposium
on Foundations of Computer Science, IEEE Computer Society, Los Angeles, CA, 1981.

5" Bell Laboratories, Murray Hill, New Jersey 07974, and University of Wisconsin, Madison, Wisconsin
53706.

t University of Wisconsin, Madison, Wisconsin 53706.

616

QUERIES WITH UNTYPED VARIABLES 617

in columns of the database labelled by that attribute. This is a significant restriction,
since it seriously interferes with our ability to derive transitive information from
databases, for instance, to ask for (child, grandparent) pairs given a relation containing
only (child, parent) pairs. Given this basic restriction and an additional technical
restriction to only those queries representable by "simple tableaux," they derived a
class of queries fOr which minimization and equivalence testing can both be performed
in polynomial time: minimization in time O(n 3) [3] and equivalence testing in time
O(n 4) [2]. Subsequent work by Sagiv [7] has reduced both running times to O(n2).
Sagiv and Yannakakis [8] have also introduced two new classes of typed queries for
which the problems can be solved in polynomial time, again O(n 2) for minimization
[7] and O(n 2) for equivalence [8].

In this paper we show that polynomial time algorithms exist even when the
restriction to typed queries is dropped, although new techniques are required for these
more general algorithms. Our running times are, coincidentally, the same as those in
the original Aho, Sagiv and Ullman papers [2], [3].

In 2 we review the basic definitions and illustrate the limitations of typed queries,
as well as the other restrictions of [2], [3], [7], [8]. In 3 we define a class of conjunctive
queries, the fan-out free queries, which allow untyped variables and can be viewed
as a generalization of the other classes, even in the typed case. The "fan-out free"
property is specified in terms of an implication graph that is defined for any conjunctive
query. In 4 we show how the minimization problem for fan-out free queries can be
transformed into a series of connectivity tests on this implication graph and thus solved
in time O(n3).

The algorithm of 4 is in a sense just a generalization and extension of the ideas
behind the earlier techniques of [3], [7] to a much wider class (about the widest
possible such class that has a simple structural characterization). The techniques used
for equivalence testing in [2], [8] do not, however, extend in any nice way once
untyped variables are allowed. We obtain an algorithm by showing that the problem,
although equivalent to graph isomorphism if we consider general (minimized) conjunc-
tive queries, can be reduced to the well-solved problem of labeled tree isomorphism
in the case of fan-out free queries. The algorithm runs in time O(n 4) and is presented
in 5. Most of the work in the section is involved in showing that an appropriately
labeled breadth-first spanning forest for the implication graph of such a query can be
viewed as a canonical form for the query.

The paper concludes in 6 with an examination of possible extensions and
improvements on our algorithms, along with other directions for future research.

2. A few definitions. A relation R can be viewed as a finite two-dimensional
table with columns labeled by distinct attributes. Each attribute Ai has a domain D(Ai),
and entries in a column labeled by A must be elements of the domain D(A). The
relation scheme for a relation R is the sequence of attributes labelling its columns
and may be viewed as an ordered subset of the set of all attributes. Since the order
of the rows in a relation hasno significance, we can view a relation with scheme
(A 1, A2, ", Ak) as a finite subset of D(A 1) D (A2) " D(Ak). A database is
a finite set of tables. The relation schema for a database is the multiset of relation
schemes for the tables it contains. In what follows we shall assume for simplicity of
notation that all databases under .consideration have the same relation schema
{$1," , Ss}, with scheme S corresponding to relation R in the database.

We shall also assume that there are no data dependencies. "Functional dependen-
cies" can be handled just as in [2], [3], by means of a preprocessing step prior to the

618 D. S. JOHNSON AND A. KLUG

application of our algorithms. More complicated dependencies, such as multivalued
dependencies or the even more general "algebraic" dependencies of [9], give rise to
much added complexity, and we follow [2], [3] in leaving these complexities for future
work.

A query can be viewed as a function from databases to relations. A query Q has
target scheme So if it maps databases to relations with relation scheme So. A conjunctive
queryQ can be specified by So (Aa,..., A,) and the following: (1) A set Xo
{x a, ",xp} of distinguished variables (DV’s), (2) a set Yo {Y a, yq} of nondistin-
guished variables (NDV’s) and (3) a set Co {ca,"’, cr} of distinct confuncts, each
conjunct ci being associated with a relation R (ci) of the underlying relation schema
and having the form (ci[1], c[rn]), where m Length (ci) is the number of columns
(attributes) in R(c) and each c[j] is either a DV, an NDV or a constant, i.e., an
element of the domain of the/’th attribute of R (cg).

Given a database B and a conjunctive query Q, the relation constructed when
Q is applied to B is

Q(B)={(xa,"" ,x,)’ xiD(Ai) and there exist ya,"’ ", yq such that for all ciCQ,
(c[1],... ci[m]), with the valuations of the DV’s and NDV’s
substituted in, is a row in relation R (c) of B}.

For simplicity, we shall often specify conjunctive queries implicitly, using a format
similar to the above, using "R (x, y)" to stand for the statement that (x, y) is a row
in relation R. For example’

Q--{(X1, X2)" there exist ya, y2 such that Rl(xa, yl, x2)and R2(xl, Y2, 3)}.

The identities of the DV’s, NDV’s constants and conjuncts are all easily derived from
this shorthand.

Chandra and Merlin show in [4] how a query Q can be computed using the
operations of "selection," "restriction" and "generalized join," applied to the database
which is the query’s argument. The major factor in determining the running time for
the resulting algorithm is the number of generalized joins performed, and this number
is one less than the number of conjuncts in Co. Thus the query minimization problem
for conjunctive queries is simply the problem of finding a query equivalent to Q which
has the least possible number of conjuncts.

Until now, the classes of queries for which efficient minimization algorithms have
been derived have all only allowed typed variables. A DV or NDV u is typed if it is
associated with a unique attribute type (u), i.e., if c[h u, then the hth attribute of
relation R (cg) is type (u).

If a query contains only typed variables, then the underlying relation schema
might as well be assumed to have disjoint attribute domains, i.e., D(Ai)fqD(Aj)
for all pairsA Aj of attributes in the schema. Even though in practice many databases
have overlapping domains, typed queries cannot make use of this information (except
insofar as constants in the query can be associated with more than one attribute).
Consider the relation R illustrated in Fig. 1, with its first column labelled by the
attribute "parent," its second labelled by the attribute "child," and R a(x, y) if and
only if x is the parent of y. The domain for each attribute is the set of people, and,
of course, a person can be both a parent and a child. This suggests the possibility of
deriving from R the grandparent relation Re, where Re has grandparent and child
columns and (x, y) Re if x is y’s grandparent. This can be done quite simply using

QUERIES WITH UNTYPED VARIABLES 619

Parent Child

George III Adolphus

Victoria Alice

Albert Alice

Adolphus Mary

George V George VI

Mary George VI

Elizabeth Elizabeth II

George VI Elizabeth II

Victoria Edward VII

Edward VII George V

FIG. 1. Relation R with scheme (Parent,Child). If R (x, y), then x is the parent of y.

untyped variables:

((X1, X2): there isa yl such that Rl(Xl, yl) and RI(yl, x2)}.

However, no typed quory will suffice, because such a query cannot use the fact that
a parent can be a child.

One cannot get around this problem by simply giving both columns of the relation
the same name, say "person," because our basic definitions say that all columns of a
relation must be named by distinct attributes, and this fact is crucial to the algorithms
of [2], [3], [7], [8]. A second approach, that of using auxiliary tables, does allow us
to construct the grandparent relation with a typed query, but the results are awkward
and inefficient" In the current example what we need is a second relation R2, which
captures the "equivalence" of parents and children in a typed fashion. R2 has a parent
column and a child column and (x, y) R2 if and only if x and y refer to the same
person. See Fig. 2. We then can specify the grandparent relationR with the following
typed query:

((X1, X2): there are yl and Y2 such that Rl(xl, yl), R2(Y2, Yl)and RI(y2, X2)}.

Note that the use of this subterfuge not only makes the query harder to understand,
but also introduces a new conjunct and hence a new "join" to the query. We thus
can circumvent the restriction to typed queries, but only at a cost of lowered query
efficiency.

Another problem is that the three subclasses of typed queries for which algorithms
have been derived each impose an additional constraint on the queries they contain
and these constraints interfere with the use of equivalence tables. The first two of
these restrictions involve the concept of a repeated variable, which is defined to be a
NDV that occurs more than once in the conjuncts of Q.

(1) If an attribute has a repeated variable associated with it, then there is no
other repeated symbol (variable or constant) associated with it.

620 D.S. JOHNSON AND A. KLUG

Parent Child

George III George III

Victoria Victoria

Albert Albert

Adolphus Adolphus

George V George V

Mary Mary

Elizabeth Elizabeth

George VI George VI

Edward VII Edward VII

Elizabeth II Elizabeth II

FIG. 2. Relation R2 with scheme (Parent,ChiM). If g2(x, y), then x is the same person as y.

(2) No conjunct contains more than one occurrence of a repeated variable.
The first of these restrictions gives rise to the class of queries with "simple tableaux,"
as defined and discussed in [2], [3]. The second gives rise to the first of the two classes
introduced in [7], [8].

The reader may verify that (2) makes it impossible to construct the grandparent
relation using a typed query, even if equivalence tables are allowed (and rules out
the "great-grandparent" relation Roo even if untyped variables are allowed). Restric-
tion (1) allows grandparents, but rules out great-grandparents using either equivalence
tables or untyped variables. The third restriction, corresponding to the second class
from [7], [8] and using the notion of "covering" which will be defined shortly, also
prevents the construction of great-grandparents:

(3) No conjunct of Q is "covered" by more than one conjunct in Co other than
itself.

Although the class of "fan-out free" conjunctive queries for which our algorithms
are designed also obeys a restriction (a weaker one), this new class contains the queries
required for constructing any fixed-height ancestor relation, and this should be
indicative of its increased power over the previous classes.

A final objection to the restriction to typed queries is more theoretical in nature"
the natural symmetry between conjunctive queries and relational algebra is lost. As
shown by Chandra and Merlin [4], the set of relations constructible by conjunctive
queries is precisely the set of relations that can be constructed using the operations
of select, project and generalized join. No analogous characterization has been found
for typed conjunctive queries, unless one allows an unnatural extension of the concept
of "relation" [9].

Thus it is with no great sense of loss that we abandon the restriction to typed
queries. Since we are dropping the assumption, there is no real restriction in assuming
for simplicity that all attributes have the same domain D, and so we shall follow [4]

QUERIES WITH UNTYPED VARIABLES 621

in doing so. The next section presents the series of definitions which leads to the
definition of "fan-out free."

3. Implication graphs and fan-out free queries. Suppose two queries O and O’
have the same target scheme and hence the same distinguished variables. Let Uo be
the union of the DV’s, NDV’s and constants occurring in O and define Uo, similarly.
A symbol mapping from O to ’ is a function f: Uo Uo, which leaves all DV’s and
constants fixed. If c and c’ are conjuncts in and ’ respectively, we say that c’
covers c if R (c)= R (c’) and there is a symbol mapping from Q to O’ that sends c to
c’. A confunct mapping from O to O’ is a function g:Co Co, such that for all c Co,
g(c) covers c.

A fundamental concept, both for query minimization and equivalence testing, is
that of a homomorphism. A homomorphism from Q to Q’ is a symbol mapping
f: Uo Uo, that induces a well-defined conjunct mapping. Alternatively, we may view
a homomorphism as a conjunct mapping g’Co Co, that induces a well-defined
symbol mapping. In what follows we shall often view a homomorphism as both of the
above, i.e., a function h: Q Q’ defined on both Uo and Co, whose symbol mapping
half induces its conjunct mapping half and vice versa.

The importance of homomorphisms comes from the following result.
THEOREM 3.1 [4]. Two queries Q and Q’ are equivalent (as functions defined on

databases) if and only if there are homomorphisms h: Q Q’ and h’: Q’ Q.
Thus in both minimization and equivalence testing, our main task will be the

search for homomorphisms. In fact, it will turn out that most of our work is involved
with finding self-homomorphisms, i.e., homomorphisms from a query Q to itself. In
order to model potential self-homomorphisms, we introduce the notion of an implica-
tion graph. Given any conjunctive query Q, the implication graph of Q is a bipartite
graph G[Q]= (V[Q], E[Q]) defined as follows:

The vertices correspond to the potential "elements" of a homomorphism, when
that homomorphism is considered as a set of ordered pairs.. Since a homomorphism
can be viewed as either a conjunct mapping or a symbol mapping, the vertices are of
two types. First, there is a set Vc[Q] of confunct-pair vertices, containing a vertex
(c, c’) for each pair of (not necessarily distinct) conjuncts in Co such that c’ covers
c, and a special vertex (0) (0 is a special symbol indicating that no homomorphism
is possible). Second, there is a set Vs[Q] of symbol-pair vertices, containing a vertex
(y, z) for each NDV y Yo and each z Uo, such that for some conjunct-pair vertex
(Cl, C2) and index], 1 _-<] _-<length (cx), c1[]] y and C2[j]-- Z. (In the future we shall
often omit the "[Q]" from Vc[Q] and Vs[Q], so long as there is no chance of
confusion.) Each edge in E[Q] joins a symbol-pair vertex to a conjunct-pair vertex.
There is an edge between (y, z) and (0) if and only if there is a conjunct c and an
index], 1 _-<] _-<length (c), such that c[]] y and for all c’ such that c’ covers c, c’[]] z.
There is an edge between (y, z) and (c, c’) if and only if there is a], 1 _-<] -<length (c),
such that c[]] y and c’[]] z. Fig. 3 illustrates the implication graph for a conjunctive
query that constructs an interestingly incestuous relation from the parent-child relation
R.

Using the implication graph G[Q], we can test whether a symbol mapping (or a
conjunct mapping) of Q to itself corresponds to a self-homomorphism. A subset V’
of the symbol-pair vertices of G[Q] is said to satisfy the symbol mapping property
(partial symbol mapping property) if each y Yo occurs as the first component of
exactly one (at most one) of its vertices. It is easy to see that any symbol mapping
capable of yielding a self-homomorphism must correspond to a set V’ satisfying the

622 D. S. JOHNSON AND A. KLUG

BASE RELATION SCHEME R =<PARENT, CHILD>

xo; {x,,

CO= {R(yt, y2),R(y,x), R(y2, X), R(yz, x2)}

<o>
<c, c> < y,y >
<cz, cz> < Yz, Yz>

<C4, C4> < Y,Yz>
<c ,cz> ,/... < Yz, Xz>

>

< ca>,//
FIG. 3

symbol mapping property" the subset corresponding to the ,symbol mapping f is simply
Vs,f {(y, z): y e Yo and f(y z }.

The conjunct mapping property (partial conjunct mapping property) is defined
analogously for subsets of the conjunct-pair vertices of G[O], none of which is
The subset corresponding to the conjunct mapping g is simply Vc,g {(c, c’): c Co
and g(c)=c’}. A self-homomorphism h, viewed as a joint symbol and conjunct
mapping, will then correspond to the set Vs,h U VC,h Of symbol-pair and conjunct-pair
vertices, where each half "induces" the other and obeys the appropriate mapping
property.

A set V’ of symbol-pair vertices induces a set V" of conjunct-pair vertices if it
contains all the neighbors of each vertex in V". We capture the notion of the set of
symbol-pair vertices induced by a set V’ of conjunct-pair vertices by using the concept
of implication in G[O].

The first part of the definition of implication concerns the conjunct-pair vertices:
A conjunct-pair vertex implies all of its neighbors.

The following observation is immediate.
LEMMA 3.1. A conjunct mapping g of O to itself is a self-homornorphism of 0 if

and only if the set of symbol-pair vertices implied by Vc, obeys the symbol mapping
property.

We extend the definition of implication to symbol-pair vertices as follows: symbol-
pair vertices also imply neighbors, but are more selective. A symbol-pair vertex of
the form (y, y) implies nothing. A symbol-pair vertex which is adjacent to (0) implies

QUERIES WITH UNTYPED VARIABLES 623

this vertex and nothing else. Otherwise, a symbol-pair vertex of the form (y, z), y # z,
implies a neighboring conjunct-pair vertex (c, c’) if and only if this is the only
conjunct-pair vertex having c as first component to which (y, z) is adjacent.

The extension of the definition of implication to symbol-pair vertices is necessary
because we wish to use the implication graph to determine whether certain partial
conjunct mappings can be extended to self-homomorphisms. To this end we introduce
the notion of implication closure. If V’ is a subset of the vertices of G[Q], then the
implication closure V’ of V’ is the smallest superset of V’ that is closed under
implication, i.e., that contains all the vertices implied by its vertices. The implication
closure of Vc.g, where g is a partial conjunct mapping of Q to itself, is designed to
include all the forced consequences of g.

Unfortunately, in the general case for conjunctive queries, these "forced con-
sequences" do not provide enough information to tell us whether g can be extended
to a self-homomorphism. There is a "fan-out" of possibilities, and one would have
to examine them all in order to verify extendibility. Thus in what follows we impose
a restriction on queries that guarantees that such fan-out cannot occur. We say that
a symbol-pair vertex (y, z) is fan-out free if either (a) all its neighbors have the same
first component or (b) all its neighbors have distinct first components. In the latter
case (y, z) implies all of its neighbors, in the former it implies none of them (except
in the special case where it has only one neighbor). A conjunctive query Q is fan-out
free if and only if every symbol-pair vertex (y, z), y # z, in Vs is fan-out free.

To see that this restriction prevents the fan-out of possibilities, consider the
consequences of adding a conjunct-pair (c, c’) to a partial conjunct mapping for a
fan-out free query. If (c, c’) implies (y, z) and y # z, then either (a) (y, z) is adjacent
to (0) and hence no extension to a full self-homomorphism is possible, (b) (y, z) is
adjacent only to other conjunct-pairs with c as first component, none of which can
be part of the same homomorphism as (c,,c’), or (c) all the other conjunct-pairs
adjacent to (y, z) are implied by (y, z) and must be present in any self-homomorphism
containing (c, c’). If a symbol-pair vertex (y, z) with fan-out were allowed, it might
have neighbors (Cl, c2) and (cl, c3), c2 # c3 and we would have a choice as to which
one to add in attempting to extend our partial conjunct mapping.

Note that we do allow fan-out at vertices of the form (y, y), but under our
definitions these vertices do not imply any of their neighbors and the following theorem
will show that they do not need to. Let us say that a subset V’ of the conjunct-pair
vertices of an implication graph G[Q] is transitively closed if the implication closure
of V’ contains no new conjunct-pair vertex, i.e., if V’fq Vc V’. A transitively closed
set V’ of conjunct-pair vertices obeys the partial homomorphism property if it satisfies
the following two conditions:

(C1) V’ does not contain (O).
(C2) The set V" of symbol-pair vertices in V’ obeys the partial symbol mapping

property.
Observe that (C2) implies that V’ itself obeys the partial conjunct mapping

property, since if V’ contained two distinct conjunct-pairs with the same first com-
ponent, then V" would have to contain two distinct symbol-pairs with the same first
component. Theorem 3.2 validates our claim that, for fan-out free queries, we can
tell whether a partial conjunct mapping extends to a full self-homomorphism merely
by computing its implication closure"

THEOREM 3.2. Let Q be a fan-out free query and suppose V’ is a transitively
closed subset of the conjunct-pair vertices of G[Q] that obeys the partial homomorphism
property. Then the set V* of vertices obtained by adding to V’ all symbol-pair vertices

624 D.S. JOHNSON AND A. KLUG

(y, y), where y does not occur as a first component in V’, and all conjunct-pair vertices
(c, c), where c does not appear as a first component in V’, corresponds to a self-
homomorphism of Q.

Proof. Let f and g be the symbol mapping and conjunct mapping corresponding
to Vs. V* f3 Vs and Vc. V* f3 Vc respectively. By (C2)f obeys the symbol mapping
property and, by (C1) and our observation following the definition of the partial
homomorphism property, g obeys the conjunct mapping property. Thus by Lemma
3.1 all we need show is that Vc. implies Vs.. This can fail to happen only if (i) Vc.
implies some (y, z not in Vs. or (ii) Vc. fails to imply some (y, z) which is in Vs,.
We show that both possibilities lead to contradictions.

(i) Suppose Vc. implies a symbol-pair (y, z) which is not in Vs.. Then (y, z)
must be implied by some conjunct-pair (c, c’) that is in V* but not in V’ and hence
has c’= c. This means that z y. The fact that (y, y) is not in Vs. means that there
is some (y, z’), z’ y, which is in Vs.. The fact that c contains an occurrence of y
means that there is some conjunct-pair vertex (c, c"), c" c, adjacent to (y, z’) in Go.
The fact that (c, c) is in V* means that (y, z’) does not imply (c, c"). Since z’ y, the
fact that Q is fan-out free thus allows us to conclude that all vertices adjacent to
(y, z’) in Go have c as first component. In particular, the conjunct-pair in V’ that
implies (y, z’) has c as first component, in contradiction to the fact that (c, c) is in V*.

(ii) Suppose Vc. fails to imply some symbol-pair (y, z) in Vs.. Then we must
have that (y, z) is not in V’ and hence z y. By our definition of the implication
closure, there must be some conjunct c that contains an occurrence of y. We cannot
have (c, c) in Vc. or else Vc. would imply (y, y). Hence there is some (c, c’) in Vc.,
c’ c. The vertex (c, c’) cannot be adjacent to (y, y) in Go (or else it would imply it),
but it must be adjacent to some symbol-pair (y, z’) with y as first component. But
this means that (y, z’) is in Vs. and z’ y, and hence we cannot have added (y, y) to
V’, again a contradiction.

Thus both cases are impossible and the theorem is proved.
We thus see that our restriction to fan-out free queries does what we want it to.

The fact that it is not too severe a restriction can be gleaned from the next two theorems.
THEOREM 3.3. Any typed query Q satisfying restriction (1) or (3) of 2 is fan-out

free, and there exist fan-out free typed queries that obey neither (1) nor (3).
Proof. In order for Q to fail to be fan-out free, there must be a symbol-pair

vertex (y, z) in G[Q] such that y z and (y, z) is adjacent to three conjunct-pair
vertices (cl, C2), (C3, C4) and (C3, C5, where cl c3 and Ca C5. Since y z, this would
mean that ca was covered by two conjuncts other than itself and so Q would violate
(3). It would also mean that y was a repeated variable (occurring in both c and c3)
and z was a second repeated symbol (occurring in c4 and c5) associated with the same
attribute, thus violating (1). Hence any query satisfying (1) or (3) must be fan-out free.

An example of a typed query which is fan-out free but violates both (1) and (3)
is the query which constructs the great-grandparent relation using the parent-child
relation R and the equivalence relation R2 from 2"

{(Xl, X2)" there exist y, y2, Y3 and Y4 such that Rx(xl, y),
R2(Y2, y), R(y2, y3), R2(y4, y3)and R(y4, x2)}.

The third conjunct of this query is covered by both the first and the fifth, thus violating
(3), and the "parent" attribute has two repeated variables (yl and Y3), thus violating
(1). To see that the query is fan-out free, note that the only conjunct-pair vertices
(c,c’) in G[Q] with c c’ are c2,c4, c4, c2, c3, Cl and (c3, c5) and that no (y, z),

QUERIES WITH UNTYPED VARIABLES 625

y z, is adjacent to more than two of them or to any conjunct-pair of the form (c, c)
(at least three neighbors are required for a symbol-pair vertex to have "fan-out"). I-1

Thus, the class of fan-out free queries is more general than either of the classes
defined by the restrictions (1) and (3), even when restricted (as they are) to typed
variables. The relationship between fan-out free queries and those obeying restriction
(2) of 2 is less straightforward. Although (2), by forbidding more than one repeated
variable in any conjunct, rules out any sophisticated use of transitivity, it does allow
some queries which are not fan-out free. A simple example would be

{(xl)" there exist yl, Y2, Y3 and Y4 such that Ra(yl, xl),
R(yl, y2), RI(y3, xx) and Rl(y3, y4)}.

The query obeys (2) since the only repeated (nondistinguished) variables are y and

Y3. It is not fan-out free since (Y3, Yl) is adjacent to (c3, cl), (ca, cl) and (c4, c2).
However, note that the above query is equivalent to the fan-out free query

containing the single conjunct (y 1, x 1). In fact, it is not difficult to prove the following
theorem (using Lemma 4.2 of the next section).

THEOREM 3.4. Any minimal query satisfying restriction (2) of 2 is fan-out free.
Thus any question that can be phrased using a conjunctive query obeying restric-

tions (1), (2) or (3) can be phrased using a fan-out free query, and fan-out free queries
can express many questions that would be impossible to ask if any one of those
restrictions must be obeyed.

4. Minimizing fan-out free queries. Our minimization algorithm, like those of
[3], [7], is based on the following result from [4]:

LEMMA 4.1. If a conjunctive query O is equivalent to a conjunctive query O’ that
has fewer con]uncts, then there is a self-homomorphism of O that sends the con/uncts
o[to a proper subset of themselves (a shrinking self-homomorphism of O).

Proofi By Theorem 3.1, if O is equivalent to O’ then there exist homomorphisms
h" O - O’ and h" O’ -, O. The desired self-homomorphism is h composed with h’.

LEMMA 4.2. ff h is a sel[-homomorphism of then the set of con/uncts in the
image of h represents a query ’ which is equivalent to .

Proofi By Theorem 3.1 we need to show that there are homomorphisms in both
directions. We already have the homomorphism h which goes from O to ’. The
homomorphism in the other direction is simply the identity self-homomorphism on, restricted to the conjuncts and NDV’s in ’.

Our minimization algorithm will be based on a subroutine S which, given
determines whether it has a shrinking self-homomorphism, and, if so, returns one.
We use S in the following loop.

1. Set Q* O.
2. While S applied to Q* yields a shrinking self-homomorphism h, set Q*=

h (Q*). (Note that if Q* is fan-out free, then so must be h (Q*).)
3. Return Q* (if S applied to Q* does not yield a shrinking self-homomorphism,

then Q* is our desired minimum equivalent query).
Note that if Q has N conjuncts, subroutine S will be invoked at most N times, since
each successful application reduces the number of conjuncts, and we always must
have at least one conjunct left.

We thus have reduced the problem of conjunctive query minimization to that of
finding shrinking self-homomorphisms. In the case of fan-out free queries, we can
use the results of the last section in doing the "finding";

626 D.S. JOHNSON AND A. KLUG

LEMMA 4.3. Suppose Q is a fan-out free query. Then the following two statements
are equivalent.

(a) Q has a shrinking self-homomorphism.
(b) There is a conjunct-pair vertex (c, c’) in G[Q] with c c’ such that the set V’

of conjunct-pair vertices in the implication closure of {(c, c’)} satisfies the partial
homomorphism property and the set C V’) of first components of conjunct-pairs in V’
does not equal the set C2(V’) of second components.

Proof. That (b) implies (a) follows immediately from Theorem 3.3. By that
theorem, V’ extends to a self-homomorphism h of Q which is the identity on all
conjuncts not in C(V’). Since there is a conjunct in C(V’)-C2(V’), that conjunct
will not be in the image of Co under h, and so h is a shrinking self-homomorphism.

To prove the implication in the other direction, let us suppose that h is a shrinking
self-homomorphism of Q, and let V’= Vc,, be the associated set of conjunct-pair
vertices in G[Q]. Consider the implication closure V’, which is simply V’tA Vs.h since
h is a self-homomorphism. By the definition of implication closure, V’ is the union of
the implication closure of {(c, c’)}, for all (c, c’) in V’. Let V[c, c’] be the set of
conjunct-pairs in the implication closure of (c, c’). If CI(Q[c, c’]) C2(Q[c, c’]) for all
(c, c’) in V’, then we must have CI(V’)= C2(V’) and so h would not be a shrinking
self-homomorphism. Thus there is some (c, c’) such that V[c, c’] has a set of first
components not equalling its set of second components. We claim that this is the
desired conjunct-pair. Clearly c c’, since the implication closure of (c, c) is simply
thatvertexby itself, and C1(V[c, c]) C2(V[C, C]) {C }. The set V[c, c’] does not contain
(O) since V’ did not, so it satisfies (C1) of the partial homomorphism property. Finally,
I7"[c, c’] satisfies (C2) since it is contained in I?’. Thus I2[c, c’], being transitively closed,
satisfies the partial homomorphism property, and (c, c’) is the desired conjunct-
pair.

Lemma 4.3 is enough to give us a polynomial time algorithm for minimizing
fan-out free queries" We can implement subroutine S by (1) constructing the implica-
tion graph for Q, (2) finding the implication closure of each of its conjunct-pair vertices
(c, c’), c c’, (3) testing each implication closure to see whether its conjunct-pairs
satisfy property (b) of the lemma and finally (4) using Theorem 3.2 to generate the
corresponding shrinking self-homomorphism when it exists.

As schematized above, our algorithm has a major potential inefficiency. If there
are N conjuncts (and hence potentially N(N-1)/2 conjunct-pairs (c, c’), c c’), the
time to find all the implication closures might be no better than O(N2) times the size
of G[Q]. Such a bound could be attained if many of the implication closures were
large and overlapped, causing us to examine the same part of the graph over and over
again. In order to avoid this, we make use of one more lemma about implication
graphs of fan-out free queries.

LEMMA 4.4. IfQ is a fan-outfree query and (cl, c2), (y, z) and (C3, C4) are vertices

of G[Q] such that (cl, c2) implies (y, z) and (y, z) implies (c3, c4), then (c3, c4) implies
(y, z) and (y, z) implies (c 1, c2).

Proof. For the assumed implications to hold, we must have that (y, z) is adjacent
to both (cl, c2) and (c3, c4). Thus (c3, c4) implies (y, z), since a conjunct-pair implies
all symbol-pairs to which it is adjacent. The argument for the second implication goes
as follows. Since (y, z) implies (c3, c4), we know that (y, z) is not adjacent to (0), y z
and c3 Cl. Since Q is fan-out free, this means that all conjunct-pairs adjacent to
(y, z) have distinct first components and thus (y, z) implies (c

As a consequence of this lemma, we note that if (cl, c2) is in the implication
closure of {(c3, c4)}, then (c3, c4) is in the implication closure of {(cl, c2)}, and, in fact,

QUERIES WITH UNTYPED VARIABLES 627

the two implication closures are equal. Thus, in the process of generating the implica-
tion closures of individual (c, c’)’s, we never need generate the implication closure of
a conjunct-pair (c, c’) which has already appeared in the implication closure of some
earlier conjunct-pair. Hence we only need look at each conjunct-pair vertex once in
the entire process. A symbol-pair vertex can appear in more than one distinct
implication closure, if it is one of those symbol-pairs that, for some reason, does not
imply all its neighbors. However, it will only be encountered a number of times
bounded by the number of its neighbors, since each neighbor is itself in at most one
implication closure. Thus it is easy to see that the total amount of work required to
generate the relevant implication closures under this modified scheme is proportional
to the size of the implication graph, not N2 times that size.

For those uninterested in writing special programs to generate implication
closures, we note that we can modify the implication graph so that the relevant
implication closures can be found using a standard algorithm for generating the
connected components of a graph. The modification is straightforward: For each
symbol-pair vertex (y, z) where either y z or all the neighbors of (y, z) have the
same first component, split the vertex (y,z) into a number of copies of itself equal to
the number of conjunct-pair vertices adjacent to it, and let each of these copies be
adjacent to a corresponding one of those conjunct-pairs.

We leave to the reader the straightforward task of verifying that the connected
components of the modified graph correspond to the implication closures of the sets
{(c, c’)} in G[Q], with the union of all implication closures that contain (0) correspond-
ing to the single connected component containing (0). Since the connected components
of a graph can be generated in time which is linear in the size of the graph [1] and
since the modified graph can be constructed in time proportional to the size of G[Q],
this graph-connectivity approach will be about equivalent to the one already proposed.

Having found the relevant implication closures, we must then examine each to
see whether its conjunct-pair vertices satisfy the partial homomorphism property and
have a set of second components different from their set of first components. This
can be done for each V’= V[c, c’] in time proportional to the size of V’, and hence
the overall time for this part of the algorithm is also bounded by the size of G[Q].
We test V’ as follows. Condition (C1) of the partial homomorphism property, that
V’ does not contain (0), can easily be checked in the claimed time. Condition (C2),
that no two symbol-pair vertices of V’ share the same first component, can be verified
in time proportional to the number of such vertices by indexing into an array with
entries for each NDV (we avoid initializing the table by using the trick described in
[1, Exercise 2.12]). A similar trick is used to verify that CI(V’) # C2(V’).

To complete the analysis of the running time of our minimization algorithm, we
must consider how large the implication graph G[Q] can be, and how much time is
required to generate it. As argued above, G[Q] contains at most O(N2) conjunct-pair
vertices besides (0), with at most N having any given conjunct c as first component.
The number of edges involving (0) is bounded by the number of symbol-pair vertices.
Each conjunct-pair vertex (c, c’) is adjacent to at most length (c) symbol-pair vertices,
one for each column of c. Thus the total number of symbol-pair vertices is at most
N times the sum of the lengths of the conjuncts in Co, where this sum can be taken
as proportional to n, the size of the query itself, and the total number of edges in
E[Q] is at most twice this much. Since N =<n, we thus obtain O(n 2) as a bound on
the size of G[Q]. The time to generate G[Q] also obeys this bound: We can tell
whether c’ covers c in time proportional to length (c), and if so, generate all the edges
incident on (c, c’ at the same time, merely by comparing c[i] and c’[i], 1 <- <= length (c)

628 t). s. JOHNSON AND A. KLUG

(using our indexing trick to make sure that no earlier/" had c[/’] c[i] and c’[/’] c’[i]).
Generating the edges involving (0) requires similar indexing tricks.

Thus the time for our subroutine $ is O(n 2) and hence the time for the overall
minimization algorithm is O(rt3). Note however that for queries that are already
near-minimal, as we would expect them to be in practice, the time bound may reduce
to O(n2), since the number of times S is applied is at most one more than the number
of redundant conjuncts in Q.

In cases where Q is far from minimal, we might hope to speed up the algorithm
by a more sophisticated generation by S of the shrinking self-homomorphism h it
returns. Clearly our goal should be to find a shrinking self-homomorphism which has
the smallest image. One thing we could do is generate h from the V’= V[c, c’] that
has the largest value of]Cx(V’)-C2(V’)[. This could be done without substantially
increasing the overhead in $.

A more expensive approach would use the fact that some set of implication
closures must correspond to a maximal shrinking self-homomorphism, i.e., one which
sends Co to a minimum equivalent subset of itself. Thus we might attempt to combine
implication closures and see whether the combined implication closure (the union of
two implication closures is itself an implication closure) satisfies the conditions of
Lemma 4.3 and has a larger value of ICa(V’)- C2(V’)I than either of its progenitors.
The complexity involved in doing these tests can be reduced somewhat by using the
fact that there is a maximal shrinking self-homomorphism which is the identity
self-homomorphism when restricted to its image (this fact can be proved by considering
high-order compositions of a maximal shrinking self-homomorphism h* with itself).
However, we have been unable to discover any way to find good combinations that
does not end up costing just as much as performing the algorithm in the standard
way. It is not difficult to show that a greedy approach to building combinations can
leave one arbitrarily far from the maximal shrinking self-homomorphism.

Before closing this section, we note that the approach to minimization described
in this section can be extended to a wider class of queries than just those that are
fan-out free. Given the implication graph of an arbitrary query, one can, by doing a
search of the graph starting at (0), identify all those vertices that imply (0) (directly
or indirectly). We then delete all these vertices and examine the remaining connected
components to see if any of these will generate a shrinking self-homomorphism. If
so, apply the shrinking self-homomorphism and repeat the procedure. If not, and all
the remaining symbol-pair vertices are fan-out free, then we know that our query is
minimal. If not, and there is a symbol-pair vertex with fan-out, we are stuck.

A simple characterization of the queries for which this minimization procedure
succeeds has eluded us; the fan-out free queries seem to be the least restrictive class
for which membership can be determined by "local" properties and yet minimization
is guaranteed.

5. Equivalence testing for fan-out free queries. The first step of our algorithm
for testing whether two fan-out free queries O and O’ are equivalent is to perform
the minimization algorithm of the previous section on both of them. This reduces the
equivalence problem to one of isomorphism, as can be seen from the following
easily-proved lemma:

LEMMA 5.1. Suppose Q and Q’ are minimal queries. Then Q is equivalent to Q’
if and only if there is a homomorphism from Q to Q’ which is one-one and onto]’or
both NDV’s and con]uncts. Note that by setting Q Q’ in Lemma 5.1 we obtain the
fact that any self-homomorphism of a minimal query is an automorphism.

QUERIES WITH UNTYPED VARIABLES 629

For the rest of this section we shall assume that both O and O’ are minimal
fan-out free queries. In light of Lemma 5.1 we may also assume that they have the
same number of NDV’s and conjuncts. The basic outline of our equivalence algorithm
is as follows"

For each conjunct c Co we construct a forest of labelled trees forest [c]=
{tree [c, c’]: c’ Co, c’ covers c and c’ c}, where tree [c, c’] is a labelled breadth-first
spanning tree of the implication closure of {(c, c’)} in the implication graph G[Q].
Similar forests are constructed for each c Co,. We then make use of the following
two lemmas (to be proved later). For brevity we use the term tree isomorphism to
stand for labelled forest isomorphism and use the symbol to denote both tree and
query isomorphism.

LEMMA 5.2. Iff O O’ is a query isomorphism, then forest [c]-forest [f(c)] for
every confunct c Co.

LEMMA 5.3. Suppose c 1, c2 Co and forest [c 1] [forest [c2]. Then there is a query
automorphism f: Q Q such that f(c 1) c2.

These two lemmas yield the following key theorem.
THEOREM 5.1. Suppose c Co, c’s Co, and forest [c] forest [c’]. Then there is

a query isomorphism f: Q Q’ if and only if there is a query isomorphism f’: Q Q’
with f(c c’.

Proof. Suppose there is a query isomorphism f: Q Q’. If f(c) c’ we are done,
so suppose f(c)= c". Note that this implies that c and c" cover each other. Since c
and c’ cover each other by hypothesis, it thus must be the case that c’ and c" cover
each other. By Lemma 5.2, f(c)=c" implies that there is a tree isomorphism
t: forest [c forest [c"]. Since by assumption forest [c forest [c’], we conclude that
there is a tree isomorphism t’ forest [c’]- forest [c"]. By Lemma 5.3 we thus conclude
that there is a query automorphism f’:Q’ Q’ with f’(c")= c’. The composition of f
followed by f’ yields our desired query isomorphism. I-1

Our equivalence algorithm can thus proceed as follows:

1. Set Q* Q, Q** Q’ and f (the empty symbol mapping).
2. While Q* contains a conjunct c that contains a NDV, do the following"

If there is no conjunct c’ Co** such that forest [c]forest [c’], then halt: Q
and Q’ are not equivalent by Lemma 5.2. Otherwise, let c* be such a c’
and extend the definition of f to include f(c[f])= c*[/’] for every/’, 1 <_-/" _-<
length (c), such that c[/’] is a NDV.

Iff fails to be either well-defined or one-one, halt: the queries are inequivalent.
Otherwise, for each NDV u added to the domain of f, replace u and f(u)
in both Q* and Q** by a new unique constant symbol u*.

3. At this point, Q* no longer contains any NDV’s. If the sorted lists of conjuncts
for Q* and Q** are identical, then the constructed f will correspond to a
query isomorphism; otherwise, no such isomorphism exists (Theorem 5.1
guarantees that if there is a query isomorphism, the lists will be identical.)

We now present the details of the construction of tree [c, c’] and the proofs of
Lemmas 5.2 and 5.3. We assume without loss of generality that c and c’ are conjuncts
of query Q. Our construction requires a bit more information than is present in the
implication graph as defined in 3. Therefore, in what follows, we replace the
"honorary" conjunct-pair vertex (0) by a collection of vertices of the form (c, 0), one
for each conjunct c Co. There is an edge between a symbol-pair (y, z), y z and
the conjunct-pair (c, 0) if there is a/’, 1 =</" -<length (c), such that c[/’] y and for no
c’ that covers c does c’[/’] z. Note that if all the (c, 0) vertices are coalesced into a

630 D. S. JOHNSON AND A. KLUG

<c ,O >
<cz, e>

<c4, e>

<cz, cz>

<C 4, C4)’

< cz>

<
< cz,

<Y,Y>
<Y z, Yz>
<yz,
<Y,Yz>
<Yz, Xz>
<Yz, Y>

FIG. 4

single vertex, this vertex will be adjacent to precisely the same symbol-pair vertices
as was (e). See Fig. 4. For the remainder of this section, the term implication graph
and the abbreviation G[Q] will always refer to an expanded graph of this type.

The tree T tree [c, c’] need not actually be a labelled breadth-first spanning
tree for the entire implication closure of {(c, c’)} in G[O], only for part of it. The
basic idea is to start with the conjunct-pair vertex (c, c’) as root and expand the tree
until either (a) the implication closure is completely spanned or (b) there is evidence
that the set of conjunct-pair vertices in the implication closure of {(c, c’)} does not
induce a query automorphism.

There will be two labels associated with each vertex , of T, a hidden label, H[,]
and a visible label, label [,]. The hidden labels are used in our construction of T and
in our proofs, but are not considered when testing for tree isomorphisms. The hidden
label of a vertex v is simply its name in G[Q], i.e., HI(c, c’)]= (c, c’) and HI(y, z)]=
(y, z). We shall use HI[,] and H2[,] to denote the first and second components of
the hidden label of ,, respectively.

The visible labels are the ones used in testing for tree isomorphism. The visible
label label [, for a symbol-pair vertex , is of the form (i, A), where i, a column index,
is the local address and A is the mapping conflict indicator. The visible label for a
conjunct-pair vertex , is of the form (JR, j], P, A). Here JR, j], with R being a relation
name and/" being a column index, is the local address. The second component, P, is
the profile and the third, A, is again the mapping conflict indicator. The visible labels
are assigned so that every vertex , has a unique global address a (,), this being the
sequence of visible labels for all the vertices on the path from the root of T up to
and including ,.

The local address for a child u of , is assigned based on the reason for the
adjacency of H[u] and H[,] in G[Q]. If H[u] (y, z) and H[,]=(cl, C2, then the

QUERIES WITH UNTYPED VARIABLES 631

local address for u as a child of u is the least column index such that cx[i] =y and
c2[i]--z (such an index must exist by the definition of implication graph). If H[u]-
(c,c2) and H[u]= (y, z), then the local address [R,/’] for u has R =R(ca)=R(c2)
and/" the least index such that c[/’]= y and c2[/’]= z. If u is the root of tree [c, c’]
and hence has no parent, its local address is [R (c), 0] by convention.

Note that although no conjunct-pair vertex can have two children with the same
local address in tree [c, c’], a symbol-pair vertex may have a number of conjunct-pair
children with the same local address. One purpose of the profile is to distinguish
between conjunct-pair children with the same local address. The profile is present in
label[u] for all conjunct-pair vertices u and is determined entirely by Ha[u]. If
H[u] c then the profile of u, which we shall denote by profile [c], is a list of the
form ([Ja, ba], [J2, b2]," ’, [Jk, bk]), where the J’s are sets forming a partition of the
integers in {h 1 <_- h <_- length (c)} and the b’s are either DV’s, constants or the special
symbol 3. Each set J is a maximal set of indices h such that c a[h has the same value
for all h J. The entry b is this common value if that value is either a DV or a
constant. If, however, the common value is a NDV, then b is by convention set to
3 (our visible labels must be independent of the names of the NDV’s). Thus we know
that each J with b represents a different NDV, but not which one. Within
profile [c 1] the sets are ordered according to their minimal elements and each set has
its members presented in increasing order.

If a vertex of tree [c, c’] has a mapping conflict indicator other than 0, we say
that that vertex has a mapping conflict. This will mean that {(c, c’)} cannot be extended
to a query automorphism. There will be at most one vertex in T with a mapping
conflict (as soon as such a vertex is encountered in our tree generation process, we
halt and declare T complete). If a symbol-pair vertex u has a mapping conflict, its
mapping conflict indicator A is the global address of an earlier symbol-pair vertex u
such that H[u]=H[u] and H2(u)H2[u] (the fact that T contains such vertices
means that {(c, c’)} cannot extend to a well-defined query automorphism).

If a conjunct-pair vertex u has a mapping conflict, there are three possibilities:
the mapping conflict indicator for u can either be "1", "2" or the global address of
some earlier conjunct-pair vertex. If the mapping conflict indicator for u is equal to
1, this means that H[u]= (c", 0) for some conjunct c", in which case {(c, c’)} clearly
cannot be extended to a query automorphism. If the mapping conflict indicator for u
is equal to 2, this means that there are at least two conjunct-pair vertices that could
be children of parent(u) with the same visible label. The presence of two such vertices
clearly destroys the uniqueness of global addresses, but as we shall see, it also means
that {(c, c’)} cannot be extended to a one-one self-homomorphism (and hence not to
a query automorphism, since Q is minimal). If the mapping conflict indicator for u is
the global address for an earlier conjunct-pair vertex u, this means that Hx[u H[u
and H2[u H2[u] and so again {(c, c’)} cannot be extended.

This will be explained more fully as we now present an explicit procedure for
constructing tree[c,c’]. We proceed by levels. Odd levels contain conjunct-pair
vertices and even levels contain symbol-pair vertices. The first level consists solely of
the root, a single conjunct-pair vertex u with H[u]= (c, c’) and label [u]= (JR (c), 0],
profile [c l, 0). If all the vertices on level /, I odd, have been generated and the
construction of tree [c, c’] has not yet been terminated, the generation of the vertices
of level I + 1 proceeds according to procedure EVENLEVEL. (In the following a
vertex u of tree [c, c’] is unprocessed if we have not as yet attempted to generate its
children; a vertex (cx, c2) (or (y, z)) in G[Q] is unspanned if there is as yet no vertex
in tree [c, c’] with (cx, c2) (or (y, z)) as its hidden label.)

632 D.S. JOHNSON AND A. KLUG

Procedure EVENLEVEL
begin
Lexicographically order the vertices of level ! according to their global addresses.
While there remains an unprocessed vertex on level/, let v be the lexicographically
first such vertex and do the following:

begin
Let H[v] (ca, C2 and for each unspanned (y, z) that is adjacent to (ca, c2) in
G[Q], ordered by their potential local address (the least such that cx[i]=y
and c2[i] z), do the following:

begin
Create a new symbol-pair vertex u of tree [c, c’], with v as parent, with as
local address and with H[u (y, z). If there is any already-generated vertex
w with Hx[w y (there can be at most one), then let A be the global address
of w, set label [u]=(i,A) and halt the generation of tree [c, c’] (the tree is
complete since we have encountered a mapping conflictsee Fig. 5). Other-
wise, set label [u (i, 0) and continue.
end

end
end EVENLEVEL

If all the vertices on level I, I even, have been generated and the construction
of tree [c, c’] has not yet been terminated, then we generate the vertices of level I + 1
using the procedure ODDLEVEL"

procedure ODDLEVEL
begin
Lexicographically order the vertices of level I according to their global addresses,
deleting all those v such that H[v] either (a) has the same first and second
components or (b) equals (y, z), where all the vertices adjacent to (y, z) in G[Q]
have the same first component (in other words, deleting all those v which
correspond to symbol-pair vertices in G[Q] that do not imply anything).
While there remains an unprocessed vertex on level/, let v be the lexicographically
first such vertex, and do the following:

begin
Let H[v]=(y,z). If (y, z) is adjacent in G[Q] to a vertex with 9 as second
component, do the following:

begin
Let D {cl Co: there is a vertex (cl, 9) adjacent to (y, z) in G[Q]}. For
each c D, let A[c], the potential local address of c, be [R,]], where
R =R(c) and/’ is the least index such that c l[/’]=y and for no c2 with
c2[/’] z does c2 cover c (such a/" must exist by the definition of implication
graph). Then create a new vertex u as a child of v with H[u (c*, 8) and
label [u] (A[c*], profile [c*], 1), where c* is chosen to be a lexicographically-
minimum member of D with respect to the (A[c*], profile [c*]) pair (see
Fig. 6). Since a mapping conflict has been found, halt and terminate the
construction of tree [c, c’].
end

Otherwise, all neighbors of (y, z) have distinct first components. For each
potential local address JR,/’] of an unspanned neighbor of (y, z) in G[Q], in
lexicographic order, do the following"

QUERIES WITH UNTYPED VARIABLES 633

A

A

634 D.S. JOHNSON AND m. KLUG

begin
Let D {(cl, c.): (cl, c2) is an unspanned conjunct-pair vertex adjacent to
(y,z) in G[Q] with R(cl)=R, Cl[]’] y and c2[j]=z}. For each (171, C2) ED,
in lexicographic order by values of profile [c 1] do the following"

begin
Create a new vertex u as a child of u with H[u]- (c 1, c2) and construct
its visible label as follows"

begin
If there is a (Ca, c4)ED, (Ca, c4) # (cl, c2) with profile [c3] =profile [c1],
then the fact that (cl, c2) preceded (Ca, c4) in our processing of D is
only due to whatever arbitrary tie-breaking procedure we used to order
conjunct-pairs in D whose first components had the same profile. We
could just as well have had (Ca, c4) first and H[u would then have been
assigned the value (c3, c4). This is a mapping conflict of type 2 (see Fig.
7). Set label [u] (JR,/’], profile [cl], 2) and terminate the construction
of tree [c, c’].
If there is an already-generated vertex w of tree [c, c’] with HI[W] c1
(there can be at most one), then let A be the global address of w, set
label [u] (JR,/’], profile [cl],A) and halt the generation of tree [c, c’].
Otherwise, set label [u ([R,/’], profile [c 1], 0)) and continue.
end

end
end

end
end ODDLEVEL

C,l =R,I(U), C2= R,I(v),C s :R 2 (u, 5), C4" R2(V, ’10

<o,, o], <

TREE [C,I, C2] <u,v >: < o>

o >.< < [{z}, >,
FIG. 6

The construction of tree [c, c’] continues until terminated as above or until an
entire level is processed without creating any new vertices.

It should be clear that this construction yields a forest [c] whose topology and
labelling is totally independent of the names of the NDV’s in Q and of the order of
the conjuncts in Co. This information is not used explicitly in our labellings, and
whenever ties are broken lexicographically, the sorting is done in terms of relation
names, column indices, DV’s, constant names, profiles, and special symbols such as
0 and , none of which depend on the NDV’s or conjunct ordering, and all of which
would be present in any query equivalent to Q. Thus the proof of Lemma 5.2, that

QUERIES WITH UNTYPED VARIABLES 635

C,1 R,I (U), C2= R,I(v), C3=R2(iO, u, 10, y), C4=R2(10, u,lO, z), C5= R2(10, v, t0, X

> < JR,, o], o>

TREE [C,I, C2] <u,v> <

c, >.< 3}, [{z}, [{4}, >,z >
FIG. 7

if Q Q’ then the corresponding conjuncts have isomorphic forests, would only involve
a straightforward (and tedious) induction, which we shall omit.

The proof of Lemma 5.3 is much more interesting and will proceed via a sequence
of sublemmas.

LEMMA 5.3.1. If profile[cl]=profile[c2], then cl and c2 cover each other and
any conjunct that covers one must cover the other.

Proof. The fact that c and c2 have the same profile means that they are the
identical up to a renaming of their NDV’s. Hence there is a symbol mapping f that
sends cx to c2 and a symbol mapping f’ that sends c2 to c1 and so each covers the
other. The second half of the lemma follows from the fact that the "covering" relation
is transitive.

LEMMA 5.3.2. If there is a conjunct-pair vertex u in tree [c, c’] with a mapping
conflict indicator of 2, then the implication closure of {(c, c’)} in G[Q] contains two
conjunct-pair vertices (c 1, C2> and (c3, c2), c c3 and c2 8, either of which could have
been assigned as the value ofH[u by procedure ODDLEVEL.

Proof. Let H[u]=(Cl, c). By the operation of ODDLEVEL in assigning a
mapping conflict indicator of 2, u was the child of some symbol-pair vertex (y, z), all
of whose neighbors had distinct first components, and there was a second conjunct-pair
(c3, c4) that could also have been assigned as H[u] with c2 8 c4. We now show
C2 C4.

Suppose c. # c4. Since Cl and c3 have the same profiles and Ca covers c3, we
would have by Lemma 5.3.1 that c4 also covers Cl. Thus both c2 and Ca would cover
cl and hence (cl,c2) and (cl,c4) would be distinct neighbors of (y,z) in G[O].
However, (y, z is adjacent to only one conjunct-pair with c as first component and
so c2 c4 and (cl, c.) and (c3, c2) are the desired conjunct-pairs. []

LrMMA 5.3.3. For all conjunct-pairs (c, c’) of 0 such that c’ covers c and c # c’,
if tree [c, c’] contains no vertex with a mapping conflict, then there is a query automorph-
ism f: 0 -* 0 with f(c c ’.

Proof. If tree [c, c’] contains no vertex with a mapping conflict, then it must span
the entire implication closure of {(c, c’)}. Let V’ be the set of conjunct-pair vertices
in this closure. We claim that V’ obeys the partial homomorphism property. Condition
(C1) is satisfied since if V’ had contained a vertex with 8 as second component, this
would have given rise to a mapping conflict of type 1 for a conjunct-pair vertex in

636 D.S. JOHNSON AND A. KLUG

tree [c, c’]. Condition (C2) is satisfied since if the set of symbol-pair vertices in Q’ did
not obey the partial symbol mapping property, it would contain vertices (y, z) and
(y, z’), z # z’ and the second of these to be encountered in the generation of tree [c, c’]
would have had a mapping conflict (unless the generation of tree [c, c’] had dlready
been terminated on account of some earlier mapping conflict).

Since V’ obeys the partial homomorphism property and (c, c’) V’, there is a
self-homomorphism of Q that sends c to c’ by Theorem 3.3 Since Q is minimal, this
self-homorphism is the desired query automorphism. [-l

LEMMA 5.3.4. If there is a tree isomorphism t:forest[c]forest[c’] and c #c’,
then for each vertex u in tree [c, c’], H2[u] H[t(u)].

Proof. Let tree [c’, c"] be the image under of tree [c, c’]. We proceed by induction
on the levels of the two trees. In each the first level consists of a single root vertex.
If v is the root vertex in tree [c, c’], then t(v) must be the root vertex in tree [c’, c"].
Hence we have H[u] (c, c’) and H[t(v)] (c’, c"), and the lemma holds for the first
level.

Suppose it holds for parent (u) and t(parent (u)). We show it holds for u. First
note that t(parent (u)) parent (t(u)), since is an isomorphism. We now split into
cases, depending on whether u is a symbol-pair or a conjunct-pair vertex.

Suppose u is a symbol-pair vertex. By hypothesis there exist ca, c2 and ca such
that H[parent (u)]= (Cl, c2) and H[parent (t(u))] (c2, ca). Suppose H[u]= (y, z) and
Hit(u)] (y’, z’). Both u and t(u) must have the same local address, say i. This means
that ca[i] =y and c2[i]- z and also that c2[i] y’ and c3[i] z’. But then z y’ and
so H2[u Hilt(u)], as desired.

Suppose u is a conjunct-pair vertex. This is a more complicated case. By hypothesis
there exist y, z and z’ such that H[parent (u)] (y, z) and H[parent (t(u))] (z, z’).
Suppose H[u]=(ca, c2) and H[t(u)]=(ca, c4). Since preserves visible labels, we
must have profile [Cl] profile [c3]. Thus c3 covers ca by Lemma 5.3.1. Moreover,
(ca,c3) must be adjacent to (y,z) in G[Q]" the fact that preserves visible labels
means that u and t(u) share the same local address JR,/’], which implies that ca[]]
Ha[parent (u)]= y and ca[j] Ha[parent (t(u))] z. Thus both (ca, c2) and (ca, c3) are
adjacent to (y, z). Since procedure ODDLEVEL gave children to vertex (y, z) in
tree [c, c’], it must be the case that y # z and that all conjunct-pair vertices adjacent
to (y,z) in G[Q] have distinct first components. Hence we must have c2=c3, as
claimed. V]

Proof ofLemma 5.3. Suppose that t: forest [c forest [c’] is a tree isomorphism.
We must show that there is a query automorphism f: Q- Q such that f(c)= c’. By
Lemma 5.3.3, this reduces to showing that tree [c, c’] contains no vertex with a mapping
conflict, since c and c’ must have the same profile if their forests are isomorphic and
hence must cover each other by Lemma 5.3.1. We shall show that each of the four
possible mapping conflicts is impossible.

(1) Suppose there is a symbol-pair vertex u in tree [c, c’] with a nonzero mapping
conflict indicator A, and let v be the vertex with global address A in tree [c, c’]. We
must have H[u]=(y, z) and H[v]=(y, z’) for some z’# z. Now consider t(u) and
t(v). By Lemma 5.3.4, we must have Ha[t(u)]=H2[u]=z and Ha[t(u)]=H2[u]= z’.
But then Haft(u)] Hl[t(v)], and so there cannot be a mapping conflict between t(u)
and t(u), even though the fact that preserves labels means that there must be. Hence
we have a contradiction.

(2) Suppose there is a conjunct-pair vertex u with a mapping conflict of type 1.
Then H2[u]=O. But this means, by Lemma 5.3.4, that Ha[t(u)]=O, an obvious
contradiction since 0 can never occur as a first component.

QUERIES WITH UNTYPED VARIABLES 637

(3) Suppose that there is a conjunct-pair vertex u with a mapping conflict of type
2. This means, in our construction procedure ODDLEVEL, H[u was chosen by an
arbitrary tie-breaking rule from two conjunct-pairs with the same local addresses and
profiles, and by Lemma 5.3.2 these pairs are of the form (c, c2) and (ca, c2), c #c3.
Because preserves labels, Hit(u)] must also have been chosen from two conjunct-
pairs (c , c and (c, c), c c. But by Lemma 5.3.4, applied to the two alternative
hidden labels for t(u) in tree [c, c’], we must also have both c c2 and c c2, so
again we have a contradiction.

(4) The case where a conjunct-pair vertex u has a mapping conflict indicator
which is the global address of some earlier conjunct-pair vertex is handled in the same
way as case (1), leading to a similar contradiction.

Thus all possibilities for mapping conflicts are impossible and the desired query
automorphism exists by Lemma 5.3.3. I-1

Since Lemma 5.3, together with Lemma 5.2, implies Theorem 5.1, we now know
that our equivalence algorithm works. The remainder of this section is devoted to
questions of its efficiency.

We first observe that labelled forest isomorphism can be tested in time proportional
to the size of the forests, i.e., the number of vertices in the two forests plus the total
length of the labels [1]. Since our basic algorithm performs at most O(N2) labelled
forest isomorphism tests, where N is the number of conjuncts in Q or Q’, we thus
can bound the overall running time for the labelled forest ismorphism tests by placing
a bound on the size of forest [c] for any c Co. This size is in turn bounded by N
times the maximum size of any tree [c, c’], where c’ covers c, and so it is this latter
quantity that we shall examine in detail.

In what follows, let us identify each vertex of tree [c, c’] with the value of its
hidden label. In addition, we make the standard assumption that our computer word
size is sutticient to be able to hold any relation name R, distinguished variable name
x, constant z or index i. Thus the only visible labels that require more than a constant
amount of space are the conjunct-pair labels (because of their profiles) and the (at
most) one label that has a global address for its mapping conflict indicator. For the
purpose of asymptotic analysis we can ignore the latter case, since a global address
is merely a concatenation of other labels, and hence can at most double the total
space required for labels.

We first examine the symbol-pair vertices of tree [c, c’]. All but possibly the last
symbol-pair vertex of tree [c, c’] have distinct NDV’s as first components, and since
the number ot NDV’s in Q is O(n), where n is the sum ot the lengths ot the conjuncts
in. Q, this means that there are O(n) symbol-pair vertices in tree [c, c’]. From this and
the fact that each symbol-pair label (except possibly the last) requires only constant
space, we conclude that the size of tree [c, c’] attributable to symbol-pair vertices is
O(n).

The situation is only slightly more complicated for the conjunct-pair vertices.
Discounting the last such vertex (should it have a mapping conflict), all conjunct-pair
vertices have distinct first components. Moreover, the only noneonstant-sized part of
the visible label for a conjunct-pair with ca as first component is profile [cx], whose
length is proportional to length (cx). Thus the total number of conjunct-pair vertices
is O(N) and the total length of their labels is at most O(n).

We conclude that the size of tree [c, c’] is at most O(n), Hence the overall time
for the labeled forest isomorphism tests is O(Nn)= O(n 4) time. This will also be a
bound on the running time for the entire algorithm, so long as each tree [c, c’] can
be generated in time O(n).

638 D.S. JOHNSON AND m. KLUG

Our general plan will be first to generate the implication graph for the current
query and then to use this to generate the tree [c’, c"]s. In our overall algorithm the
original queries are modified at most N times each, so we need generate at most 2N
implication graphs, at O(n 2) time each (as shown in the previous section). Since we
are assuming we generate O(n 3) tree [c’, c"]s, this works out to only a constant amount
of time for each. In generating the implication graphs, we thus can afford to do some
extra work. In particular, we order the adjacency lists for the symbol-pair vertices so
that all conjunct-pair vertices with t9 as second component precede all conjunct-pair
vertices with a conjunct as second component. We now argue that the time for
generating an individual tree [c, c’] is O(n).

It is not difficult to see that the time for generating the children of any conjunct-pair
vertex (cl, c2) in tree [c, c’] will be proportional to length (cl). Such a vertex (cl, c2)
is adjacent to at most length (cl) neighbors. For each such neighbor (y, z) we first
(temporarily) delete (cl,c) from the adjacency list for (y,z) in G[Q], so that in
generating the children of (y, z) we will not have to look at (cl, c2), which is already
in the tree. Then we add (y, z) to the tree if it is not already there. The total time is
proportional to length (cl) if adjacency lists are stored as linked lists in G[Q], with
special fields so that temporary deletions can be made using the trick from [1] that
allows us to dispense with initialization. (We also use this trick to allow us to test in
constant time whether a new symbol-pair vertex has a mapping conflict.)

For a symbol-pair vertex, none of whose children has a mapping conflict, it is
not difficult to see that the time is proportional to the size of the children in tree [c, c’].
By our deletion trick above, we know we only have to look at those children that are
not already in the tree, and each label can be generated in time proportional to its
length. (There is, in fact, no need to compute the profile, since profiles for all conjuncts
can be generated in a preprocessing step.) What sorting needs to be done can be done
in time proportional to the lengths of the profiles using standard lexicographic sorting
techniques [1] and mapping conflicts with earlier vertices can once more be checked
with our indexing trick.

The only potential difficulty comes when generating the children of a symbol-
pair vertex (y, z) which has a child with a mapping conflict, since we might end up
looking at all the neighbors of (y, z) and then generating only one child. However,
note that, since Q and all the queries derived from it are fan-out free, (y, z) is
either adjacent to a (Cl, 0) vertex or else all of its neighbors have distinct first
components.

In the first case, our generation of the implication closure ensures that the (c 1,0)
vertices will head the adjacency list for (y, z) in the implication closure. In order to
generate the only child of (y, z) (and last vertex of tree [c, c’]), we must order these
vertices lexicographically by (local address, profile) pairs. This ordering can be done
in time O(n), since there is at most one vertex to consider with any conjunct as first
component, local addresses are of constant length and so the total length of relevant
profiles is proportional to the sum of the lengths of the conjuncts.

In the latter case, the total work involved in generating all the children of (y, z)
up to the one with the mapping conflict will also be O(n), since it will again be
proportional to the sum of the lengths of the first components. If a global address
must be found for the mapping conflict indicator, this will again be doable in time
proportional to the size of the already-generated tree.

Thus the time for generating tree [c, c’] will be proportional to its size, which is
O(n), plus a final O(n) for the last vertex or O(n) in total, and the overall running
time of the equivalence testing algorithm is o(nn).

QUERIES WITH UNTYPED VARIABLES 639

6. Concluding remarks. We have extended the class of queries for which minimiz-
ation and equivalence testing can be performed in polynomial time to a new class,
the "fan-out free" queries, that is a generalization of classes considered in [2], [3,
[7, [8]. In particular, it allows for queries which are not restricted to untyped variables
and hence can ask for transitive information about databases. The running times for
our algorithms--O(n 3) and O(n 4) respectively--are the same as the corresponding
running times in the original papers [-2, 3 on "simple" queries. One direction for
future research would be to try to improve the running times of these algorithms, as
[7 did for the simple query algorithms. For example., in the equivalence testing
problem, it would seem possible to do a certain amount of "pruning" to our tree [c, c’s
and still get our algorithm to work, although whether such an approach will yield an
asymptotic improvement in worst-case running time is more problematic.

Another direction for further research would be to further extend the class of
queries that can be handled. The minimization algorithms of [7 for the class of typed
queries in which no conjunct has more than one occurrence of a repeated variable
(the queries obeying restriction (2) of 2), would seem to extend more-or-less directly
to the untyped case, yielding O(n 2) algorithms. Although we have already remarked
that queries in this class cannot ask any questions that a fan-out free query couldn’t
also ask, there are queries in the class that are not fan-out free. One might hence be
able to construct a combined minimization algorithm, which not only handled all
queries that either obeyed restriction (2) or were fan-out free, but also could deal
with queries which were in neither class, but partook of certain aspects of both.
Whether one could also obtain a polynomial time equivalence algorithm for such an
expanded class appears to be a harder question.

One also might look to see what can be done when the restriction to conjunctive
queries is removed. Sagiv and Yannakakis [8 examined this question in the case of
typed queries. What can be said when untyped variables are allowed? Also, what
about databases obeying more complicated dependencies than mere functional depen-
dencies?

Finally, we note that the techniques of 5 may have implications beyond database
theory. Essentially what we did in this section was show that a special case of the
graph isomorphism problem could be solved by constructing canonical labelled forests
and using known algorithms to test for isomorphism between them. It may well be
that there are other isomorphism or equivalence problems which, although equivalent
to graph isomorphism in general, have meaningful special cases which can be solved
in an analogous fashion.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974, pp. 84-86.

[2] A. V. AHO, Y. SAGIV AND J. D. ULLMAN, Equivalences among relational expressions, this Journal,
8 (1979), pp. 218-246.

[3] ., Efficient optimization of a .class or relational expressions, ACM Trans. Database Systems, 4
(1979), pp. 435-454.

[4] A. K. CHANDRA AND P. M. MERLIN, Optimal implementation of confunctive queries in relational data
bases, Proc. 9th Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1977, pp. 77-90.

[5] E. F. CODD, A relational model of data for large shared data banks, Comm. ACM, 13 (1970), pp.
377-387.

[6] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

640 D. S. JOHNSON AND A. KLUG

[7] Y. SAGIV, Quadratic algorithms for minimizing joins in restricted relational expressions, Report
UIUCDCS-R-79-992, Computer Science Dept., Univ. Illinois, Urbana, IL 1979.

[8] Y. SAGIV AND M. YANNAKAKIS, Equivalences among relational expressions with the union and
difference operators, J. Assoc. Comput. Mach., 27 (1980), pp. 633-655.

[9] M. YANNAKAKIS AND C. n. PAPADIMITRIOU, Algebraic dependencies, Proc. 21st Symposium on
Foundations of Computer Science, IEEE Computer Society, Long Beach, CA, 1980, pp. 328-332.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1204-0003 $01.25/0

FAST PARALLEL COMPUTATION OF POLYNOMIALS
USING FEW PROCESSORS*

L. G. VALIANT, S. SKYUM, S. BERKOWITZ AND C. RACKOFF

Abstract. It is shown that any multivariate polynomial of degree d that can be computed sequentially
in C steps can be computed in parallel in O((log d)(log C + log d)) steps using only (Cd)1) processors.

Key words, parallel computation, polynomials, complexity theory

Introduction. Hyafil [6] showed that any polynomial q of degree d that can be
computed sequentially in C {+,-, x}-steps can be computed in parallel in time
proportional to (log d)(log C + log d). Unfortunately his method requires Cga pro-
cessors in general. Thus even if C and d are both bounded polynomially in terms of
the number of indeterminates the number of processors required would not be. In
this paper we give an improved construction that achieves the same time bound but
with only (Cd) processors, for an appropriate constant//. The achievability of such
fast time bounds with only polynomially many processors was known previously only
for certain specific polynomials such as the determinant [5]. Throughout we shall use
the unrestricted model of parallelism described by Borodin and Munro [2].

Simultaneous resource bounds in discrete computations are discussed in detail
by Cook 3]. An important positive result in that area, due to Ruzzo [8], is that
context-free languages can be recognized by Boolean circuits that simultaneously have
polynomial size and log2n depth. This is also a corollary of our present result as
can be seen as follows: Consider the monotone Boolean circuit defined by the
Cocke-Kasami-Younger algorithm. Regard this as an arithmetic program over the
reals using the correspondence "and"-> x and "or"-> +. This program has linear
degree and polynomial program size. An application of our construction therefore
gives a fast parallel program using only polynomially many processors. In addition,
the parallel program can be reinterpreted as a shallow monotone circuit, as required.
The concept of "degree" for Boolean circuits exploited in this argument is discussed
formally in [9].

Finally we observe that, in the terminology of [11], the question whether every
polynomial family of polynomially bounded degree and program size is a p-projection
of the determinant is open. An affirmative answer to this combined with Csanky’s
result would give an alternative proof of our main result here, at least in the case of
fields of characteristic 0.

This paper is a simplification and improvement of an earlier result by Valiant
and Skyum 12].

Definitions and the main theorem. Let F be a field and let F[x,..., x,] be the
ring of polynomials over indeterminates x 1, , x, with coefficients from F. A program
f over F is a sequence of instructions

)i<-"Vi)i, i=l,’",C

* Received by the editors May 15, 1981, and in revised form September 16, 1982.

" Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.
Computer Science Department, Aarhus University, Aarhus, Denmark.
Computer Science Department, University of Toronto, Toronto, Canada M5S 1A7.

641

642 L. G. VALIANT, S. SKYUM, S. BERKOWITZ AND C. RACKOFF

where for each value of
(I) v, v eFU{x, ,x,}U{v, v_} and

(II) is one of the two ring operators +, x.
Note that since -1 e F, subtraction can be easily simulated. The formal polynomial
computed at v can be defined in the obvious way and is denoted by f(v). The degree
of f(vi) in the usual sense is denoted by d(vi). For convenience, we will assume
d(v) >-d(v). For the moment we will also assume that f is homogeneous; by this we

then d(v’mean that if v v + v d(v"). We say that f has size C (the number
of instructions) and computes the polynomial f(Vc). The following fact due to Strassen
[10] shows that forcing f to be homogeneous is not a serious restriction.

FACT 1. D a nonhomogeneous program f computes a polynomial p of degree d and
has size C, then there is a homogeneous program which has size O(Cdz) and which
computes d + 1 polynomials whose sum is p.

Outline of proof. For each line of the original program, we will have d + 1 lines
which compute the first d + 1 homogeneous parts of the polynomial computed at the
original line. If the operation is +, then we add similar degree components. If the
operation is x, then we can view each set of operands as the coefficients of a polynomial,
and perform polynomial multiplication (about dz operations) to obtain the coefficients
of a new polynomial; only the first d + 1 of these are needed.

We will also assume that f is a smallest possible program for computing f(Vc).
The following fact is easy to verify.

FACT 2. Iff is a smallest possible homogeneous program for computing f(vc), then
f(vi) is not the zero polynomial for any i, and d(vi) <-d(vc) for all i.

We will denote the set {v} by V, the set {x} by X, and the set V UX LI F by V.
The depth of v V is the length of the longest possible sequence u ,. ., u such that

" and UD FUX.u v, for each i, Ug+l u or U+l ui,

DEFINITION. Let v, w V. We define f(v w) F[x 1, , x, by induction on the
depth of w. Firstly, if v w (that is they are the same node) then f(v w) 1. Otherwise,
if wFUX, then f(v;w)=O. Otherwise, if ww’+w" then f(v;w)=
f(v w’) +f(v w") and if w w’ x w" then f(v w) f(w"), f(v w’). (The motivation
for this definition is that if d(w)<2d(v), then f(v; w) turns out to be the coefficient
of v’ in f(w) in a modified program obtained by replacing node v by a new indeterminate
v’. In fact, the proof below can be rewritten so as to only use the value of f(v; w) in
this case.)

FACT 3. It is easy to see that each f(v) computed in the homogeneous program f
is also homogeneous, that is, all of its monomials have the same degree. It is also easy
to prove by induction on the depth of w that each nonzero f(v; w) is homogeneous and
satisfies" degree(f(v w)) d(w)-d(v).

DEFINITION. If a > 0, define V {t V[d(t) > a, t’ x t", d(t’) <= a}.
LEMMA 1. Say that v, w V, d (v) <- a < d(w). Then

f(v; w)= Y (f(v; t) f(t; w)) and f(w)= Y’. f(t) f(t; w).
t v. t v

Proof. Notice that v w since d (v) < d(w). We will prove the lemma by induction
on the depth of w, keeping v and a fixed.

Case 1. w F UX. This cannot happen since we can’t have d(w > a > O.
Case 2. w w’ + w", d(w’) d(w") d(w). Assume the lemma holds for w’ w"

f(v; w)=f(v; w’)+f(v; w")= E (f(v;t).f(t; w’))+ E (f(v;t).f(t; w"))
te v. te v,

E (f(v; t). (/(t; w’)+f(t; w")))= E (/(v; t). f(t; w)).

FAST PARALLEL COMPUTATION OF POLYNOMIALS 643

Similarly, f(w) Y.,v.f(t).f(t; w).
Case 3. w w’ w", a >=d(w’) >=d(w"). (Recall that d(w’) >=d(w ’’) by definition.)

Then w V. Clearly f(v; w)=f(v;w), f(w;w). Let s be any other element of V.
Then f(s; w)=f(w").f(s; w’). But f(s; w’)=0 by Fact 3, since d(s)>a >=d(w’). So
f(s; w)=0. So f(v; w)=Ytv. (f(v; t) f(t; w)). Similarly, f(w)=Y.tv.f(t) f(t; w).

Case 4. w w’ w", d(w)>=d(w’)>a. Assume the lemma holds for w’.

f(v; w)=f(w") f(v; w’)=f(w") Y. (f(v; t) f(t; w’))
t Va

E (/(v; t)" f(w")" f(t; w’)) Y f(v; t)" f(t; w).
te v tv

Similarly, f(w)=],v.f(t). f(t; w).
THEOREM 1. Let f be a homogeneous program of size C which computes a

polynomial p of degree d. Then there is a program f’ of size O(C3) which computes p,
such that the largest depth of any node is O(log C log d).

Proof. The construction of f’ will proceed in [log d] stages; each stage will add
at most log C to the depth of the program.

At stage 0 we compute all f(w) and f(v; w) that have degree at most 20= 1. Since
these are linear forms in n indeterminates and C =>n-1 if f is minimal, depth
2 + [log2 C] is sufficient for this. At stage + 1 we compute all f(w) and f(v; w) that
have degree in the range (2 g, 2i+1]. By Fact 2 we are done after stage [log2 d].

Say that 2g+_->d(w)>2g. Let a=2g. Then by Lemma 1, f(w)=vf(t).
f(t; w) .vf(t’), f(t"), f(t; w). By definition of V,, each f(t’), f(t"), f(t; w) has
already been computed. So f(w) can be computed adding only O(log C) depth.

Say that 2+ >-d(w)-d(v)=degree (f(v; w))>2. Let a =d(v)+2. By Lemma
1, f(v; w)=tvf(v; t) f(t; w)=Etvf(t") f(v; t’) f(t; w). Each f(v; t’) and
f(t; w) has already been computed. It is possible, however, that d(t") is very large,
say that d(t’)>-d(t’’) > 2+. If f(v; t’) 0, then we’re okay, since f(t"), f(v; t’). f(t; w)
can still be computed. So say that d(t")> 2+ and f(v;t’) O. Then d(t’)>-d(v), so
d(t)=d(t’)+d(t")>d(v)+2g+>-_d(w). So f(t; w)-0. So f(v; w) can be computed
adding only O(log C) depth.

The size of the new program is dominated by the time to compute the f(v; w).
There are C choices of pairs (v, w) and the computation of each f(v; w) takes O(C)
steps. The overall size is therefore O(C3).

By combining Theorem 1 and Fact 1 we have"
THEOREM 2. Let f be a nonhomogeneous program of size C which computes a

polynomial p of degree d. Then there is a program f’ of size O((Cd2)3) and depth
O((log C + log d) log d) which computes p.

There is another method for handling nonhomogeneous programs without first
making them homogeneous. Given a nonhomogeneous program f, we first define the
degree of a node v, d(v), differently than above. The degree of a field member is 0;
the degree of an indeterminate is 1; the degree of a multiplication node is the sum
of the degrees of its inputs; the degree of an addition node is the maximum degree
of its inputs. We define the degree of f to be the maximum degree of any node.

For a > 0, define V’ {t e VId(t) > a, - t’ / t", d(t") <= a}. We state the following
lemma and theorem without proof.

LEMMA 2. Say that v, w V, d(v) <-_ a < d (w). Then

f(v; w)= E (f(v; t) f(t; w))+ . (f(v; t") f(t; w))
and t v,, tv

f(w) Y’. (f(t) f(t; w))+ Y. (f(t") f(t; w)).
te v, t v,

644 L. G. VALIANT, S. SKYUM, S. BERKOWITZ AND C. RACKOFF

THEOREM 3. Let f be a nonhomogeneous program of size C and degree d. Then
there is a program f’ of size O(C3) and depth O(log C log d) which computes the same
polynomial.

Remarks. 1. Strassen [10] showed that for infinite fields Fact 1 holds even when
divisions are allowed in the original program but not in the transformed one. It follows
that Theorem 2 holds under the same hypothesis. Recently Borodin, yon zur Gathen
and Hopcroft [1] have shown that the infinity assumption is inessential.

2. It is easy to verify that the above theorems hold for structures much less
restricted than fields. For example, the constructions work for monotone arithmetics
(i.e., with constants from the nonnegative reals). As observed in the introduction, the
same results then follow for monotone Boolean circuits when the notion of degree is
suitably interpreted. More formally, it can be verified that it is sufficient for F to be
a semiring in the sense of Jerrum and Snir [7].

3. Using Lemmas 1 and 2, analogues of Theorems 1 and 3 can be proved with
a size bound for f’ of C log d where a is such that n n matrices can be multiplied
in n operations (a < 2.496 [4]).

REFERENCES

A. BORODIN, J. VON ZUR GATHEN AND J. HOPCROFT, Fast parallel matrix and GCD computations,
Proc. 23rd IEEE Symposium on Foundations of Computer Science, 1982, pp. 65-71.

[2] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

[3] S. A. COOK, Deterministic CFL’s are accepted simultaneously in polynomial time and log squared
space, Proc. 11th ACM Symposium on Theor of Computing, 1979, pp. 338-345.

[4] D. COPPERSMITH AND S. WINOGRAD, On the asymptotic complexity of matrix multiplication, Proc.
22nd IEEE Symposium on Foundations of Computer Science, 1981, pp. 82-90.

[5] L. CSANKY, Fast parallel inversion algorithms, this Journal, 5 (1976), pp. 618-623.
[6] L. HYAFIL, On the parallel evaluation of multivariate polynomials, Proc. 10th ACM Symposium on

Theory of Computing, 1978, pp. 193-195.
[7] M. JERRUM AND M. SNIR, Some exact complexity results for straight-line computations over semirings,

J. Assoc. Comput. Mach., 1982, to appear.
[8] W. L. Ruzzo, On uniform circuit complexity, Proc. 20th IEEE Symposium on Foundations of

Computer Science, 1979, pp. 312-318.
[9] S. SKYUM AND L. G. VALIANT, A complexity theory based on Boolean algebra, Proc. 22nd IEEE

Symposium on Foundations of Computer Science, 1981, pp. 244-253.
[10] V. STRASSEN, Vermeidung yon Divisionen, J. Reine Angew. Math., 264 (1973), pp. 182-202.
11] L. G. VALIANT, Completeness classes in algebra, Proc. 1 lth ACM Symposium on Theory of Computing,

1979, pp. 249-261.
12] L. G. VALIANT AND S. SKYUM, Fastparallel computation ofpolynomials using few processors, Lecture

Notes in Computer Science, 118, Springer-Verlag, New York, 1981, pp. 132-139.

SlAM J. COMPUT.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1204-0004 $01.25/0

UNIFORM RANDOM GENERATION OF STRINGS
IN A CONTEXT-FREE LANGUAGE*

TIMOTHY HICKEY’ AND JACQUES COHEN"

Abstract. Let S be the set of all strings of length n generated by a given context-free grammar. A
uniform random generator is one which produces strings from S with equal probability. In generating these
strings, care must be taken in choosing the disjuncts that form the right-hand side of a grammar rule so
that the produced string will have the specified length. Uniform random generators have applications in
studying the complexity of parsers, in estimating the average efficiency of theorem provers for the
propositional calculus, in establishing a measure of ambiguity of a grammar, etc. Two methods are presented
for generating uniform random strings in an unambiguous context-free language. The first method will

generate a random string of length n in linear time, but must use a precomputed table of size O(nr+l),
where is the number of nonterminals in the grammar used to specify the language. The second method
precomputes part of the table and calculates the other entries as they are called for. It requires only linear
space, but uses O(n2(log n)2) time to generate each string. Both methods generate strings by leftmost
derivations where the probability that a given production will be used depends on the history of the
derivation. It is also shown that, in the special cases of finite-state or linear languages, the generation can
be performed in linear time with constant space.

Key words, uniform random generation, balanced parenthesis strings, convolution, enumeration prob-
lems, leftmost derivations, generating functions, parsing

1. Introduction. Given a context-free grammar it is straightforward to generate
"random" terminal strings’ starting with the main nonterminal the sentential forms
are constructed by considering equiprobable each of the disjuncts forming the right-
hand side of a rule. The resulting strings will be of varying lengths.

To generate strings of a fixed length, one may have to bypass the random choice
of disjuncts and choose a particular disjunct which is likely to lead more directly to
a terminal string. Consider the set of all strings of length n in the language. A uniform
random generator is one which will produce strings from this set with equal probability.
The generation of such strings is a subtle process because the probabilities with which
disjuncts are used at each step in a derivation depend on the previous steps of the
derivation.

A generator of uniform random strings has several applications in computer
science:

(1) The complexity of parsers is usually expressed as a function of the length of
the string being parsed; thus the generator is useful in estimating their average case
efficiency. For example, Cohen and Roth [5] describe a method for determining the
execution times of top-down and bottom-up parsers. The execution times are expressed
in terms of the number of occurrences of each terminal in the given string. The analyses
of these parsers could be either experimental (by generating and parsing a large
number of strings) or analytic (by determining a formula which takes into account the
above probabilities). The generation of uniform random strings is also useful in
estimating the average speedup in parallel parsing [4].

(2) Formulas in the propositional calculus can be generated by context-free
grammars. If the length of formulas is of interest, one can use a uniform random
generator to estimate the number of tautologies of a given length, the percentage
which use certain operators, etc. Uniform random generators are also useful in
estimating the relative efficiencies of theorem provers from the propositional calculus.

* Received by the editors November 20, 1981, and in revised form September 27, 1982. This research
was supported by the National Science Foundation under grant number MCS 79-05522.

" Computer Science Program, Brandeis University, Waltham, Massachusetts 02254.

645

646 TIMOTHY HICKEY AND JACQUES COHEN

(3) When the generating techniques described below are applied to ambiguous
grammars, the probability that an ambiguous string will be generated is directly
proportional to the number of parses of the string. By generating strings of length n
one can estimate the degree of ambiguity in the language as a function of n.

2. Objectives. In a recent paper Arnold and Sleep [2] propose a method for
generating uniform random strings of a predetermined length in a nested parentheses
language. Their method involves computing the probabilities with which a left or right
parentheses should be generated. Based on the number of unmatched left parentheses
already generated (u), and the number of symbols remaining to be generated (s), a
left parentheses is generated with probability:

(1) pL(u,s)=
(s u)(u + 2)
2s(u +1)

Using their method, every string of the chosen length has an equal probability of
being generated,

Our objective is to extend the Arnold and Sleep technique to unambiguous
context-free languages. We generate tables of probabilities that are consulted when
performing a leftmost derivation of a uniform random string. These tables specify’, the
probability with which a production should be applied. A crucial point is that our
probabilities depend on the current state of the derivation and not just the productions.

We describe and analyze two generation methods in the sequel. The first computes
all of the probabilities that could possibly be needed to produce a string of the given
length. It can then generate uniform random strings in linear time. The total time
complexity is O(n r+l +nm) and the space needed is O(n r+x) where n is the desired
string length, rn the number of random strings generated and r the number of
nonterminals in the grammar. The second method computes the probabilities as they
are needed. This reduces the needed space to O(n) but requires more time to generate
each string. The total time complexity is O(n 2 log n + mn2(log n)2).

3. Notation and preliminary remarks. Let G (V, , P, N) be an unambiguous
cycle-free context-free grammar containing no e-productions where V N LI , N
{N,..., Nr} is the nonterminal vocabulary, is the set of terminals, N is the start
symbol, and P {’i :N --> oiili 1, ., r,] 1, , si} is the set of productions (see
[6] for detailed definitions).

We choose to generate strings by leftmost derivation, but any canonical method
of derivation would be adequate. A leftmost derivation in G of a terminal string o
consists of a sequence/,/z,...,/3 of sentential forms where/x N, fl o, and
/+ is obtained by rewriting the leftmost nonterminal in fl using one of the produc-
tions in P. If N is the leftmost nonterminal in/3, there are si different choices for
/+ corresponding to the productions zr,/" 1, , si. The methods described in the
next two sections generate random strings of length n by determining the probabilities
p(/3, n) with which production zr should be applied to/.

The probabilities are chosen so that every string of length n has an equal
probability of being generated. Let g(n) denote the number of terminal strings of
length n that can be derived from a sentential form/ and let 3’ be the result of

The methods described by Wetherell [8] involve assigning a fixed probability to each production in
the grammar. This scheme cannot, in general, be used to produce strings of a predetermined length because
it negects the history of the derivation.

G is cycle-free if no nonterminal can be derived from itself.

UNIFORM RANDOM GENERATION OF STRINGS 647

applying rj to 1 in a leftmost derivation. Since g(n) is the number of terminal strings
of length n which can be derived from 13 by first applying rj, the probability that
must be assigned to zr is:

(2) P,(i, n)
g,(n)
ga(n)"

In the remainder of this section generating functions are introduced and used to
express g(n) as a convolution (defined below) of the simpler functions gN,(n). A
terminal string of length n derived from the concatenation of two strings, 11, i2, is
the concatenation of two terminal strings whose lengths sum to n. The number of
such length n terminal strings can therefore be expressed as a convolution"

(3) gmt2(n , gm(nl)g_(n2) (gin * g)(n).

Note that if the grammar is ambiguous this convolution gives the number of parses
of terminal strings of length n.

Several properties of the convolution operator that will be used in this paper are
discussed in this paragraph. Let g(n), g(n) and g2(n) be functions defined on the
integers which are zero for negative values of n. The convolution of g and g2 is
defined by

(4a) (g .g2)(n)= E g(nl)gE(n2) g(k)gE(n-k).
nl+n2=n k=0

Although convolution can be studied directly, its properties are easier to understand
in the context of generating functions (see [7, p. 86]). The generating function of g
is the formal power series Z[g](x)= Y.,__o g(n)x". A simple computation shows that
the generating function of the convolution of two functions is the product of their
respective generating functions

(4b) Z[gl * g2] Z[g] Zig2].

An immediate consequence of this interpretation is the associativity and commutativity
of convolution"

(4c) g * g2 g2 * gl,

(4d) (g * g2) * g3 g * (g2 * g3),

which follow from the corresponding properties of power series multiplication. Let
tk be the function whose generating function is x k.

1, n k,
(4e) 8k(n)

0, nk.

It satisfies Z[Sk * g]=Z[Sk] * Zig]= x kZ[g] by (4b), and this implies the next two
properties"

(4f)

(4g)

The notation g
with the convention that g0= ;0. With this notation the relation g
holds for any nonnegative integers k and/’.

(Sk * g)(n) g(n -k), 80 * g g,

(8 * 8) 8+.
k is used to denote the convolution of a function g with itself k times,

(k) (i) (k+j)g =g

648 TIMOTHY HICKEY AND JACQUES COHEN

These properties can now be used to show that the value of go(n), for any string
/3, depends only on the number of terminal symbols that remain to be generated by
the derivation process and on the number of occurrences of each nonterminal in the
string. Let T(/3) be the number of terminals in/3 (so n- T(/3) terminals remain to
be generated) and let A(/3)= (A1(/3),..., Ar(/3)) be the vector whose ith component
is the number of occurrences of Ni in/3. Define the function f(t, a) for a (a 1,’ , at)
by

(5) f(t, a)= (g) g;))(t).

When the vector a is fixed the notation fa (t) will sometimes be used instead of f(t, a).
If a and a’ are vectors and a + a’ is their componentwise sum, then the relation
fa/,= , holds by virtue of the commutativity and associativity of convolution.

In this paragraph, the following fundamental relation will be proved by induction
on the length of/3

(6) go =6<o) * fA(o), go(n)=f(n-T(),A(fl)).

Notice that the second equation is equivalent to the first by the convolution property
of the delta function (4f). If/3 is a single symbol, the relation certainly holds. Suppose
/3 is the concatenation of two strings/31,/32, neither of which is the empty string, then
go g01 * g02 by (3), and the inductive step follows easily from properties (4a)-(4g)"

(7)

This implies that go (n) depends only on n T(fl) and A(fl), as we claimed.
In our new notation the ormula (2) for the probability that production u will

be used becomes

(8) p(,n) =f(n-T(y)’A(y))=f(n-T()-T(a)’A()-A(N)+A(/))
f(n T(), A()) f(n T(), A())

Both methods use this formula to generate random strings. They differ in the way the
values of [are calculated, and in the amount of precomputation performed.

4. Method 1. In the first method we compute f(t, a) for every and a that could
possibly arise in a derivation of a string of length n and we store these values in an
r + 1 dimensional array, r being the number of nonterminals in the grammar. Since
the grammar contains no e-productions, the values of f(t, a) that need to be considered
are those with 0 n and a +. + a t.

The entries in the array can be computed efficiently using the following recurrence

(9) [(t, a)= E f(t- T(ai), a +A(ai)-A(N)), ifa O,
i=1

which we now explain. The initial conditions are that f(t, a)= 0 for all a and all 0,
with the single exception f(0, (0,..., 0))= 1. Let be a nonterminal string with
A()= a whose leftmost symbol is N; this is possible if a 0. The left-hand side of
(9) is the number of terminal strings of length t that can be derived from B. The fth
term on the right-hand side of (9) is the number of length terminal strings that can
be derived from after the leftmost symbol is rewritten using production i. Since
one of the productions i([1,..., s) must be used to rewrite N, (9) holds.

UNIFORM RANDOM GENERATION OF STRINGS 649

If each aij contains a terminal (as is the case with grammars in Greibach normal
form) the recurrence above relates f(t, a) to values of f with a smaller value of t. The
array can then be filled for increasing values of in a straightforward manner.

However, if some production does not contain any terminals, care must be taken
to ensure that new values of [are expressed in terms of previously computed values.
let lal=a+a2+ .+a for a vector a. Observe that for all aij satisfying T(a) =0
and for all a with a >0 we have lal<-Ia-A(N)+A(a)I with equality holding if and
only if production r has the form N -Nk for some k. Since the grammar is not cyclic
the nonterminals can be ordered in such a way that this occurs only when > k. The
following loop structure will now compute the values of f needed to derive any string
of length n.

f,-. o; f(o, (o,..., o)) ,-- ;
for t 1 to n do
for s downto 0 do
{s represents the component summation la a +" + at}

for a s downto 0 do
for a2 s a downto 0 do

for ar-1 s (a +" h- at-2) downto 0 do
begin

ar <-S --(al +" + ar-1);
{use (9) for any with ai 0 compute f(t, (al,’’", at))}

end

This method requires time and space O(n r+l) to fill the table. Since the grammar
contains no e-productions and is not cyclic, the generation of a random terminal string
of length n will involve O(n) rewritings. Therefore, O(n) probability computations
which can each be formed in constant time are required for every terminal string
generated. The total time complexity is therefore O(n r/l + ran), where m is the number
of terminal strings generated, and the space complexity is O(nr+).

5. Method 2. In Method 2 the values of f(t, a) needed in the probability formula
(8) are computed while the string is being generated using the definition of f(t, a) by
convolution (5)

f(t, a)= (gr) *’’’ * gr;))(t).

The functions gN,(t)(1 <-_t<=n) are precomputed in time O(n 2 log n) and space O(n)
using the technique described in the next paragraph. The computation of f(t, a) is
performed by first calculating the convolution powers, g)(t)(1 <-t<-n), using the
precomputed functions gr,(t)(1 <- -< n), and then performing r convolutions. These
powers can each be computed with at most 2 log2 n convolutions since ai is no larger
than n. The convolution of two functions defined for 1- <-n can be performed in
time O(n log n) using the fast Fourier transform (see [1, p. 263, Cor. 1]) or in time
O(n 2) directly. Since O(n) probability computations must be performed for every
terminal string generated, the total time complexity of method 2 is O(n 2 log n +
mn2(log n)2). The space requirement is O(n) since the only precomputed values are
gr,(t)(l <-_t<-n, l <-_i <-_r),

The recurrence (9) for f(t, a) and the convolution definition of f can be used to
perform the precomputation of the functions g, in time O(n 2 log n) and linear space.

650 TIMOTHY HICKEY AND JACQUES COHEN

Since gN,(t)=f(t,A(Ni)), (9) yields

$i

gv, (t) E f(t T(aij), A (tij)).
=1

Let eki represent ak (aii). The convolution definition of f transforms this equation into
one involving only the functions grj"

(10) g,(t) (gP *’’’* g/)(t-T(a,)).
1=1

Since g,(0) 0 for all and T(a)_->0 for all and], this equation expresses g(t) in
terms of the values of gv,(t’)(1 _-<t’ <t, 1 _-<i =<r). Equation (10) involves a constant
number of convolutions and must be applied nr times to calculate the requisite values
of the g,. The total precomputation performed in this way requires time O(n 2 log n)
and space O(n) as claimed.

6. Examples. Consider the unambiguous context-free grammar Go=
({N, Ne, (,)}, {(,)}, P, N) with productions:

P: 7/’11" N1 "- (N2

7/’21" N2 "NN2
7/’22" N2 "-)),

which generates strings of well-balanced parentheses enclosed in a pair of matching
parentheses.

If the outermost pair of parentheses are stripped from the strings in the language
L(Go) one obtains the language of Arnold and Sleep [2].

The recurrence relations used by method 1 to calculate the values of f are

f(t- 1, (al- 1, a2+ 1)), if al ->_ 1,
f(t, (a,a:))=tf(t (al+l, a2))+f(t-1, (al, a2-1)), ifaz>=l.

If both a and a2 are nonzero either formula may be used. If the leftmost nonterminal
of a sentential form/3 is N1 then production 7rll must be used to rewrite/3. If an N2
is leftmost the probability formula (8) must be used to determine which of zr21 and
7r22 should be used. Let T(/3) b andA (/3) (a 1, a2), then the probability formulas are:

P21(, n)=f(n -b, (al + 1, a2))
f(n b, (a 1, a2))

p22(/3, n)=f(n -b 1, (al, a2-1))
f(n b, (a 1, a2))

Figure 1 shows the probabilities needed to generate any string of length 8. This figure
is analogous to [2, Fig. 1]. Table 1 shows the values of f(t, a) needed to compute
those probabilities.

Method 2 computes the values of grl and gr2 for 1 -< -< n using the formulas

gNl(t) g2(t- 1),
(o)gr(t) (gr * gr)(t)+(g

(g2)(t-1)= (gtv * gt)(t-1)+(t),

and the initial conditions gr, (t)= 0 for =< 0.

UNIFORM RANDOM GENERATION OF STRINGS 651

3/5

N1

(Nz

(NIN2

((N2N2

((N1N2N2

(((N:NN:

(((Nx ((()

((((((()N ((())

((() ((()(((())N

(((()) ((()() ((())(

(((())) (())()) ((())()

(((0))) ((00)) ((0)0)

(()N

(()NNz

(()(N2N2

(()()N2 ()(NNzNg_

()()NN2 ()((N2N2N2

(()()(NN_ (()(()N:N

(000 N2 (0(0)N2

(000) (0(0))

FIG. 1. Generation of strings of length 8. (Note: The fractions indicate the computed probabilities.)

TABLE
,,(aa)The [unction [(t, (ax, az)) (g) * srz)(t).

al a2 (,,,.2)u) 0 2 3 4 5 6 7 8

0 0 6o(t) 1 0 0 0 0 0 0 0 0
0 g2(t) 0 1 0 1 0 2 0 5 0
0 2 --(2) (t) 0 0 0 2 0 5 0 14
0 3 --() (t) 0 0 0 1 0 3 0 9 0
0 4 ,,(4 (t) 0 0 0 0 1 0 4 0 14
1 0 gv(t) 0 0 1 0 0 2 0 5

(gv * gv)(t) 0 0 0 0 2 0 5 0
1 2 (gvl * g)(t) 0 0 0 0 1 0 3 0 9
1 3 (gN1 * g)2)(t) 0 0 0 0 0 1 0 4 0

7. Finite state grammars. In a leftmost derivation of a terminal string of length
n using a regular grammar G, each sentential form/3 except for the last contains
exactly one nonterminal. If /3 contains Ni then g(n)=f(n-T(B), A(Ni))
gr, (n T(/3)) by the fundamental relation (6). Since the probabilities can be determined
directly from the functions gN,(t), , gN, (t), Methods 1 and 2 coincide. The recurrence
relation (9) for G is a finite difference equation and so gNl(t),’", gN,(t), can be
computed for 1-< t-< n in linear time. Therefore the time complexity is O(n + ran)
and the space required is O(n), but this is not always optimal! Cohen and Katcoff [3]
describe and analyze an algorithm for finding closed form expressions for the functions
gN1,"" ’, g, of a regular grammar G. The algorithm involves finding the (possibly
complex) roots Z1," ", Zq of a polynomial with integer coefficients. The functions

652 TIMOTHY HICKEY AND JACQUES COHEN

gN, then have the form

(11) gN,(t)-- uijg -[- Uio,
i=1

for some complex numbers Ui. Let R (n) be the time required to find the values of
the Z and Ui to an accuracy sufficient to determine gN, (t) precisely for all _-< n. If
the roots are integers then R (n) is constant; otherwise it depends on the polynomial
and the method used to find the roots.

The tth power of a complex number can be computed in time O(log n), if -< n.
This provides a method for generating random strings in time O(R (n)+ mn log n)
and constant space, where m is the number of terminal strings. This method will be
superior to the previous one if complexity is measured by the product of the time-taken
by the space-required.

in constantObserve that the values of gN,(t) can be computed from Z,..., Zq
t+ltime and Z[can be computed from Z and Z in constant time. This suggests that

we precompute Z,. ., Zq, and Z,. ,Z in time O(R (N) + log n). The values of
gNu(t),’" ", gr,(t) can then be computed from the stored values of Z,..., Z[which

t- in constant time This method will generateare then replaced by Z-I Zq
random terminal strings in the regular language in linear time using constant space.
The total time requirement is O(R(n)+log n + ran). If R(n) is constant this is the
best possible performance for an infinite language.

Consider for example the regular grammar, G given in [3] which generates all
strings with an even numbers of O’s and l’s and any number of 2’s and 3’s

(12)

G1 ({N1, Nz, 0, 1, 2, 3}, {0, 1, 2, 3}, P, N1),

e :N ONI1N212NI3NI2[3

N2 --) ONn[1Nl[2N213Nzl l

g -, ONII INI2NI3NIO
Na -, ON=IINI2NI3N.

The formulas (13) for gi(1 -<i -<4) involve powers of the integer 2, and so R(n)=0.

(13)
g(t) 2:(-1) + 2(’-1), gr:(t) 2:(t-),
g(t) 22(t-1) gr,(t) 22(t-1)- 2

The probabilities Pij(, n) for this example are all very close to 0.25 when n- T()
is large. Let Ni for some terminal string r of length T(/!/) and let t n- T()
be the number of terminal symbols still to be generated; then the probability with
which production zrij should be used is:

E(i,j)2’-3
pii(N, n) 0.25 + for > 1,

gr, (t)

where E(i, [) is determined by Table 2.
When 1, 7r15 and 7r16 have probability 0.5 while 7r25 and r35 have probability

1.0.
The results in this section extend naturally to linear grammars (where each

production contains at most one nonterminal on its right-hand side).

UNIFORM RANDOM GENERATION OF STRINGS 653

TABLE 2

J
E(i,j) 1 2 3 4

-1 -1 1
2 -2 2 0 0
3 2 -2 0 0
4 -1 -1

8. Final remarks. We have restricted our attention to unambiguous grammars.
If our methods are applied to an ambiguous grammar, the probability that a given
string of the predetermined length will be generated is proportional to the number
of leftmost derivations of the string. In fact, our methods will generate uniform random
derivations of terminal strings of length n. Since the strings with the most parses are
most likely to be generated, these methods could be used empirically to search for
ambiguity in a grammar.

Let A, be the expected number of parses of a string of length n. If T, is the
number of strings of length n and D, is the number of leftmost derivations of strings
of length n, then A, D,/T,. The probability that the methods discussed in this paper
will generate an ambiguous string of length n is the proportion of all derivations of
length n strings that yield ambiguous strings. A lower bound for the proportion is
(D,- T,)/D, 1-1/A,, because at most T, derivations can yield unambiguous strings.
The probability that M samples will fail to yield an ambiguous string is less than
(1/A,)t. This observation can be used to obtain an upper bound on the average
ambiguity of strings of length n for a grammar with a given level of confidence. If
A, _->c, the probability that M samples by our method fail to yield an ambiguous
string is at most (1/c)t. Thus, the estimate A, <c can be made with a confidence
level of 1-1/R provided at least logo (R) samples are generated and reveal no
ambiguity.

Arnold and Sleep’s algorithm requires linear time and constant space even though
the language is not regular. Their formula, (1), for the probabilities can be derived
from the present work as follows. In a leftmost derivation using the grammar Go of
6 the sentential forms/3 will have the form zN1N or zN where z is a terminal

string of length T(/3). Rather than storing/3 we can output ’, store u, and store the
Boolean value "N1 is in the stack". In this way, the current state of the derivation
can be stored using two locations.

Let the probabilitiespa(zN, n) for/" 1, 2 be denoted by the abbreviated notation
pai(u,s), where s =n-T(/3). Observe that u is the number of unmatched open
parentheses in - and s is the number of terminals that remain to be generated. Since
the strings generated by Arnold and Sleep can be obtained from the strings in the
language L(Go) by removing the outermost pair of parentheses, our probabilities are
related to theirs by:

pax(u,s)=p(u-l,s-1), P22(u, s)= PR (U 1, S-- 1).

In the Appendix an analytic formula for f(t, a) is derived using generating functions
and the Lagrange inversion formua [6]. When a (0, k) the formula specializes to

k
f(t, (0, k))

((t-k)/2)!((t+k)/2)!"

654 TIMOTHY HICKEY AND JACQUES COHEN

By relation (9) f(t, (1, k)) =f(t- 1, (0, k + 1)) and so by relation (8) we obtain a simple
forrlula for the probability of generating a left parenthesis"

f(s 1, (o, u + 1)) (u + l)(s -u)
(14) p2(u,s)

f(s, (0, n)) 2u (s 1)

This agrees with Arnold and Sleep’s formula (1).
An interesting open problem is to determine the class of languages for which

random strings can be generated in linear time and space. We have shown that all
regular languages are in this class. Moreover, any grammar for which the probability
functions can be computed in constant time (as in (14)) will generate a language in
this class.

Appendix. This appendix illustrates the use of the Lagrange inversion formula
(see [6, p. 40]) to obtain analytic formulas for the function f(t, a) in the case of the
parentheses grammar, Go, of 6. The method we describe is applicable to any
unambiguous grammar in Greibach normal form which has only one nonterminal
symbol (i.e., generalized prefix polish notation).

Let G,(x)=togr,(t)x be the generating functions of gl and g2. In 6 the
following equations, (15), were needed to perform the precomputat:’on of method 2

(15) gN--81 * gN2, gN2--’-81 * ga * gr + 81.

These equations translate into the following set of power series equations for generating
functions (see 4b)’

G xO, G. xO +x x(G’ + 1).

The Lagrange inversion formula states that if Hi(w) and H.(w) are analytic functions
of w (e.g., polynomial) and if G(x) is a power series in x that satisfies G(x) xH1(G (x)),
then H2(G(x)) has the following form:

x"(a)(18) H2(G(x))= Y’. w,,_x[n. (w) nl(w)’]
m--O w=O

In our case H1(w) w2 + 1.
To derive a general formula for [(t, (a 1, a2)) we can use the recurrence equations

derived in 6 to simplify the problem. Recall that f(t, (al, a2)) =f(t- 1, (al- 1, a2 + 1))
whenever a1>0. Iteration of this relation shows that f(t,(al, a2))=
f(t a 1, (0, a2 + a 1)). Thus it will suffice to find an analytic formula for]’(t, (0, k))

..(k is G k..(k (t) Since the power series of SN2 2, (16) with HE(W) W
k

sr2 will give the desired
formula.

The polynomial H.H’ when expanded by the binomial theorem has the form

kw k-1 Y’. w
j=0

The (m- 1)st derivative of this evaluated at zero and divided by m! will yield the
formula

(m) k m,
r ---:)m!k_m-l_! (m k)/2 m ((m k)/2)!((m + k)/2)!

From this we obtain the desired result"

(a1+a2) (t-a1)!
f(t,(al, a))=

(t-a1) ((t-2al-a)/2)!((t +a)/2)"

UNIFORM RANDOM GENERATION OF STRINGS 655

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1978.

12] D. B. ARNOLD AND M. R. SLEEP, Uniform random generation of balanced parentheses strings, ACM
Trans. Programming Languages and Systems, 2 (1980), pp. 122-128.

[3] J. COHEN AND J. KATCOFF, Automatic solution of a certain class of combinatorial problems, Inform.
Proc. Letters, 6 (1977), pp. 101-104.

[4] J. COHEN, T. HICKEY AND J. KATCOFF, Upper bounds]’or speedup in parallel parsing, J. Assoc.
Comput. Mach., 29 (1982), pp. 408-428.

[5] J. COHEN AND M. ROTH, Analyses of deterministic parsing algorithms, Comm. ACM, 21 (1978), pp.
448-458.

[6] M. A. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[7] D. E. KNUTH, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed., Addison-

Wesley, Reading, MA, 1973.
[8] C. S. WETHERELL, Probabilistic languages: A review and some open questions, ACM Computing

Surveys, 12 (1980), pp. 361-379.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1204-0005 $01.25/0

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT*

D. DOLEVt AND H. R. STRONG"

Abstract. Reaching agreement in a distributed system in the presence of faulty processors is a central
issue for reliable computer systems. Using an authentication protocol, one can limit the undetected behavior
of faulty processors to a simple failure to relay messages to all intended targets. In this paper we show
that, in spite of such an ability to limit faulty behavior, and no matter what message types or protocols are
allowed, reaching (Byzantine) agreement requires at least + phases or rounds of information exchange,
where is an upper bound on the number of faulty processors. We present algorithms for reaching agreement
based on authentication that require a total number of messages sent by correctly operating processors
that is polynomial in both and the number of processors, n. The best algorithm uses only + 1 phases
and O(nt) messages.

Key words, authentication, reliable distributed systems, Byzantine agreement, consistency, unanimity

1. Introduction. In this paper we consider algorithms for achieving agreement
among multiple processors. The context for this agreement is a network of unreliable
processors that have a means for conducting several synchronized phases of informa-
tion exchange, after which they must all agree on some set of information. We will
assume for simplicity that this set of information consists of a single value from some
set of values V.

The type of agreement we will study is called Byzantine agreement (LSP),
unanimity (Db) or interactive consistency (PSL). It results when in the presence of
undetected faulty processors, all correct (nonfaulty) processors are able to agree either
on a value or on the conclusion that the originator of the value is faulty. More explicitly,
Byzantine agreement is achieved when

(I) all correct processors agree on the same value, and
(II) if the sender is correct, then all correct processors agree on its value.
Implicit in (I) and (II) is the idea that the agreement is synchronous in the sense

that all processors reach this agreement at the same time. In other words, there must
be some real time at which each of the processors has completed the execution of its
algorithm for reaching agreement, and this time must be known and agreed on by all
processors in advance.

Our analysis of the problem is based on the worst case assumption that faulty
processors are not predictable and possibly even malicious. An algorithm should
sustain any strange behavior of faulty processors, even a collusion to prevent the
correct processors from reaching agreement. Even if the correct processors cannot
identify the faulty processors, they must still reach Byzantine agreement. The algorithm
should not depend in any way on anticipated behavior of faulty processors.

We establish an exact lower bound for the number of phases of information
exchange required. This lower bound (t + 1) was known for the case in which only
unauthenticated messages are exchanged (FL). We have generalized the proof given
by Lynch and Fischer to apply to any kind of message. The lower bound result is
somewhat surprising in our context. It indicates that even though we allow correct
processors to exchange any kind of verifiable information, and even though we restrict
the possible behavior of faulty processors to simply failing to relay messages, Byzantine

* Received by the editors January 4, 1982, and in revised form September 28, 1982. This paper is a
revision of material that appeared in IBM Research Report RJ3342. It does not include all the material
in the earlier report. It does contain an improvement of earlier results.

t IBM Research Laboratory, San Jose, California 95193.

656

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 657

agreement cannot be reached in or fewer phases. Note that if we relax (I) slightly
as in crusader agreement (Da), then we can obtain agreement within two phases.

The algorithms considered provide a method for a single processor to send a
single value to all other processors. Generalizations to many processors sending values
to each other will be obvious.

We assume some reliable means of communication by which any correct processor
can send a message to any other correct processor. For example, this reliability might
be achieved by sending duplicate messages along many paths in a network. In any
case, for this paper, unless otherwise stated, we assume a completely connected, totally
reliable communication network, and in counting the total number of messages sent,
we ignore any duplication or repetition inherent in the communication medium. Note
that we only count the messages sent by correct processors.

For algorithms using authentication, we assume a protocol that will prevent any
processor from introducing a new value or message into the information exchange
and claiming to have received it from another (DH), (RSA). In a typical authentication
protocol (PSL), the transmitter appends a signature to the message to be sent. This
signature contains a sample portion of the message encoded in such a way that any
receiver can verify that the message is authentic and that it was sent by the sender,
but no processor can forge the signature of another. Thus no processor can change
the content of a message undetectably.

All previous algorithms for reaching Byzantine agreement are exponential in the
number of messages (O(n t) where n is the number of processors and is an upper
bound on the number of undetected faulty processors). The new results presented
here include algorithms polynomial in the number of bits exchanged, using authentica-
tion. If d is the number of phases and rn is the total number of messages, then the
algorithms previously presented used d + 1 and m O(n).

Lynch and Fischer established a lower bound of + 1 for d, but their proof
depended on disallowing any authentication protocol. Here we establish the same
lower bound in a general context allowing authentication. Note, however, that our
proof does not depend on the use of any particular authentication protocol. In fact
it contains no reference to authentication or any other particular type of message.

We present an algorithm for Byzantine agreement with d + 1 and rn O(n2),
and a modification with d + 2 and rn O(nt). These algorithms are first presented
in the context of a complete network and then generalized to arbitrary networks with
sufficient connectivity. The total number of messages is on the order of the number
of edges in the network, but the more general networks require more phases. Finally
we present an algorithm that achieves the lower bound + 1 for number of phases
and also requires only O(nt) messages.

2. Histories. In order to give proofs of correctness and especially to establish
lower bounds, we will describe the message related behavior of the collection of
processors during the phases of information exchange as a single object of directed
graphs called phases. We intend the notion of history to capture any synchronous
information exchange behavior, including any number of authentication protocols and
the exchange of arbitrary message types. The lower bound result of 3 can be extended
to asynchronous algorithms with a suitable generalization of the notion of phase.

A phase is a directed graph with nodes corresponding to processors and with
labels on the edges. A label represents the information sent from a given processor
to another during the given phase. We assume that when no message is sent there is
no edge. An n processor history is a finite sequence of n node phases, with nodes

658 D. DOLEV AND H. R. STRONG

labelled by the names of the processors, together with a special initial phase called
phase O, such that phase 0 contains only a single inedge to one processor called the
sender. (The assumption is that the inedge at phase 0 carries the value that the sender
is to send.) Figures 1 and 2 represent histories with labels and phase 0 omitted.

FIG. 1. A six processor four phase
history with edge labels and phase 0
omitted.

FIG. 2. The result of hiding sender s at

phase 1.

A subhistory of a history H is a copy of H with some edges removed. For each
history H and processor p there is a unique subhistory pH called the subhistory
according to p, consisting of only the edges with target p. Thus, the subhistory according
to the sender includes the value it is supposed to send even if it sends nothing.

An agreement algorithm on a class of histories C consists of a correctness rule (a
function which given a subhistory according to p and an edge in a phase to be added
to the history as the next phase, produces a possibly empty label for that edge) and
a decision function (a function from subhistories according to processors of histories
in C to the union of V with a symbol 0 representing "sender fault"). With respect

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 659

to a given correctness rule, a processor p is said to be correct at phase k if each edge
from p in phase k has the label produced by the correctness rule operating on the
subhistory according to p of the previous k- 1 phases. A processor p is correct for
history H if it is correct at each phase of H. Observe that the difference between Fig.
1 and Fig. 2 is that in the first, all processors are correct (assuming some appropriate
correctness rule) while in the second, the sender is faulty. We call a history t-faulty
(with respect to a correctness rule) if at most of its processors are incorrect.

A correctness rule is actually a union of possibly distinct correctness rules, one
for each processor. Likewise, the decision function is a union of individual decision
functions.

An example of a simple correctness rule is the rule that each processor simply
sign and relay (according to the authentication protocol) each incoming message of
the previous phase to every other processor.

We say Byzantine agreement can be achieved for n processors with at most faults
within d phases if there is an agreement algorithm for the class C of n processor,
t-faulty (with respect to the correctness rule of the algorithm), d phase histories so
that the decision function F obeys the rules for Byzantine agreement:

(I) if p and q are correct for H in C then FpH FqH, and
(II) if the sender is correct at the first phase of H and p is correct for H in C

then FpH v where v is the sender’s value.
Note that we do not define Byzantine agreement for n < 3 or for > n. In the

context of an authentication protocol, the class C of histories is assumed to be limited
to those consistent with the semantics of authentication.

3. The lower bound result.
THEOREM 1 (LSP). Byzantine agreement with authentication can be achieved for

n processors with at most faults within + 1 phases, assuming n > + 1.
Proof. For the correctness rule, at phase let each node sign and relay every

incoming message with different signatures to exactly those processors that have not
already signed it. Note that messages are distinct even though they carry the same
value, if they have travelled distinct paths. The function F, operating on a subhistory,
will delete messages that do not conform to the correctness rule (including those with
repeated signatures) and then extract every authenticated (from the sender) value
from V carried by the remaining messages. If exactly one value v is extracted, then
F will produce v as output; otherwise, F will produce 0.

Let H be a t-faulty history with + 1 phases, consistent with the semantics of
authentication. At the end of phase t, each message carries signatures (not counting
that of the current recipient). Thus each value that appears in the correct messages
of H will have been seen by some correct processor. Therefore, each correct processor
will have the same set of extracted values after + 1 phases. I"1

The following lower bound result is the principal result of this section. It shows
that the result of Theorem 1 is tight.

THEOREM 2. Byzantine agreement cannot be achieved for n processors with at
most faults within or fewer phases, provided n > + 1.

The proof of Theorem 2 is inspired by, but a nontrivial generalization of, the
proof given by Lynch and Fischer for the restricted case without authentication (FL).
Lynch and Fischer used the n > 3t result of (PSL) to show that any algorithm for
Byzantine agreement must be uniform. Assuming uniformity, they established an
equivalence relation on their version of t-faulty histories and obtained a contradiction
by showing that too many histories were contained in a single equivalence class. Their

660 D. DOLEV AND H. R. STRONG

proof of this equivalence relied on the ability to preserve equivalence while changing
one message at a time. Their proof of this ability, without using the uniformity
assumption, is essentially the proof of the base case in the induction that follows.

Proof of Theorem 2. Assume that Byzantine agreement can be achieved for some
n > / 1 within phases. Let R be the correctness rule and let F be the decision
function on subhistories such that (R, F) achieves Byzantine agreement on n processor,
depth t, t-faulty histories.

Let C be the class of n processor, depth t, t-faulty histories that have a critical
sequence such that all incorrect processors appear on the sequence and any incorrect
node appears at or after the level corresponding to the order its label appears on the
sequence. The class C contains histories that exhibit serial faultiness, in the sense that
the set of faulty processors is allowed to increase by at most one processor per phase,
starting with no faults before phase 1, and once allowed in the set these faulty
processors may exhibit their faultiness at any node corresponding to a phase at or
after their entry. Note that any nodes corresponding to such a faulty processor may
be correct.

Define an equivalence relation on histories in C by saying H is equivalent to H’
if, whenever p is correct for H and q is correct for H’, then FpH’= FpH. Note that
C includes histories in which all processors behave correctly. Since we assume V has
more than one value, this means that there must be histories in C that are not
equivalent. But, as we will show, C is a single equivalence class. Under an appropriate
definition of (R, F), both Fig. 1 and Fig. 2 could describe histories from the set C.
However, in Fig. 2 the result of the algorithm must be independent of any information
from the sender since the sender sends nothing. This fact is the key idea behind the
contradiction we obtain.

We say that a processor is hidden at phase k if it has no outedges at k or any
later phase. We will also refer to the node at phase k as hidden if the processor is.
In particular we will show by induction on the phase k that, if r is a node representing
a processor at phase k of history H in C, then:

(a) there is a history H’ in C, equivalent to H, identical to H through phase k
except for outedges of r, with r correct and all processors correct after phase k; and

(b) if all other nodes at phase k are correct, then there is a history H’ in C,
equivalent to H, identical to H through phase k except for outedges of r, with r
hidden and all other processors correct after phase k.

Note that if a processor labels a hidden node, then changing the information on
its inedge cannot affect the subhistory according to any other processor. In Fig. 2 the
sender is hidden at phase 1.

In short we will show by induction that we can correct a node at any phase or
hide a node if all other nodes at its phase are correct, and that the resulting history
will be in C and equivalent to the one from which we started, while all changes will
be to the outedges of the particular node and to edges at later phases. Thus we will
have shown that every history in C is equivalent to any history in which the root is
hidden and all other processors are correct.

Case 1. Let k t.

(a) Let r be an incorrect node at phase k of history H in C. If we correct the
outedges of r one at a time, then for each individual change there is a processor
correct for H that sees the same subhistory after the change as before. Thus each
individual change preserves equivalence with H. Since we cannot make any correct
node incorrect, each individual change preserves membership in C. Changes are only

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 661

made to the outedges of r. The final result H’ has r correct and all processors trivially
correct after k.

(b) Let r be a node at phase k in history H and C and let all other nodes at
phase k be correct. Proceeding as in (a), we remove the outedges of r, one at a time.
Here we may change r from correct to incorrect but since there were no other incorrect
nodes at phase k we could replace the kth entry in the critical sequence by the label
of r, preserving membership in C. The rest of the argument is the same as that for (a).

Case 2. Assume the induction hypotheses (a) and (b) for all phases after k.
(a) Let r be an incorrect node at phase k of a history H in C. The following steps

will preserve membership in C and equivalence to H and change only outedges of r
and edges at later phases.

1. Correct all nodes after phase k (induction hypothesis (a)).
2. While incorrect outedges of r remain,

replace position k + 1 in the critical sequence by s, a target of an incorrect
outedge e from r;

hide s at phase k + 1 (induction hypothesis (b))
correct e (some correct processor will see the same subhistories both before
and after the change);

correct all nodes at phase k + 1 (induction hypothesis (a)).
End of while.

The final result H’ will have r and all processors after phase k correct.
(b) Assume all processors correct at phase k and let r be a node at phase k. The

.following steps will preserve membership in C and equivalence to H and change only
outedges of r and edges at later phases.

1. Correct all nodes at phase k + 1 (induction hypothesis (a)).
2. Replace the kth position in the critical sequence by the label of r.
3. While outedges of r remain,

replace position k + 1 in the critical sequence by s, a target of an outedge
e from r;

hide s at phase k + 1 (induction hypothesis (b));
remove e (some correct processor will see the same subhistories both before
and after the change);

correct all processors after phase k (induction hypothesis (a)).
End of while.

4. Hide the processor labelling r at phase k + 1 (induction hypothesis (b)). The
final result H’ will have r hidden at phase k and all other processors after phase k
correct.

This completes the proof of Theorem 2.
Remark. Whenever it is defined, Byzantine agreement can be achieved for n

processors within n 1 phases. Thus the provision n > + 1 is necessary for the lower
bound of Theorem 2.

4. Polynomial algorithms using authentication. As mentioned in the introduc-
tion, we assume the existence of some authentication technique that prevents faulty
processors from undetectably changing the content of messages.

For purposes of counting messages we supply the following specific syntax for
the labels on the edges of directed graphs called phases.

(1) The set of values V is contained in the set of atomic messages.
(2) A label is either an atomic message (an authentication) or a sequence of

labels.

662 I. DOLEV AND H. R. STRONG

(3) An authentication is a label of the form

(label a) p,

where p is the name of a processor and label a is a label.
(4) A sequence of labels is a label of the form

label a, label b,

where label a and label b are labels.
Note that (a, b, c)p is not the same label as (a)p, b (/7), (c)p.
A label a is part of label b if either:

(i) a b;
(ii) there is a label c and a process or p such that a is part of c and b (c)p; or
(iii) there are labels c and d such that b c, d and a is part of c or d.
A message is a label with no commas.
Thus, at any phase any processor can send any message to any other processor,

except that no processor can alter an authenticated message received at a previous
phase and forward it as an authenticated message at the next phase, nor can any
processor pretend to have received an authenticated message it did not receive and
forward that as an authenticated message. In the rest of this paper, attention will be
restricted to histories consistent with the semantics of authentication. In particular, if
(a)q is part of a label on an edge from processor p then either p =q or (a)q appears
as part of a label on an inedge to p in a previous phase.

The basic idea behind the following two algorithms is to minimize the number
of messages on each edge by restricting the cases in which a processor must relay a
message. In the proof of Theorem 1, we assume a complete graph, so that when a
correctly authenticated value is revealed to a correct processor, all correct processors
will have it at the next phase. For Theorem 3 we restrict the number of values about
which a processor must relay information. For Theorems 4 and 5 we restrict the paths
over which messages travel so that when a correct processor receives a correctly
authenticated value, other correct processors will receive it within some constant
number of phases. Finally, for Theorem 6, we restrict the number of processors that
are required to relay information. In this case when a correct relay processor receives
a correctly authenticated value, the others will receive it one phase later, but correct
processors that are not relay processors may receive the value long before it is known
to the others.

Let e be the number of edges in the directed graph that has an edge between
two processors exactly when our algorithm may require some message along that edge.

THEOREM 3. Byzantine agreement can be achieved for n processors with at most

faults within + 1 phases using at most O(e) O(n 2) messages.
Proof. Our correctness rule will be a restriction of that of the proof of Theorem

1 so that no processor relays more than two messages to any other, regardless of the
number of messages received or the number of distinct paths incoming messages may
have travelled. At the beginning of phase + 1, each processor totally (lexicographi-
cally) orders all messages received during the previous phase, discarding messages
that are not of the form (... ((v)pl)p2"’)p where v is a value not seen before, pl

is the signature of the sender, and all signatures are distinct. If a message carrying
value v is not discarded, then the processor is said to extract v. If the processor has
not yet relayed any messages, then it relays the first two with distinct values (the first
one if there are not two distinct values). If the processor has relayed only one message

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 663

during all previous phases, then it relays the first of its messages. The relay process
consists of signing the message and forwarding it to all those whose signatures do not
already appear in the message. A processor relays a value only if it is either the first
or the second different value extracted. Once a processor has relayed two distinct
values, it stops processing messages for the algorithm and at the end it will decide
"sender fault," i.e. the decision function F from the proof of Theorem 1 will
produce 0 for this processor. If it gets through + 1 phases without extracting any
value, F will also produce 0; but if it has extracted exactly one value v, then F will
produce v.

Each correct processor sends at most two messages over each edge. Thus, the
total number of messages sent by correct processors is bounded by twice the number
of edges, e.

If the sender correctly sends (v)s to each other processor, then authentication
prevents faulty processors from importing more values, so F will produce v for each
correct processor. If at phase + 1 a correct processor receives and does not discard
a message of the form (... ((v)pl)p2"’)pt/l, then the first processors on the list of
signatures must be faulty, so the last one must be correct and all other correct processors
have simultaneously received the same message. If, at the end of + 1 phases, a correct
processor has extracted only one value, then each correct processor has extracted
only that value, and the decision function F will produce the same value for each
correct processor. If any correct processor extracts more than one value, then all will.
Consequently, although the sets of extracted values may not agree, they yield sufficient
information to reach Byzantine agreement.

If we restrict the number of possible edges to e O(nt) by restricting the edges
available for transmission we can reduce the number of messages. First we show a
simple way to achieve this reduction that requires one extra phase.

THEOREM 4. Byzantine agreement can be achieved for n processors with at most

faults within + 2 phases using at most O(nt) messages.
Proof. We further restrict the correctness rule of the proof of Theorem 3 by

arbitrarily choosing + 1 processors to be relay processors and requiring any nonrelay
processor to send messages only to relay processors (the sender is not a relay processor).
Now the number of messages is O(nt). If a correct processor extracts a new value by
phase + 2, then some correct processor extracted that value by phase t, so some
correct relay processor extracted it by phase + 1. Thus by phase + 2 every correct
processor will have extracted either that value or two others from that relay processor.
If any correct processor extracts only one value by phase +2, then every correct
processor must have extracted only that value. As in the proof of Theorem 3, although
the sets of extracted values may not agree, they yield sufficient information to reach
Byzantine agreement. 71.

The restricted network used in the proof of Theorem 4 is a + 1 connected graph.
It is straightforward to show that the graph must be at least + 1 connected in order
to reach Byzantine agreement (Da), (Db). In (LPS) + 1 connectivity was shown to
be sufficient using an exponential number of messages. Here using methods similar
to those of (LPS) we generalize the algorithm of the proof of Theorem 4 to show that
+ 1 connectivity is sufficient even for a polynomial number of messages.

The diameter of a graph is the least upper bound of the lengths of shortest paths
between pairs of vertices, where by length we mean the number of edges. If a graph
is k connected, then there are at least k vertex disjoint paths between any pair of
vertices. The k-diameter of a graph is the least upper bound of the lengths of the k
shortest vertex disjoint paths between pairs of vertices.

664 D. DOLEV AND H. R. STRONG

THEOREM 5. If d is the (t + 1)-diameter of a (t + 1)-connected network of n
processors with at most t faults, then Byzantine agreement can be achieved within + d
phases using at most O(e) messages.

Proof. We use the correctness rule and the decision function of Theorem 3,
restricted of course so that only available edges of the graph are used for messages.
If a processor extracts a new value at phase + i, then some correct processor has
extracted the value by phase t, so each correct processor will have extracted it (or
two others) by phase + d. Again, each edge carries at most two messages, so the
total number of messages is O(e). U

Now we return to our assumption of a complete network and present our best
algorithm for Byzantine agreement with authentication.

THEOREM 6. Byzantine agreement can be achieved on a complete network in + 1
phases with O(nt) messages.

Proof. If n <2t + 1 then O(n 2) O(nt) so we are done by Theorem 3. Assume
n > 2t. We choose 2t + 1 processors including the sender to play active roles and let
all the others be passive. The correctness rule for the active processors is that of
Theorem 3, except that they must ignore all messages signed by passive processors.
The passive processors are not to send messages. The decision function for active
processors is that of Theorem 3. Thus they reach Byzantine agreement among them-
selves by phase + 1.

Passive processors modify the decision function so that it also counts the number
of active processors that have sent more than one message, producing 0 if this number
is at least + 1. Passive processors discard the same messages as active processors,
but they extract only values that have been signed (in the total collection of messages
received) by at least + 1 distinct active processors. Note that if a passive processor
receives a message at phase + 1 and does not discard it, then it will extract the value
carried by that message because the + 1 signatures must occur in that message.
However, if a message is received at an earlier phase and not discarded, its value may
not be extracted until later confirming messages supply + 1 distinct signatures.

If the correct active processors never extract a value, then the correct passive
processors will never extract one because there are at most faulty active processors.
If any correct active processor extracts a new value then some correct active processor
extracts that value by phase and relays it to all. If a processor extracts a value at
phase t, then the message it relays will contain the signature of t + 1 active processors;
otherwise, if it extracts the value by phase t-1, then at least other correct active
processors will have extracted the value by phase t. Thus if any correct active processor
extracts only one value, then each correct active processor extracts only that value
and each correct passive processor will be able to extract that and only that value by
phase + 1.

If every correct active processor has extracted more than one value by phase t,
then the passive processors will have received more than one message from t + 1 active
processors by phase + 1.

The only difficult case is that in which each active processor extracts more than
one value by phase + 1, but some correct active processor has not extracted more
than one value by the end of phase t. It remains to show that in this case, the passive
processors will be able to extract more than one value.

In this case, no correct active processor can extract more than one value by phase
t-1. At least two values are extracted by phase (possibly by different processors).
If the two values are extracted at phase t, then the passive processors will extract
them at phase + 1. But at least one of them is extracted at phase t. Moreover, if

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 665

some correct active processor has extracted v by phase t- 1, then each correct active
processor has extracted v or nothing by phase t- 1. Thus, if the first value is extracted
at phase or if all correct active processors extract that first value by t- 1, then the
passive processors will be able to extract two values.

This leaves the case that v is extracted by some but not all correct active processors
by phase t- 1. Each of the correct active processors that extracted v relays it to the
passive processors by phase t. If one of the processors that did not extract v by phase
t- 1 extracts two other values at phase t, the passive processors can extract those two
values. Otherwise, each of the processors that did not extract v by phase t-1 will
extract v at phase and relay it to the passive processors. In any case the passive
processors will extract at least two values. V1

5. Conclusion. The lower bound of + 1 phases with authentication means that
we must look elsewhere to achieve Byzantine agreement quickly. In fact we must
relax some requirement because the lower bound of Theorem 2 applies no matter
what kind of message we send. Although the proof is given in the context of syn-
chronous phases, any purported asynchronous algorithm for Byzantine agreement
would certainly be imbeddable within the synchronous phase context by simply
imposing the phases on its behavior.

One possibility would be to look at algorithms that probably achieve Byzantine
agreement. In a probabilistic context, if we had a realistic upper bound on the
number of possible faults, then we would likely also have information on the probability
of exactly faults, exactly t- 1 faults, etc.

While they do not reduce the minimum number of phases required, our algorithms
do reduce the total number of messages required for Byzantine agreement from
exponential to polynomial in the number of processors or in the number of bits
exchanged by correct processors. It would be useful to find algorithms that stop after
a smaller number of phases whenever possible.

We have not established a tight lower bound on the number of messages required
in the worst case. In (DR) lower bounds on the number of messages and the number
of signatures that must be exchanged in order to obtain Byzantine agreement are
obtained. The algorithm in (DR) requires fewer messages than ours but uses more
phases.

Acknowledgments. The authors thank Nancy Lynch for helpful suggestions about
this manuscript. The proof of Theorem 6 uses a suggestion of Lynch made in private
correspondence with respect to a different problem. Subsequent to the completion of
the proof of Theorem 2 in its present form, the authors received a private communica-
tion from Michael Merritt containing a somewhat similar proof of this result.

(DH)

(Da)
(Db)

(DR)

(FL)

REFERENCES

W. DIFFIE AND M. HELLMAN, New direction in cryptography, IEEE Trans. Inform. Theory,
IT-22 (1976), pp. 644-654.

D. DOLEV, The Byzantine generals strike again, J. Algorithms, 3 (1982), pp. 14-30.
Unanimity in an unknown and unreliable environment, Proc. IEEE 22nd Symposium on

Foundations of Computer Science, 1981, pp. 159-168.
D. DOLEV AND R. REISCHUK, Bounds on information exchange/’or Byzantine agreement, Proc.,
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Ottawa, Aug.
1982. See also IBM Research Report RJ3587 (1982).

M. FISCHER AND N. LYNCH, A lower bound for the time to assure interactive consistency, Inform.
Proc. Letters, 14 (1982), pp. 183-186.

666 D. DOLEV AND H. R. STRONG

(L)

(LSP)

(PSL)

(RSA)

L. LAMPORT, Using time instead of timeout for fault-tolerant distributed systems, Tech. Rep.,
Computer Science Laboratory, SRI International, June 1981.

L. LAMPORT, R. SHOSTAK AND M. PEASE, The Byzantine generals problem, ACM Trans.
Programming Languages and Systems, to appear.

M. PEASE, R. SHOSTAK AND L. LAMPORT, Reaching agreement in the presence of faults, J.
Assoc. Comput. Mach., 27 (1980), pp. 228-234.

R. L. RIVEST, A. SHAMIR AND L. ADLEMAN, A method for obtaining digital signatures and
public-key cryptosystems, Comm. ACM, 21 (1978), pp. 120-126.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1982 Society for Industrial and Applied Mathematics
0097-5397/83/1204-0006 $01.25/0

ANALYSIS OF EARLY-INSERTION STANDARD COALESCED HASHING*

WEN-CHIN CHEN- AND JEFFREY SCOTT VITTERtt

Abstract. This paper analyzes the early-insertion standard coalesced hashing method (EISCH), which
is a variant of the standard coalesced hashing algorithm (SCH) described in [Knu73], [Vit80] and [Vit82b].
The analysis answers the open problem posed in [Vit80]. The number of probes per successful search in
full tables is 5% better with EISCH than with SCH.

Key words, analysis of algorithms, hashing, coalesced hashing, early-insertion, data structures, average-
case

1. Introduction. One of the well-known data structures for information storage
and retrieval is co’alesced hashing, which was introduced in [Wi159] and analyzed in
[Vit80], [Vit82bl, [Knu73] and [GK81]. We will assume that each package of informa-
tion is stored in computer memory as a record. There is a special field in each record,
called the key, that uniquely identifies it. The job of a searching algorithm is to take
an input K and return the record (if any) that has K as its key.

For purposes of notation, we let M’ denote the number of slots in the hash table.
The first M slots, which serve as the range of the hash function, are called the address
region the remaining M’-M slots make up the cellar. We assume that the pre-defined
hash function

(1) hash {all possible keys} {1, 2,. , M}
assigns each record to its hash address in a random (uniform) manner. We say that
a collision occurs when the hash address of a record is already occupied, and the
record must be inserted elsewhere. The special case in which M M’ and there is no
cellar is called standard coalesced hashing.

The coalesced hashing method has the property that a record is not moved once
it is inserted. The algorithm can be described as follows: Given a record with key K,
the algorithm searches for it in the hash table, starting at its hash address hash(K)
and following the links in the chain. If the record is found, the search is successful;
otherwise, the end of the chain is reached and the search is unsuccessful, in which
case the record is inserted as follows: If position hash(K) is empty, then the record
is stored at that location; otherwise, the record is stored in the largest-numbered
empty slot in the table and is linked into the chain that contains slot hash(K) (at
some point after slot hash (K)). There are two different ways to link that record into
the chain. The conventional method is to link the record to the end of chain that
contains slot hash (K). The second method, which was named early-insertion by Gary
Knott, inserts the record into the chain immediately after slot hash(K) by rerouting
pointers. Insertion can be done faster with the early-insertion method when it is known
a priori that the record is not already present in the table, since it isn’t necessary, to
search to the end of the chain.

A formal description of the conventional insertion method appears below. Let
us assume that each of the M’ contiguous slots in the coalesced hash table has the

* Received by the editors March 10, 1982, and in revised form October 5, 1982. This research was
supported in part by an IBM Research contract.

t Department of Computer Science, Brown University, Providence, Rhode Island 02912.
t The research of this author was supported in part by National Science Foundation grant MCS-81-

05324.

667

668 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

following organization"

E

KEY other fields LINK

For each value of between 1 and M’, EMPTY[if is a one-bit field that denotes
whether the ith slot is unused, KEY[if stores the key (if any), and LINK[if is either
the index to the next spot in the chain or else the null value 0.

Algorithm C (conventional coalesced hashing search and insertion). This algorithm
searches an M’-slot hash table, looking for a given key K. If the search is unsuccessful
and the table is not full, then K is inserted.

The size of the address region is M; the hash function hash returns a value
between 1 and M (inclusive). For convenience, we make use of slot 0, which is always
empty. The global variable R is used to find an empty space whenever a collision
must be stored in the table. Initially, the table is empty, and we have R =M’+ 1;
when an empty space is requested, R is decremented until one is found. We assume
that the following initializations have been made before any searches or insertions
are performed: M [/3M’], for some constant 0</3-< 1; EMPTY[i]-true, for all
0 <-i -<M’; and R M’+ 1.

C1. (Hash) Set hash (K). (Now 1 -< =< M.)
C2. (Is there a chain?) If EMPTY[if, then go to step C6. (Otherwise, the ith

slot is occupied, so we will look at the chain of records that starts there.)
C3. (Compare.) If K KEY[if, the algorithm terminates successfully.
C4. (Advance to next record.) If LINK[if O, then set LINK[if and go back

to step C3.
C$. (Find an empty slot. The search for K in the chain was unsuccessful, so we

will try to find an empty table slot to store K.) Decrease R one or more times until
EMPTY[R becomes true. If R 0, then there are no more empty slots, and the
algorithm terminates with overflow. Otherwise, append the R th cell to the chain by
setting LINK[i]R then set R.

C6. (Insert new record.) Set EMPTY[i]faise, KEY[i]K, LINK[i]-O, and
initialize the other fields in the record.

The early-insertion method can be implemented by the following two
modifications" First, we add the assignment "Set f i" at the end of step C2, so that
j stores the hash address hash (K). The second modification replaces the last sentence
of step C5 by "Otherwise, link the R th cell into the chain immediately after the hash
address/" by setting LINK[R LINK[f], LINK[j] R then set R."

An example of the two methods is given in Fig. 1. The record WEN collides with
FRANCIS at slot 1. With the conventional insertion method pictured in Fig. l(a),
WEN is linked to the end of the chain containing FRANCIS, whereas in the early-
insertion method in Fig. l(b), WEN is inserted into the chain at the point between
FRANCIS and JOHN. The average successful search time in Fig. 1 (b) is slightly better
than in Fig. l(a), because inserting WEN immediately after FRANCIS (rather than
at the end of the chain) reduces the search time for WEN from four probes to two

EARLY-INSERTION STANDARD COALESCED HASHING 669

1

8

4

5

6

7

8

9

10

(a)SCH (b)EISCH
’FRANCIS FRANCIS -..-,

DON

BOB

WEN
PARIS

JEFF
JOHN

4

5

6

7

8

9

i0

DON

BOB

WEN
PARIS

JEFF
JOHN

Keys: FRANCIS DON JOHN BOB JEFF PARIS WEN
Hash Addresses’ 3 1 4 3 10

ave. # probes per successful search: (a) 13/7 1.136, (b) 12/7 1.71.
ave. # probes per unsuccessful search: (a) 17/10 1.7, (b) 17/10 1.7.

FIG. 1. Standard coalesced hashing, M’ M 10, N 7. (a) SCH, (b) EISCH.

and increases the search time for JOHN from two probes to three. That results in a
net decrease of one probe.

The analyses of coalesced hashing that have appeared in the literature have
concentrated on the conventional method, in which a record is always linked to the
end of the chain. Knuth [Knu73] analyzes the special case of standard coalesced
hashing (SCH), in which M M’ and there is no cellar. Vitter [Vit82b] analyzes the
more general coalesced hashing method (CH), for which the cellar may be nonempty.

In this paper, we derive exact formulas for the average number of probes per
search for the early-insertion standard coalesced hashing method (EISCH). This solves
the open problem posed in [Vit80]. The average unsuccessful search times for the
EISCH and SCH methods are the same, but the average successful search time is up
to 5% better with EISCH than with SCH. The performance of early-insertion method
when there is a cellar (EICH) is still unknown.

2. The main result. In this section we develop the probability model used in our
analysis of early-insertion standard coalesced hashing EISCH and we state our main
result, Theorem 1, which expresses the average number of probes per successful search
for EISCH. We use the following parameters in our analysis:

N the number of inserted records,

M’= the number of slots in the hash table,

a N/M’= the load factor.

These quantities satisfy 0 _-<N <_- M’ and 0 -<_ a <_- 1. Since there is no cellar in the EISCH
method, the address region size M is equal to the table size M’.

In the average-case analysis, we assume that an unsuccessful search can begin at
any of the M slots in the address region with equal probability. This includes the
special case of insertion. Similarly, each record in the hash table has the same chance
of being the object of any given successful search. In other words, all searches and

670 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

insertions involve random keys. This model can be formalized by the following
definitions.

DEFINITION 1. The sequence ala2’’’ aN, where l<-ai<-M, is called a hash
sequence. Every such sequence represents the insertion of N records into a hash table
of address size M; element a. denotes the hash address of the fth inserted record
(i.e., hash (key of/’th record) a.).

In our analysis, we will use the number of probes per search, i.e., the number of
slots traversed, as a measure of search performance.

DEFINITION 2. We let Pv and PN denote the random variables describing the
number of probes in unsuccessful and successful searches in a SCH table containing
N records. Similarly, we let/5v and/ss be the random variables describing the number
of probes in unsuccessful and successful searches in a EISCH table containing N
records.

The sample space for P;v and/5;v is

(2) $’={[a, a2, au; a]ll <-a, <-M, l <=a <-M},

where ala2"’as represents the hash sequence of the N inserted records, and a is
the starting address of the unsuccessful search. The Ms+l elements in S’ each have
probability 1/Ms+l. The values ofP and/5 at sample point [al, a2, aN; a]E S’
are denoted by P’[al, a2, aN; a] and P’[a, a:, a; a].

Similarly, the sample space for Ps and Ps is

(3) $={[aa, a2, au; n]ll <-_a <-M, l <-n <-N},

where ala2"’as represents the hash sequence of the N inserted records, and
n specifies that the nth inserted record is the object of the successful search.
The NMs elements in S each have probability 1/NMN. The values of PN and/ss at
sample point [al, a2," ",aN;hiES are denoted by Ps[al, a2," ",as;hi and
Ps[a 1, az, aN; n].

DEFINITION 3. For SCH, the average unsuccessful and successful search times
are defined by

(4)
1

C’-u k’/N+I M hash sequences
P’[a l, a2, aN;a],

(5)
1

E PN[al, az,’’" ,aN;n].Cs NMN MN hash sequences

For EISCH, the average unsuccessful and successful search times are defined by

(6)
1

CN MN+I
M hash sequences

l<=a<=M

P’Ea, az, aN ;a],

(7)
1

E Ps[al, aa,"" ,aN;n].Cs NMs
M hash sequences

Knuth [Knu73] analyzes the standard coalesced hashing method SCH, and derives
the following unsuccessful and successful search times, as functions of loading factor

EARLY-INSERTION STANDARD COALESCED HASHING 671

(8)

(9)

+ 1- 1 +(e2’ 1 2a),

1((M2)
N

____N) 1N-1
CN l+g 1+ -1-

1 1
l +-a (e2 l-2a)+-a.

In particular, we have C 2.10 and CM 1.80, when the table is full (i.e., when
load factor a 1).

As Fig. 1 shows, the chains in SCH and EISCH contain the same elements,
possibly in different orders. Since the average time for an unsuccessful search depends
only on the length of the chains and not on the order of keys within the chains, the
average unsuccessful search times C and ’kr for SCH and EISCH are equal.

The following theorem is the main result of this paper. It gives the average
successful search time for EISCH, using the probability model described in Definitions
1-3.

THEOREM 1. In an M-slot early-insertion standard coalesced hash table containing
N inserted records, the average number ofprobes in a random successful search is

(10) CN= 1+ -.
In asymptotic form, this can be expressed as

(11) Nl(e 1),

where M, N-+ oo and a N/M remains constant. The approximation error is roughly
e/(2M).

The graphs in Fig. 2 reflect the fact that EISCH is slightly better than SCH. For
example, when the table is full (i.e., load factor a 1), we have CN 1.80 and CN 1.72,
so EISCH is about 5% faster. The difference between the expected number of probes
per successful search for SCH and EISCH is not significant when a is small. When
the table is half full (i.e., load factor a .5), we have CN 1.31 and Cv 1.30, which
is only a 0.5% improvement. One reason for this is that search times improve only
when searching for records contained in chains of length greater than 3; when the
load factor is small, the chains are usually short.

3. Prooi of the theorem. The derivation of the successful search time for EISCH
is more difficult than the analysis of SCH for the following reason: Any coalesced
hash table has the property that the hash address of the kth record in a chain (k > 1)
must be the location of one of the k- 1 predecessors in the chain. In a random SCH
table, each of the k 1 locations can be the hash address of the kth record with equal
probability 1/(k- 1). However, that is not true in a random EISCH table, as Fig. 3
illustrates. The hash address of the fourth (k -4) record in a random chain of length
4 is the location of the first record in the chain with probability 2/6, it is the location
of the second record with probability 1/6, and it is the location of the third record

672 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

1.8

/.6

1.2

1.0 Illl.,

"1’1 I"’I

I,i,,,11

0 0.2 0.4 0.6 0.8

EISCH

1, .,I

Load Factor

FIG. 2. The average number o]probes per success[ul search/or EISCH and SCH.

with probability 3/6. Our analysis is more difficult because it must take this into
account.

For notational simplicity, the parameter M, which denotes the number of slots
in the hash table, will not be written, but rather shall be implicit in all the terms
defined in this section. In order to prove Theorem 1, let us start with some definitions.

DEFINITION 4. We let AN denote the quantity NMNN, where N is the average
successful’search time defined in Definition 3.

DEFINITION 5. For 1 =<i =<f =<l, we let cN(l, i,f) denote the number of chains
among all the MN hash tables that satisfy the following two properties:

(1) the length of the chain is l;
(2) the hash address ot the/’th record in the chain is the location of one of the

first records in the chain.
We should note that cN(/, i,/’) 0 for l > N. For/" or/" + 1, the term cN(l, i, i) is
equal to the total number of chains of length among all the MN hash tables, since
every chain has the property that the hash address of the/’th record in the chain
(/> 1) must be the location of a preceding record.

From the above remarks we have the following lemma.

EARLY-INSERTION STANDARD COALESCED HASHING 673

Seuenc of
hash addresses

11.41
1144
1114
11IS

Order of the
keys in the
chain

adcb
adbc
abdc
acbd
acdb
abed

Key tiiat occupies the
hash address of the
last key in the chain

b
b
b

Relative position
in the chain
of that key

1

FIo. 3. The keys a, b, c and d are inserted (in that order) into an EISCH table containing M’= 4 slots.
This table describes all six possible chains of length 4 in an EISCH table in which the keys a, b, c and d are
stored in locations 1, 4, 3 and 2, respectively. The last column shows that the hash address of the last record
in the chain is more likely to be the position of the third record in the chain rather than that of the second or
the first.

LEMMA 1. The summation Zl_lN,lilCN([i, i) is equal to NMN.
The following lemma expresses the quantity AN we want to evaluate in terms of

CN(I, i,/).
LEMMA2. ThetermANisequaltoNMN +BN, whereBN lzN.lzi<j_tcN(l, i,]).
Proof. First we will show that AN .itzN.izjtcN(l, i,]). A search for the]th

record in a chain of length l requires]- + 1 probes if the hash address of the]th
record is the location of the ith record of the chain. Thus, searching for the]th record
contributes]- + 1 to AN, which, by definition, is the sum of the contributions of the
NM searches among all theMN hash tables. The search for the]th record contributes
1 to each of the following] + 1 terms: cN(l, i,]), cN(l, + 1,])," ", CN(l,],]). Hence,
we have

AN= Z cN(l, i,]) ., cN(l, i,]) + . CN(l, i,]).
l_l_N ll_N l<--_l<N
li_j_l li =j_l _i<]_l

The first summation is equal to NM, by Lcmma 1. The second summation is the
definition of BN. []

To evaluate BN, we need the following recurrence.
LEMMA 3. The term cN(l, i,]) defined in Definition 5 satisfies the recurrence

CN+(I, i,/) (M I)CN(I, i,]) + (i I)CN (I 1, I,] I)

(12) +(]-i- 1)cN(/- 1, i,]- 1)

+ (l-])c(l- 1, i,])+ /=+c:v(l- 1, i, i)

for 1 <-N <-M- 1, 1 <- <] <-_ <-N + 1. The notation $R denotes 1 if the relation R is
true and 0 otherwise.

Proof. Let’s consider theMN distinct hash sequences for N inserted records. The
only chains that can contribute to cN+(/, i,]) after the (N + 1)st insertion are chains
that contribute to cN(l, i,]), cN(l-- 1, i-- 1,]-- 1), cN(l-- 1, i,]-- 1), CN(l-- 1, i,]) and
cN(l--l,i,i).

When <N + 1, a chain that contributes to cN(l, i,]) after N insertions will
contribute to cN+l(/, i,]) after the next insertion if the hash address of the inserted
record is the location of one of the M- records outside the chain. This accounts for
the (M-I)CN(I, i,]) term.

When > 1, a chain that contributes to cN(l- 1, 1,]- 1) after N insertions will
contribute to cN+(l, i,]) after the next insertion if the hash address of the inserted

674 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

record is the location of one of the first i- 1 records in the chain. This accounts for
the (i- 1)cr(/- 1, 1,/’- 1) term.

When f > + 1, a chain that contributes to cv(1-1, i,- 1) after N insertions will
contribute to CN/I(1, i, f) after the next insertion if the hash address of the inserted
record is the location of one of the records between the th and (f- 2)nd records,
inclusively, in the chain. This accounts for the (f 1)Cn(/- 1, i,]- 1) term.

When/" < l, a chain that contributes to Czv(l-1, i,) after N insertions will con-
tribute to cN/l(l, i, [) after the next insertion if the hash address of the inserted record
is the location of one of that last l-f records in the chain. This accounts for the
(1-f)cr(l- 1, i,]) term.

When] + 1, any chain of length l-1 after N insertions will contribute to
cs+(l, i,]) after the next insertion if the hash address of the inserted record is the
location of the ith record in the chain. This accounts for the 8=+1(/- 1, i, i) term. [3

LEMMA 4. The term BNdefined in Lemma 3 is equal toM(M + 1)N (M +N)M
for 1 <-N <-M.

Proof. Substituting Lemma 3 into Bu, we have, for 1 <_-N -<M- 1,

BN+I Y’. CN+l(l,i,])
I_--</=<N+I

lNi<]<--I

2 (M l)c(l, i,]) + .
I_--</NN+I 2__</__<N+l
_i <j <--I 1.<-i <]<=l

(i-1)Cr(1-1, i-1,]- l)

E
2N/<=N+I

(]--i--1)CN(1--1, i,]--l)+ 2 (l--])CN(1- 1, i,])

+ 8i=i+IcN(l--l,i,i)
2_</_<N+l

l<--i<]l

2 (M- l)cn(1, i,]) + .. ic(l, i,]) + ., (] i)c(l, i,])
I__</__<N+I <_l<__N <__l<_N

<--i <] <_l O<___i <i <--I <_i <--] _l

+ 2 (1 + 1 --])CN(I, i,]) +]=iCN(l, i, i)
<=l_<_N

1i<</+1 l<-i<-<=l

Y’. (M- 1)c(l, i,]) + 2 ic(l, i,]) +
l<_l<_N l<__l<_N
<_i.<j<l <_i.<]<_l

(]--i)cN(t,i,])

+ Y’. (l+l--])cN(l,i,])+ Y. cr(l,i,i)
<_l<=N <=l<=N

l<=i<j<=l l<-i

=(M+I) E c(l, i, f)+ E cN(l, i, i)
II<=N I<=I<_N
l<=i<]<__l l<__i<__l

(M + 1)BN +NM.
The last step follows from the definition of BN and from Lemma 1. By telescoping
and by the fact that B 0, we get

BN =M(M + 1)r -(M+N)M.
Now, we are finally ready to prove Theorem 1. Combining Lemma 2 and Lemma

4, we have

An NMN +Bn M(M + 1)N -MN+.

EARLY-INSERTION STANDARD COALESCED HASHING 675

Thus, we get

(13) CN NM

We can express this in asymptotic form as

(14) (v --1(e 1),

where N, M--> oo and a N/M remains constant in the range 0 _-< c-< 1. The error
term is approximately e’/(2M).

4. Conclusions and open problems. We have analyzed the early-insertion stan-
dard coalesced hashing method (EISCH) and have shown that this method is slightly
better than the standard coalesced hashing method (SCH). The average unsuccessful
search times for these two methods are the same, but the average successful search
time for EISCH is 5% better when the table is full.

Some interesting open problems concerning early-insertion remain unsolved. The
early-insertion method can be used when there is a cellar and M <M’. We call this
generalization EICH. The search performance of EICH is still unanalyzed. However,
we conjecture that EICH is inferior to the coalesced hashing method (CH), since in
EICH a chain’s records that are stored in the cellar come at the end of the chain,
whereas in CH they come immediately after the first record in the chain. In Fig. 4(b),
the insertion of WEN causes both the cellar records JOHN and JEFF to move one
link further from their hash addresses. That doesn’t happen in Fig. 4(a).

Many hashing applications require that certain records be inserted and then later
deleted. The best deletion algorithms are the ones that preserve randomness, because
deleting a record is in some sense like never having inserted it. In particular, the
formulas for the average search times after N random insertions intermixed with d
deletions are the same as the formulas for the average search times afterN d random
insertions. The formal notion of what it means to preserve randomness is defined in
[Vit82a].

1

2

3

4

6

7

8

(o)

FRANCIS

DON

BOB

WEN
PARIS

JEFF

JOHN

2

4

5

6

7

8

(o)

(b)E]CH
FRANCIS

DON

BOB

WEN
PARIS -."

JEFF
JOHN

Keys’ FRANCIS DON JOHN BOB JEFF PARIS WEN
Hash Addresses: 8 1 4 1 1 8

ave.] probes per successful search: (a) 14/7 2.0, (b) 16/7 2.286.
ave.]] probes per unsuccessful search: (a) 13/t3 1.625, (b) 17/8 2.125.

FIG. 4. Coalesced hashing, M’ 10, M 8, N 7. (a) CH, (b) EICH.

676 WEN-CHIN CHEN AND JEFFREY SCOTT VITTER

A deletion algorithm for coalesced hashing is given [Vit82a] and shown to preserve
randomness for standard coalesced hashing (SCH). To delete a record, the algorithm
removes it from the table, and then it repeatedly reinserts the record in the remainder
of the chain, if any. There is a modification of this deletion algorithm that performs
the reinsertions using the early-insertion idea. It does not preserve randomness for
SCH, but it may possibly be "better-than-random." An interesting question is how
this modified deletion algorithm (which uses early-insertion) affects the search times
for EISCH. It does not preserve randomness, but it may possibly be better-than-
random. There is currently no known deletion algorithm that preserves randomness
for the EISCH, EICH and CH methods.

Addendum. Since the time this article was submitted, the authors have solved
the first open problem listed in 4. The analysis of the search time of early-insertion
coalesced hashing for the general case (when there is a cellar) appears in Analysis of
some new variants of coalesced hashing, Department of Computer Science, Brown
University, Providence, RI, Technical Report No. CS-82-18, June 1982. That report
also describes and analyzes a new method called varied-insertion coalesced hashing
that performs better than both the unmodified method and the early-insertion method.

REFERENCES

[GK81] D.H. GREENE AND D. E. KNUTH, Mathematics for the Analysis of Algorithms. Birkhauser,
Boston, 1981.

[Knu73] D. E. KNUTH, The Art of Computer Programming. Volume 3: Sorting and Searching. Addison-
Wesley, Reading, MA, 1973.

[Vit80] J.S. VITTER, Analysis ofcoalesced hashing, PhD dissertation, Department of Computer Science,
STAN-CS-80-817 Tech. Rep. Stanford University, Stanford, CA, August 1980.

[Vit82a] ., Deletion algorithms for hashing that preserve randomness. J. Algorithms, 3 (1982), pp.
261-275.

[Vit82b] ., Analysis of the search performance of coalesced hashing, J. Assoc. Comput. Mach., 30
(April 1983).

[Wil59] F.A. WILLIAMS, Handling identifiers as internal symbols in language processors, Comm. ACM,
2 (1959), pp. 21-24.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1204-0007 $01.25/0

VARIETIES OF "IF-THEN-ELSE"*

STEPHEN L. BLOOM" AND RALPH TINDELL

Abstract. Four classes of algebras are considered. The algebras in each class contain functions whose
behavior models a version of the "if-then-else" instruction. In one version, for example, the algebras
contain a function K of four arguments such that K (x, y, u, v) u if x y and (x, y, u, v) v if x y. None
of the considered classes is an equational class, but equational axioms are found for each class such that
an equation is valid in the class iff it is derivable in standard equational logic from the axioms.

Key words. "if-then-else", equational logic, control flow

Introduction. The "if-then-else" instruction occurs in most high level program-
ming languages and has been used in many theoretical studies of various aspects of
computation. We mention, only as a small sampling, the papers by Arnold [1],
Courcelle [4], Courcelle and Nivat [5], Cousineau and Nivat [6], Manna and Vuillemin
[8], and Wagner, Thatcher, and Wright [12].

However, the exact formulation of "if-then-else" has not been uniform. In [4]
for example, the construction takes the form of a function of three arguments: say
r,(p, x, y)= x iff p is true and y if p is false. In [12] on the other hand, "if-then-else"
appears as a function of four arguments: K(x, y, u, v)= u if x =y; and v otherwise.
Furthermore, it is sometimes desirable to allow the arguments to be "undefined," so
that for example, K (p, x, y) would be undefined if p is undefined.

In at least two of the above places, Backus [2] and most explicitly in McCarthy
[9], it is noted that certain equations between "if-then-else" expressions are valid"
for example, the "redundancy law"

if p then (if p then u, else v) else w

if p then u else w.

This observation leads naturally to the question: what are all of the valid identities
between "if-then-else" expressions?

McCarthy [9] answered this question for a formalization of "if-then-else" as a
function taking three arguments. His answer was framed in a syntactic way. He found
normal forms for his "if-then-else" expressions, and gave axioms which were strong
enough so that each expression was provably equal to one in normal form. Further-
more, his "if-then-else" expressions are two-sorted" Boolean and "general". Sethi
11] gave an algorithm for determining the validity of equations between "if-then-else"
expressions with equality tests. The algorithm uses both syntactic and semantic
methods.

In this paper, we define four formalizations of "if-then-else". In each such
formalization, a class K of algebras is defined, each containing a function whose
behavior models the version of "if-then-else" under consideration. We then find a
set of equational axioms such that an equation t’ (between K-terms) is valid in K
iff t -t’ is provable using standard equational logic from our axioms. All of our

* Received by the editors May 22, 1981, and in revised form September 10, 1982.

" Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, New
York 10598. On leave from the Department of Pure and Applied Mathematics, Stevens Institute of
Technology, Hoboken, New Jersey 07030.

Department of Pure and Applied Mathematics, Stevens Institute of Technology, Hoboken, New
Jersey 07030.

677

678 STEPHEN L. BLOOM AND RALPH TINDELL

formalizations use one-sorted algebras, as will become clear from the following
summary.

In 1, we start from some equational class K Mod (EQ) of E-algebras (for some
ranked set X). To each algebra A in K we adjoin a function K"A4A which satisfies

(x, y, u, v) {u if x Y,

v if xy,
obtaining a. Z/-algebra A +, where Y_,+= F_,tA{K}. We then find a set of axioms Ax
such that an equation between Z*-terms is valid in the class {A-: A K} iff the
equation is provable from Ax and the equations EQ defining K. (Sethi’s algorithm
[11] applies here only when ,E and EQ are empty.)

In 2, we model the same form of "if-then-else", only this time we permit the
underlying sets to contain an element modeling "undefined". More precisely, we let
K+(_L) be the class of all sets A containing a distinguished element _1_ and a function

"A4A which satisfies the condition:

! if either x or y is _t_,
(x, y, u, v) if x y,

ifx y.
(We have not allowed A to contain other functions aside from , since the resulting
complication would lengthen an already over-long paper.) This version of "if-then-
else" might be said to treat its inputs "call-by-need".

In 3, we consider the class K(3) of those algebras A containing a distinguished
constant T and a function x:A3A which satisfies the condition

x ifp =T,
y)=

y if p T.

Thus T models "true", and any element other than "true" plays the role of "false".
In 4, the class K(3; 2_) is defined. Algebras A in this class contain three

distinguished constants T, r, I and a function :A3-A which satisfies the condition:

x if p T,

(p,x, y)-- y if p--F,
_L otherwise.

Again, axioms are found for the identities valid in K+(_L), K(3) and K(3; 2_).
The reasons we have treated just the four cases mentioned above are these. First,

as already mentioned, in the literature both a three- and a four-argument function
have been used to formalize "if-then-else". Second, for each choice of the number
of arguments, there is the possibility of including an "undefined" element. The
introduction of such an element raises enough new difficulties to deserve a separate
treatment. Last, we found that any variation on our four versions, including a two
sorted version (Boolean and "elements") of the three argument case, could be treated
by methods very similar to the ones already considered. (It should be mentioned that
we did not consider the question of whether the axioms we found are independent.)

There may be some interest in the method used here to prove the difficult part
of the completeness theorems. In logic, it is usually the case that one shows that when
a statement (of the appropriate form) is not provable from the axioms, one can then
find a model of the axioms in which the statement is false. In contrast, here, complete-
ness is proved directly by induction on the "size" of the statement.

VARIETIES OF "IF-THEN-ELSE" 679

Preliminaries. We begin with some notation. If h" X Y is a function, the value
of h on x X will be written as xh or h (x). The set of nonnegative integers is denoted
to. If n to, In] is {1,2,... ,n}; thus [0] is empty. The set {1, 2,...} is denoted [to].
For any set X, X* is the set of all finite sequences ("words") of elements of X,
including the empty sequence A. For v X*, the length of v is denoted [vl, so that
IAI 0. We will always identify an element x of X with a word in X* of length one,
so that X

_
X*. For v, v’ in X*, the concatenation of v and v’ is written vv’.

A ranked alphabet E (sometimes called a "signature") is the union 5; t.JEn of
the pairwise disjoint sets En, n to. Let V be a countably infinite set disjoint from E.
The set Tz of "finite E-terms" built from V and E will be defined as follows. An
element of Tz is a partial function t: [to]* E V which has the following properties
(see [3], [7] or [12]).

(i) the domain of t, dom (t), is a finite, nonempty prefix-closed subset of [to]*,
(ii) if v dom and vt ,,, then vi dom (t) iff e [n],
(iii) if v e dom and vt Eo U V, then vi : dom (t), for any e [to].
If e T and v e dom (t), then we let t denote the term which satisfies:

/ztv (v/x)t for all/z e [to]*.

The terms of the form tv, for e T., v e dom (t), are the subterms of t.
If is a ranked alphabet, a E-algebra is a nonempty set A equipped with functions

O"A:A " A, for each crs E,, each nonnegative integer n. When tr E0, O’A t A. (We
will usually drop the subscript on o-.)

Elements of E0 t.J V are identified with the values of the partial functions in T.
defined only on A.

If A and B are E-algebras, a homomorphism h:A -B is a function A B such
that for all crEn, n _->0, al,"’, an cA, h(cr(al,"’, a,))=cr(h(al),.., h(an)). The
set Tv. is a E-algebra in a natural way: given tl, tn WE, and tr E,, o’(tl, tn)
is the partial function t: [to]*- E U V satisfying: At tr and ivt vti, for each [n],
v [to]*. In fact, T is freely generated by V in the class of all E-algebras: i.e., for
any E-algebra A and any function h: VA, there is a unique homomorphism
h * Tx-A extending h.

Finally, we review some facts on standard equational logic. An equation between
E-terms is an expression of the form t’, for t, t’ Tz. If A is a E-algebra and
h:Tv.-A is a homomorphism, we say h satisfies the equation t’, for t, t’ in Tv., if
th t’h. The equation t’ is true in A if every homomorphism Tv.-A satisfies it.
For a set EQ of equations, Mod (EQ) is the class of all E-algebras A such that each
equation in EQ is true in A. If K is a class of E-algebras, an equation is true (or
valid) in K if it is true in A, for each A e K.

If EQ is a set of E-equations, and s, s’ e Tx we write

EQs=s’

if Mod (EQ)_ Mod (s s’), and we write

EQs s’

if, for every E-algebra A and every homomorphism h: Tv.A, h satisfies s s’
whenever h satisfies each equation in EQ.

We recall the following completeness theorems for equational logic. A reference
for the version is G. Gratzer, Universal Algebra, Van Nostrand, p. 170. The other
version follows easily from the method used to prove this one.

680 STEPHEN L. BLOOM AND RALPH TINDELL

THEOREM. Let EQ, s, s’ be as above. Then EQs s’ iff the equation s s’ is
deducible from EQ using the rules R1-R5 below; EQ s s’ iff s s’ is deducible
from EQ using only R1-R4.

R1. infer x x, for any x Tz;
R2. from x y, infer y x, for any x, y Tz;
R3. from x y, and y z, infer x z, for any x, y, z T;
R4. from xi yi, [n], infer cr(xl," ", xn) cr(yl,. ", Yn) for any x, yg T,

R5. from x y, infer xe ye, for any x, y T, any endomorphism e: Tz Tz.
We will write "EQ s s’" to mean "s s’ is deducible from EQ using R1-R5".

The five rules R1-R5 constitute "standard equational logic." In this notation, the first
part of the completeness theorem may be stated: -.

Recall that a (formal) deduction of the equation s s’ from the set EQ of equations
is a finite sequence a 1, ’, an of equations such that an is s s’ and for each [n],
either ai EQ or ai follows from earlier a using one of the rules.

1. Axiomatization ot K/. Let Y be a fixed ranked set. If A is any E-algebra, let
K:AaA be the function defined as follows, for all x, y, u, v in A:

u if x=y,
(1.1) K(x, y, u, v)=

v ifxy.

Let A/ denote the expansion of A obtained by adding to the other functions on
A, so that A / is a E+-algebra, where E ’4 I,.J {K}; .-n+ n otherwise. If K is a class
of -algebras, we let K/ denote the collection of all algebras A/, for A in K.

In this section we will axiomatize all equations between elements of T/ which
are valid in any class of the form K/ when K is an equational class of E-algebras. In
1.2 below we will define a set Ax of equations and later we will prove (in 1.23) the
following, (by induction on the "size" of t’).

COMPLETENESS THEOREM. IfK is an equational class of E-algebras (say A K
iff EQ is true in A, when EQ is a set of equations between elements of Tz), and if t, t’
are any two ,+-terms, then (t t’) is valid in K+ iffAx U EQ t-- (t t’).

The set Ax of "axioms" is written using the notation "[x, y, u, v]" in place of

" (x, y, u, v)".
DEFINITION 1.2. Let a, b, x, y, z, u, v, w (sometimes with subscripts) be distinct

variables in V. Then the following equations belong to Ax:

(1.2.1) (equal premise)

(1.2.2) (equal conclusion)

Ix, y, u, u u,

(1.2.3) (premise commutativity)

Ix, y, u, v]= [y, x, u, v],

(1.2.4) (conclusion replacement)

Ix, y, x, u][x, y, y, u],

(1.2.5) (premise replacement)

Ix, y, Ix, z, u, v], w][x, y, [y, z, u, v], w],

681

it follows that

[x, y, [y, z, a, b], c][x, y, [y, z, a, [x, z, d, b]], c].

and

Thus we were led to the "insertion lemma" 1.14, one of our principal tools. Another
idea was to prove a theorem apparently stronger than the completeness theorem itself
(actually, the two are equivalent). In Theorem 1.23, we show that if M is any finite
set of signed equations and M semantically entails t’, then it is provable from our
axioms that

z(t) ’(t’)

where r(t) is an "if-then-else" term which behaves as does: whenever the signed
equations in M are satisfied. When M is the empty set, r(t) is just t, so the
completeness theorem follows.

It is convenient to note two immediate corollaries of the above axioms.
PROr’OSITION 1.3. For any E+-terms u, v, x, y, a, b and c
(i) Ax [u, v, [x, y, a, b], c]=[x, y, [u, v, a, c], [u, v, b, c]]

(ii) Ax [u, v, a, [x, y, b, c]] [x, y, [u, v, a, b], [u, v, a, c]].

VARIETIES OF "IF-THEN-ELSE"

(1.2.6) (positive redundancy)

[x, y, [x, y, u, v], w]-[x, y, u, w],

(1.2.7) (negative redundancy)

[x, y, u, [x, y, v, w]]--[x, y, u, w],

(1.2.8) (premise interchange)

[x, y, [u, v, a, b], [u, v, z, w]] [u, v, [x, y, a, z], [x, y, b, w]],

(1.2.9) (premise simplification)

[Ix, y, u, v], a, b, z]=[x, y, [u, a, b, z], [v, a, b, z]],

(1.2.10) (E reduction)’ for each r X,,, n > 0, each [n]"

O’(Xl, ", Xi--1, [U, I), a, b], Xi+l, Xn)

=[u, v, r(xx,"’’, Xi-x, a, xi+x,’"’, x,), o’(Xx, xi-1, b, x,+x, x,)],

(1.2.11) (congruence axioms). For each r E,, n > 0, each [n

(a) [u, v, o’(xx, ", xi-x, u, Xi+l,’" ", x,,), y]

[u, v, r(x,. ", x_, v, X+l, ’, x,), y],

(b) [u, v, [r(xx, ’, xi-x, u, xi+a, ", x,,), y, a, b], w]

=[u, v, [r(xa, ", xi-1, v, xi+a, ", x,), y, a, b], w].

Before beginning the proof, we make a preliminary remark which might motivate
the long argument. Part of the problem in showing the completeness of any set of
axioms for this version of "if-then-else" has to do with the logic of signed equations.
For example, since

xy,y#zx#z

682 STEPHEN L. BLOOM AND RALPH TINDELL

Proof. We prove only the first equation. First, by the equal conclusion axiom
(1.2.2)

Ax> Ix, y, c, cite,
so that

Axe- [u, v, [x, y, a, b], c][u, v, [x, y, a, b], [x, y, c, c]].

Now apply the premise interchange axiom (1.2.8) to the right-hand side:

Ax [u, v, Ix, y, a, b], [x, y, c, c]]= [x, y, [u, v, a, c], [u, v, b, c]].

Using rule R3 (transitivity), the proof is complete.
DEFINITION 1.4. A g+-term is a simple premise term if whenever K (x, y, u, v)

is a subterm of t, then there are no occurrences of K in x or y--i.e, x and y are Z-terms.
Using induction and the axiom of premise simplification and (1.2.3) one easily

proves
PROPOSITION 1.5. For any g+-term there is a simple premise term t’ such that

Ax-tt’.
DEFINITION 1.6. A E/-term is E-reduced if whenever o-E,, n >0, and

tr(xl,"’’, x,) is a subterm of t, then there is no occurrence of in any xi, In].
Using the axiom of E-reduction, one may prove
PROPOSITION 1.7. For every E/-term there is a E-reduced term t’ such that

Ax-tt’.
From Propositions 1.5 and 1.7 it follows that every /-term is provably equal to

a Z-reduced, simple-premise term. We will identify such terms with certain partial
functions in not quite the way sketched in the Preliminary section.

DEFINITION 1.8. A reduced tree (more fully, a E-reduced simple-premise E/-tree)
is a partial function t: [4]* +{} [.J Tv., whose domain is a nonempty, finite, prefix-closed
subset of [4]*, satisfying the following conditions.

(1.8.1) If v [4]* and t,t then ,it is defined for each i [4], and moreover
v It and v 2t belong to Tv.;

(1.8.2) if v [4]* and ut T then vii is undefined for each [4].
A reduced tree represents (in the obvious way) a labeled tree whose vertices are the
words in the domain of t. We will say "u is a vertex of t" instead of "v is in the
domain of t". The label of the vertex v [4]* is yr. The leaves of the tree are labeled
by elements of T; the vertices which are not leaves are labeled :. For reduced trees

a nonpremise vertex is an element of {3, 4}* in the domain of t. We will write
Ix, y, t3, t4] to denote the reduced tree satisfying" At K; It x; 2t =y; i/xt =/xti,
for 3, 4,/x [4]*.

From now on we will be dealing only with such reduced trees.
A "signed Z-equation" is an expression of the form s s’ or s s’, for s, s’ e T..

The following notion plays an important role.
DEFINITION 1.9. Let be a reduced tree and suppose u is a nonpremise vertex

of t. The set of signed equations S(v, t) between Z-terms (not /-terms!) is defined
by induction on Iv[.

(1.9.1) S(a, t) , the empty set.
(1.9.2) If Ix, y, t3, t4], then if v i/x, e {3, 4},

S(3/x, t)={x y} LIS(/X, t3), and

S(4/X, t)={(xy)}US(/x, t4), where

x, y e T., and both t3 and t4 are reduced trees.

VARIETIES OF "IF-THEN-ELSE" 683

Informally, the set S(u, t) is the set of signed equations which must be satisfied
in order to "reach" the vertex u. This is made precise in Definition 1.12 below.

Let A be a ,E/-algebra and let h:Tx A be a homomorphism. Suppose that is
a reduced tree.

DEFINITION 1.10. Path (h, t) is an element of {3, 4}* defined as follows:
if At is a E-term, Path (h, t) A;
if Ix, y, t3, t4] then

3 Path (h, t3)
Path (h, t)=

4 Path (h, t4)
if xh yh,
if xh yh.

Here, 3 Path (h, t3) is the word formed by concatenating 3 with the word Path (h, t3).
For example if u, v, a, b, c are in Tx and uh vh, then when [u, u, [v, u, a, hi, c],
Path (h, t)= 34.

Remark 1.11. Let be a reduced tree and h:Tx+A+ be a homomorphism,
where A K. Then th, the value of h on t, is (ut)h, where u Path (h, t).

Remark 1.12. For any reduced tree t, a homomorphism h:Tv.+A+ will satisfy
each equation or inequation in $(u, t) iff u is a prefix of Path (h, t).

We need some further notation.
DEFINITION 1.13. Suppose that S is a set of signed equations between E-terms

and let a be some signed equation. Then we write S ra (or just Sa when being
lazy) if for every E-algebra A in K and every homomorphism h:TA, h satisfies
a whenever h satisfies each signed equation in S. Similarly, when and t’ are reduced
trees, we write S ct t’ if th t’h for every homomorphism h T/-A/, A K,
which satisfies $.

We recall the following convention: if u is a node of the reduced tree t, then t
will denote the tree of descendents of u in (see the Preliminaries). If t’ is any reduced
tree, t(u/t’) denotes the tree obtained from by replacing t by t’. More precisely for
any [4]*

if u is not a prefix of/x,
if/x u/ ’.

A useful observation is that

(1.13) S(ulu2, t(ul/t2)) S(ux, t) t_J S(u2, t2)

if ui is a nonpremise vertex of ti, 1, 2.
The following lemma is the main tool used in the proof of the completeness of

Ax LI EQ (recall: K is the class of all models of the set of equations EQ).
INSERTION LEMMA 1.14. Let u be a nonpremise node of the reduced tree and

suppose that x and y are E-terms. Then

and

ifS(u,t)t((x y) then AxLJEQV-tt(u/[x, y, tv, a]),

if S(v, t)z (x y) then AxUEQt=t(u/[x, y, a, tv])

where a is a "new variable," i.e. a variable which does not occur in x, y or t.
The proof of the insertion lemma will be postponed until the end of this section.

We will first show how the completeness theorem follows from some corollaries of
Lemma 1.14. The first corollary might be called the "deletion lemma."

684 STEPHEN L. BLOOM AND RALPH TINDELL

COROLLARY 1.15. Using the notation of the insertion lemma, if tv is the reduced
tree Ix, y, t3, t4] and $(v, t)Kx =y (respectively $(v, t)cx #y) then AxUEQt
t(u/t3) (respectively, AxUEQ t(u/t4)).

Proof. Apply the insertion lemma to the tree t’= t(u/t), 3 or 4. Note that
$(u, t’) $(v, t).
Coroh 1.16. With the notation of the insertion lemma, if $(u,t)x =y,

then AxUEQt t(u/x-->y), where t(u/x-->y) is the tree obtained from by changing
every occurrence of x in tv to y.

Proof. We will show how to replace one occurrence of x in t by y. The corollary
then follows by induction. Suppose 7 uu’ is a leaf of t, labeled by a Z-term, say
p(x), having x as a subterm. First, suppose that 7 is a nonpremise leaf. Then clearly
S(,t)p(x)p(y), where p(y) is the result of replacing every occurrence of x
by y in p(x). Then, by the insertion lemma, AxUEQtt(9/[p(x),p(y),tv, a]).
But t is the :-term p(x) and furthermore, by the conclusion replacement
axiom (1.2.4), Ax[p(x), p(y), p(x), a][p(x), p(y), p(y), a]. Thus AxUEQ-
t(9/[p(x), p(y), p(y), a]). Now apply Corollary 1.15.

In case 7 is a premise leaf, let ix be the immediate predecessor of ff (so that ff
is tz 1 or ix2). Then S(tz, t)p(x)p(y), so that bythe insertion lemma, Ax U EQ-t(tx/[p(x), p(y), [p(x), u, t3, t4], a]), if tg is [p(x), u, t3, t4]. We now apply the premise
replacement axiom and Corollary 1.15, as above.

DZFIYIWlON 1.17. A nonpremise vertex u of the reduced tree t is accessible if
for some homomorphism h: T.+ --> A /, A/ K/, u is a prefix of Path (h, t). The tree
itself is accessible if every nonpremise vertex of is accessible.

COROLLARY 1.18. For every reduced tree there is an accessible reduced tree t’
such that Ax [.J EQ b t’.

Proof. If is not accessible, let u be a nonpremise vertex of shortest length which
is not accessible. Clearly u # A, so u ix3 or tz4, for some {3, 4}*. Suppose that
tg Ix, y, t3, t4]. If u =/z 3, then, since u is inaccessible, S (Ix, t)x # y. So by Corollary
1.15, Ax U EQ- t(tz/t4). Similarly, if u is tz4, Ax UEQ t t(tz/t3). In either case,
is provably equal to a tree with at least one fewer inaccessible vertices. The proof

is completed by induction on the number of inaccessible vertices in t.
We turn now to the construction of a reduced tree - which will code, in a certain

sense, a finite s.equence M of signed equations between Z-terms. Suppose we write
the sequence M in the form

(1.19) (a;]), (r;i2), ’, (a;j)

where],...,] are elements in {3, 4}, and for each e [k], a is an equation

(1.20) si s .
If] is 3, the pair (Oi,]i) codes the positive equation a; if h is 4, (ai, 1"/) codes the
negation s -s of ai. The tree corresponding to/r is defined by induction on the
length k of

First, let a, .., a, b be k + 1 distinct variables not occurring in any equation
a, e [k]. Then, if k 0, - is the tree whose root is a leaf labeled b if k > 0, write
/Q as (a ,]1),/tr’. Then

sl, ’,, ax] if ix 3,
(1.21) ’ [s, sl, ax, -,] if ix =4.

Now if M is a finite set of signed equations between -terms we say that a finite
sequence M of the form (1.19) is an arrangement ofM if an equation a belongs to

VARIETIES OF "IF-THEN-ELSE" 685

M iff for at least some [k], ci is a and/’i 3; and furthermore, a negated equation
-a belongs to M iff for at least some [k], ci is a and/’ 4. (Thus an arrangement
of M is a coded listing, p.erhaps with repetitions, of the signed equations in M.)

For the sequence M of (1.19), let v be the word]112"’"]k in {3, 4}*. The
following is the fundamental property of

FACT 1.22. Let M be any arrangement of the finite set M of signed equations.
Then S(vt, ’ M.

Below we will write -(t) instead of zt(vya/t) to denote the result of replacing
the variable b in - by t.

The following theorem is the main result of this section. When M is empty,
Theorem 1.23 is the completeness theorem.

TI-IEOgEM 1.23. Suppose thatMis a finite set ofsigned equations between Y.-terms.
LetMbe any arrangement ofMand let and t’ be reduced trees. If
(1.24) Mtt’

then

(1.25) Ax t.J EQ - zgt(t) ’gt(t’).

Note. From now on, we will write instead of r.
Proof. By induction on the number of occurrences of K in t.
Basis step. is a Z-term. Let v be any accessible nonpremise leaf of -(t’) of the

form vu’ where u’ is a nonpremise leaf of t’ (the definition of ut precedes 1.22).
Suppose that u is labeled by the Z-term z. We claim that

S(v, ’t(t’))t z.
Indeed S(v, zt(t’))=S(vt, zt)t.JS(u’, t’) by (1.13), and S(ut, zt)=M, by Fact 1.22.
If h: T->A,A K, is any homomorphism satisfyingM, then th t’h, bythe assumption
(1.24). But if h also satisfies S(v’, t’), then t’h zh by Remark 1.11. Thus the claim
is proved. Since v was arbitrary, by Corollary 1.16 it follows that z(t’) is provably
equal to a tree of the form z(t") such that every accessible nonpremise leaf of t" in
zt(t") is labeled by the E-term t. But by Corollary 1.18 we may further assume that
every nonpremise leaf of t" in z(t") is accessible. Applying the equal conclusion axiom
(1.2.2), we see that Axt.JEQ-z(t)ZlC,t(t"), completing the proof of the basis step.

Induction step. Assume that has the form [x, y, t3, t4] for some E-terms x and
y and some reduced trees t3, t4. We may further assume that t’ also has the form
[x, y, t[, t]. (For if not, we replace t’ by [x, y, t’, t’].) Now if

(1.26) M Ix, y, ta, t4] [x, y, t[, t[],

then

(1.27) Mt.J{x y}tat
and

(1.28) Mt3{x # y} t4- t.
Write M3 for M t3 {x =y} and M4 for M t.J {x # y }. By the induction hypothesis,

(1.29) Ax U EQ- "/’/r3(t3) 7"/r3(t

and

(1.30) Ax tO EQ- 7"(t4) rgt.(t).

686 STEPHEN L. BLOOM AND RALPH TINDELL

But the insertion lemma and Corollary 1.15 imply that

Ax LI EQ rtIx, y,/’3, t4] "r[x, y, ’t3(t3),
and

(1.32) Ax UEQ’[x, y, t’3, t’a]=’[x, y, ’t3(t), rt,(t)].
The four facts (1.29)-(1.32) imply that

(1.33) Ax U EQ ’(t) ’t (t’),

completing the proof.
Our only remaining task is to prove the insertion lemma, which for convenience

we repeat here.
INSERTION LEMMA 1.14. Let be a nonprernise node of the reduced tree and

suppose thatx and y are ,-terms. Then ifS(v, t)x y, AxUEQt t(v/[x, y, t, a]);
and if S(u, t) x y, Ax UEQ t(u/[x, y, a, t]), where a is a variable not occurring
in x, y or t.

Before beginning the proof, we introduce some notation. Let P(n) stand for the
following statement:

(1.34)

Let v be any word in {3, 4}* of length at most n. Then for any X-terms x and y,
and for any reduced tree t: if is a nonpremise node of and S(v, t)x y,
then Ax UEQ t(u/[x, y, tv, a]), for a "new variable" a. Let Q(n be the
statementobtained from (1.34) by replacing "x y" by "x y" and replacing
"Ix, y, tv, a]" by "Ix, y, a, t]".

Our proof of the insertion lemma will go as follows: we first prove P(0) and Q(0);
assuming P(n) and Q(n) we then first prove P(n + 1); assuming P(n), Q(n), P(n + 1)
we prove Q(n + 1). Thus by induction, we will have proved P(n) and Q(n), for all
nonnegative integers n, which is equivalent to proving the lemma.

Proof of P(O). In this case v A and S(A, t) , for any reduced tree t. Hence
if x y, EQ-x y, since K is Mod (EQ). Thus

Ax U EQ-[x, y, t, a]=[x,x, t, a].

But clearly Ax U EQ Ix, x, t, a], by the equal premise axiom. Thus P(0) is proved.
Proof of Q(O). Since S(A, t)= , it is impossible that x# y (since K contains

one-element algebras). Thus Q(0) holds vacuously.
Induction step. Proof of P(n + 1) (assuming P(n) and Q(n) hold). Let

/z {3, 4}*, I/xl =n, i{3, 4}. Assume v is a nonpremise node of t. Write t, as
[U, V, t3,/4].

Case A. First we will assume that S(, t)x y.
Then if 3, we want to show

(1.35) Ax U EQ- t(l/[u, v, [x, y, t3, a], t4]).

Recalling Proposition 1.3(i), we have

(1.36) AxLIEQ t(tz/[U V, Ix, y, t3, a], t4])t(l/[x, y, [u, v, t3, t4], [u, v, a, t4]]).

But using the induction hypothesis P(n)

(1.37) Ax LIEQ t=t(lz/[x, y, [u, v, t3, t4], a]).

Now if we replace a in the right-hand tree in (1.37) by [u, v, a, t4], the proof of this
case is complete.

VARIETIES OF "IF-THEN-ELSE" 687

The proof in the case -4 is similar and is omitted.
Case B. Now assume S(iz, t)(x y), but S(u, t)x y.
Subcase 1. 3, so that S (/x, t), u v A x y.
Subcase 1.1. S(tx, t) together with uv is inconsistent. Then S(lx, t)u

Then, by the induction hypothesis Q(n),

(1.38) AxUEQb-tt(tz/[u,v,a,[u,v, ta, t4]])

where a is a new variable. Thus, if we substitute [x, y, t3, a for a in the right-hand
tree of (1.38), we obtain

(1.39) Ax LIEQ =t(t/[u, v, [x, y, t3, a], [u, v, t3, t4]]).

Now apply the negative redundancy axiom (1.2.7) to (1.39). We obtain

(1.40) AxUEQt=t(t/[u,v,[x, y, t3, a],t4])

which completes the proof of Subcase 1.1.
Subcase 1.2. $(/, t), u v x y and $(z, t) U {u v } is consistent. Then (see

the Appendix), $+(l, t), u -vx =y, where $+(l,t) denotes the set of positive
equations in S(/, t). By the completeness theorem for (see the Preliminaries) there
is a proof of x =y from $+(/z, t)U{u v}UEQ using the reflexivity, symmetry,
transitivity and congruence rules (R1-R4 in the Preliminaries section). Let R(k)
denote the following statement:

for any reduced tree such that S(, u)= S(t, u), for any Z-terms a and/3,
if a fl is provable in at most k steps from EQ U S+(, Ix)U{u v} using
the reflexivity symmetry, transitivity and congruence rules, then

(1.41) Ax L.J EQ (v/[a, fl, t, a]),

where a is a new variable.

We will prove R(k) for all k, by induction, which will complete the proof of
Subcase 1 of P(n + 1).

If k 1, then either (a /3) is (u v) or S+(,/z) a /3. In the second case, we
apply Case A. In the case a is u and/3 is v, we apply the axiom of positive redundancy.

Now assume R (k), and that c =/3 is provable using the above-mentioned rules
from EQ, S/(/z,), u v in k + 1 steps. We consider the rule applied last. We may
omit the reflexivity rule, by the case R(1).

Suppose the last rule applied was the symmetry rule. Then, by the induction
assumption R (k),

(1.42) Ax U EQ -7 7(y/[/3, c, 7, a]).

We need only apply the axiom of premise commutativity to the right-hand tree of
(1.42) to complete the proof.

Suppose a /3 follows from c y, y =/3 by the transitivity rule. Let t* denote
the tree (u/[,/3, , a"]) where a" is a new variable. Then S(u, t*)=S(u,), so that
by the induction hypothesis, we have both

(1.43) Ax U EQ-* *(u/[y,/3, *, a])

and

(1.44) AxUEQm *(u/[y, fl, t*, a])i*(u/[a, y, [y, fl, t*, a], a’])

where a and a’ are distinct new variables.

688 STEPHEN L. BLOOM AND RALPH TINDELL

One may show that

(1.45) Ax [a, % [%/3, v, a], a’]-- [c, % [% 3, [a, 3, v, a"], a], a’].

But [a, 3, v, a"] t*, and, by the induction hypothesis,

(1.46) Ax LIEQ (v/[, % [% 3, v, a], a’]).

Combining (1.43)-(1.46), we see that Ax L.JEQ t*, i.e.,

Ax CI EQ- (u/[a, 3, "i. a"])

completing the proof of this case.
Lastly, suppose (a fl) follows from a congruence rule: say, for example, that

treE2 and a cr(a,a2), 3 o’(3,fl2) and both a3 and a232 are provable
from S+(v,)[.J EQ in at most k steps.

Let t’= (v/[tr(a, a2), tr(3, 32), v, a]). We must show Ax [.JEQ t’. First we
apply the induction assumption R (k) to t’.

(1.47) Ax J EQt’ t’(v/[al, fll,[tr(al, aE),tr(fl,[32),v,a],a’]).

By the congruence axiom (1.2.11)(b)

Axl-[a, B, [o’(a, a2), o’(3, 3), v, a], a’]
(1.48)

=[al, 31, [r(/31, a.), o"(31, 32), v, a], a’].

Let t"= (v/[o’(3l, a2), o’(1, 2), iv, a]). Since S(v, t") S(u, i), the induction assump-
tion R (k) implies

(1.49) Ax [3 EQ b- t" t"(u/[a 1, [31, t",, a ’]).

Thus, by (1.47), (1.48) and (1.49),

(1.50) Ax U EQ t- t’ t".

We apply a similar argument to t":

(1.51) AxUEQ-t"t"(u/[CtE,/32,[tr(/31, aE),tr(/31,/32),v,a],a’]).

Again by (1.2.11)(b), and (1.51),

(1.52) AxUEQb-t"t"(u/[aE,/32,[tr([31,[32),tr(/31,132),v,a],a’]).

Now apply the equal premise axiom to the right-hand tree in (1.52):

(1.53) Ax U EQ-t" t"(u/[a2, 32, v, a’]).

But t"(u/[a2, 32, v, a’]) 7(u/[a2, [3., v, a’]) and by the induction hypothesis R(k)
applied to ,
(1.54) AxUEQ (u/[a2, 32, v, a], a’).

By (1.50) and (1.54) we have shown AxU EQt- t’, completing the induction proof.
Thus P(n + 1), Subcase 1 is proved.

Subcase 2. =4. S(l, t)=x =y but S(/x4, t)x y. Since S(/x4, t) is S(/x, t)U
{u. # v}, the only way both of the hypotheses can hold is (see the Appendix (A.2)) if

(1.55) S(t, t) u v.

We want to show

(1.56) AxL.JEQtt(tz/[u,v, t3,[x, y, ta, a]]).

689VARIETIES OF "IF-THEN-ELSE"

Let t’= t(lz/t3). By the induction hypothesis P(n),

(1.57) Ax t.J EQ-t’ t’(l/[U, V, t3, a]).

First substitute t4 for a in (1.57).

(1.58) Ax D EQ- t’ t.

Second, substitute Ix, y, t4, a] for a in (1.57).

(1.59) Ax UEQ-t’ t’(lz/[u, v, t3,[x, y, t4, a]]).

But t’(lz/[u, v, t3, [x, y, t4, a]]) is t(lz/[u, v, t3, [x, y, t4, a]]). Thus the proof of (1.56)
is complete by (1.58).

The proof of P(n + 1) is complete.
Proof of Q(n + 1). We are assuming v =/xi, [/[n and is a reduced tree

containing v such that S(v, t)xy. We want to prove

Ax EQ-t t(v/[x, y, a, t]).

Recall that t, [u, v, t3,/’4].
Case A. $(tz, t)x y. This case is easy and uses the same arguments as Case A

of P(n + 1).
Case B. S(tx, t)lxCy, but S(v, t)(xCy).
Subcase 1. 4. Thus S(/z, t), u v x=y. In this case, we must prove

(1.60) AxUEQt=t(lz/[u,v, t3,[x, y,a,t]]).

Note that S(tz, t), x y u v. Let be t(tz/[x, y, t,, t,,]).
By the induction assumption P(n + 1) applied to and/z 3.

(1.61) Ax I1EQ- (/z3/[u, v, t,, a]).

But

(/x 3/[u, v, t,, a])=t(lx/[x, y, [u, v, t,, a], t,]).
Also [u, v, t,, a is [u, v, iu, v, t3, t4], a]. By the axiom of positive redundancy,

(1.62) Ax t.JEQ [u, v, t,, a][u, v, t3, a],

so that, by (1.61)

(1.63) Ax t_J EQ t(lz/[x, y, [u, v, t3, a], [u, v, t3, t4]]).

But, applying Proposition 1.3(ii), we have

(1.64) AxEQ- t(tx/[u, v, t3, [x, y, a, t4]]).

The proof of (1.60) is completed by the observation that

(1.65) Ax-t=

by the equal conclusion axiom.
Subcase 2. 3. In this case, S (/z, t), u v x y. Then (see the Appendix A.3)

there is some negative equation u’ v’ in S (/x, t) such that

(1.66) S+(tx, t), u v, u’ vxy.

Let/xo be the immediate predecessor of/x (which must exist) and assume

(1.67) t, is [u’, v’, L, [u, v, t3, t4]]

690 STEPHEN L. BLOOM AND RALPH TINDELL

(so that txo4 and u tzo43). We want to show

(1.68) Ax U EQ t(o/[U’, v’, L, [u, v, [x, y, a, t3], t4]]).

First we apply Proposition 1.3(ii) to t,o:

(1.69) Ax t(o/[U, v, [u’, v’, L, t3], [u’,)’, L, t4]]).

By subcase 1 of Case B applied to the right-hand side of (1.69) and/z034,

(1.70) Ax I,.J EQ t(o/[U, v, [u’, v ’, L, [x, y, a, tail, [u’, v’, L, t4]]).

If we apply Proposition 1.3 and the equal conclusion axiom to the right-hand side of
(1.70), we obtain the statement (1.68).

We indicate why we may make the assumption (1.67). Informally, if the negative
equation u’-v’ used in (1.66) is not determined by labels on the premise leaves
and/z02 (where/z =/zoi), then we may use the axiom of premise interchange to "put
these labels there". More precisely, the following statement is true.

PROPOSIrION 1.71. Let [u’, v’, L, R be a reduced tree and suppose that u is a
nonpremise node of R. Write R (= t4) as [u, v, t3, t4]. Then there is a reduced tree t’
and a’nonpremise vertex 3’ of t’ with lyl 14 1 such that:

a) Ax t.J EQ t4v,
b) $(3’, t’)= S(4u, t),
c) 3’ y’4, .for some
d) v, v t,tv].
The straightforward proof of Proposition 1.71 by induction on]u] is omitted.
The proof of O(n + 1) and hence of the entire insertion lemma is complete.

2. The class K+(+/-). Let K(_I_) be the collection of all "pointed sets," i.e. all sets
A having a distinguished element (always denoted +/-). Let A K(+/-) and define
t:Aam by:

if either x +/- or y +/-;
if x =y,
ifx y.

otherwise

Let A+ be A augmented by the function K and let K+(+/-)={A+: A K(+/-)}. Here +/-

models "undefined" and K models the test "if x and y are both defined then u if
x =y and v otherwise; undefined otherwise." In this section we will axiomatize the
identities valid in the class K+(+/-). The outline of the argument for this case is similar
to that given in 1, but it seems that many of the details are necessarily different
and require new proofs. Note that we cannot use the argument of 1, since at a
crucial point, namely before (1.26), we used the equal conclusion axiom (1.2.2), which
is not valid when an "undefined" element is present. (However, see Lemma 2.18.)

The set of terms T/(+/-) formed from the countably infinite set V of "variables",
the constant symbol +/- and the symbol r (of rank 4) is defined in the standard way.
Again, for convenience, the notation Ix, y, u, v is used in place of (x, y, u, v).

DEFINITION 2.1. For all a, b, c, x, y, z, u, v, w in T/(+/-), the following equations
belong to Ax(+/-).

VARIETIES OF "IF-THEN-ELSE" 691

(Z-axioms):

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)

(2.1.7)

[_1_, y, u, v] +/-,

[x,y,+/-,+/-]+/-,

[x,x,x,+/-]x,

[x,x,u,v][x,x,u,+/-],

Ix, y, u, u l--Ix, x, [y, y, u, +/-], +/-],

[x, y, u, v]--[x, y, u, Ix, x, v, +/-]].

The "common axioms", i.e., each of the axioms (1.2.3)-(1.2.9), with the
present meaning of the letters x, y, , etc. (i.e. premise commutativity,
conclusion replacement, premise replacement, the redundancy axioms,
premise interchange and simplification).

We list some useful corollaries of these axioms.
PROPOSITION 2.2. For all x, y, z, a, a l, a2, b, c, ta, t4 in T+(+/-) the following

equations are provable (in standard equational logic) from Ax (l).

(2.2.1) (positive conclusion insertion)

[x, y, [u, v, a, b], c][x, y, [u, v, [x, y, a, z], b], c],

(2.2.2) (negative conclusion insertion)

[x, y, [u, v, a, b], c][x, y, [u, v, a, [x, y, b, z]], c],

(2.2.3) (positive alternative insertion)

[x, y, a, [u, v, b, c]] [x, y, a, [u, v, [x, y, z, b], c]],

(2.2.4) (negative alternative insertion)

[x, y, a, [u, v, b, c]] [x, y, a, [u, v, b, [x, y, z, c]]],

(2.2.5) (dual of (2.1.6))

[x, y, u, v]--[x, y, [x, x, u, +/-], v],

(2.2.6) (positive transitivity)

[x, u, [y, v, [u, v, t3, t4], a2], a 1] Ix, u, [y, v, [u, v, [x, y, t3, a], t4], a2], a 1],

(2.2.7) (negative transitivity)

[x, u, a 1, [y, v, [u, v, t3, t4], a2]] [X, U, a 1, [Y, v, [u, v, [x, y, a, t3], t4], a2]].

Proof. We will prove only (2.2.1), (2.2.2) and (2.2.7).
Proof of (2.2.1). For any a in T/(+/-),

Ax (1) - [x, y, [u, v, a, b], c] [x, y, [x, y, [u, v, a, b], [u, v, a, b]], c]

by the positive redundancy axiom. Let L denote the left-hand tree, and apply premise
interchange to the right-hand tree.

Ax (1) -L [x, y, [u, v, [x, y, a, a], [x, y, b, b]], c].

692 STEPHEN L. BLOOM AND RALPH TINDELL

Now let a be the tree Ix, y, a, z], and apply the positive and negative redundancy
axioms"

Ax (_L)L [x, y, [u, v, Ix, y, ct, z], Ix, y, b, b]], c].

Lastly, again use the premise interchange and positive redundancy axioms.

(2.3) Ax (_1_)L =Ix, y, [u, v, a, b], c].

Remembering that a in L is Ix, y, a, z], we may rewrite (2.3) as

(2.4) Ax (l) [x, y, [u, v, [x, y, a, z], b], c].[x, y, [u, v, a, b], c];

i.e. (2.2.1) is proved. (In essence, this argument is used in [10] to simplify McCarthy’s
axioms [9].)

The assertion (2.2.2) is proved using (2.2.1).
Proof of (2.2.2). By (2.2.1), we have

(2.5) Ax (_t_) [x, y, [u, v, a, Ix, y, b, z]], c]-[x, y, [u, v, Ix, y, a, z], [x, y, b, z]], c].

Then (2.2.2) follows from using the premise interchange and the redundancy axioms
on the right-hand tree.

Assertion (2.2.3) is proved similarly to (2.2.1), and (2.2.4) follows from (2.2.3)
in the same way that (2.2.2) follows from (2.2.1). Using the premise replacement and
positive redundancy axioms, we may easily prove (2.2.5).

The two assertions (2.2.6) and (2.2.7) are proved in a similar way, and we prove
only the later one.

Proof of (2.2.7). First we observe that by positive alternative insertion, for any
a T+(_l_)

(2.6) Ax (.L) Ix, u, al, Iv, y, ct, a2]] -Ix, u, al, Iv, y, Ix, u, a3, a], a2]].

Also, by the same axiom,

(2.7) Ax (_1_)-IX, U, a3, [U, 3, t3, t4]] Ix, u, a3, [u, 2, Ix, u, a, t3], t4]].

Now apply (2.6) when a is [u, v, t3, t4]:

(2.8)

and by (2.7),

(2.9)

Ax (_t.) Ix, u, a 1, Iv, y, [u, v, t3, t4], a2]]

[x, u, al, [v, y, [x, u, a3, [u, v, t3, t4]], a2]],

Ax (_t_) Ix, u, a 1, [v, y, [u, v, t3, t4], az]]

[x, u, al, [9, y, Ix, u, a3, [u, v, Ix, u, a, t3], t4]], az]].

By several uses of premise replacement,

(2.10)
Ax (_t_)-Ix, u, a 1, Iv, y, Ix, u, a3, [u, v, [x, u, a, t3], t4]], a2]]

Ix, u, a 1, [v, y, [x, u, a3, [u,/), [X, y, a, t3], t4]], a2]].

Again, using positive alternative insertion, the right-hand term in (2.10) is provably
equal to Ix, u, a 1, [v, y, [u, v, Ix, y, a, t3],/4], a2]], completing the proof.

Using the premise-simplification axiom, we may henceforth assume that every
term in T/(_L) is a simple-premise term; i.e. for every subterm of of the form
K (x, y, u, v), there is no occurrence of K in x or y. We identify simple-premise terms

VARIETIES OF "IF-THEN-ELSE" 693

in T+(+/-) with those partial functions

t: [4]* --> V U {to, +/-}

having a finite nonempty prefix-closed domain such that, for all t, [4]*, if t,t to, then
t,it is defined for each [4]; if t,t V U{_I_} then t,it is not defined for any [4];
furthermore, if t,t r, then t,it V U {+/-} for 1 and 2. As before, for x, y in V U {+/-},
we write Ix, y, t3, t4] for the term (or "tree") such that, At r, It x, 2t =y and
it,t t,6, 3, 4, t, [4]*.

We may make one further preliminary simplification.
DEFINITOr 2.11. A tree t in T+(+/-) is a total premise tree if for every subterm

IX, y, t3, t4] Of t, neither x nor y is the symbol +/-.

PROPOSITION 2.12. For every in T+(+/-), there is a (simple and) total premise tree
t’ such that

Axtt’.

The proof is immediate from the axioms (2.1.1) and premise commutativity.
For total premise trees t, we may define the sets $(t,, t) as before.
DEFINiTiON 2.13. Suppose is a total premise tree and t, {3, 4}* is a nonpremise

vertex of t. Then

S(A, t)= ;
if t, i/x, and Ix, y, t3, t4], then

S(3, t) {x y} I,.J S(/z, t3),

S(4/x, t)={xy}JS(lx, t4).

We now define the appropriate version of Path (h, t).
DEFINITION 2.14. Let be a total premise tree and let A K+(+/-). Suppose

h T+(+/-)A is a homomorphism. Then Path (h, t) is an element of {3, 4, +/-}* defined
as follows:

if At is in V LI {+/-}, Path (h, t) A
if is Ix, y, t3, t4] then

Path (h, t)= {i if xh or yh is +/-; otherwise
Path (h, t3) if xh yh,
Path (h, t4) if xh rs yh.

For example, if u,v,a,b,c V and uhrS+/-, vh=+/-, then when is
[u, u, [u, v, a, b], c], Path (h, t)= 3+/-.

Remark 2.15. Let be a total premise tree and let A K/(+/-). Suppose that
h’T/(+/-)-->A is a homomorphism. If v =Path (h,t), then th, the value of h on t, is
(vt)h if , {3, 4}* (i.e. v does not end with the symbol +/-) and is +/- otherwise.

Remark 2.16. For any homomorphism h" T/(Z)A, A K/(+/-) and any total
premise tree t, h will satisfy each signed equation in $(v, t) iff v is a prefix of Path (h, t).

Let c be a signed equation between variables in V, say a is x =y or x # y. Then
we let var(a)={x,y}. If X is a set of such signed equations, let varX=
Ll(var (c)" a X).

DEFINITION 2.17. Suppose , is a nonpremise node of the total premise tree t.
The set D(t,, t) (of variables defined on the path to t,) is defined by

D(t,, t)= var S(,, t).

694 STEPHEN L. BLOOM AND RALPH TINDELL

The following two facts play the role of the insertion lemma of 1. The meaning
of t and t(u/t’) is the same here as in 1.

EQUAL PREMISE INSERTION LEMMA 2.18. Let be a total premise tree and let u
be a nonpremise node of t. If x is any variable in D(u, t), then

Ax (3_) t(u/[x, x, t, 1]).

DISTINCT PREMISE INSERTION LEMMA 2.19. Let t, v be as in Lemma 2.18. Let x
and y be distinct variables. Then

if S(v, t)x y, then Ax (+/-)b-tt(v/[x, y, tv, a])

and

if S(u, t)xy, then Ax (+/-)-t=t(u/[x, y, a, t])

where a is a variable distinct from x, y which does not occur in t.
The meaning of X a, where X is a set of signed equations between variables

and a is some signed equation, is as before: Xa if for any A K(+/-) and any
function h: V A, h satisfies a whenever h satisfies every element of X. (Here the
element _1_ plays no role.) The reason for making a distinction between the cases "x
and y" and "x and y are distinct" is the following. For any set X of signed equations,
and any variable x, X x x. However, if is the total premise tree [u, v, a, b and
x does not occur in t, then S(h,t)=fxx but it is not true that t=[x,x,t, ,1,].

We again postpone the proofs of the insertion lemmas. First we derive some
corollaries of these lemmas, including the completeness of Ax (,1,).

Note that we may reinterpret the insertion lemmas as "deletion lemmas" in
certain cases. In the notation of Lemma 2.18, if tv is the tree [x, y, t3, t4] and either x
and y are distinct or x D(u, t) and S(u, t)x y, then Ax (+/-)-t-t(u/t3). Similarly,
if S(u, t)x y, then Ax (.+/-)- t(u/t4).

DEFINITION 2.20. Let be a total premise tree and suppose u is a nonpremise
vertex of t. Then u is accessible in T if u is a prefix of Path (h, t) for some homomorph-
ism h: T+(+/-)-A, A K+(+/-). The tree is accessible if every nonpremise vertex of

is accessible.
DEFINITION 2.21. Let u be a nonpremise node of the total premise tree t. We

say u is sufficiently accessible if u =/.t 4, for some accessible nonpremise node/x of
and t, has the form [x, x, t3, _1_], for some t3 and some variable x not in D(I, t) (in
particular, the label of u is _1_). The tree is sufficiently accessible if every nonpremise
vertex of is either accessible or sufficiently accessible.

The following fact follows from the two insertion lemmas.
PROPOSITION 2.22. For any t T+(,1,) there is a sufficiently accessible (simple-)

total-premise tree t’ such that

Ax (+/-)- t’.

Proof. Let be a fixed total premise tree. Let u be an inaccessible nonpremise
vertex of shortest length. Then u ti for some {3, 4} and tx {3, 4}*. Write t, as
Ix, y, t3, t4]. There are three possibilities:

(P1) x=y;
(P2) x and y are distinct and u 3 (so S (tx, t) g x y);
(P3) x and y are distinct and u =/x 4 (so S(t, t) g x y).

In the case (P1), u is necessarily 4 (since tz and hence ix3 are accessible). First we
apply axiom 2.1.4 to remove t4: Axe-Ix, x, t3, t4][x,x, t3, ,1,]. Now, either x D(t, t)
or not. If not, there is nothing left to do. If x D(, t), let t’= t(tz/t3). Then, by the

VARIETIES OF "IF-THEN-ELSE" 695

equal premise insertion lemma,

Axe- t’ t(/[x, x, t3, 2-]).

Thus, we have shown how to remove from one inaccessible vertex violating Definition
2.21.

In cases (P2) and (P3) we argue as in 1 to show how, using the insertion lemma
2.19, at least one inaccessible vertex is removable from t. By induction on the number
of such vertices, the proof is complete.

We now describe a construction analogous to that of ’t in 1. Let , v l, ’,

be any finite sequence of variables. Let b be a variable not occurring in . We define
ra to be the total premise tree

’ Iv1, vl, [v2, v2, , [v,, v,,, b, 2-], 2-], ., 2_].

Thus, in the case m 2,

[v, v, [v2, v2, b, +/-], +/-].

When rn 0, ’a is just the variable b.
Let/r be any finite sequence of the form (1.19) (where now each a is an equation

s s between variables in V). Then ’;t was defined in (1.21).
Lastly, given A and M as above, we write za.;t for the tree obtained from - by

replacing the variable b by-. For example, if 7 v 1, vz and/r is (s s 3), (s2 s 4),
then

"r,,Kt E)l,)1, Et2, v2, Es1, s, Es2, s2, a2, b], al],/], _1_].

With u defined as in (1.22) and with u defined as the vertex 3" 33 3 (m times,
when A has length m) we note that the variable b in za, is the label of uzu. We
write zz,,(t) instead of zz,.(vv/t), the result of replacing b by in zzx,Kt.

For any finite set A of variables, an arrangement of A is any finite sequence z
listing, perhaps with repetitions, all of the elements of A.

Let A be a finite set of variables and let M be a finite set of signed equations
between variables. For terms t, t’ in T+(2-), we write

(2.23) A,Mt t’

if for every A e K+(2-) and every homomorphism h" T+(2-)A, th t’h whenever
vh 2_, all v A and h satisfies each signed equation in M.

The following theorem plays the role of Theorem 1.23 in this context.
THEOREM 2.24. Suppose that A is a finite set of variables and M is anite set of

signed equations between variables. Let and t’ be total premise trees. Let A and 1 be
any arrangements of A andMrespectively. If

(2.25) A,Mt t’

then

(2.26) Ax (2-) z,;t(t) ’,;t(t’).

Note that when A andM are both empty, Theorem 2.24 reduces to the complete-
ness theorem for Ax (2-). The proof of Theorem 2.24 is by induction on the number
of occurrences of in t. Since the basis step is very similar to that of Theorem 1.23,
we will give only the:

696 STEPHEN L. BLOOM AND RALPH TINDELL

Proof of the induction step. Write t as lx, y, t3, t4]. First we will show why (2.25)
implies that

(2.27) Ax (_L) t’ Ix, y, t, t
for some total-premise trees t and t.

Let v be any accessible nonpremise leaf of zL(t’) of the form vavv’, where v’
is a leaf of t’. Suppose the label of v is z. We claim that both x and y belong to
X D(v, ’a.;t(t’))LI {z}. Indeed suppose that x doesn’t belong to X. Since v is access-
ible, there is some homomorphism h:T/(_L)-->A, AK/(_L) such that v=
Path (h, -.(t’)). We may further assume that vh # _L for every v X. Let h’ agree
with h except perhaps on the variable x, and let xh’ _L. Then both h and h’ satisfy
A LA M, since vvt is an initial segment of v; and t’h t’h’= zh, by construction. But
th’-" Ix, y, t3, t4]h’= _L, since xh’ A_. This contradicts the hypothesis (2.25).

Now, by the equal premise insertion lemma,

Ax (_L) z.;t(t’) rL(t’)(v/[x, x, [y, y, z, _t_], _1_]).

But, by axiom (2.1.5)

Ax (_1_) -- [x, x, [y, y, z, _1_], _t_] Ix, y, z, z].

Thus, we have shown that any accessible nonpremise leaf of t’ in ’L(t’) labeled z
may be replaced by Ix, y, z, z]. Any inaccessible nonpremise leaf of t’ in zL;t(t’) is
labeled _L, since -.(t’) is sufficiently accessible. By axiom (2.1.2),

Ax (_L) _L Ix, y, _L, _L].

Hence we rriay now assume that every nonpremise leaf v of t’ in za,(t’) has been
replaced by Ix, y, z, z], where z is the label of v. We now apply the axiom of premise
interchange as often as necessary to show

Ax (_1_)-- ’L(t’) zL(t"),

where t"= Ix, y, t, t], for some t, t.
The proof from this stage is short. We must show that z.[x, y, t3, t4]

’A.[x, y, t, t is provable from Ax (_L), assuming

(2.28)

Now (2.28) implies that

(2.29)

and

(2.30)

A,M[x, y, t3, t4] - Ix, y, t, t].

AU{x, y}, M U{x y}t3t

(2.31)

and

(2.32) Ax (_1_) zxl._ (t4) ’,x1.2 (t).

Now, by the insertion lemmas,

(2.33) Ax (_J_) b-- "r,r[X, y, t3, t4] "r.[x, y, 7"$i,q (t3), "rx,Kt (t4)].

Ax (.1_)-’,, (t3) ’,,1 (t)

Let AI=ALA{x,y}, Ml=Mt.J{x=y}, M2=ML.J{x#y}. Then, by the induction
hypothesis.

AU{x, y},MU{x#y}t4t’4.

VARIETIES OF "’IF-THEN-ELSE" 697

The same statement is true with t replacing ti, 3, 4. Hence,

(2.34) Ax (+/-) -a,[x, y, t, t4] ,,[x, y, t,],

completing the proof.
To complete this section, we prove the insertion lemmas.
EQUAL PREMISE INSERTION LEMMA. Let be a total premise tree and let t, be a

nonprernise node oft. fix is a variable in D(t,, t), then Ax (+/-) tt(t,/[x,x, tv, +/-]).
Proof. By induction on I 1, When I 1- 0, t) is empty, so there is nothing to

prove. Now assume that t, is/zi, for some/z {3, 4}*, and some {3, 4}. Write t, as
[U, t, ta, t4].

Case 1. x D (Ix, t). By the induction hypothesis,

(2.35) Ax (+/-) t(tx/[x, x, [u, v, t3, t4], +/-]),

if is 3, by (2.2.1),

(2.36) Ax (+/-) t(tx/[x, x, [u, v, Ix, x, t3, +/-], t4], +/-]),

and by the induction assumption (in its "deletion" version), the right-hand tree in
(2.36) is provably equal to t(l/[u, v, Ix, x, t3, +/-], t4]), which is t(u/[x, x, tv, +/-]) when
, =/x3. When =4, we use negative conclusion insertion (2.2.2) in place of (2.1.1),
and argue in the same way.

Case 2. xD(iz, t). In this case either u or v is x. We may assume, by the axiom
of premise commutativity that u is x, so that t, is [x, v, t3, t4].

First suppose , =/z 3. Then, by (2.2.5),

(2.37) Ax (+/-) t(lx/[x, v, Ix, x, t3, +/-], t4]).

When u is/z4, we use axiom (2.1.6) to show

(2.38) Ax (+/-)-t =t(lx/[x, v, t3, Ix, x, t4, +/-]]).

But both (2.37) and (2.38) show Ax (+/-) t(t,/[x, x, t, +/-]), completing the proof.
DISTINCT PREMISE INSERTION LEMMA. Let x and y be distinct variables and let

t, t, be as in Lemma 2.18. If
S(t,,t)x y, then Ax (+/-)t=t(t,/[x, y, t, a])

and if
S(u, t)x#y, then Ax (+/-)t =t(v/[x, y, a, t])

where a is a variable distinct from x and y not occurring in t.

Proof. We argue as we did for the insertion lemma in 1. Let P(n) denote the
statement:

(2.39)
For all variables x, y, for all total premise trees t, for all t, {3, 4}*, if It’l n
and if , is a nonpremise node of and if x and y are distinct variables
such that $(t,, t)x y, then Ax (+/-)tt(t,/[x, y, t, a]).

Let Q(n) be the statement obtained from P(n) by replacing "x y" by "x y" and
"Ix, y, t, a]" by "Ix, y, a, t]". Again we prove P(n) and Q(n) for all nonnegative
integers n by induction on n.

Basis step. n =0. In this case, since $(t,, t)= and x and y are distinct, it is
impossible that $(,, t) x y or $(,, t) x y. Indeed, when x and y are distinct, if
S(,, t) is consistent and either S(,, t) x y or S(,, t) x y, then both x and y belong
to D(,, t) (see the Appendix, A.4(ii)). Thus both P(0) and Q(0) are vacuously true.

698 STEPHEN L. BLOOM AND RALPH TINDELL

Induction step. Assume P(n) and Q(n). First we prove P(n + 1). Thus suppose
/zi, where/x {3, 4}*, {3, 4} and t, is [u, v, t3, t4].
Case A. $(/z, t) x y. Then, by the assumption P(n),

Ax (_1_) t(lz/[x, y, [u, v, t3, t4], a]).

Then, we use either (2.2.1) (if v tz3) or (2.2.2) (if u tz4) to show, for 3 or =4:

(2.40) Ax (_L)- t(tz/[x, y, t,, (i/[x, y, ti, a’]), a]),

where a and a’ are distinct new variables. But again by the assumption P(n), the
right-hand tree in (2.40) is provably equal to t(u/[x, y, t,, a’]), completing the proof
of Case A.

Case B. S(tx, t)x y, but S(v, t)x y.
Subcase 1. v =tx3, so that S(v, t)=S(, t){u v}.

There are two possibilities. Either S(v, t) is inconsistent (in which case S(, t) u # v)
or not. If so, we argue exactly as in Case B, Subcase 1.1 in the proof of Lemma 1.14,
using Q(n). Otherwise, as is proved in the Appendix,

S(tz, t)xu and S(,t)#y

(or "y u" and "x v" follow from S(tx, t)). By the induction assumption P(n),

(2.41) Ax (_t_) t(l/[x, u, [y, v, l’u, v, t3, t4], az], all).

We now apply positive transitivity (2.2.6), to show

(2.42) Ax (_1_)- t(t/[x, u, [y, v, [u, v, Ix, y, t3, a], t4], az], a 1]).

But, again assuming P(n), the right-hand tree in (2.42) is provably equal to
t(l/[u, v, [x, y, t3, a], t4]), completing the proof of Subcase 1.

Subcase 2. v is ix4, so that S(v, t)= S(/x, t)LJ{uv}. There are two possibilities.
Either S(u,t) is inconsistent (in which case S(ix, t)u=v) or not. If so, we argue
similarly to the above. If not, S(Ix, t)x -y, contradicting the hypothesis of Case B.
This completes the proof of P(n + 1).

Proof of Q(n + 1). We are assuming v-/zi is a nonpremise node of such that
S(v,t)x#y.

Case A. S(/, t)x# y. This is similar to Case A of P(n + 1). We omit the details.
Case B. S(I, t)#:x#y, but S(v, t)x#y.
Subcase 1. v =/3, so S(v, t) S(l, t) 3{u v}. If S(v, t) is inconsistent, we argue

in the usual way. Otherwise, as is shown in the Appendix A.5, (up to a notational
permutation)

(2.43) S(t,t)x#u and S(,t)yv.

Then, by the assumptions Q(n) and P(n),

(2.44) Ax (_1_)- t(lz/[x, u, a 1, [y, v, [u, v, t3, t4], a2]]).

By negative transitivity (2.2.7),

(2.45) Ax (_l_)-tt(ix/[x, u, al, [y, v, [u, v, [x, y, a, ta], t4], a2]]).

Again, assuming P(n) and Q(n), the right-hand tree in (2.45) is provably equal to
t(v/[x, y, a, t3]), completing the proof of Subcase 1.

Subcase 2. u =/x4: so $(u, t)= S(/z, t)t.J{uv}. We will omit the usual argument
for the case that S(v, t) is inconsistent. Assuming $(u, t) is consistent, then, as shown

699

(T-axioms)

(3.2.2) IT, X, y X,

(3.2.:3) [p, p, X][p, T, X].

(Common axioms)

(3.2.4) (premise interchange)

[p, [q, x, y], [q, u, v]] [q, [p, x, u], [p, y, v]],

(3.2.5) (positive redundancy)

[p,[p,x,y],z][p,x,z],

(3.2.6) (negative redundancy)

[p, x, [p, y, z]] [p, x, z],

(3.2.7) (premise simplification)

[[p, x, y], u, v][p, [x, u, v], [y, u, v]].

[p,x,x].x;

VARIETIES OF "IF-THEN-ELSE"

in the Appendix A.4 (up to a notational permutation)

(2.46) S(g,t)xu and S(g,t)v=y.
Thus, by the induction assumption P(n)

Ax (_L)F- t(g/[x, u, [y, v, [u, v, t3, t4], a2], a]).

But one may prove similarly to the proof of (2.2.5) that

Ax (+/-) [x, u, [y, v, [u, v, t3, t4], a2],ax]
(2.47)

[x, u, [y, v, [u, v, t3, [x, y, a, t4]], a2], a].

The rest of the argument is clear, and is omitted. The proof of Q(n + 1) and hence
the lemma is complete.

3. Axiomatization of the class K(3). An algebra (A, , T) belongs to K)
iff T is a distinguished element of A, and :A3-->A is a function which satisfies the
following condition: for all p, x, y in A

(3.1) r,(p,x, y)= {x if P "-T
y if p#T.

Thus if p is "true", (p, x, y) is x, and is y otherwise.
We let T(3) denote the algebra of terms built from a countably infinite set V

of variables, the constant symbol T and the function symbol u. As usual, we identify
an element of T(3) with a partial function: this time a partial function t:[3]*->
VU{T, to} (see the Preliminaries). We write "[tl, t2, t3]" instead of "(tx, t2, t3)" for
the partial function satisfying:

h[tl, tz, t3]= K: ig[tl, tz, t3]= txti, [3], g E[3]*.

The equations valid in K (3) will be axiomatized by the following set of equations.
DEFINITION 3.2. Ax (3) consists of the following equations, for all p, q, x, y, z in

r(3):
(3.2.1) (equal conclusion)

700 STEPHEN L. BLOOM AND RALPH TINDELL

DEFINITION 3.3. A tree is a simple premise tree if whenever ut K, then tl V,
i.e. any subterm of t of the form It1, rE, t3] has the property that t is a variable.

PROPOSITION 3.4. For any in T(3) there is a simple premise tree t’ in T(3)
such that Ax (3)- t’.

This fact follows easily using axioms (3.2.2) and (3.2.7).
DEFINITION 3.5. Let A K(3) and suppose that h" T(3)->A is a homomorph-

ism. Further, let be a simple premise tree. Then Path (h, t) is the following word in
{2, 3}*"

if V [O {T}, Path (h, t)
if [p, t2, ta], then

]’ 2 Path (h, t2) if ph T,
Path (h, t)

3 Path (h, t3) if ph T.

Remark 3.6. Let be a simple-premise tree and h" T(3)A, A K(3) a
homomorphism. Then if v Path (h, t), th (vt)h.

DEFINITION 3.7. Let be a simple-premise tree and let v be a nonpremise vertex
of (i.e. v {2, 3}* and vt is defined). Say v is accessible if v is an initial segment of
Path (h, t), for some homomorphism h" T(3)A and some A K(3). The tree
itself is accessible if every nonpremise vertex of is accessible.

We want to show every simple tree is provably equal to an accessible simple tree.
In order to do so, we need to prove an appropriate insertion lemma. We need the
following definitions’

Let V be a set in bijective correspondence with, but disjoint from the set of
variables V. We write for the element of V corresponding to v V. Let L V [O V;
the elements of L will be called "literals".

A truth function is a function h" L {0, 1} such that for all v V,

Oh 1 vh

i.e., if vh 0, Oh 1 and if vh 1, h O.
If a L and h is a truth function, say h satisfies a if ah 1.
Let X L and a L. We write

if for every truth function h, ah 1 whenever h satisfies every member of X.
For each simple premise tree and each nonpremise vertex v in t, we define a

set S(v, t) of literals as follows"
DEFINITION 3.8. If V A, S(h, t) ;
if [p, t2, t3], and u i,/z {2, 3}*,

S(u, t)= {p}t_JS(/z, t2) if 2,
t{p}US(/z, t3) if 3.

In the present context, a useful version of the insertion lemma is given in Lemma
3.9. The fact that only the "common axioms" are involved enables us to use this
lemma in the next section as well.

INSERTION LEMMA 3.9 FOR K(3). Suppose that v is a nonpremise vertex of the
simple premise tree and let p V. If S(u, t)p (respectively, S(u, t)/) then C-t
t(u/[p, t, a]) (respectively, C-t t(/[p, a, tv])) where Cis the set of "common axioms"
(3.2.4)-(3.2.7) and where a is a variable distinct from p and which does not occur in t.

Proof. Before beginning the proof, which proceeds by induction on lul as in 1
and 2, we note that S(u, t) p (or p) iff S(u, t) is inconsistent orp (or/) belongs to S(u, t).

VARIETIES OF "IF-THEN-ELSE" 701

Basis step. [v[=0. Since S(A, t) is empty, the hypothesis S(u, t)p (or/) is false,
so there is nothing to prove.

Induction step. Suppose v is txi, for tz {2, 3}*, 2 or 3 and let t, have the form
[q, tz, t3]. We give the argument only for the case $(u, t)p, since the case S(u,
is entirely similar.

Case A. S(tx, t)p. By the induction hypothesis. Ctt(l/[p, [q, tz, t3], a]).
Now we show that for all p, q, t2, t3, a in T(3).

(3.9.1) C [p, [q, tz, t3], a] [p, [q, [p, t2, a], t3], a]

and

(3.9.2) C [p, [q, t2, t3], a] [p, [q, t2, [p, t3, a]], a].

We will give the argument for (3.9.1) as a pseudo-equational deduction, writing the
justification for each inference on the right.

[p, [q, tz, t3], a]= [p, [p, [q, tz, t3], [q, a, t3]], a] (3.2.5)

-[p, [q, [p, tz, a], [p, t3, t3]], a] (3.2.4)

[p, [q, [p, [p, tz, a], [p, tz, a]], [p, t3, t3]], a] (3.2.5)

[p, [p, [q, [p, tz, a], t3], [q, [p, tz, a], t3]], a] (3.2.4)

[p, [q, [p, tz, a], t3], a] (3.2.5)

which completes the proof of (3.9.1). The proof of (3.9.2) uses (3.9.1):

[p, [q, t2, [p, t3, a]], a] [p, [q, [p, tz, a], [p, t3, a]], a]

[p, [p, [q, tz, t3], [q, a, a]], a]

[p, [q, t2, t3], a]

Now, using (3.9.1), we have that

(3.9.1)

(3.2.4)

(3.2.5).

C t(tx/[p, [q, [p, tz, a], t3], a])

and, thus by the induction hypothesis, C t(tx/[q, [p, tz, a], t3]); i.e. when u is ix2,
C - t t(u/[p, tz, a]). The case u 3 uses (3.9.2).

Case B. S(, t)p, but $(t,, t)p.
Case 1. $(u,t) is inconsistent. When u is tz2, S(tz, t)t. In this case,

by the induction hypothesis, C t(tz/[q, a, [q, t2, t3]]). Thus, C -t(tx/[q, a, [q, [p, tz, a], t3]]), using the axiom of negative redundancy. So when u is Ix2,
we have shown Ctt(u/[p, tz, a]). The case u is tz3 is similar, since S(tz, t)q.

Case 2. $(u,t) is consistent. Then if S(u,t)p, p belongs to $(u,t). Since
$(tz, t)p, the variable p must be the variable q. So that C-[p, t2, t3] [p, [p, t2, a], t3]
and C [p, tz, t3] [p, tz, [p, a, t3]] by the redundancy axioms. This completes the
proof.

We now obtain several useful corollaries of the insertion lemma.
COROtLAR" 3.10. For every simple premise tree in T(3) there is an accessible

simple premise tree t’ such that C t’.
The proof of Corollary 3.10 is similar to the corresponding result in the previous

section.
A "p-subtree" of a tree in T(3) is a subtree of of the form [p, u, v], for

some u, v in T(3).

702 STEPHEN L. BLOOM AND RALPH TINDELL

COROLLARY 3.11. Let u be a nonpremise node of the accessible simple premise
tree in T(3) and suppose S(u, t)a, where a is p or ,]’or p V. Then t has no
p-subtrees. In particular, if is [p, rE, t3], then neither t2 nor t3 have any p-subtrees.

The proof of Corollary 3.11 uses the insertion lemma to show that if t contains
a p-subtree, then would contain an inaccessible nonpremise vertex.

We may slightly refine one aspect of Corollary 3.11.
COROLLARY 3.12. With u, t, p as in 3.11, if S(u, t)p, then C +(T-axioms)-t

t(v/t’), where t’ contains no eaf labeled p. In particular, if is [p, tE, t3], C+
(T-axioms) - tip, t, t3], where t has no occurrence of p.

Proof. Let uu’ be a leaf of t labeled p. By Corollary 3.11, we know uu’ is a
nonpremise leaf. Then S(uu’, t)p, so that C-t=t(uv’/[p, t,, a]). But t, is p and,
so, by Axiom (3.2.3), C/(T-axioms)tt(vu’/[p,T,a]). Thus, by the insertion
lemma, C + (T-axioms)- t(uu’/T). This shows how to replace any occurrence of p
in t by T. By induction on the number of such occurrences, the proof is complete.

For t,t’ in T(3), we writet=t’ if for all AK(3) and all homomorphisms
h: T(3)A, th t’h. It should be clear that t’ whenever Ax (3)-t t’. Before
proving the converse, we need some further facts.

PROPOSITION 3.13. Suppose is an accessible simple premise tree of the form
[p, rE, t3]./f T, then t T, for 2, 3.

Proof. First we show tET. Let h: T(3)-A, A K(3) be a homomorphism.
Then, since p does not occur in rE, t2h tEh =[p, rE, ta]h =T, SO that tE-T.
(h- is the homomorphism agreeing with h on all variables # p; pher --T.)

Next, in order to obtain a contradiction, suppose h is some homomorphism such
that tah # T. Let u Path (h, t3) and z ,t3. Since neither p nor p occurs in S(u, t3),
there is a homomorphism h’ such that ph’= zh’ , and for all v V such that either
v or g is in S(v, t3), vh’ T if[vh T.

But then

[p, t2, ta]h ’= t3h’ (since ph’ # T)

zh’ (since h’ satisfies S(v, t3))

contradicting the assumption that [p, tz,/’3] T.
PROPOSn’XON 3.14. Suppose that [p, t2, t3] [p, t2, 3], where t, , are simple

premise trees in T(3). Then t tl, 2, 3.
Proof. By Corollaries 3.11 and 3.12 we may assume that neither/’2 nor t contain

any occurrence of p, and neither t3 nor t contain any p-subtrees. Then, for any
homomorphism h’ T(3)-A, A K(3),

t2h t2h(r [p, t2, t3]h [p, t., t’3]her 12"t h pT th,

showing that t2 t.
We prove t3 t by contradiction. If t3h # th for some homomorphism h, let

v Path (h, t3), t,’ Path (h, t), and let z vt3, z’ =/ t3. One of {z, z’} is not T,
say z. Since neither p nor i occurs in S(v, t)t.JS(v’, t’), there is a homomorphism h’
such that

(a) Path (h’, t) Path (h, t) and Path (h’, t Path (h, t),
(b) ph’ YTY zh’ z’h’.

But then it easily follows that

[p, t2, ta]h’ [p, t’2, t’3]h’

VARIETIES OF "IF-THEN-ELSE" 703

contradicting the hypothesis that

[p, t2, t3] [p, t, t].

Thus Proposition 3.14 is proved.
We may now prove the
COMPLETENESS THEOREM: If t’, then Ax (3) t’.
Proof. By induction on K(t), the number of occurrences of K in t. If (t)= 0, then

is T or a variable. When is T, if (t’) 0, t’ =T, SO Ax (3) t’ trivially. If x(t’) >0,
write t’ as t’= [p, t, t]. Then, by Proposition 3.13,Ttl, 2, 3. By the induction
hypothesis, Ax(3)Tt’i, i=2,3, so that AX(3)t’[p,T,T]. Using the equal-
conclusion axiom, Ax (3)-t’ =T, i.e. Ax (3) t’.

Now assume is a variable, say =p. If (t’)= 0 then clearly t’ =p also. Hence
assume K(t’)>0. Since Ax(3)-t’=[p,t’,t’], we may assume that t’ has the form
[p, t.,t’3]. But since p[p, T,p], we have [p, T,p][p, t., t’3]. Thus, by 3.14,
’r=t and p =t. By the above and the induction hypothesis, Ax (3)Tt and
Ax (3)p t. Hence Ax (3)[p, t’2, t’3][p, T, p]. The basis step is completed by
(3.2.3).

Now assume is Ip, t2, t3]. Again, we may assume t’ is [p, t, t]. Thus, by
Proposition 3.14, ti t, 2, 3. Hence, by the induction hypothesis, Ax (3)- ti t
and hence Ax (3)- t’, completing the proof.

Remark 3.15. Let A3 be a three-element algebra in K(3). (Any two such
algebras are isomorphic.) Then for all t,t’ in T(3), tt’ iff for all h:T(3)A3,
th t’h. Note that in any two-element algebra A2 in K(3), the following equation
is true"

[p, a, [q, a, q]] [p, a, [q, a, p]].

But this equation is not valid in K (3).

4. Axiomatization of the class K(3; 3-). This class is a modification of the class
K(3). An algebra (A, , T, F, 3-) belongs to K(3; _1_) iff T, F, and _L are distinguished

A3constants in the set A, and ’ -,A is a function which satisfies

(4.1) i
if p =W,

(p, x, y) if p F,

otherwise.

Here 3- models "undefined", T and F model "true" and "false" respectively.
Note that if A K(3; 3_) and either T F or T _1_ or F 3-, then A is a singleton

set.
We let T(3; T) denote the algebra of terms built from the countably infinite set

V, the constant symbols T, F and _t_, and the function symbol . As before, we write
[p, x, y] instead of K(p, x, y), and identify elements of T(3; 3-) with certain partial
functions t: [3]* V I..J {T, F, 3-, }.

The equations valid in K (3; 3-) will be axiomatized by the set of axioms Ax (3; 3_)
below. Note that Ax (3; 3_) is obtained by adding to the T-axioms and common axioms
in Ax (3) only axioms which involve the new constant symbols F and 3-. Further we
must necessarily delete the equal conclusion axiom [p, x, x x, which is clearly not
valid in K(3; 3-). Thus the argument used to prove the completeness theorem in the
previous section cannot be used.

704 STEPHEN L. BLOOM AND RALPH TINDELL

DEFINITION 4.2. Ax (3; +/-) consists of the following equations, for all p, x, y in
T(3; +/-)

(4.2.1) (the w-axioms): (3.2.2) and (3.2.3).
(the v-axioms)
(4.2.2) [v, x, y]= y,
(4.2.3) [p, x, pl= [p, x, v].
(the _L-axioms)
(4.2.4) [+/-,x, y]+/-,
(4.2.5) [p, _1_, +/-] _t_,
(4.2.6) (the common axioms), (3.2.4)-(3.2.7).
Of co/arse, when using an axiom in Ax (3) as an axiom in Ax (3; +/-), e.g. [p, p, x]=

[p, "r, x], we assume that the letters p, x, etc. range over T(3; +/-), not just T___(.
A tree in T(3; +/-) is a simple premise tree if whenever ut , for u in [3]*, then

v It V. The proof of Fact 4.3 uses the premise reduction and the T-, F- and +/--axioms.

FACT 4.3. For any in T(3; +/-) there is a simple premise tree t’ such that
Ax (3; .+/-)tt’.

For nonpremise nodes u of a simple premise tree in T(3; +/-), the set S(v, t) of
literals is defined here exactly as in Definition 3.8. We may make use of the insertion
lemma 3.9, since C, the set of common axioms, is a subset of Ax (3; +/-).

We must define Path (h, t), for a homomorphism h T(3; +/-) A, A K(3; +/-) and
in T(3; +/-), slightly differently from Definition 3.5, since ph need not be T or r in

A, for some variables p.
DEFINITION 4.4. Let h: T(3; +/-) A, A K(3; +/-), be a homomorphism and sup-

pose is a simple premise tree in T(3; +/-). Path (h, t) is the following word in {2, 3, +/-}*:

(4.4.1) if is in V LI {T, F, +/-),

Path (h, t) A, the empty word.

(4.4.2) if is [p, t2, tD] then
2 Path (h, t2) if ph T,

Path (h, t)= 3 Path (h, tD) if ph F,

+/- otherwise.

The definition of an accessible (nonpremise vertex of a) simple premise tree is
formally the same as Definition 3.7, even though Path (h, t) may end with the
symbol +/-.

PROPOSITION 4.5. For every simple premise tree in T(3; +/-) there is an accessible
simple premise tree t’ in T(3; +/-) such that Ax (3; .+/-) t’.

The proof is the same as that of Corollary 3.10. In fact, we may use "C" in place
of "Ax (3; +/-)" in the statement of Proposition 4.5, where C denotes the set of common
axioms. However, we will not need this refinement.

We now state a proposition which combines Corollaries 3.11, 3.12 and one
additional fact. First, it is convenient to introduce some terminology.

DEFINITION 4.6. Let .be a simple premise tree in T(3; +/-). We say is reduced
if is accessible and whenever t has a subtree of the form [p, t2, l’3] then the variable
p is not the label of any leaf of t2 or tD.

PROPOSITION 4.7. For any simple premise tree there is a reduced tree t’ such that
Ax (3; _t_) t’.

Proof. By Corollaries 3.11 and 3.12, it is necessary to show only that p may be
eliminated from nonpremise leaves of tD, in any accessible tree of the form [p, t2, tD].
But this fact is proved using the F-axioms and the insertion lemma 3.9.

VARIETIES OF ’IF-THEN-ELSE’" 705

The following fact plays an important part in the proof of the completeness
theorem.

PROPOSITION 4.8. Let [p, tE, t3] and [q,t’2, t’3] be reduced trees such that
[p, rE,/’3] [q, t, t]. Then if p is distinct from q, either p or belongs to S (v, t), for

each nonpremise leaf v of t, 2, 3.
Proof. Suppose v is a nonpremise leaf of t, say, such that neither p nor/ occurs

in S(u, t.) Let z ut, the label of u in t’2. Assume z is a variable. Since [q, t., t is
reduced, neither z, q, nor occurs in $(v, t) either. Thus there is a homomorphism
h: T(3; +/-) A4, where A4 is a four element algebra in K (3; +/-), A4 {T, F, +/-, a0} such
that ph zh ao, qh T and Path (h, tz) u. But then +/- [p, rE, t3]h [q, t, t]h
t’Eh zh ao, contradicting the hypothesis.

The cases when z is a constant symbol, or when v is a nonpremise leaf in t are
handled similarly. The proof is complete.

We will now prove the
COMPLETENESS THEOREM. Let t, t’ be trees in T(3; +/-), such that t- t’. Then

Ax (3; +/-)-tt’.
Proof. By induction on It], the number of vertices in/‘. First, by Proposition 4.7,

we may assume that and t’ are reduced.
Now if Itl 1 and/‘ is a variable, or one of the constants : or F, then the only

reduced tree t’ satisfying /‘ t’ is/‘ itself. (This fact is easily proved by induction on
It’l.) Thus in these cases, there is nothing to prove. If is the constant +/- and It’l 1,
then t’ is also +/-. Now if t’ is [q, t, t and +/- [q, t, t then +/- t, 2, 3. So,
by induction in It’l, Ax (3; +/-) - +/- tl and hence Ax (3; +/-) t’ [q, +/-, +/-]. The proof
of this case is completed by the Z-axiom (4.2.5).

Now suppose t is [p, t2, t3] and t’ is [q, t, t]. (We may clearly assume It’] > 1.)
First assume p is q. Then ti tl, 2, 3. Indeed, when 2 (the case 3 is

entirely similar), for any homomorphism h: T(3; +/-) A, A K(3; +/-),

tEh tEh (since [p, rE, t3] is reduced)

-[p, t2, t3]h p

[p, t, t]h- (since [p, t2, t3] [p, t, t])

th th (since [p, t, t] is reduced).

Now assume p and q are distinct. By Proposition 4.8, either p or/ occurs in
S(u, tl) for every nonpremise leaf u in tl, 2, 3. Hence, by the insertion lemma 3.9,
if z is the label of such a leaf, we may replace z by a tree of the form [p, z, zE]. Then
we apply the premise interchange axiom sufficiently many times to the resulting tree,
so that Ax (3; +/-)-[q, t, t’a][p, t, t], for some t’,tg. We may now apply the first
argument to deduce Ax (3; +/-)-t t’ in this case, completing the induction step and
the proof of the theorem.

Remark 4.9. Let A4 be a four-element algebra in K (3; +/-). Then, for any t, t’ in
T(3; +/-), t’ iff for all homomorphisms h T(3; +/-) A4, th t’h.

Appendix. Some facts about the logic of signed equations. Let E be a ranked
alphabet. A positive E-equation (respectively, a negative E-equation) is an expression
of the form t’ (respectively, t t’), for t, t’ in T, the set of E-terms. A signed
E-equation is either a positive or negative E-equation.

If A is a E-algebra and h:T.A is a homomorphism, we say h satisfies the
equation t-/‘’ if th -t’h, and h satisfies t t’ otherwise. A signed equation c is true
in A if every homomorphism T-,A satisfies ct.

706 STEPHEN L. BLOOM AND RALPH TINDELL

Let Ms. denote the set of all signed E-equations. For S
_
Ms., a Ms., we write

if for every E-algebra A, a is true in A whenever each signed equation in S is true
in A. We will write

if for every homomorphism h’ Ts.--> A, h satisfies a whenever h satisfies every element
of S.

A set S
_

Mrs. is -inconsistent (respectively -inconsistent) if S x x, (respec-
tively S x x) for some variable x. Clearly, if S x x, then S x x, and more
generally,

(A.1) ifS then S.
For S ___Ms., S+ denotes the set of positive equations in S, and S---S- S+.

THEOREM A2. Suppose S
_
Ms., t, t’ Ts..

i) If S is -consistent and S t’, then S+ t’.
ii) The same as (i), with in place o]
Proof sketch. (i) Define the relation on Ts. as follows" for s, s’ in Ts., s---s’

if S+ s s’. Then is a congruence relation on Ts. and since S is -consistent, each
signed equation in S is true in the quotient algebra Tz/--. Thus t’ must be true
in Ts./.--, so in particular t--t’; i.e. S/ t’.

The proof of (ii) is similar.
THEOREM A.3. Suppose S

_
Ms., t, t’ Tz.

i) IfS t’, there is one negative equation s s’ in S such thatS+ [.J {s = s’}t t’.
ii) Same as i), with in place of
Proof of (i). Suppose that for each negative equation n in S-, S+[.J{n}-tt’.

Then there is some E-algebra A, such that S/LJ {n } is true in A, but t’ is not, true
in A,. Let A FI(An" n S-). It is easily seen that S is true in A, but t t’ is not true
in A, contradicting the assumption that S t’.

The proof of (ii) is similar.
The remaining theorems treat the case that E is empty, so that Ts. is just V, the

set of variables and a Z-algebra is just a nonempty set. We write M instead of Ms.
in this case. Since the relation is rather uninteresting when E , we consider
only .

Given a subset S of M, let G(S) denote the following labeled undirected graph.
The vertices of G(S) are the elements of V.
For each positive equation x y in S, there is an edge between x and y labeled

0); for each negative equation x -y in S there is an edge between x and y labeled
There are no other edges in G(S).

Call G(S) inconsistent iff there is a cycle in G(S) containing exactly one edge
labeled .

THEOREM A.4. i) S is -inconsistent iff G (S) is inconsistent.
ii) I]: S is -consistent, then S x -y iff x =y or there is a path in G(S) between

x and y all ol whose edges are labeled
iii) If S is -consistent, then S x = y if[there is a path in G(S) between x and y

with exactly one edge labeled .
Proof sketch. (i) Clearly if G(S) is inconsistent, so is S. Now suppose G(S) is

consistent. We show there is a set A and a function h" V-A such that h satisfies
each signed equation in S, showing S is -consistent.

VARIETIES OF "’IF-THEN-ELSE" 707

Define the relation on V by: v ---v’ iff v v’ or there is a path in G(S) between
v and v’ all of whose edges are labeled 09. Then clearly is an equivalence relation
on V, and if x y $, x y. Also, if x y $, it cannot happen that x y, or else G(S)
will be inconsistent. Hence, we may let h be the canonical map u -v/- from V to
A V/a, and h will satisfy $.

The proof of (ii) is similar.
The fact that S x y if there is a path with exactly one edge labeled) between

x and y is clear. So suppose, in order to prove the converse that S is -consistent,
and Sx#y. Let $1 be SlJ{x y}. G(SI) differs from G(S) in that there is one new
edge, labeled @, between x and y. Since S is -inconsistent, so is G(Sl), by (i). But
then there must be a path between x and y containing exactly one edge labeled @,
completing the proof.

COROLLARYA.5. SupposeS M,x, y, u, v V.IfSxCy, butSt.J{u v}xqy,
then if S {u v } is consistent, S x u and S y v (or S x u and S y v).

This fact follows from Theorem A.4iii).

Acknowledgments. The authors are grateful to Irene Guessarian who carefully
read a draft of this paper and corrected a large number of misprints and minor errors.
The referees also provided helpful comments and suggestions, and found some further
mistakes. Each of us will assure you that any remaining errors are the fault of the
other.

REFERENCES

A. ARNOLD, Semantique algebrique de l’appelpar valeur, Theoret. Comput. Sci., 12 (1978), pp. 69-82.
[2] J. W. BACKUS, Can programming be liberatedfrom the yon Neumann style ?, Comm. ACM, 21 (1978),

pp. 613-639.
[3] S. L. BLOOM AND R. TINDELL, Compatible orderings on the metric theory of trees, this Journal, 11

(1980), pp. 683-691.
[4] B. COURCELLE, Infinite trees in normal form and recursion equations having a unique solution, Math.

Systems Theory, 13 (1979), pp. 131-180.
[5] B. COURCELLE AND M. NIVAT, Algebraic families ofinterpretations, 17th Symposium on Foundations

of Computer Science, Houston, Texas, 1976.
[6] G. COUSINEAU AND M. NIVAT, On rational expressions representing infinite rational trees: applications

to the study offlowcharts, manuscript.
[7] S. CORN, Explicit definitions and linguistic dominoes, Systems and Computer Science, J. Hart and

S. Takasu, eds., Univ. Toronto Press, Toronto, 1965.
[8] Z. MANNA AND J. VUILLEMIN, Fixpoint approach to the theory of computation, Comm. ACM, 15

(1972), pp. 528-536.
[9] J. MCCARTHY, A basis for a mathematical theory of computation, in Computer Programming and

Formal Systems, Braffort and Hirschberg, eds., North-Holland, Amsterdam, 1963.
[10] H. SAMET, A canonical form algorithm for proving equivalence of conditional forms, Inform. Proc.

Letters, 7 (1978), pp. 103-106.
[11] R. SETHI, Conditional expressions with equality tests, J. Assoc. Comput. Mach., 25 (1978), pp. 667-674.
[12] E. WAGNER, J. THATCHER AND J. WRIGHT, Programming languages as mathematical objects, Proc.

Math. Found. Comp. Sci. 1978, Lecture Notes in Computer Science 64, Springer-Verlag, New
York, 1978, pp. 84-101.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

983 Society for Industrial and Applied Mathematics

0097-5397/83/1204-0008 $01.25/0

ON THE SPACE AND TIME COMPLEXITY OF FUNCTIONS COMPUTABLE
BY SIMPLE PROGRAMS*

TAT-HUNG CHAN AND OSCAR H. IBARRA

Abstract. We study the space and time complexity of functions computable by simple loop-free
programs operating on integers. In particular, we show that any function f(xl,"’, x,) computable by a
program using only comparison-based conditional forward branching instructions and the arithmetic
operations +, -, and truncating division by integer constants (such programs compute exactly the functions
definable in Presburger arithmetic) can be computed by an off-line Turing machine in space s(n) and time
n2/s(n) for any reasonable space bound s(n) between log n and n. Moreover, the space-time trade-off is
optimal.

Key words, space complexity, time complexity, loop-free programs

1. Introduction. Space-efficient algorithms for some specific problems are known.
For example, we know that context-free languages are recognizable on an off-line
Turing machine in space O(log2 n) [14]. For deterministic context-free languages, a
space-time trade-off with s(n) for space and n2/s(n) for time for any reasonable
log2 n <=s(n)<= n is known [15] (see also [3]). Algorithms of space complexity O(log n)
and O(log2 n) for some matrix and graph problems can be found in [12]. Our results,
which concern functions computable by simple loop-free programs, are similar in
nature. The classes of programs we consider are the following:

K --Set of all programs over integer inputs (Z) using only constructs of the form
x 0, x x + 1, x y + z, x y z, x *-- y/k, skip l, if x 0 then skip 1, if
x > 0 then skip l, halt. (Here, k is a positive integer and x/k denotes integer
division with truncationS; is a nonnegative integer and skip causes the
(l + 1)st instruction following the current instruction to be executed next.)

K+ Similar to the class K except that x y -z is replaced by x y z (proper
subtraction2), and the inputs range over N, the set of nonnegative integers.

L --Add to the constructs in K nonscalar multiplication and division, i.e.,
x ,- y. z and x .- y/z.

M ---Add to the constructs in L the instruction x l’], where k denotes a
positive integer constant.

Each program has a distinguished set of input variables and one output variable. By
convention, the value of the output variable is undefined on inputs which cause the
program to divide by 0 or compute the kth-root of a negative number.

Notation. For a class C of programs, (C) denotes the class of functions compu-
table by programs in C. For a positive integer i, C(i) denotes the programs in C with
exactly input variables (but with an unrestricted number of intermediate variables).

Let P be the set of all Presburger functions over the integers (i.e., functions over
the integers definable in Presburger arithmetic) and P/ be the set of all Presburger
functions over the nonnegative integers. Then the following theorem follows from
results in [10].

* Received by the editors October 27, 1981, and in revised form October 11, 1982.
t Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.
Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455. The

research of this author was supported in part by National Science Foundation grant MCS8102853.

e.g., 5/2 2, -5/2 -2.
y z y -z if y => z, 0 otherwise.

708

FUNCTIONS COMPUTABLE BY SIMPLE PROGRAMS 709

THEOREM 1.1. ;(K) P and ;(K/) P/.
In 2-4, we shall investigate the space and time complexity of functions in

(K), (L(1)), (L), and (M). The model of computation is a (deterministic)
two-way transducer. Its finite-state control is attached to a two-way read-only input
tape (with endmarkers), a one-way write-only output tape, and a two-way read-write
work tape (Fig. 1). See [9] for a formal definition.

finite-state
control

work tape

input

output

FIG. 1. A two-way transducer.

A function f(x,..., Xk) over the integers is computable in space s(n) if there is a
two-way transducer which when given any input x # xa # Xk, each xi in binary (with
sign attached), outputs f(x,..., Xk) in binary using at most s(n) cells on its work
tape. The time complexity t(n) is defined similarly. By convention, on inputs for which
f is undefined, the transducer goes into an infinite loop.

2. The class .(K).
THEOREM 2.1. Every function in r(K) can be computed by a two-way transducer

simultaneously in space s(n) and time t(n)= nE/s(n) for any s(n) such that
(1) logn <-s(n)<-_n,
(2) s(n) is constructible simultaneously in s(n) space and nE/s(n) time. (See [9]

for a definition of constructible.)
Moreover, the time complexity n2/s(n) is optimal in s(n) space, and the log n lower
bound for the space complexity is also optimal in that there are functions in ;(K) not
computable in asymptotically smaller space.

Proof. We first consider the class (K/). By Theorem 1.1, (K+) -P+ equals
the class of Presburger functions (over N). Let f: Nk -N be a function in P/. Hence
the graph of f, i.e., the set {(xl,’’’ ,Xk, Xk+I)[f(X,’’" ,Xk)=Xk/}, is a semilinear set
[5], say

V o + Y tv t >- O
i= /=1

k+lwhere vN Following the strategy of [6], we can compute f as follows. Given
x,...,x eN, find an ie{1,... ,m} and t,...,t,N such that x,...,x are the

ri t])first k components of w v0 +Y.j__ j. Then f(x,..., Xk) is the last component of
w. This process involves trying, for each i, to solve a diophantine system (in the
nonnegative integer variables tl..., tr,). The efficient solution of such a system
depends on the following result from [7].

Let A37 b be a system of linear equations, where A is an m x n integral matrix,
37 (y,..., y,)T is a column vector of variables, and/7= (b,..., b,)T is an integral

710 TAT-HUNG CHAN AND OSCAR H. IBARRA

column vector. Let r -< m be the rank of A. Denote by the maximum of the absolute
values of all r r subdeterminants of A. If the system has a nonnegative integral
solution, then it has a nonnegative integral solution (31, , 3n)7" such that for some
set of indicesL {11, ., lr}

_
{1,..., n }, 3i < for each L. Moreover, the submatrix

formed by columns lx,. ., lr of A is nonsingular (i.e., it has rank r).
Thus with the semilinear graph is associated a finite set of nonsingular systems

each of which arises by "predetermining" some of the ti’s. For each (x 1, , xk)T

Nk, one need only try each such system to see if the remaining ti’s are solvable in
nonnegative integers. By definition, we know that this will happen with at least one
system, and the solution tx,..., t, is used to compute the last component of the
corresponding vector V o +.= tv to yield the desired function value f(x,..., xk).

The solution of each of the nonsingular systems can be effected by applying
Cram6r’s rule to a square nonsingular subsystem. Thus each "nonpredctcrmincd" t
can be written as

ar,y,- b,z, + c
(1) t A

where yp, zq are components of 2, ap, bq and A are positive integers, and c is an
integer. Here ap, b and A depend only on the vectors defining the underlying linear
set, whereas c depends on the predetermined ti’s as well. However, the ti’s so obtained
constitute a solution if and only if they are nonnegative integers which also satisfy
any rows that were deleted to obtain the square nonsingular subsystem.

As a first step, for each ti to be solved, we need to check that the value given by
(1) is a nonnegative integer. The integrality test takes linear time and no auxiliary
spacema finite automaton scanning the input once and computing mod A suffices. To
test nonnegativity, assume that the machine has laid out s(n) cells for use on the work
tape at the start of the computation. Then the machine can generate successive
segments of s(n) bits of aoy and b,z on its work tape (with c or -c added to
the appropriate sum) and compare them, proceeding from low-order bits to high-order
bits. Thus for the/th segment, the machine copies bits (i- 1)s (n) to i. s (n)- 1 of the
arguments yo, z, onto its work tape, and then in one pass (using carries from the
(i- 1)st segments and any relevant bits from c) compute bits (i- 1)s (n) to s (n)- 1
of the two sums. Using the result of the comparisons of the first (i- 1) segments, the
machine can decide how the first segments compare, and it has also generated the
carries into the (i + 1)st segments of the sums.

We now analyze the space and time requirements of the nonnegativity tests.
Because the coefficients are all independent of the input, the carries are bounded by
a constant depending only on f and hence can be stored in finite memory. Also, since
s(n) >= log n, there is enough space to maintain binary pointers to input positions. This
pointer is 0 to begin with. Inductively, after the ith segments have been processed, it
has value i. s(n). Starting from bit 0 of an input argument, the input head moves to
the next more significant bit for each decrement of 1 from the binary count. By the
analysis in [4], it takes 2i. s(n) Turing machine steps to decrement the binary count
from i. s(n) to 0. Then the machine copies the next s(n) bits onto the work tape,
and the input head is on bit (i + 1)s(n) of the argument. At this point, the binary
count (i + 1)s(n) can be generated on the work tape by moving the input head back
to bit 0 while incrementing an initially zero binary count; this takes 2(i + 1)s(n) time.
The same process is used to copy the (i + 1)st segments of all relevant arguments onto
the work tape, and since the input has length n and + 1 _-< [n/s(n)], it takes O(n)
time to position the input head, copy the bits and generate the binary count (i + 1)s(n)

FUNCTIONS COMPUTABLE BY SIMPLE PROGRAMS 711

on the work tape. The subsequent additions and comparison take O(s(n))<=O(n)
time. Hence one segment requires O(n) time. Since there are altogether O(n/s(n))
segments, it takes O(n2/s(n)) time to test each system of equations (1).

Having found a system whose chosen square subsystem yields nonnegati.ve integral
i’s, we then have to check that the ti’s (including the predetermined ones) in fact also
satisfy the m -r equations that were deleted in forming the square subsystem. If these
equations are satisfied then we know we have the right system from which to generate
the function value. Both steps involve computing nonnegative affine combinations of
the i’s, the results then being compared with appropriate input arguments or written
on the output tape.

We shall again carry out the computations in segments of s(n) bits. Since we
already saw how to copy successive segments of the input arguments onto the work
tape using O(n) time for each segment, we shall concentrate on the computation of
aftine combinations of t’s. Clearly if we can compute and write down the successive
segments of the t’s on the work tape then it is an easy matter to compute the
corresponding segments of the affine combinations. The computation of the t’s differ
from the nonnegativity test in only one respect--we need to perform subtractions and
scalar divisions. Subtractions can be performed in segments in much the same way as
additions. Examining the long division of a binary number x by a divisor d, we see
that to obtain the least significant bits of the quotient, we need not only the least
significant bits of x but also the remainder [x/21j mod d. Fortunately, for a fixed
divisor d, this remainder can be obtained by a finite automaton computation.

Hence to obtain the ith segment of some t., we first compute the ith segment of
the numerator u in (1); this computation is the same as the nonnegativity test described
above, except that comparisons are replaced by subtractions. At the same time, the
remainders of [yp/2i’s] and [Zq/2i’s] mod A can be obtained in the same scan of
the input arguments. These are combined with c to form [u/2i’(n] mod A. Using this
information, the machine can compute the ith segment of u/A on the work tape from
high-order to low-order bits. This division takes s (n) time, which is dominated by the
linear time used to compute the ith segment of the numerator and the remainder of
[u/2;’] mod A. The ith segment of the affine combination of t’s is then generated
by additions of the ith segments of the t’s and the carry (of bounded size) from the
(i-1)st segment, while the carry into the (i + 1)st segment is also generated. This
again takes O(s(n)) time. The result can then be compared against a segment of an
input argument already copied onto the work tape or written out from low-order to
high-order bits as appropriate. In either case, one segment takes O(n) time, and the
total time is O(n2/s(n)) as before.

To suppress the output of "leading zeroes", the machine can go through the
computation of the answer twice. The first time through no output is written; instead
the last nonzero segment, i.e., the highest order segment that is not all zeroes, is
determined. The second time through the segments up to the last nonzero segment
(without its leading zeroes) are written out. The time complexity is not affected.

The time complexity n2/s(n) for computing P/ is optimal in s(n) space. To see
this, we note that the recognition of the language

E ={w # w: w {0, 1}*}
is essentially the computation of the 0-1 Presburger function

f(x, y) (10 ifx y,
otherwise.

712 TAT-HUNG CHAN AND OSCAR H. IBARRA

If the 2-way transducer can compute f simultaneously in s(n) space and t(n) time,
then we can easily construct a 1-tape Turing machine M that recognizes E in time
t(n)s(n). Since E requires O(n 2) time for recognition by a 1-tape Turing machine
(see [9]), we must have t(n)s(n >= n 2, i.e., t(n >= n2/s(n). Furthermore, the recognition
of E by a 2-tape Turing machine (which can be viewed as a 2-way transducer that
gives only 0-1 outputs) requires log n space, so the log n lower bound for s (n) is also
optimal for the entire class P/.

The above results can be extended to P. A program over Z with variables
xl,"’", xv can be simulated by a program over N with variables x 1, x 1,"’, x x
t/, t-. Here it is intended that at appropriate corresponding points in the two programs,
xi x x with at least one of x, x being zero. Instructions are simulated as follows:

xy+z

xy-z

+

t+<--y++z +

t<-y+z
+ +

X "--t-
x-<._t-._.t+

+ y+ + Z-
t- y + z +

+ +

x-t- .__t +

x x + 1 Similar to x y + z

x"y/k Y
-y-/k

skip skip I’
/

if x > 0 then skip 1
if x 0 then skip

if x- 0 then skip l’
/if x > 0 then skip if x > 0 then skip 1’

where l’= adjusted. An input of x. => 0 for x. in the original program is taken as an

input of x. for x; and 0 for x; in the equivalent program, whereas if j < 0 then the
inputs are 0 for x; and -x. for x-. If the output variable is xj in the original program
then a 2-way transducer can compute both x- and x}- using the equivalent K/

program, and output the appropriate value with the correct sign, being guaranteed
that at least one of x; and x }- is zero. The same complexity results hold.

Finally we remark that the problem is no easier if we compute the answer from
high-order to low-order bits. In this case, division is performed in the "natural"
direction but addition and subtraction are done in the "wrong" direction, and we are
again forced to "look ahead" to determine the carries or borrows from the lower-order
segments.

3. The class ." (L(1)). It is known that the sum, difference, and product of two
n-bit numbers can be computed in O(log n) space, and hence also in polynomial time.
For example, the following algorithm given in 12] computes the ruth bit of the product

FUNCTIONS COMPUTABLE BY SIMPLE PROGRAMS 713

of tWO n-bit numbers x and y (the algorithm can easily be implemented on a two-way
transducer in O(log n) space).

procedure Mult (x, y, m)
Ilreturns the ruth bit of x
carry 0
do col 0 to m

col; sum 0
do/" 0 to col
sum sum + x (i) y (f)
i-i-1

end
sum- sum / carry
carry - sum/2

end
return least-significant-bit-of (sum)

end

In the algorithm, x(i) and y(]) are the ith and/’th (least significant) bits of x and
y, respectively. For instance if x has n bits then the binary representation of x would
be x(n- 1),..., x(1), x(0). Before we discuss the bit-wise space requirement of this
algorithm we need the following notation.

Notation. s(x) will denote the amount of space needed to obtain a bit of x. If
w(x, x2,"’, x,) is an m-ary (m fixed) operation, then s(w) will denote the space
needed to obtain a bit of W(Xl,’’’, Xm) as a function of n maxl__<i__<m {[xi[}, where Xi
denotes the binary representation of xi (i.e., the input has O(n) bits).

For example, if we consider the binary operation of multiplication, it is clear
from an analysis of the previous algorithm that for O(n)-bit integers x and y,
s (x .y) clogn +max {s (x), s (y)} for some constant c. By including the space necessary
to obtain a bit of the input as part of the space needed to perform an operation we
are allowing the possibility of the operation being performed in the context of an
L-program. Similarly the space needed to add or subtract two O(n)-bit numbers x
and y is c log n + max {s(x), s(y)} as was shown in [12]. The next lemma considers the
composition of these operations for a function computable by an L-program that does
not contain a division instruction.

LEMMA 3.1. Any function with arguments x, .., Xk computable by an L-program
P that does not contain a division instruction (except those which are division by a
constant), can be computed in Cp log n + max_<i__<k {s(xi)} space where n max__<i_<_k {Ixil}
and Cp is a constant depending only on P.

Proof. It was noted earlier that the sum, difference, and product of two n-bit
numbers x, y can be computed in clogn + max {s(x), s(y)} space for some constant c.
It is also easy to show that the integer division of an n-bit number x by a constant k
can be computed in d log n + s (x) space where d is a constant (depending only on k).
We also observe that the predicates "if x 0 then skip l" and "if x > 0 then skip 1"
are easily simulated by a two-way transducer in c’ log n +s(x) space (provided of
course that x has O(n) bits). Since P is a loop-free program, O(n) bits are sufficient
to represent the value of any variable during the execution of P. The proof of the
lemma is now an easy induction on the length of P.

We do not know whether the quotient of two arbitrary n-bit numbers can be
computed in O(log n) space, although it is fairly well known that the quotient can be
obtained in O(log2 n) space. For functions computable by programs in L(1) (these

714 TAT-HUNG CHAN AND OSCAR H. IBARRA

are programs in L with one input variable), we can show that transducers need only
O(log n) space. The proof is based on the following lemma which was recently shown
in [11].

LEMMA 3.2. Let P be a program in L(1) and x be the input variable. Assume
without loss of generality that x does not appear on the left-hand side of any instruction
in P. Let y be any variable in P (possibly x). We can effectively construct finite sets Z
and S(y) whose elements are of the form T and (p(x), T), respectively, where T is a

finite set of pairs (m, n) of integers with 0 <= m < n and p (x is a polynomial in x with
rational coefficients, such that]:or some computable positive integer d the following holds.

Let Xo be any input such that Xo >-d. Then
(1) A division by 0 occurs during the execution of the program if and only if there

is a T in Z such that Xo mod n m for all (m, n) in T.
(2) If the value of y is defined at the end of the program (i.e., no division by 0

occurs during the computation), then there is a unique element (p(x), T) in S(y) such
that Xo mod n m for all (m, n) in T, and the value of y is p (Xo).

From Lemmas 3.1 and 3.2, we have
THEOREM 3.1. Functions in ’(L(1)) are computable in O(log n) space and poly-

nomial time.
COROLLARY 3.1. Sums, differences, products, and quotients of polynomials in 1

variable with integer coefficients and compositions of these operations can be evaluated
in O(log n) space and polynomial time.

4. The classes .(L) and .’(M). It is fairly well known that integer division with
truncation can be computed in O(log2 n) space. To see this, suppose we wish to
compute x/y, where x has at most kn bits and y has exactly n _->2 bits. Let c be a
kn-bit approximation to the fraction 1/y. Then 4 [cr,xJ is a good approximation
to the quotient x/y, and 4 can be corrected slightly to obtain the correct quotient q
satisfying 0 <- x q.y < y.

The approximation a can be found using Newton’s method (see [1], [8], [13]).
Applying Newton’s formula

(Ti+ Ol
f’(oti

to the function f(v) 1/v -y yields the iteration formula ai+ 26i- ya 2 for obtaining
the (i + 1)st approximation to 1/y in terms of the ith approximation. The iteration
formula converges quadratically. Hence, the digits of a can be obtained in O(log n)
iterations. The iteration formula ai+ 2a ya 2 can now be used to write a recursive
procedure ALPHA (y, i,]) which computes the]th bit of Oi (see [1], [13] for similar
procedures). Note that y is global and only and] are passed from one level of
recursion to the next. The body of the procedure makes recursive calls of the form
ALPHA(y, i-1,]) and uses the routines for computing the digits of the sum,
difference, and product of numbers as discussed in 3. (Variables are used to store
the location of the binary point.) Clearly, the recursive procedure can be written so
that each variable occurring in the body of the program needs only O(log n) bits of
storage. Since the maximum depth of recursion is O(log n), the program can be
implemented on a Turing machine with a pushdown store of size O(log n O(log n)
O(log2 n).

It follows from the above discussion and Lemma 3.1 that the digits of tx and
therefore also of x/y can be computed in O(log2 n) space. Thus, functions in (L)
are computable in O(log2 n) space. This result can be generalized to functions compu-

FUNCTIONS COMPUTABLE BY SIMPLE PROGRAMS 715

table by programs which use instructions of the form x 1 3. To compute [yJ,
where k is a positive integer _>-2 and y is a positive integer with n _-> 2 bits, we first
compute an approximation a to 1/ using the iteration formula3

ai+l 1-b ai --ya
Clearly, the digits of a can be found in O(log2 n) space. Let /be an approximation
to 1/a. Then / can be obtained from a in O(log2 n) space.# The integral part ,5 of
/ is a good approximation to [/;1. As before,/ can be corrected slightly to obtain
the correct integer p such that p is the largest integer satisfying p k _<_ Y. We omit the
details.

THEOREM 4.1. Functions in ;(M) are computable in O(log2 n) space.
COROLLARY 4.1. For each positive integer k, let Ak {x k Ix in N}. (Thus, A2 is

the set of perfect squares.) Then Ak is recognizable by a deterministic Turing machine
in O(log2 n) space.

Open problems.
(1) Can x/y be computed in less than O(log2 n) space?
(2) Can A2 be recognized in less than O(log2 n) space?
Finally, we note that if time is the measure of complexity (instead of space), then

the operations of squaring, division, and finding kth roots are computationally time-
equivalent to multiplication [1], [2]. Hence, every function in (M) has time com-
plexity O(g(n)), where g(n) is the complexity of multiplication.

Acknowledgments. We would like to thank Janos Simon and Lou Rosier for
helpful comments concerning the results of the paper. We learned after submitting
the paper to this journal that a technique similar to the one we used for the class(M) has
also been used in [16] to show an O(log2 n) bound on the delay complexity of square
rooting in combinational logic circuits. We thank A1 Borodin for bringing this to our
attention.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] H. ALT, Functions equivalent to integer multiplication, Automata, Languages and Programming
Proceedings, J. de Bakker and J. van Leeuwen, eds. Lecture Notes in Computer Science, 85,
Springer, New York, 1980, pp. 30-37.

[3] S. A. CooK, Deterministic CFf_.’s are accepted simultaneously in polynomial time and log squared
space, Proc. 11th Annual ACM Symposium on Theory of Computing, 1979, pp. 338-345.

[4] P. C. FISCHER, A. R. MEYER AND A. L. ROSENBERG, Counter machines and counter languages,
Math. Systems Theory, 2 (1968), pp. 265-283.

[5] S. GINSBURG AND E. SPANIER, Semigroups, Presburger formulas, and languages, Pacific J. Math.,
16 (1966), pp. 285-296.

[6] E. M. GURARI AND O. H. IBARRA, The complexity ofthe equivalence problem for two characterizations
ofPresburger sets, Theoret. Comput. Sci., 13 (1981), pp. 295-314.

Obtained by applying Newton’s method to the function f(v)= 1/vk--y.
An approximation/ to x could be obtained directly using the formula

i+1 1- i-t k//_
However, this formula would require more than O(log n) space for computing the digits of /.

716 TAT-HUNG CHAN AND OSCAR H. IBARRA

[7],AnNP-complete number-theoretic problem, J. Assoc. Comput. Mach., 26 (1979), pp. 567-581.
[8] J. HARTMANIS AND J. SIMON, On the power of multiplication in random access machines, Proc. 15th

SWAT Symposium, 1974, pp. 13-23.
[9] J. E. HOPCROFTAND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, Reading, MA, 1979.
[10] O. H. IBARRA AND B. S. LEININGER, Characterizations of Presburger functions, this Journal, 10

(1981), pp. 22-39.
[11] --, Straight-line programs with one input variable, this Journal, 11 (1982), pp. 1-14.
[12] J. J/JA’ AND J. SIMON, Some space-efficient algorithms, Proc. 17th Allerton Conference, 1979, pp.

677-684.
[13] D. E. KNUTH, The Art of ComputerProgramming, Vol. 2: SeminumericalAlgorithms, Addison-Wesley,

Reading, MA, 1969.
[14] P. M. LEWIS, R. E. STEARNS AND J. HARTMANIS, Memory bounds for recognition of context-free

and context-sensitive languages, IEEE Conference on Recognition and Switching Theory, 1965,
pp. 191-202.

[15] B. YON BRAUNMOHL AND R. VERBEEK, A recognition algorithm for deterministic CFLs optimal in
time and space, IEEE 21st Annual Symposium on Foundations of Computer Science, 1980, pp.
411-420.

[16] H. YASUURA AND S. YAJIMA, Oft the delay complexity of square rooting in combinational logic
circuits, Tech. Rep. No. AL79-29, Institute of Electronics and Communication Engineering of"
Japan, 1979, pp. 27-35.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1204-0009 $01.25/0

AN ANALYSIS OF BACKTRACKING WITH SEARCH
REARRANGEMENT*

PAUL WALTON PURDOM, JR.+ AND CYNTHIA A. BROWN

Abstract. The search rearrangement backtracking algorithm of Bitner and Reingold [Comm. ACM,
18 (1975), pp. 651-655] introduces at each level of the backtrack tree a variable with a minimal number
of remaining values; search order may differ on different branches. For conjunctive normal form formulas
with v variables, literals per term (s =>3), and v terms ((s/2)<a <s), the average number of nodes in
a search rearrangement backtrack tree is exp [O(vS--l)/s-2))] (i.e., for some positive constants a l,

and Vo, when v---Vo the number of nodes is between exp (aivtS-c-l)/ls-2)) and exp (a--l)/(s-2)). For
< a <-s/2 the average number of nodes is between exp [(R)(v s--1)/(-2))] and

exp [(R)((In v)ts-l)/-2)v -,,-1)/-21)]. This compares with exp [(R)(v i-)/-11)] for ordinary backtracking.
For < c < s, simple search rearrangement has approximately the same effect on speeding up backtracking
as does reducing the problem complexity by decreasing the number of literals per term by one. Thus simple
search rearrangement backtracking leads to a dramatic improvement in the expected running time.

Key words, analysis of algorithms, average time analysis, backtracking, NP-complete, search algorithms

1. Introduction. Many problems can be regarded as a search for all the solutions
to an equation of the form P(xl,’"", x)= true, where P is a v-ary predicate over an
ordered set of variables S {x}l__<__<, and each xg has finitely many possible values.
A straightforward, but exponentially costly, way to solve such a problem is to generate
and test each combination of values of the variables. For most problems backtracking
can reduce the amount of time required to find the solutions.

To perform backtracking it is necessary to have, in addition to the problem
predicate P, an intermediate predicate PA for each subset A of S. The predicate PA
must have the value true for any assignment of values to the variables in A that can
be extended to a solution to P. An intermediate predicate is powerful if it is false for
most other assignments of values. Powerful intermediate predicates that can be
calculated efficiently eliminate false starts quickly, making backtracking feasible for
large problems.

In backtracking, each variable starting with the first is set to its initial value. As
each variable is set, the appropriate intermediate predicate is tested. If it is true, the
next variable is set. If it is false, the current variable is reset to its next value; if the
current variable has no more values, it is removed from the set of variables with
values, and the previous variable is set to its next value. Knuth [4] gives a good
introduction to backtracking.

Bitner and Reingold [1] consider a modification of backtracking which we call
(simple) search rearrangement backtracking. (For other modifications, see [6].)
Instead of setting the variables in a fixed order, the unset variables are tested at each
step to select one that produces the fewest true values for the corresponding intermedi-
ate predicate. Bitner and Reingold showed experimentally that this search rearrange-
ment process improves the efficiency of backtracking. In this paper we study search
rearrangement backtracking analytically, and compare its performance with that of
ordinary backtracking, which we analyzed in [2].

* Received by the editors December 23, 1980, and in final revised form September 23, 1982. This
research was supported in part by the National Science Foundation under grant MCS 79-06110.

Computer Science Department, Indiana University, Bloomington, Indiana 47405.
Computer Science Department, Indiana University, Bloomington, Indiana 47405 (on leave) and

GTE Laboratories, Waltham, Massachusetts 02254.

717

718 r,. W. PURDOM, JR. AND C. A. BROWN

2. Model and notation. To compare backtracking methods, we analyze their
average performance on the problem of finding all solutions to conjunctive normal
form formulas having terms and s literals per term over a set S of v variables.
Duplication is permitted in the terms for a predicate and in the literals within a term,
so there are (2v)st predicates in the set. For each predicate P and set of variables
A
_

S, the intermediate predicate P, is the conjunction of those terms of P for which
all the variables are in the set A. (If there are no such terms, then PA is by definition
true.) These intermediate predicates are natural and efficiently calculable. The set of
predicates is NP complete (for s => 3, > v, and v increasing), so some problems in
the set are hard. We find that the backtrack trees for most of the problems in this set
are similar to those encountered in realistic problems, and this set of problems is
suitable for analysis. We therefore believe these problems are a good model for our
study of backtracking.

For purposes of illustration we use the predicate E T ^ T2 ^ T3 ^" ^ TI,where T (v v Vl v v2), T2 (Vl v v v Vs), T3 (v v -v3 v v5), T4 (Vl v v_ v -v6),
T5 (vl v vl v v2), T6 (-q/)l V Vl V V2), T7 (7/21 V/)3 V/24), Ts (-v v v3 v vs),
T9 (--avx v v4 v -vs), To (-v v v3 v vs), and TI (-v v v4 v v6). Notice the
duplication in the literals within a clause (as in (v v v v v2)) and in the clauses in
the predicate (T5 T6). Intermediate predicate Etl.2.5 is T ^ T2 ^ T5 ^ T6; intermediate
predicate E(1.3 is the empty predicate, which is identically true.

Simple search rearrangement backtracking is done as follows. Let $’ be the set
of variables without values (the unset variables) and $" the set of variables with values.
Let w range over the problem variables; denote the value of problem variable w by
Value [w for 1 -<_ w =< v. The set $" is maintained as a stack.

SIMPLE SEARCH REARRANGEMENT.
Step 1. (Initialize.) Set S" to empty and S’ to $.

Step 2. (Solution?) If S’ is not empty, go to Step 3. Otherwise, the current values
in Value constitute a solution. Go to Step 6.

Step 3. (Find best variable.) For each variable w in S’ do the rest of this step.
(The order in which the variables are tested is immaterial for our pur-
poses.) For both Value [w false and Value [w true, compute Ps,,uw.
If the result is false in both cases, exit the loop for w and go to Step 6.
If it is false in one and true in the other, remember the value of w that
gives true and exit the loop for w and go to Step 5.

Step 4. (Binary node.) Let w be the smallest element of $’. Set $".-S"LI {w} and
$’.-$’-{w}. Set Value [w]*-false, mark w as binary, and go to Step 2.

Step 5. (Unary node.) Set Value [w] to the unique value that makes Ps,,Utw true.
(This value is remembered from Step 3.) Set S"S"I.A{w} and S’,-

S’-{w}. Mark w as unary, and go to Step 2.
Step 6. (Next value.) If S" is empty, stop. Otherwise, set w -top (S"). If w is

marked as binary and Value [w] false, set Value [w] true and go to
Step 2.

Step 7. (Backtrack.) Set S" - S"-{w}, S’ S’t.J{w}, and go to Step 6.

Figure 1 shows the backtrack tree obtained by applying the simple search rear-
rangement algorithm to E, with the convention that unset variables are tested in
numerical order according to their subscripts. Initially, no variables are set. The first
time Step 3 is executed it does not find a variable with zero or one values, so in Step
4 vl is selected and set to its first value (false). Returning to Step 3 by way of Step
2, testing E{1,2} T1 ^ T5 ^ T6 shows that setting/32 to true makes the predicate false.

BACKTRACKING WITH SEARCH REARRANGEMENT 719

Vl

false true

(To)

solution solution solution

FIG. 1. The backtrack tree obtained by applying a simple search rearrangement backtrack algorithm to
predicate E. Each interior node is labelled with the name of the variable that is set at that node. At nodes
where a variable is forced to take on a particular value, the clause or clauses that cause the forcing are shown
in parentheses. At the leaf nodes where a variable with no values is discovered, the clauses that eliminate
both values are shown.

Therefore /)2 is selected and set to false in Step 5. In a similar way, vs, /)3, and/)6 are
forced to assume the value false. The only remaining variable, v4, is not constrained
and so is not selected in Step 3; it is selected as a binary variable in Step 4, leading
to two solutions. The remainder of the backtrack tree is produced in a similar way.

We will concentrate on the number of binary nodes in the average search
rearrangement backtrack tree. Let N, be the number of binary nodes in the backtrack
tree for predicate P. The total number of nodes in the tree is between Nt, and
(2v 1)Nv. Assuming that for each A _S, PA can be evaluated in constant time, the
total running time of the algorithm is between cN, and c2/)2N, for some constants
c and c2. We compute N, the average value of N1,. The average values for both the
total number of nodes and the total running time are N times some polynomially
bounded function of/).

In [3] we give the results of a statistical study of the ratio of the number of binary
nodes to the number of unary nodes and to the number of predicate evaluations.

3. The average number of binary nodes. We now derive an exact formula for
N, the average number of binary nodes. The exact formula has an exponential number
of terms, so we also derive upper and lower limits with a polynomial number of terms.

Our method is to consider each possible binary node and to count the predicates
that have that node in their backtrack trees. Summing over all binary nodes and
dividing by the number of predicates ((2v)st) gives the average number of binary
nodes in a tree.

We begin by counting the predicates for which a particular variable w occurs as
a binary node with all the other variables in S’ set to false. (Later we multiply by an
appropriate factor to allow for other settings of the variables.) For this to occur, the
algorithm must reach Step 4 with every variable less than w set to false, with the
value of w unconstrained, and with none, some, or all of the variables greater than
w set to false. Any variable y > w which is set to false must have been set in Step 5"

720 P.W. PURDOM, JR. AND C. A. BROWN

it must have been forced to assume the value false by a clause made up of literals
with truth value false, the literal y, and nothing else. The variables less than w may
have been forced to false in Step 5 or may correspond to a binary node where the
false branch is being explored; the step at which these variables received their values
does not affect the analysis.

Let qo equal the number of variables that precede w (recall that they are all set
to false). Let q equal qo plus the number of variables whose values are forced to
false when just the first qo variables are set. Let qi be qi-1 plus the number of variables
whose values are forced to false by the qi-1 variables. Let m (0 <= rn < v) be the smallest
value of such that qi+l qi. We call rn the number of rounds of forcing.

To illustrate, consider the binary node for v4 on the left branch of the backtrack
tree in Fig. 1. Variables vl, vz, and v3 precede v4 in the ordered set of variables, so
qo 3. With these variables set to false, v5 is forced to false by T2 and v6 is forced
to false by T4. Thus ql 5. Setting v5 and v6 to false does not force any more variables,
so m 1. (A second round of forcing would have occurred if the predicate had
contained a term such as (v v v6 v-VT).) Notice that the rounds of forcing used in
the analyses do not necessarily correspond to the order in which variables are set by
the algorithm. They are a device to facilitate counting the predicates that have a
particular binary node. The analysis starts with the assumption that a node such as
v4 is binary and counts the number of ways in which this can happen.

Assume that the variables forced during rounds 1 through m are consecutive
variables. (We later multiply by a factor to account for the number of ways of choosing
these variables.) For the rest of this section let the variables be renumbered so that
the variable for the binary node is qo, so that the forced variables start with qo + 1.
Recall that each predicate in the class we are considering has clauses. For purposes
of counting we divide these clauses into two classes. Given rn and q0, ql, ’, q,, the
predicate must contain clauses that force the variables from qo + 1 to q,,, to the value
false. We call these required clauses. For 1 -< _-< m and 1 _-<x -< qi-qi-1, let jix -> 1 be
the number of clauses that force variable qi-1 / x to false, given only that the first
qi-1 variables are set to false. Notice that for (i, x) (i’, x’) the clauses counted by ji
are disjoint from those counted by/’,x,.

Remaining clauses in the predicate are called permitted clauses. Permitted clauses
are any clauses other than required clauses that are compatible with the assumptions
we make about the node we are considering. Whether a clause is permitted or required
depends on the binary node being considered. The same clause might be a permitted
clause for one node and a required clause for another. In predicate E, when v is set
to false and w =/)4 the variables/)2, /)3, /)5 and/)6 are forced. Since v2 and/)3 precede
v4 we do not care whether they were forced or set, and so the clauses that force them
are not required clauses. Variable v5 is forced by T2, and v6 by T4, so/’11 1 and
/’12 1. The rest of the clauses are permitted clauses.

The initial counting arguments are summarized in Table 1. First consider the
required clauses for round of forcing. Variable qi-1 +x (1 <-x <=qi-qi-1) is forced
to false by clauses containing some of the first qi-1 variables, all unnegated, and the
negated literal for the forced variable. Since clauses containing only the first qi-1
variables (and not the forced variable) are not suitable, there are Qi_l
(qi-1 + 1) qi_l such clauses. The Qi-2 of these that contain only the first qi-2 variables
and the forced variable are also unsuitable, since they would force the variable on an
earlier round than the ith. Therefore there are R-I Q-I-Q-2 clauses that force
variable qi-1 +x on round i. (Use 0 for Q-1.) For each variable qi-1 +X forced on
round i, the predicate contains fix clauses chosen (with replacement) from a set of

BACKTRACKING WITH SEARCH REARRANGEMENT 721

Ri-1 clauses; the sets corresponding to distinct values of x are disjoint. The total
number of required clauses in the predicate is Y’.i.x fix.

The remaining clauses in the predicate (the permitted clauses) can be selected
from any of the (2v) clauses except the following. There are q clauses made up
entirely of false (unnegated) literals for the first q, variables. A predicate containing
such a clause would be false and would not reach Step 4 under our assumptions. For
each of the (v-q,) unset variables, there are Q,, clauses that would force it to true
on an (m + 1)st round of forcing. This accounts for (v-q,,,)Qm clauses. Immediately
after round (0<=i<=m) there are (v-qi) unset variables and Ri clauses that
would force them to false on round + 1. (We exclude the required clauses from
the class of permitted clauses, along with unwanted forcing clauses. The required
clauses are counted explicitly by the other factors of the formula.) This accounts
for EO<_i<=m (1)-qi)Ri clauses.

Much of the complexity of our analysis results from dividing the forcing into
rounds. This division is necessary in order to count the required and permitted clauses
correctly. A variable can only be forced by being in a clause where all variables for
the other literals have already received values. One of the approximate formulas we
present later was obtained by dropping the requirement that variables be forced in a
legal order.

The total number of predicates that satisfy our current assumptions is

where

P (2v) --qm --(V --qm)Om ., (13 -qi)gi

(2v) -q -2(v -qm)O, E (qi+--qi)Oi.
O<--i<__m

The total number of binary nodes in all the (2v)t backtrack trees, which is (2v)tN,
can be obtained by multiplying this formula by the appropriate factors and summing.
The result is

(2v)tN= y y y. 2q.(O<rtl<l) O<qO’<ql "’’" /’11#0. /’11,’’’, j".q.--q.--’ fix
<qm<l jm,qrn-qrn_lO i,x

where the factor 2" accounts for the number of ways to assign values to the q,, set
variables, the first multinomial accounts for the number of ways to order the terms
(t ^ t2 is different from t2 ^ t, for tl t2), and the second multinomial accounts for
the number of ways to select which variables are forced on each of the m rounds.
The initial qo variables and the variable for the binary node at Step 4 are not available
for selection. The sums over/" require that there is at least one term to force each
forced variable. The sums over the qi require that at least one variable be forced on
each round.

We adopt the convention that limits on a summation variable are not shown
explicitly when we intend that the sum be taken over all values of the variable that
result in a nonzero value of the summand. If, for example, the variable appears as

722 e.w. PURDOM, JR. AND C. A. BROWN

the bottom of a binomial coefficient, the implied range is between zero and the value
of the top of the binomial.

The sums over the/’ix can be done using the binomial theorem and subtracting
the/’ix =0 term. The sum over all the/’ix for 1 <=x <=qx-qo is

(2v)’N y’. Y. 2’(ql-q)(-1)q’-q’’+i’

o_,,<o 0qo<ql< i21,o... il
""<qm <l) jrrt,qm--qm 0

i>l,x

Summing over all/’ix and combining the binomials with the second multinomial gives

ONrn<v O--<qo<ql< i,’",im

(1)

(P+ Y. i,,R,,_)
The sum Zln<_m i,,R,,_ equals Zl<_n<=m (i,, --in+)On-1, where i,,+ ------0.

4. Lower and upper limits. Formula (1) is not very useful for v >> 10 because the
number of terms increases exponentially with increasing v. We obtain a lower limit
on its value by noticing that, for each fixed value of m, the corresponding partial sum
is positive. (It equals the number of binary nodes that are immediately preceded by
m rounds of forcing.) The k-sum lower limit is obtained by replacing o,,< in formula
(1) by Y-o-,,<k. In particular, the one-sum lower limit is

(2) (2v)’N => Y’. 2%P,
O<=qo<v

where Po (2v) -q -2(v-qo)Qo, and the two-sum lower limit is

(3) (2v),N __> }-,. 2q,(_l)q,-q,,+i,(t -qo-1)0<qo--<ql<t il \q-qo-il, il, V -ql-- 1
(P1 +ilOo) t.

whereP (2v) -q 2(v -q)Qx -(q -qo)Qo. The m 0 and rn I sums have been
combined.

Upper limits can be obtained by allowing "sloppy counting" of required and
permitted clauses. If some permitted clauses are misclassified as required clauses, the
total number of predicates that meet the criteria increases: all the original predicates
are still counted (though some of their clauses are put in a different class) and some
additional, spurious predicates are also included. If some clauses are classified as both
permitted and required, the number of spurious predicates increases even more.
Another simplification that increases the size of the sum is to disregard the necessity
for legal rounds of forcing. We combine these approaches to obtain upper limits with
polynomially many terms.

BACKTRACKING WITH SEARCH REARRANGEMENT 723

The one-sum upper limit is obtained by ignoring altogether the idea of required
vs. permitted terms and the idea of rounds of forcing. All terms that are not false and
that do not force unset variables are used, and all variables except the one for the y
node are available for forcing. Once the variable for the binary node is chosen (and
choosing it accounts for the factor of v in Formula 4) there are v 1 variables available
to be set or forced, or left unset (choosing these accounts for the factor of (oq-l)). If
qo variables are being set or forced, there are 2q branches. Finally, a factor Po is
needed to count the number of legal clauses under these assumptions. The derivation
of P0 is summarized in Table 2; Po=(2v)S-q-2(v-qo)Oo, and P is the number
of predicates made up of such clauses. The final formula is

(4) (2v)S’N -< Y. v2q|v-1}p’o./\
O--<--qo<v \]q0

Notice that the factor of v was needed here because the q0 variables that are set
or forced are chosen arbitrarily and do not necessarily precede the variable for the
binary node, nor does the value of qo determine which variable is the one for the
binary node. In all our other formulas variable q0 + 1 (before renumbering) is the
variable for the binary node and so the factor of v is not needed.

In the two-sum upper limit we hak,e ql-qo sets of required clauses, each with
q (q 1)s elements (and zero elements when q 0). Here we ignore the different
rounds of forcing: each set has all the clauses that can force a variable if it is the last
one to be forced (that is, the clauses contain literals of the other forced variables).
Thus we over-count the actual number of forcing clauses available. These required
sets are not disjoint; they contain q -q terms in all. Table 3 summarizes the initial
analysis. The final formula is

(s) (2v)*’N_-< y y 2,(_ 1)o,_Oo+q(v-qo-1)
0<--qo<-ql<V il ql-qo-il, il, v -ql- 1

[Pu + il[q -(ql-1)s]]’,

where Pu (2v) -2(v -q)Ol-2q{ +q. In this formula q plays a role similar to that
of q,, in Formula (1); the role played by qo is similar in both formulas.

Another upper limit can be obtained from the analysis in Table 4. It leads to the
following formula:

(2v)’N _-< I; 2
O’<qo<=ql<v 0<--ii=----1,

O<=iq i_qo<--_

2q,(_ 1).,_o,,+y ,.(v -qo- 1)!
(v-q1-1)!

[(2v)’- 2(v-ql)01- 2q

+ Y. i.[(qo+i.) -(qo+i,,- 1)]]’.
ln--q--qo

We do not, however, analyze the asymptotic behavior of this formula.
The two-sum upper limit can be improved in various ways. For example, one can

treat the first few rounds of forcing exactly and the remaining rounds approximately.
Another approach would have an approximate treatment for forcing the first half of
the forced variables, followed by an approximate treatment for the second half. We
have not investigated which of these methods gives the most precise answer for a
fixed amount of computation.

724 P. W. PURDOM, JR. AND C. A. BROWN

5. Asymptotic analysis. We now consider the asymptotic behavior of the formulas
for the one- and two-sum lower and upper limits (four cases), holding s fixed, letting

v for a fixed a, and allowing v to become large. We find only the leading term
in the exponential dependence of the result.

In each of the four formulas (once the sum over il is done, if necessary) the sums
contain no more than v 2 terms, where each term is positive. Therefore, to the required
accuracy (ignoring polynomial factors), each sum is equal to the largest term. Most
details of the analysis are omitted; they are similar to those in [2]. We assume s -> 3
and 1 <a <s-1.

Briefly, the procedure is: (1) sum over il (if necessary); (2) expand multinomials
into factorials and use Stirling’s approximation for the factorials; (3) take the logarithm
of the summand; (4) take the derivatives of the logarithm (with respect to q0 and to
ql) and set them to zero; (5) solve the equations asymptotically to find the values of
qo and q that maximize the summand; (6) substitute the values of q0 and q into the
log of the summand to find the log of the maximum term; and (7) obtain the final
value by increasing the error term to log v (if necessary) to allow for missing polynomial
factors and exponentiate the result. Do 40 pages of calculations without error and
obtain the results given below. (Appendix 2 outlines the necessary steps.)

The one-sum lower limit summand is maximized with

(2s-x ln)
/(s-2)

qo=_- i v-’->/-2>+(R)(v-2’/-2))+(R)(1).

This gives

[(2!n2) /(s-z)2(s-2) ln 2 (_,_)/(,_:) (-,)/(-))](6) N _-> exp
ks (s 1) s 1

v + (R)(v + 19(1)

The one-sum upper limit summand is maximized with

00=2(2 In F(v)
s(s-1)(s-2) v--a)/-2)+(R)((lnF(v))2/-2)v-z’)/s-2))+O(1)’

where F(v) is the solution to the equation

a(v)
F(v) with a(v)=

In F(v)

For any e > 0 we have for large v

a(v)
In a(v)

s(s-1)(s-2)
_

2

a(v))(<F(V)<lna(v l+(l+e)
In In a(v))In a(v)

so lnF(v).-.(s- 1)In v, where x(v) y(v) means limo_,oox(v)/y(v)= 1. This gives

N _-< exp Is 2 (2)
1/{*-2)

1 s(s- 1)(s -2) (lnF(v))(s-1)/(s-2)v(*-’-l)/(s-2)

1/(s-2)

(7) +2(2 (lnF(v)))U (s--l)/(s-2)

s(s-1)(s-2)

+ (R)((ln F(v))/s-2)v s-2)/-2)) + (R)(ln v)].

BACKTRACKING WITH SEARCH REARRANGEMENT 725

The leading term in the exponent for the one-sum upper limit is larger than the
corresponding term in the one-sum lower limit by the slowly increasing factor
(lnF(v))(-)/(-2).

The two-sum cases require approximating a sum of the form

(ai)(-1)i(l+ic)t=(-1)a(f){a
where a, c, and are functions of v, qo, and ql (t v), and where {} is a Stirling
number of the second kind [4]. Since each term on the right side is positive, a lower
limit is the first nonzero term (/" a). The first nonzero term is also a good approxima-
tion for the total sum if the quantity act approaches zero as v becomes large (in our
application this happens when a > s/2). For the two-sum lower limit we use

The two-sum lower limit summand is (approximately) maximized with

2(s- 1) [2y
qo (s-a-1)/(s-2)

y+s-l-ln2 s(s’l)

ql V (s-a-1)/(s-2)

where y is the solution of the equation

y+ln 1- +(s-2)ln 1+ =0.
y s-1

The value ot y is between In 2 and In 3 for all s 3; y 1.0106135875 for s 3, and
y 0.9965516271 for s 4. This gives y In 2. This gives

Nexp [2[2]/(-’[In 2 +
y -In 2 y

(8) Y + s- 1- In 2
(2-y In 2)-

(s- 1

v(--v(-+(v(-v(-) + O(ln v)].
It is dicult to obtain an asymptotic upper limit from limit (5) due to the problem

of approximating the sum over i, for values of q v(-/. Combining the derivation
of limits (4) and (5), however, gives

Oqoq<q. i, xq-qo-i, ix, --ql-- 1
(9)

[Pu + il[q -(ql- 1)s]]’+ v E 2q(v" 1)Pa."
q.qo<v k o I

Using i’ =q-qo-i and approximating the sum over i’ gives

(2v)W
oq,,=,<q. (v -ql- 1)! q-qo

(10) "[P +(q-qo)[q -(q- 1)]]-q’+q 1 +0 v]]

+v , 2q(v -1)p’o,
q.<=qo<v \ qo

726 P.W. PURDOM, JR. AND C. A. BROWN

provided q]t/v decreases as v increases. For q. v(-)/- e > 0 and small, and
a > s/2, the approximation is valid. Also under these conditions the second summation
will be small enough to be absorbed in the final error term. The first sum is maximized
with

(ln2(41n2)
1/(-2)

qo 2 1 -S i]\s(s 1)
l)
(s-a-1)/(s-2) + O(1),

2(4 In 2)
1/(-2)

ql=
\s(s- 1)

v (-’-x/(s-2 + (R)(1)"

This gives

(11) N -<exp [2(s-2) In 2(4 1,n, ..2,,))
1/(,-2)

s 1 \s (s 1
v (s--)/(-2) + (R)(ln v)].

for s/2 < a < s- 1. Unfortunately, we do not have a good approximation for 1 < a =<
s/2.

6. Conclusion. For s/2 < a < s- 1 and s _-> 3 we have shown that

N exp [(R)(v (--t/(s-2)],

while for 1 < a <= s/2 and s >= 3 we have

exp [(R)(v (-’-/(-)] _-<N _-< exp [(R){(v (s--l)/(-))(ln v)(-/(-a)}].

The coefficient of the leading term of the two-sum upper limit is exactly 2/(s-2) times
the coefficient of the leading term of the one-sum lower limit, so the upper and lower
bounds on the coefficient are close for large s. Table 5 shows the value of the leading
coefficients for formulas (6), (8) and (11) for small values of s. The two-sum lower
limit gives only a small improvement over the one-sum lower limit.

The time for simple backtracking on these problems [2] is

N exp [(R)(v (-"/(-)],

so the speed-up from using simple search rearrangement is comparable to that obtained
by switching to simpler problems with s reduced by one. (For s/2 < a < s the leading
coefficient is also somewhat smaller for the search rearrangement algorithm.) Since
this change is in the exponent the improvement in expected running time obtained
by using simple search rearrangement is dramatic.

The values of q0 and q at the maximum in the two-sum approximations suggest
that in search rearrangement backtracking there is typically a large number of unary
nodes preceding each binary node. This conclusion is confirmed by our experimental
measurements.

An interesting question for future research is whether there are backtracking
algorithms (such as perhaps the ones reported in [6]) that use average time
exp[O(v(s--k+/(s-k)] for each fixed k <_-s-1. Experimental results show that the
algorithms in [6] perform better than simple search rearrangement on very large
problems, but they have not been analyzed as yet.

BACKTRACKING WITH SEARCH REARRANGEMENT 727

TABLE 1
A summary of the analysis for the exact formula.

Required terms:/’ix --> for l<_-i _-<m, l<_-x <-qi-qi-1

Size of set

Ri-1 Oi-1 Qi-2,
where Oi (qi + 1)s q,

O_l =0

Reason

Term must have false literals combined with literals for forced
variables. The forced variable cannot be forced on earlier round.

Permitted terms: x/’ix

Size of set

(2v)

-(v -q,)O,,,
-Yo_i< (v-qi)Ri

Reason

Total number of terms, minus:
terms made of false literals,
terms that force variables to true, and
terms that force variables to false.

TABLE 2
A summary of the analysis for the one-sum upper limit formula.

Required terms: None

Permitted terms:

Size of set

(2v)
--q0

--2(V -qo)Qo

Reason

Total number of terms, minus:
terms made of false literals, and
terms that force unforced variables.

TABLE 3
A summary of the analysis for the two-sum upper limit formula.

Required terms: Jx for 1 <=x <-q-qo

Size of set Reason

q[-(q- 1) Each forced variable must occur in a term with all
other literals false.

Permitted terms: Y-x/’x

Size of set

(2v)
_qS
-2(v -ql)Ol
-(q]

Reason

Total number of terms, minus:
terms made of false literals,
terms that force unforced variables, and
total number of required terms.

728 P.W. PURDOM, JR. AND C. A. BROWN

TABLE 4
A summary of an alternate two-sum upper limit.

Required terms’ x for qo<x <-ql

Size of set

xS-(x-1)

Reason

Each forced variable must occur in a term with all
other literals false, where all other variables are
already set.

Permitted terms: Same as in Table 3

TABLE 5
Coefficients c for N exp CO (s-a-1)/(s-2).

one-sum lower two-sum lower two-sum upper

3 0.1602 0.2465 0.3203

4 0.3141 0.3922 0.4442

5 0.4271 0.5226 0.5381

6 0.5142 0.5760 0.6115

7 0.5840 0.6398 0.6708

8 0.6415 0.6924 0.7200

9 0.6899 0.7367 0.7617

10 0.7314 0.7748 0.7976

100 1.2534 1.2595 1.2624

1000 1.3663 1.3670 1.3672

2 In 2 1.3863 2 In 2 1.3863 2 In 2 1.3863

Appendix 1. A number of numerical checks were performed to verity the results
in this paper.

Equation (1) was verified by a computer program that performed direct enumera-
tion for s=l, 1-<t<-4, l<-v<-8; s=2, l=<t=<2, l<-v-<8; s=2, t=3, 1-<v<-6;
s =3, t= 1, 1-<v-<8; and s =3, t=2, 1-<v <-4. A statistical check with one percent
accuracy was done for s 3, v 3/2, v 4 and 9.

Formula (6) was compared with the maximum term in the one-sum lower limit.
At v =(1337)2, s 3, (1337)3, the ratio of the logarithm of Formula (6) to the
logarithm of the maximum term was 1.0013, and converging.

Formula (7) was compared with the one-sum upper limit (Formula (3)). At
v (34)2, s 3, (34)3 the ratio of the logarithms achieved a minimum of 0.988.
For higher v it slowly increased.

BACKTRACKING WITH SEARCH REARRANGEMENT 729

Formula (8) was compared with the maximum term in the two-sum lower limit
(Formula (3)). At v =64, s 3, 512 the ratio of the logarithms was 1.5 and
decreasing. Roundoff error prevented measurements at significantly larger v.

Formula (11) was compared with the two-sum upper limit (Formula (5)). At
v (11)2, s 3, (11)3 the ratio was 0.805 and erratically increasing.

Appendix 2. In this appendix we give more details of the derivation of the
asymptotic results mentioned in 5. The one-sum lower limit is

Y. 2Oop= Y. 2’((2v)-q-2(v-qo)((qo+l)-q))’.
0qo<V 0qo<v

The logarithm of a term is

qo In 2 + In [(2v) -q[-2(v -qo)((qo + 1) q[)].

Set v, take the derivative with respect to qo, and set it equal to 0.
Assuming qo << v, the largest terms of the derivative give

2s(s 1)v+q-2 (2v) In 2,

or

q=
\ s(s 1)]

v(--)/<-)"

Substitute this value back into the original derivative; keeping the largest terms gives

(2s-1 In 2qo= --i)
s-->/->(+ o(-->/->) + o(---,/->)).

Substitute this value into the original formula to get the logarithm of the maximum
term; the most significant terms give

(21n2-1)’
I/(s--2) (;__I2)(s--.--1)/(s--2>__v In (2v) +ks(s (2 In 2) +v <’-2)/<’-2) +(1).

Since all the terms are positive, the value of one term is a lower limit on the value
of the sum.

Formula (4) gives the one-sum limit. Using Stirling’s approximation for the
binomial, the log of a term is

n v -n (2) + (v -b n (v)- (qo+ n qo-(v -qo-)n (v -qo-)

)+qoln 2+v In ((2v) -qo-2(v -qo)((qo + 1) -q)) + +0

Take the derivative with respect to qo and set it equal to zero. Assuming qo << v, and
keeping the asymptotically most significant terms, shows that qo near the peak satisfies
the relation.

s-2 s-a-1qo v In
s(s- 1)

To obtain an approximation of qo at the peak, let

a(v) v
s (s 1)(s 2)

730 p. W. PURDOM, JR. AND C. A. BROWN

and let F(v) be the solution to the equation

Then

1
a(v)In F(v).

F(v)

qo 2va (v 1/s-2 (In F(v))

attention to the O terms gives the value of qo given in the text preceding Formula
(7). The local maximum at qo v- 1 is even less significant for this limit than it was
for the one-sum lower limit. The value of the upper limit is no more than v times the
value of the maximum term, and this factor is absorbed in the O(ln v) term.

The two-sum lower limit is given in Formula (3). It can be rewritten in the
following form by expanding the multinomial"

o_-<qo_-<ql<o q-qo /

Using the transformation

(7) =i (-1)"(f){a
with a q-qo, c Oo/P, gives, for the sum over i,

P’ (-1)q-q (q -q)(-1)’(l+i Oo)’=
A lower limit for this sum is (q-qo)(ql--qo)Og-qPt-q’+q. We thus obtain the lower
limit

0qoql< q-qo q-q

Using Stirling’s approximation, the log of a term is

q In 2(v-qo-) In (v-qo-1)+(v +)In v - In 2-(q-qo+)In (q-qo)

-(v -q-) In (v -q- 1)-(v -q +qo +) In (v -q +qo)

+(q-qo) In ((qo+ 1)-q;)

+(v -q +qo) In [(2v) -q -2(v -q)((q + 1) -q)-(qa-qo)((qo+ 1) -q;)]

v-qo 1
+ +0 +0 +0

,v / qZqo v-q-i v-q+q
Take the derivative with respect to q t, set it equal to 0, and solve, retaining asymp-
totically important terms. This gives

In 2_v(q_q v__a2_

The same procedure on the qo derivative gives

0=ln(2-v--(q) (ql)sq;-- qo). +ln2+(s-1)

2 ((s 1)qq;- -q;-).

BACKTRACKING WITH SEARCH REARRANGEMENT 731

Use the value of the In term from the q derivative to replace the term in the q0

derivative. Identify the asymptotically important terms using

qo’-’t.;
(s-’-)/(s-2) and ql "19(s--1)/(s-2).

This gives

ql

sq-2/(v--2-X)-ln 2/(s 1)+ 1"

Substitute this value of q0 into the formula for the ql derivative. Changing the variable
to

s--2sq
X-- 2s-lts--I

gives the equation

(s 1)x In
(x + 1-In 2/(s 1))s-2(x -In 2/(s 1))’

This equation can be solved for x in terms of s. Setting y (s- 1)x gives the results
in the text. We have not calculated the errors in the values for qo and q that maximize
the value of a term; this is not necessary since the value of any term in a sum of
positive terms is a lower limit on the value of the sum.

The two-sum upper limit is given in Formula (5). Because of limitations of our
asymptotic methods, we derive an upper bound by using terms from Formula (5) over
a part of the range and from Formula (4) on the remainder, as indicated in Formula
(9). This is possible because each individual term in Formula (4) for a fixed q0 bounds
the partial sum in Formula (1) with q,, fixed to that same value. Likewise, a partial
sum in Formula (5) with ql fixed to some value bounds the partial sum in Formula
(1) with q, fixed to that value.

To remove the sum over il in Formula (9), use the transformation

(a(-1 (l+ic) atc (l + (R)(act)),

with a =ql-qo and c (q] -(qx- 1)s)/P2. This transformation is valid for a > s/2 and
q < v-)/-, where e >0.

To find the values of q and qo that maximize the first term in the resulting
formula (Formula (10)), analyze it as follows. Using Stirling’s approximation, the log
of a term is

ql In 2--1/2 In 27r +(v --qo+1/2) In (v --qo-- 1)+(v +1/2)In v --(v --ql--) In (v --ql-- 1)

-(q,-qo-1/2) In (ql-qo)-(v -ql+qo-1/2)In (v -q, +qo)

732 P. W. PURDOM,. JR. AND C. A. BROWN

Take the derivative with respect to q and set it equal to zero; the important terms give

--f + 2-lt -10 In (q_qo)2_v q

+ O (v-/-2)+ O(v---/-).
The important terms from the qo derivative give

0 In ((ql-q)2z--.) +Osq-This implies the log term is of the same order as the O terms. Use this to rewrite the
q equation and solve it for qo in terms of q, giving

s--1sq (s-2a)/(s-2)ln2q
2 v

qo= 1+s21] - --+O(v)+O(1).

Since our approximation is only good for s-2 < 0, the first O term can be dropped.
Substitute this value into the equation from the qo derivative, exponentiate each

side of the resulting equation, and expand the right side in a power series. This gives

(-(In 2/(s 1)) + sq-2/(2S-lv s-’-l) + O(v-(S-’-)/(-2)))2v-’-

1 + O(v (-)/(-1)) + O(1)-(s-a-1)/(s-2)),

Letting

we obtain

X

s-2sq
2s-iv s-a-1

21n2
s-1

or

and

q
(s-

v (--)/(-) + 0(1),

(ln2’qo= 1-s_l] ql +0(1)"

By substituting these values into Formula (10) and ignoring the second sum we
obtain Formula (11). That sum is small relative to the terms we retain. The maximum
term in the sum is obtained by setting qo q,. The sum is no bigger than v times its
maximum term. The log of the sum is

2s-1/(t ln v)+1+1n2 v
S

For c > s/2, this can be neglected in relation to the terms in Formula (11) (since, for
example, exp (v 2 + O(1)) +exp (v)=exp (v 2 + O(1)) asymptotically).

BACKTRACKING WITH SEARCH REARRANGEMENT 733

Acknowledgment. We wish to thank our referee, Prof. James Fill, for his careful
reading of this paper and his numerous helpful comments.

[1] J. R. BITNER AND E. M. REINGOLD, Backtrack programming techniques, Comm. ACM, 18 (1975),
pp. 651-655.

[2] CYNTHIA A. BROWN AND PAUL W. PURDOM, JR., An average time analysis of backtracking, this
Journal, 10 (1981), pp. 583-593.

[3],An empirical comparison of backtracking algorithms, IEEE Trans. Patt. Match. and Machine
Intell., 4 (1982), pp. 309-316.

[4] D. E. KNUTH, Estimating the efficiency of backtracking programs, Math. Comput., 29 (1975),
pp. 121-136.

[5], The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading, MA, 1975, p. 65.
[6] PAUL W. PURDOM, JR., CYNTHIA A. BROWN AND EDWARD L. ROBERTSON, Backtracking with

multi-level serarch rearrangement, Acta Informat., 15 (1981), pp. 99-113.

SIAM J. COMPUT.
Voi. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1204-0010 $01.25/0

CONVEX CLUSTERS IN A DISCRETE m-DIMENSIONAL SPACE*

JOHN L. PFALTZ+

Abstract. A simple procedure is used to dynamically create convex clusters of items in a discrete
m-dimensional space. Systems of difference equations are derived that describe the behavior of this cluster
formation under the assumption that individual clusters are either of bounded or unbounded size. These
equations are used to calculate the expected number and size of such clusters given the number n of items.

For an actual implemented database access and retrieval method, these results provide a way of
determining both the expected storage overhead and the expected retrieval costs.

Key words, attribute space, cluster, database, dynamic item entry, retrieval cost, file organization,
indexed-descriptor, partial-match retrieval, storage overhead

1. Introduction. In this paper we will consider the creation of convex clusters
formed by the random placement of items in a discrete m-dimensional space with
finite bounds. That is, items will be associated with points of the space that may be
denoted by m-tuples of integers (il, i2, ’, i,,), where 1 <-ii -< wi. Here wi denotes the
upper bound on that coordinate of the space. Two questions are of particular interest.
Given a clustering process and n items in the space"

a. What is the expected number of convex clusters?
b. What is the expected number of convex clusters containing precisely k items?
Although we have deliberately cast these problems in purely mathematical terms,

for instance "convex cluster" and "m-dimensional space", they have been motivated
by a very practical application, that of determining the expected retrieval cost and
expected storage overhead of an efficient information retrieval organization for very
large data files [8]. In this interpretation, cells of the m-dimensional space may be
viewed as buckets in an m-dimensional attribute space; items may be regarded as
data records; and clusters may be blocks in a data file. We will discuss these computer
applications more fully in 5 and 8.

2. Descriptors and convex clusters. Since every cell of the space can be identified
by an m-tuple (ia, i2,’’ ", i,,) of integers, we can equivalently identify the cell by a
descriptor consisting of m distinct bit strings called fields. In the/th field (of width wi
bits) only the th bit is set to 1. Thus

00100000 000001 0000100000 00000010

is a 4-field descriptor for the cell (3, 6, 5, 7) in a finite 4-dimensional space consisting
of 8 6 10 8 3840 cells. The use of bit descriptors instead of integer m-tuples
will at first seem awkward. But, in fact, this transformation simplifies the following
analysis.

Every cell in the space is, by itself, a convex subset. Although other definitions
of "convexity" in a discrete space are possible, we will adopt the convention that a
subset is convex if and only if it is a b b2 ’ b,,-cube. Thus in the 2-dimensional
15 15 space shown in Fig. l(a) (which is deliberately "small" for illustrative purposes;

* Received by the editors March 6, 1981, and in final revised form August 9, 1982. This research was
supported in part by the National Science Foundation under grant MCS80-17779.

r Department of Applied Math. and Computer Science, University of Virginia, Charlottesville, Virginia
22903.

We could equally well speak of "points" in the space. However, the term "cell" seems preferable
because we will be associating data items with such points in the space, and "cell" suggests that several
such items can be associated with (or stored in) that "cell".

734

CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 735

s,

4 10 1 14

FIG. (a)

000000000011000 000000000001100

D2 000011100000000 000011110000000

D 0000011111111 O0 000000100000000

000000000011000 010100000000000

Fzo. l(b)

Oa 000000000010000 000000000000100

000000000001000 000000000001000

000000000011000 000000000001100 D D D

000010000000000 000000010000000

000001000000000 000000100000000

000001000000000 00000 000000000

Df 000000100000000 000001000000000

D! 000010000000000 000010000000000

000011100000000 000011 0000000 De Df Dg

FIG. (c)

normally m > 2) subsets $1,82 and $3 are convex subsets, while 84 and $5 are not.
For convex subsets one can form a descriptor by simply OR-ing the descriptsrs of
each of its cells. The descriptors of these convex bl bE ’ b,,-cubes are character-
ized by the fact that each field has b consecutive 1-bits set. Such convex subsets are
called clusters. Their associated descriptors are convex cluster descriptors, or just cluster
descriptors. D1, D2 and D3 in Fig. l(b) are convex descriptors associated with the
convex subsets $1, $2 and $3 respectively. D4 is the descriptor associated with $4; but
neither is convex. Note that there is no adequate descriptor for the set $5. By the
exten’t of a cluster, we mean the number of cells in the space comprising it; that is
extent bl bE X... X bin. (One can use "volume" as a synonym for extent.) In Fig.
1, extent (S2)= 4, extent (S2)= 12, and extent ($3)= 8.

Let Sl and 82 denote any convex subsets of a space, so that their corresponding
descriptors D1 and D2 are also convex. Clearly 81 $2 is convex (or void) and D1 ^D2,
if it exists, must be the convex descriptor of that intersection set. (To "exist", a
descriptor must have at least one bit set in each field.) In general, 81 LI $2 will not be
convex, and similarly D1 v D2 need not be a convex descriptor. Moreover D1 v D2
will not, in general, denote $1LIS2. If D1 v D2 is convex, it denotes the convex hull
Of 81 L.J S2.

In Fig. 1, $1 is the convex hull of the cells a:(11, 13) and b:(12, 12). $2 is the
convex hull of the points c:(5, 8), d:(6, 7), e:(6, 6), f:(7, 6) and g:(5, 5). See Fig. 1(c).
These are convex clusters. By the content of a cluster, we will mean the number of
items in it. For example, regarding $2 as a cluster of the items c, d, e, f and g implies
that content ($2) 5.

736 JOHN L. PFALTZ

We will assume the following clustering algorithm. Let a new item I be entered
into the space at a cell with descriptor Dx. Let Dc be the descriptor of a cluster C.

Condition 1. The item I will be added to C only if Dx v Dc is convex. Dtv Dc
will be the new cluster descriptor.

Condition 2. If there are two, or more, clusters Ca and C2 such that D v
and Dtv Dc2 are both convex, then I will be added to a cluster of minimal content,
i.e., containing the fewest items. This need not be a cluster of minimal extent, i.e.,
the smallest b x bE " b,,-cube. Note that, whenever an item is added to an existing
cluster C, its content is increased by one, its extent may, or may not, increase. Two
items may be entered into the same cell of the space, but they need not belong to
the same cluster. Condition 2 will not be used until we begin the analysis of 6.

Finally note that with this algorithm, which dynamically creates clusters as items
are entered and does not redefine cluster boundaries after the fact, the nature of the
formed clusters is dependent on the order of entry. For example, the items (1, 1),
(2, 2), (3, 3), (4, 4) entered in this order form a single cluster with descriptor (11110
11110...); but entered in the order (1, 1), (4, 4), (2, 2), (3, 3) form two distinct
clusters with descriptors (11000 11000 and (00110 00110).

3. Halos and intersections. In this section, we calculate two values that will be
used in the probabilistic arguments of succeeding sections. Let C be any b b2 "b, cluster. If a new item is associated with a cell that is contained within, or is adjacent
to, C then that item may be added to C. The set of cells adjacent to C we call its
halo. Combined with its halo, the effective extent of C is (ba + ca) (b2 + e2)""
(b, +e,,), where l_-<e._<-2, l<-f<-m.

For field., ei counts the number of adjacent 0 bits in the descriptor, so for any
particular cluster C, e 1 or 2, depending on whether C is centrally placed in the
space with respect to attribute-/’. (Note that we will always assume that b.-< w.- 1,
since otherwise all bits in field, are set. Consequently we may assume ei 0.) Now we
need an expression for gi, the expected extent of a halo, in terms of bi, the extent of C.

Consider field, in Dc for any attribute/’. If the string of bi consecutive bits is in
the "interior" of the field, there are adjacent unset bit positions at either end, and
e. 2. If the string is in either "extreme" position there is only one adjacent unset
bit position and ei 1. We may thus let. 1 prob (extreme config.) + 2 prob (interior config.)

(3.1) 1. (bi + 1)/wi + 2. (wi-bi- 1)/wi

(2w.-bi- 1)/wi 2- (b. + 1)/wi,

where the probabilities of an "extreme" or "interior" configuration can be calculated
by examining the generation sequences of the possible configurations. We will assume
that (3.1) is valid even when using b., the expected number of bits set in field j. Clearly
g is a function of b, with g 2, when b - 1 and g - 1 when b w 1.

Let Ca and C2, be two clusters, both of extent b b2 " b,,. We will determine
their expected effective intersection, that is, the expected number of cells in the
intersection of Ca and C2 together with their halos. (Note that we have considerably
simplified the more general problem of expected intersection of clusters by assuming
that Ca and C2 are of identical extent. But it will suffice for our purposes.)

Again consider field, in Dcl and Dc, for any attribute/’, 1 _-</" _-< m. Let s and s2
denote the strings of b. consecutive 1-bits in each descriptor field respectively. Assume
that s is positioned anywhere in fieldi and that s2 is displaced exactly d positions to
the left of S1, O <-- d <--wi-bi.

CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 737

For various values of d one can show that the amount of effective overlap (of
the descriptors and their halos) of S and s2 in field, is

i b
+ g if d 0,

overlap (d) bi d + 2 if 1 -<_ d -<_ bi + 1,
0 ifd>b.+ 1.

The probability of obtaining a displacement of d _>-0 bits is the probability of
locating sl in any position with at least d positions to its left times the probability of
locating sz in that position which is precisely offset by d bits. Thus

prob (offset d)
(w. d bi + 1)
(w-b + 1)2

hence the expected overlap in field, expressed in terms of the possible displacements
d of s2 relative to sl is

bi+l
exp (overlap)= overlap (0). prob (0)/ . overlap (d). prob (d)

d=l

b+ [(bi-d +2)(wi-d-b, + 1)](b, + ei) + a"l= (wi bi + 1)2
(3.2)

(which replacing the last term with the sum of the finite series becomes)

2wi-bi-1 (bi+l)(bi+2)(3wi-4bi)
=b+ +

w, 3 (wi-bi + 1)2

Although we have derived (3.2) under the assumption that bi is integral, we again
assume that the expression holds for real values, bi. (One of the most convincing
ways of verifying (3.1) and (3.2) is to work out and exhaustively count all possible
configurations for small values of b. and w., possibly for bi 2, w. 7.)

Let 37(n) denote the expected number of convex clusters given n items in the
space. Assume that n items, chosen independently from a uniform distribution on the
space, have been entered into the space, and that an (n + 1)-st item ! is entered.
According to the clustering algorithm of the preceding section, item I will be added
to an existing cluster if Dx v Dc is convex for some cluster C. Thus item ! will create
a new singleton cluster if and only if Dx v Dc is not convex for all C, and so one has
the difference equation

(3.3) ?(n + 1) ?(n) + A3,(n),

where Ay(n) prob WC,D v Dc is not convex), and 7(1) 1.
Since Dtv Dc is convex if and only if each field/" is convex

(3.4) prob (Dr v Dc is convex) 1-I (bi +

so that

(3.5)
p (n) prob (Dr v Dc is not convex)

1.0- I-I (bi+gi)
Wj

738 JOHN L. PFALTZ

and thus

A,(n prob (VC, Dr v Dc is not convex)

(3.6) (prob (Dr v Dc is not convex))(")

(I (b-’ + g))
(")

=p(n)(")= 1.0
W

Note that expressions (3.4), (3.5) and (3.6) are valid only if the distributions of bits
set in distinct fields are uniform and independent. Initially we can assume this
uniformity. But in 6 we will have to recalculate (3.5) under a condition in which the
clusters are no longer uniformly distributed throughout the space. Independence will
be assumed throughout this paper, even though it is well known that in any particular
application the various attributes of the items represented in the space may exhibit
considerable dependency. Note also, that 7 (n) and p (n) are functions of n, the number
of items entered into the space as we have clearly indicated. So also are b. and gi; but
to keep the expressions to a reasonable size we have not always used either bi(n) or gi(n).

The difference equation (3.3) can now be simply expressed as

(3.7) qT(n + 1)= "r/(n)+o(n) ’(’).

4. Expected number of convex clusters. If we have an expression for b. as a
function of n, then we can calculate gj using (3.1), o(n) using (3.5), and /(n), the
expected number of convex clusters, using (3.7). We will set up and solve a difference
equation of the form

(4.1) bj(n + 1) bi(n + Abi(n).

However, we will have to obtain Abi in a somewhat indirect manner.
Let B. denote the expected total number of 1-bits set in field/" of all cluster

descriptors Do Then

(4.2) b.(n)=B.(n)/T(n) and Ab.(n)=(T(n). AB.(n)-B.(n). A/(n))/y(n)z.
We may approximate y(n) by 37(n) and using (3.6), Ay(n) by p(n) ("). We thus need
only an expression for ABe..

Again we look at the incremental change in B resulting from the entry of a new
item, L If for all clusters C, Dr, Dc is not convex, then I will start a new cluster, and

Bi will be increased by 1. If for some C, Dr, Dc is convex, then a new bit may, or
may not, be set in the resulting descriptor field depending on the position of the bit
in the field. The probability of adding an extra bit and incrementing B. is

prob (incrementing Bi [Dr vDc is convex)= ej/(bi +ei)

(2wi -bi- 1)/[(bj + 2)wi -b. 1].

(Note that evaluating this expression for bi w.- 1 and bj 1 provides the bounds
1/wi <= prob < .) Thus the incremental change to/i as the result of entering a new
item is given by

(4.3)
ABi(n) 1 prob (VC, Dr v Dc is not convex)

+ prob (incrementing Bi) prob (:iC, Dr v Dc is convex)

CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 739

or

(4.4) ABi(n) p ’ + (b. + 2)wi b-. 1
(1 p

(Note that in practice, (4.4) may be an upper bound for ABe., since for large n we
expect there may be several clusters C to which the item I could be added, and a
reasonable entry procedure might choose that "best" cluster C which minimizes the
increase in cluster extent, and thus B..)

Now, using (4.2)

Ab(n (/(n AB.(n)-B.(n A,r/(n))//(n 2

(4.5)
(/7 +/.)p ((/ +.)p-Z)w-6")-I

((bi + 2)wi-bi-1)’

Expressions (3.7), (4.1) and (4.5) may now be used to set up a set of m + 1
difference equations in (q,/,..., b-) which, since the independent variable is an
integer, may be just evaluated iteratively. These are:

(n + 1) (n)+ Ay(n)= ,(n)+o(n)"(,
bi(n + 1) bi(n + Abi(n

(4.6)
b’.(n)+ (b-’(n)+(n))p(n)(")-[(b(n)+(n))o(n)(")-2]w-b(n)-I((+2)w -/.- 1)q(n)

where 37(1)= 1,/;1(1) b-,,(1) 1, and using (3.5)

0 (n) 1.0 -1 w

Tables 2 (a, b, c) illustrate numerical solutions for three sets of such difference
equations. Initially nearly every new item begins a new cluster. The probability that
no Dt v Dc is convex, that is p 9, is close to 1.0. But as 37 and Ilib. (the expected cluster
extent) increase, the likelihood of an item jr being added to an existing cluster increases.

TABLE 2(a)
Numbers and extents of unbounded clusters in the space (8, 6, 10, 8).

w 8 6 10 8

10
20
40
60
100
150
200
300
400
500

?(n) /x(n) /2(n) b(n) b"4(n)

9.3 1.047 1.046 1.048 1.047
17.4 1.095 1.094 1.096 1.095
30.5 1.193 1.190 1.195 1.193
40.4 1.292 1.286 1.295 1.292
53.5 1.489 1.488 1.505 1.489
61.8 1.772 1.753 1.783 1.772
65.4 2.056 2.027 2.073 2.056
67.3 2.617 2.564 2.647 2.617
67.5 3.315 3.045 3.171 3.125
67.5 3.573 3.465 3.636 3.573

m 4, Iliw 3.840

740 JOHN L. PFALTZ

TABLE 2(b)
Numbers and extents of unbounded clusters in the space (4, 7, 10, 15, 20).

w 4 7 10 15 20

10
20
40
60
100
150
200
300
400
5OO
600
700
8OO
900

1,000
1,500
2,000

9.9 1.006 1.006 1.006 1.006 1.006
19.6 1.011 1.012 1.012 1.012 1.012
38.6 1.023 1.024 1.024 1.025 1.025
56.8 1.034 1.036 1.037 1.037 1.037
91.2 1.057 1.061 1.062 1.062 1.063

130.7 1.086 1.092 1.093 1.095 1.096
166.6 1.117 1.123 1.126 1.127 1.128
228.7 1.178 1.188 1.192 1.195 1.196
279.6 1.241 1.255 1.261 1.265 1.267
320.9 1.307 1.326 1.333 1.338 1.340
354.1 1.375 1.399 1.408 1.415 1.418
380.4 1.445 1.475 1.486 1.494 1.498
401.0 1.518 1.554 1.567 1.576 1.581
416.8 1.593 1.635 1.650 1.662 1.667
428.7 1.669 1.719 1.736 1.750 1.756
453.0 2.062 2.152 2.185 2.209 2.222
456.1 2.431 2.571 2.623 2.661 2.679

m 5, Iliw 84,000

TABLE 2(C)
Numbers and extents of unbounded clusters in the space (5, 10, 15, 20, 25, 30).

wj 5 10 15 20 25 30

5OO
1,000
1,500
2,000
3,000
4,000
5,000

10,000
15,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

q(n) (n) b(n) b(n) b(n) b(n) b-6(n)

494.3 1.007 1.007 1.007 1.008 1.008 1.008
977.2 1.014 1.015 1.015 1.015 1.015 1.015

1,449.1 1.021 1.022 1.023 1.023 1.023 1.023
1,909.9 1.029 1.030 1.031 1.031 1.031 1.031
2,799.6 1.044 1.046 1.046 1.046 1.047 1.047
3,647.5 1.059 1.061 1.062 1.062 1.063 1.063
4,455.2 1.074 1.077 1.078 1.079 1.079 1.079
7,934.0 1.154 1.161 1.163 1.164 1.165 1.166

10,585.1 1.241 1.253 1.257 1.258 1.259 1.260
12,538.7 1.335 1.353 1.359 1.361 1.363 1.364
14,827.8 1.550 1.582 1.592 1.596 1.599 1.601
15,705.5 1.791 1.841 1.857 1.864 1.869 1.872
15,936.6 2.040 2.119 2.135 2.146 2.152 2.157
15,975.1 2.279 2.377 2.407 2.421 2.430 2.435
15,978.9 2.502 2.625 2.663 2.681 2.692 2.700
15,979.1 2.707 2.858 2.904 2.927 2.940 2.949
15,979.2 2.900 3.077 3.132 3.159 3.175 3.186
15,979.2 3.079 3.285 3.349 3.380 3.400 3.411

m 6, I-liw 11,250,000

CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 741

Indeed, with the configuration of Table 2(a), which represents a fairly small 4-
dimensional space of IIiw 8.6.10.8 3,840 points, by the time n 300 items
have been entered the entire space has been effectively covered by 67 existing clusters.
p 0.0 and /(n)- constant, since all newly entered items are included in an existing
cluster. But bi(n) keeps increasing as the extent of individual clusters keeps growing.

Table 2(b) illustrates the behavior of clusters in a slightly larger 5-dimensional
space of IIiw. 4 7 10 15.20 84,000 cells. It is much the same, except that when
n 2,000 an expected 7 =456 clusters have been formed with an expected content
of n/C/=4.38 items and expected extent of II.b. 116,207 cells per cluster. At n-
1,500 there were virtually the same number of clusters, with expected content =3.31
but with an expected extent of only 47.15.

In a still larger 6-dimensional space of II.wi=5.10.15.20.25.30=
11,250,000 cells, after n 50,000 items have been entered there will be approximately

15,936 distinct clusters with an expected content of only 3.14 items per cluster.
After 100,000 items have been entered there will be nearly the same number of
clusters, but now each cluster will contain an expected 6.26 items.

5. Practical implications. Bit descriptors, as developed in this paper, can be the
key to very efficient multi-attribute file retrieval methods. We are primarily concerned
with a retrieval method called "indexed descriptor access" described in detail in [8].
References [1, 7, 10, 11] represent a sample of other multi-attribute retrieval methods
which are similar, or related in some way. Virtually all retrieval methods work most
effectively when "similar" items are stored together; that is are clustered in some
fashion. The item (or record) entry algorithm of 2 is one way of dynamically
organizing any data file.

The solution of the system of m + 1 difference equations in the preceding 4,
that calculate and bi, for 1 =<j_-< m, provide precisely the information needed to
estimate expected retrieval costs, assuming that we will let clusters contain an arbitrary
number of items. In [8] it is shown that

/ n 1-I b
yO Wj

denotes the expected number of accesses in the data file to respond to a query O
which conjunctively specifies some, or all, of the m item attributes. (Here, II.o
denotes a product involving those fields/" specified in the query.)

If, for example, all m attributes were specified in a retrieval query (normally
denoting at most a single record of the data file), then using the final values in Tables
2(a, b, c) and (5.-1), the expected storage accesses to the data file are:

file 1 (500 items) 2.831 accesses,

file 2 (2,000 items) 0.631 accesses,

file 3 (100,000items) 1.886 accesses.

Note that these values do not denote the total cost of retrieval using indexed
descriptor access. A few additional accesses must be made in one, or more, index
files. But it is not the purpose of this paper to discuss any retrieval method in detail.
Still we do want to indicate (1) that this dynamic clustering procedure can be used in
conjunction with an effective retrieval scheme; (2) that the resulting analyses can be
used to estimate expected retrieval costs; and (3) that retrieval in very large files need

742 JOHN L. PFALTZ

be no more expensive than much smaller files--provided they are represented over
a sufficiently large attribute space.

The expressions of the preceding section provide the means for numerically
calculating 37(n) and bi(n) as in Tables 2(a, b, c) and thereby calculating the average
number of items per cluster, n/(n). But the tables do not indicate the extreme
variability in either the extent or the content of these clusters. A few clusters have
large content, while most contain only one or two items. Intuitively, of the many
initially scattered singleton clusters, chance dictates that a few will begin to grow. But
then the probability that new items will be contained in, or adjacent to, these larger
clusters (that is, Dt v Dc will be convex) is greater, and so they tend to keep growing;
at least until the space is well covered by clusters.

If we are modeling an actual computer file organization in which items (or records)
with similar attributes are to be clustered (blocked) together in a data file, then the
presence of large clusters is unrealistic. There will be some finite upper limit on the
number of records that can form a physical block of the data file. Thus we really want
to derive the results of the preceding section, subject to the constraint that "no cluster
can contain more than kmax items".

In the next section we add this bounding constraint, and in so doing must use a
different analytic approach. The expected number of clusters with precisely k items,
1 =< k -< kmax, must be determined. The results are somewhat surprising, and in many
respects more revealing of the behavior of this clustering process in actual practice.

6. Number of clusters containing precisely k items. A k-cluster, Ck, is one
containing precisely k items, 1 =<k-<kmax. kmax denotes the maximum possible
content of (number of items in) any cluster. To express the expected number of these

-(k)(nk-clusters and their extents we could use a notation such as 3()(n), b) (n) and e.
to indicate a functional dependence on both k and n. But rigorous adherence to this
notation would lead to unwieldy expressions below. Moreover, we will show that
and e are not, in fact, dependent on n. Consequently, we will use an abbreviated
notation (k), b(k) and (k) and let the dependence on n in the case of /(k) be
tacitly understood. Now

kmax kmax

(6.1) 37 3(k), Bi Y’. bi(k)’/(k), b B
k=l k=l y

where the terms 2, Bi and bi on the left are identical to Z/(n), Bi(n) and bi(n) of preceding
sections.

We now concentrate on the behavior of just k-clusters. By definition, for all
1-clusters, b.(1) 1.0, for 1 -<] -< m. A new 2-cluster is formed by adding an item to
an existing 1-cluster. For each field/’ there is a distinct probability that the entered
item will add another bit to that field of the cluster descriptor. And since all 2-clusters
are formed in the same way, the expected number of bits per field in any single
2-cluster descriptor is that of all 2-clusters as a whole. Thus

[bi(1)]bi(2)=bi(1)+ 1-/.(1--i(1)j,

where the expression in brackets denotes the probability of adding a new bit to field.
of the cluster descriptor, assuming Dtv Dc is convex; and where gi(1) is calculated
from hi(l) using (3.1). In general, for 2 -< k -< kmax

(6.2) bi(k b(k 1)+ [1.0- b(k 1)/(b(k 1)+ g(k- 1))].

CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 743

Note that bi(k), the expected number of bits set in fieldj of a k-cluster, and g.(k) are
both independent of n or 3,(k), the number of such clusters.

Let ! be a new item entered into the space. Following the clustering algorithm
of 2, by Condition (1) I will be added to some existing Ck only if D v Dc is convex,
and by Condition (2) if Dt v Dc, is not convex for any 1 --<_/" < k. The item I will start
a new singleton cluster only if Dt v Dck is not convex for any Ck, 1 =< k =< kmax-1.
(Note that I cannot be added to any kmax-cluster.) Consequently,

prob (adding I to a k-cluster, 1 <- k < kmax)
(6.3)

prob (C., I < k, D v Dc, is not convex), prob (Ck, D vDck is convex).

And, in general, the incremental change in 3(k) as a result of entering a new item I
into the space can be expressed by

(6.4) A/(k) =prob (adding/to a (k 1)-cluster- prob (adding/to a k-cluster).

The second term accounts for the fact that every time a (k + 1)-cluster is formed from
a k-cluster, 3,(k) is decreased by one. This expression must be modified in the case
of k 1 and k kmax. When k 1, the first term of (6.4) is the probability that
Dtv Dcj is not convex for any cluster, < kmax. When k kmax, the second term is
simply omitted.

The probabilities of (6.3) may be calculated in two different ways. First we assume,
as in preceding sections, that k-clusters are uniformly distributed through the space
in an independent manner, so that using (3.4) we have

prob (D vDck is convex) H (b(k)+g(k))/w,
/=1

where again this probability is independent of n. As in 3 and 4 we let p(k) denote
the probability that Dt v Dc is not convex for any particular k-cluster. Thus (6.3)
becomes

(6.5) prob (adding I to a .k-cluster, 1 <- k < kmax) I-I p (f) (i). 1.0 p (k) (k)],
i<k

which when substituted into (6.4) yields the following difference expressions

A35(1)= l-1 P(k)’-(1.O-p(1)’1)
k <kmax

A(k)= l-I p(i) s’j" (1.0-p(k-1)-1) 1-] p(i) s’)" (1.0-p(k)))
i<k-1 i<k

[I p(j)(’)
i<k -1

for 2 <_-- k <_- kmax 1, and

(6.6) z(kmax)

[(1.O-p(k 1)(k-1))-p (k 1)(-1) (1.O-p (k)())]

I-I p(i) "(i) [1.0-p(kmax- 1)?(kmax-1)].
<kmax-

With these one can set up kmax difference equations of the form

(6.7) 35()(n + 1)= 2()(n) + A2(k)

and evaluate them iteratively using 37(1)(1)= 1.0, 37(k)(1)= 0.0, 2-<_k =< kmax, as initial
conditions.

The iterative evaluation of this set of equations yields values which are reasonably
close to those values obtained in practice. For example, the maximum relative error

744 JOHN L. PFALTZ

Then we set w FI
1 -clusters

between the expected 37(n) calculated in this fashion, and the actual y(n) observed
in more than 50 generated clustered files over different attribute spaces is less than 0.19.

However, it is intuitively evident that k-clusters may not be independently
distributed throughout the space. This leads to a second way of determining at least
the first two differences of (6.6).

Consider just the case of 1-clusters. A new 1-cluster will be created by a newly
entered item only if it is not within or adjacent to any existing k-cluster, k < kmax.
1-clusters are formed only in that portion of the space not covered by k-clusters.
(Note that in this dynamic process, 1) 1-clusters which were formed at any earlier
time may exist in other portions of the space if they have not been subsequently
enlarged; and 2) once a cluster has its maximal possible content, kmax, it no longer
affects the clustering process--it is effectively no longer there.)

Now for 1-clusters we can re-evaluate (6.3) as

prob (adding I to a 1-cluster) prob (! a 1-cluster C, Dtv Dc is convex)

prob (D v Dcj is convex)- prob (Dt v Dc, and Dtv Dcj are convex)
i,i

i,i,k

where the sums are run over all 1-clusters C, Ci, Ck. The first term of this expansion
is simply

3(1) l-I (b(1) + j(1)) w..
If the 1-clusters were uniformly distributed then the second term would be

(37(21)) exp (overlap in field)/ w,

into which we could substitute (3.2).
But (3.2) was derived assuming that the clusters were distributed over the entire

space. They are not. They are confined to a much smaller portion of the space, and
the expected intersection is higher than that predicted by (3.2). We can approximately
account for this by replacing the actual field widths, w., in (3.2) with apparent field
widths, call them w ., where I-li w total volume of space not covered by k-clusters,
2 =< k _-< kmax. We approximate this reduction factor by

FI-’- I-[p(k) el(k).
k2

w. Since b.(1)= 1.0 for all j, (3.2) becomes, in the case of

exp (overlap)=-----[3wi +4w -8]
Wi

and (6.3) becomes

prob (adding I to a 1-cluster)

(6 8) 1
/(l).l-I(/.(1)+gi(1))- (1)

(3wi +4wi-8/wi +.... wi 2

where the third and succeeding terms of the expansion are ignored.

CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 745

There are enough approximations in this refined derivation to make it unreliable
for larger k-clusters. But observation of the clustering process indicates that the
distribution of k-clusters becomes more nearly uniform as k kmax anyway. We have
found that use of the alternate computation of prob (adding ! to a 1-cluster) in the
first two differences of (6.6) leads to slightly more accurate expected values when
compared to actual behavior. This refinement was used to generate Figs. 3(a, b, c)
and Tables 5 and 6 of the following section.

However calculated, the behavior of the solutions of the set of difference equations
(6.7) is quite interesting. As one would intuitively expect, only 1-clusters are formed
initially. Later, as these begin forming 2-clusters with successively entered items (which
in turn serve as the nuclei of 3-clusters), the number of 1-clusters, 39(1), decreases.
As shown in Fig. 3(a) (which denotes the same space as Table 2(a), but with kmax 5),
2(1), 3(2),..., 37(kmax-1) all oscillate periodically. But this periodic behavior dies
out and an equilibrium is achieved in which 2(1), /(2),..., ?(kmax-1) become
effectively constant. Only 37(kmax) will be monotone increasing.

Once equilibrium is attained, the expected number of all clusters, /(n), can be
expressed by the simple linear equation

(6.9) /(n)=c +c2(n -c3),

where Cl)-’-k<kmax "(k), c2 1/kmax and c3 "-k<kmax k /(k).
In Figs. 3(b, c), which duplicate the spaces of Tables 2(b, c) subject to the

constraints of kmax 4 and 3 respectively, the oscillation of 2 (1), , 37 (kmax 1)
is less apparent, since the amplitude is small and with much longer period; but the
steady state behavior is evident.

7. How accurate are these solutions? Given the dimensions (il, i2,"’, ira) of
any particular attribute space, one may use (4.6), or (6.7) to derive an expected /(n).
TO test their accuracy a number of files were actually created using the insertion
algorithm of 2 and randomly generated data.

First, we verify the expected number of clusters with unbounded content predicted
by (4.6). The expected 37(n) for spaces of dimensions (8, 6, 10, 8) given in Table 2(a).
Table 4 compares those expected values with those of the test files. Five test files of
500 records each were created with no constraint on maximum cluster content, ?(n)
is seen to be consistently greater than /(n). The derivation of (4.6) takes no account
of the variability of either cluster extent or content. All probabilities are based on an
average cluster content IIjbj. However, the creation of unbounded clusters by the entry
algorithm of 2 tends to be unstable with respect to perturbations from the mean. A
cluster which is already large is more likely to "capture" a newly entered item than
a smaller cluster. Thus large clusters tend to become very large, eventually dominating
the space, while the remaining clusters remain small. Condition (2) of the entry
procedure minimizes this instability somewhat, but not completely.

If it were practical to create unbounded clusters and retrieve items from them,
then either a revised algorithm or a refined analysis would be essential. Since this is
not so, Table 4 (and similar unprinted comparisons) should be sufficient to convince
us of at least the basic correctness of (4.6). In contrast, with bounded cluster creation
as considered in the preceding section, the behavior of the entry algorithm is "self-
correcting" with respect to cluster extent. Large clusters still grow more rapidly. But
once their content reaches kmax, they no longer affect the entry procedure; they
cannot dominate the space.

746 JOHN L. PFALTZ

100

80

60

o

40

Z

2O

o

/I
(n) /7(5)

o."

.<.,>i .-/ *’, BI’ -:’" w2 61’/ 7 ", ’ll

_,isl_ers / 4- cl
,.

/

00 400 600 800

NUMBER 0F ITEMS

7(1)

(2)
(4)

1000

FIG. 3(a)

25,000.,m:: /(n) ./’(3)
w 15

15,000 ..’’"
lO,O00- / .:cluster (,)-

il- I

,ooo_i- ,.,<u,,.r.

0 D:i
0 20,000 40,000 60,000 80,0]00,000

NUMBER OF ITEMS

FIG. 3(b)

500

400

300

200

100

o8

Z
/’" Ikn.’,<,x 4 7,,1..’"4

#"7 w, :is

/ /’"

////i’/,,,,/ 2- clusters (2)-

500 1000 1500 2000 2500
NUMBER OF ITEMS

FIG. 3(c)

CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 747

TABLE 4
Comparison of expected vs. observed numbers of clusters in the space (8, 6, 10, 8), with unbounded

cluster content.

10
20
40
60
8O
100
150
200
300
400
5OO

expected observed /(n)
?(n) file file 2 file 3 file 4 file 5

9.4 10 10 9 9 10
17.4 17 20 18 18 19
24.5 28 31 32 31 31
40.4 34 39 39 43 42
47.9 37 45 44 46 50
53.5 39 51 47 52 53
61.8 44 60 54 57 54
65.5 46 60 55 60 55
67.3 48 63 55 61 59
67.5 48 63 55 61 59
67.5 48 63 55 61 59

To verify the more important derivation presented in 6, we have calculated the
expected ?(n) and /(1),..., /(kmax) using (6.7) for each of the same three spaces
given in the preceding examples; and then executed a series of five actual clustering
runs for each. Maximum cluster bounds of kmax 5, 4 and 3 respectively were used.
The choice of these bounds is derived from tables 2(a, b, c). These represent, in each
case, the average content of a cluster when the space was first "effectively covered".
Larger, or smaller, cluster bounds may be dictated by other constraints in individual
applications; but in the absence of such constraints these bounds will yield optimal
retrieval performance. Indeed, the major value in practice of the derivation of 4 is
to be able to establish approximately optimal cluster bounds.

Table 5 compares the expected numbers of clusters with the observed means of
the five test files generated over the space with dimensions (8, 6, 10, 8). Only the
expected total clusters, 37(n), and the expected 1-clusters and 5-clusters, /(1) and
3(kmax) are displayed. The value of 3(n) is quite accurate. The expected value deviates

TABLE 5
Comparison of expected vs. observed numbers of bounded clusters in the space (8, 6, 10, 8); max. cluster

content kmax 5.

20
60
100
200
300
400
500
600
700
80O
900

1,000

expected observed
/(n mean

17.4 17.4
40.3 38.0
54.1 50.2
73.5 69.6
88.1 90.4
106.0 113.2
126.1 127.6
146.2 148.4
166.1 168.4
186.1 188.4
206.1 208.6
226.1 229.4

expected observed
</(1) mean

15.2 16.2
27.4 25.4
29.5 28.0
25.7 21.8
21.2 2O.O
19.5 16.8
19.6 17.8
19.5 20.0
19.4 21.9
19.5 20.8
19.5 21.6
19.5 18.0

expected observed
/(5) mean

0.0 0.0
0.6 0.6
2.8 3.4

15.6 16.6
37.6 37.8
60.2 55.2
80.6 76.2

100.4 98.2
120.4 119.8
140.5 138.8
160.5 156.4
180.5 177.6

748 JOHN L. PFALTZ

from the observed mean by at most -7.2 when n 400. This corresponds to a maximum
relative error of 0.068.

The estimation of expected k-clusters is somewhat less accurate. An initial periodic
behavior as shown in Fig. 3(a) can be seen in all individual runs; but the phase and
amplitude of these periods, being largely determined by random events, can be very
variable. For example, when n 800, the observed values of ,(1) were 21, 17, 17,
17 and 32 with a mean of 20.8, but standard deviation of 5.81. However, by n 500
the predicted equilibrium and consequent general stability are apparent in most
individual cluster systems.

Table 6 displays a similar comparison of expected versus observed numbers of
clusters in files clustered over the slightly larger space with dimensions (4, 7, 10, 15,
20). The prediction of expected total clusters is somewhat better. A maximum relative
deviation from the observed mean of 0.016 occurs when n 800. Again the estimations
of /(1) and /(4) are less accurate.

TABLE 6
Comparison of expected vs. observed numbers of bounded clusters in the space (4, 7, 10, 15, 20); max.

cluster content kmax 4.

100
2OO
3OO
4OO
5OO
6OO
7OO
8OO
9OO

1,000
1,100
1,200
1,300
1,400
1,500
1,600
1,700
1,800
1,900
2,000

expected observed
37(n) mean

91.0 91.6
165.9 166.4
227.9 229.0
280.2 277.5
325.2 322.2
364.7 365.0
400.0 397.3
432.1 425.2
461.8 455.0
489.7 485.2
516.2 510.8
541.6 537.7
566.6 560.6
590.6 588.8
614.5 614.0
638.2 638.9
661.8 664.2
685.5 687.6
709.1 712.0
732.9 738.6

expected observed
(1) mean

83.3 83.6
139.4 139.8
176.6 177.4
200.9 198.8
216.6 211.5
226.5 229.0
232.3 233.0
235.6 226.0
237.1 227.6
237.4 229.8
236.9 229.3
236.0 232.0
234.7 235.5
233.3 229.0
231.8 232.6
230.2 234.2
228.7 235.4
227.3 231.3
225.8 234.3
224.6 229.7

expected observed
(4) mean

0.2 0.0
1.7 1.6
5.5 6.0

11.9 12.2
20.9 20.4
32.2 33.4
45.8 45.4
61.4 68.2
78.9 79.0
98.0 95.5
118.6 119.5
140.4 139.8
163.3 161.0
187.0 179.5
211.4 203.0
236.3 228.7
261.5 249.7
287.0 269.8
312.6 303.7
338.2 326.8

Table 7 was compiled to test the validity of the difference equations (6.7) in
large files, where the payoff of any clustering procedure is most pronounced. To
generate Table 7, five files of 40,000 items each were clustered over the still larger
space of dimensions (5, 10, 15, 20, 25, 30). This represents a space of more than 11
million virtual cells. The maximum relative deviation of the predicted mean 37(n) from
the observed mean is 0.01. That any system of 1-point boundary difference equations
should attain this measure of accuracy after 40,000 steps attests to the inherent stability
of the difference expressions of (6.6).

CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 749

TABLE 7
Comparison of expected vs. observed number of bounded clusters in the space (5, 10, 15, 20, 25, 30)’

max. cluster content kmax 3.

1,000
2,00O
3,000
4,000
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000

expected observed
37 (n) mean

977.O 987.3
1,908.5 1,907.5
2,796.2 2,811.6
3,642.1 3,658.4
4,448.9 4,472.8
7,984.7 8,006.3

10,892.1 10,886.3
13,374.3 13,387.0
15,565.1 15,663.2
17,554.1 17,748.0
19,403.1 19,672.9
21,156.1 21,542.4

expected observed
37(1) mean

955.0 975.0
1,824.3 1,819.2
2,614.5 2,646.0
3,332.2 3,376.3
3,983.7 4,032.7
6,436.4 6,452.0
7,925.5 7,911.1
8,802.5 8,810.6
9,285.4 9,436.4
9,514.3 9,827.8
9,582.0 9,983.1
9,551.5 10,133.7

expected observed
37(3) mean

0.9 0.8
7.2 4.7

22.9 24.1
48.O 56.8
86.O 97.2

467.0 452.5
1,141.3 1,130.4
2,053.9 2,043.7
3,155.2 3,122.3
4,406.0 4,341.9
5,775.7 5,684.0
7,239.4 7,121.8

8. Summary and conclusions. The asymptotic behavior of (n), the expected
number of clusters in a finite m-dimensional space, depends on assumptions about
the clusters themselves. If the clusters are unbounded, as in 4, then bj, and hence
cluster extent, are monotone increasing as a function of n until the space is effectively
covered by a few clusters so that 37 (n) --> c. And in 6, where a constraint of a maximum
cluster content is imposed, ;/(n)-->cl +c2(n --Ca).

In actual computer applications the latter model is more realistic, since practical
considerations invariably impose an upper limit on the number of items that may be
clustered in a data file. Its linear behavior has profound implications. In very large
data bases, a dynamic clustering algorithm which left many blocks of the data file
only partially filled with items would impose intolerable storage overhead. The fact
that convex clustering procedures attain an equilibrium, with a fixed upper bound on
the number of partially filled physical blocks is crucial. Indeed, the overhead of unused
storage, as a percent of the total data file, actually decreases as n becomes large.

Expected storage accesses per query can also be derived from this model by first
using (6.2) to calculate bj(k) for 1 =<k -<kmax, and then using (6.1) to calculate b(n)
for l<-/’_-<m. With the large file of Fig. 3(c), when n 100,000 one obtains "(n)
40,793 and bj(n)=l.801, 1.845, 1.860, 1.867, 1.871 and 1.874 respectively for
/" 1, 2,..., 6. Comparing these values with those of Table 2(c), one finds more
clusters (40.793 vs. 15,979) of smaller extent (40.46 vs. 1327.81 cells per cluster). By
using these values, one can now show that to retrieve a single item from the file, an
expected (n). I-[=1 ff.(n)/w=O.1467 accesses to the data file will be required.
Retrieval performance of this order, which is considerably better than that described
in 5 and which has been verified in actual data files, is impressive.

Readily, the analyses of this paper were undertaken to determine the expected
behavior of a particular access and retrieval method (described in [8] and [9]), that
represents the attributes of data items by bit descriptors to form a descriptor for a
block of several items. This is not an original access method. The first known reference
to this technique seems to be [7]. Edgar Cagley independently discovered this approach
and, moreover, was the first to implement it in a practical system [5]. Our system
closely follows Cagley’s design; indeed he provided it, although we use a different
clustering mechanism.

750 JOHN L. PFALTZ

Many retrieval systems have employed binary descriptors to represent items; but
most form the descriptor by superimposed coding which does not separate distinct
attributes; [3] and [10] are representative examples (the latter provides an extensive
list of further references). Superimposed coding is superior for a different set of
retrieval problems, those for which a single attribute of an item may have a set of
values; and leads to a different kind of analysis.

Retrieval of items in an m-dimensional cellular bucket space has been analyzed
in 1], [4]. Since the access method is different, neither item descriptors nor clustering
is employed, these results are not directly transferable, but there are some definite
similarities. In particular they show that as the size of the conceptual attribute space
increases, the cost of retrieval decreases.

There is an abundance of "clustering algorithms" in the literature; [2] and [6]
provide fine surveys. Most operate over continuous m-dimensional spaces assigning
centroids to created clusters and computing metric distances between them. Moreover
most require that all the items be known at the time of clustering; newly entered
items may cause a restructuring of the clusters. A dynamic data base requires a
one-pass procedure that can organize its items "on the fly". Ours is unusual, but
hardly unique, cf. [11]. Much of its appeal lies in the fact that it is conceptually simple
and easy to implement, that its expected behavior can be analyzed and its performance
predicted, and that it works well in practice.

REFERENCES

[1]m. V. AHO AND J. D. ULLMAN, Optimal partial match retrieval when fieMs are independently specified,
ACM Trans. Database Sys., 4 (1979), pp. 168-179.

[2] M. R. ANDER3ERG, Cluster Analysis [or Applications, Academic Press, New York, 1973.
[3] W. J. BERMAN, ISIS users manual, NASA Tech. Memo. 80144, Hampton, VA, March 1980.
[4] W. J. BERMAN AND J. L. PFALTZ; Multi-dimensional bucket arrays, DAMACS Tech. Report

TR-16-78, Univ. of Virginia, Charlottesville, 1978.
[5] E. M. CAGLEY, et al., Information management system reference manual, GSA/FPA/MCL TM-208,

October 1976.
[6] B. EVERITT, Cluster Analysis, John Wiley, New York, 1974.
[7] W. D. FrAZER, A proposed system for multiple descriptor data retrieval, Some Problems in Information

Science, M. Kochen, ed., The Scarecrow Press, Grolier, Danbury, CN, 1965.
[8] J. L. PFALTZ, W. J. BERMAN AND E. M. CAGLEY, Partial-match retrieval using indexed descriptor

files, Comm. ACM, 23 (1980), pp.. 522-528.
[9] J. L. PFALTZ, Efficient multi-attribute retrieval over very large geographical data files, Proc. AUTO-

CARTO IV, Washington, DC, 1979, pp. 54-62.
[10] C. S. ROBERTS, Partial-match retrieval via the method of superimposed codes, Proc. IEEE, 67 (1979),

pp. 1624-1642.
[11] G. SALTON AND A. WONG, Generation and search of clustered files, ACM Trans. Database Sys., 3

1978), pp. 321-346.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

983 Society for Industrial and Applied Mathematics
0097-5397/83/1204-0011 $01.25/0

NEW RESULTS ON THE COMPLEXITY OF p-CENTER PROBLEMS*

NIMROD MEGIDDOS AND ARIE TAMIRq

Abstract. An O(n log n) algorithm for the continuous p-center problem on a tree is presented.
Following a sequence of previous algorithms, ours is the first one whose time bound in uniform in p and
less than quadratic in n. We also present an O(n log n log log n) algorithm for a weighted discrete p-center
problem.

Key words, location, p-centers, parallel computation, tree partitioning, parametric combinatorial
optimization

1. Introduction. The p-center problems are defined on a weighted undirected
graph G (V, E). Each edge (i, j) has a positive length d0. An edge is identified with
a line segment of length d0 so that we can refer to any "point" on (i, j) at a distance
of from and dii-t from / (0 -< t-<d0.). The set of all such points of the graph is
denoted by A. If x, y cA then by d(x, y) we mean the length of the shortest path
from x to y.

The continuous p-center problem is to find p points y 1,"’, yp cA so as to
minimize

Max Min d(x, yi).
xA

Intuitively, we wish to locate p "centers" anywhere on the graph so as to minimize
the maximum distance between any point and its respective nearest center. An optimal
solution y 1,’", yp is called a p-center and the corresponding largest distance is
denoted rp and is called the p- radius. Results on other versions of the p-center problem
in which the supply points must be located on vertices can be found in [6], [7], [8],
[9], [10], [11], [12], [13], [16]. Such problems have been shown to be NP-hard on
general graphs [13] and it has been conjectured that the continuous p-center problem
should be "difficult" on general graphs and, indeed, we include in the last section a
proof of its NP-hardness. Our discussion here is hence limited to tree graphs. Our
main result in this paper is a substantial improvement of the upper bound on the
complexity of the continuous p-center problem on a tree. We devise in this paper an
algorithm which runs in O(n log3 n) time, n vI, As is apparent from Table 1, the

TABLE
Algorithms]’or the continuous p-center problem on a tree.

Reference Bound

(1) Handler [11], [12]
(2) Chandrasekaran & Daughety [2]
(3) Chandrasekaran & Tamir [4]
(4) Megiddo, Tamir, Zemel &

Chandrasekaran [16]
(5) Chandrasekaran & Daughety [3]
(6) Frederickson & Johnson [6], [7], [8]
(7) Megiddo & Tamir

O(n) forp <=2
polynomial, not specified
O(min (n log p, n log n + p log n))

O(min (n log p, pn log n))
O(n log p)
O(n min (p, n)log (max (,o ,)))
O(n log n)

* Received by the editors November 13, 1981, and in final form November 5, 1982.
-t Department of Statistics, Tel Aviv University, Tel Aviv, Israel.
The work of this author was partially supported by the National Science Foundation under grant

ECS-8121741. Currently visiting Department of Computer Science, Stanford University, Stanford,
California 94305.

751

752 NIMROD MEGIDDO AND ARIE TAMIR

improvement is in two respects. First, our bound is the only one which is uniform
with respect to p, while all previous algorithms run in time which tends to infinity
with log p, even when the tree is fixed. Secondly, all previous bounds are at least
quadratic with n (for general p) while ours is o(n l+e) for any e >0; however, for
values of p that are O((log n)2), Frederickson and Johnson’s algorithm is better.

In order to explain the contribution of the present paper, we start with an overview
of the previous results. The first polynomial algorithm was given by Chandrasekaran
and Daughety [2]. This algorithm is in fact an application of a general method of
solving parametric combinatorial problems presented in Megiddo [14]. The para-
metrization enters here in the following way. Consider the problem P(r) of locating
a minimum number of "centers", M(r), so that every point is within a distance r from
at least one center. The p-center problem is to minimize the value of the parameter
r subject to M(r)<=p. The function M(r) is a step function and the problem P(r) is
solvable in O(n) time for a fixed r [2]. The method presented in [14] simulates the
computation of M(r) where r belongs to a certain interval and is not just fixed at a
unique value. The interval is repeatedly narrowed, always containing the minimal r
such that M(r)<=p. It then finds that minimal r exactly. The details are further
developed throughout the present paper.

Chandrasekaran and Tamir [4] proved that the jump points of M(r) are of the
form d(x, y)/2/where is integral and x, y are vertices of degree 1. In particular,
the p-radius rp belongs to the set

2l
x, y V, ll<-_p

Chandrasekaran and Tamir’s algorithm is based on that fundamental result. Note that
the cardinality of R is O(nap). However, R has a special structure which enables
searching in R without generating the entire set in advance. Indeed, Megiddo, Tamir,
Zemel and Chandrasekaran [16] found a succinct representation of all the distances
d(x, y), which allows for finding the kth longest path in the tree as well as solving
discrete p-center problems in O(n logan) time despite the cardinality of {d(x, y)}
being O(n2). This representation also yielded the O(min (n log p, pn logn)) bound
for the continuous p-center problem. Later, Frederickson and Johnson [5], [6], [7],
I-8] found an even better representation which yielded an O(n log n) algorithm for
the unweighted discrete problems as well as the O(n min (n, p) log (max (p/n, n/p)))
algorithm for the continuous p-center problem. Our algorithm in this paper is based
on a more efficient search in the set R which exploits both the special structure of
the set {d(x, y)} and the monotonicity with respect to l (see the definition of R). The
search employs parallel computation algorithms along the lines suggested in Megiddo

Another related problem which we attack in the present paper is the following
weighted discrete p-center problem on a tree. Assuming that every vertex has a
positive weight wi associated with it, find p points yl, ", yp A so as to minimize

Max Min wid(i, yj).
i V

This problem is solved in [13] in O(n log n) time. A better implementation yielding
an O(n) bound appears in [4]. The optimal value of the objective function (i.e. the
analogue or ro) is known [13] to belong to the set

d(x,y_)._ v}wl_w x, y (

NEW RESULTS ON COMPLEXITY OF p-CENTER PROBLEMS 753

which is of cardinality O(n 2). Applying methods similar to those used in the continuous
case, we find the solution in this case in O(n logEn log log n) time. We remark that
the case where the p-centers may be established only at the vertices is solved in [16]
in O(n log2 n) time.

2. The continuous lroblem.
2.1. An overview. It has been pointed out earlier that the p-radius is of the form

d(x, y)/2/where x, y V and 1 -<_l _<-p. It will be convenient for us to deal with the
set R of all these candidates for rp by looking at the functions kx(r), defined for all
x,yV:

k*’(r) [d(x’ y)
(r > 0).

Obviously, kxy is a step function with jumps at [d(x, y)/2/], l-1, 2,.... We will
determine an interval [a, b] such that M(a)>p >-_M(b) and such that all the k,y’s are
constant over (a,b]. These characteristics imply that a<rp<=b (since rp=
Min {r: M(r)<=p}) and hence ro =b, since at least one of the functions k,y must jump
at to.

The determination of the final interval is carried out in two phases. During the
first phase an interval [ao, bo] is found such that ao < rp _-< bo and at least the k0.(r)’s
corresponding to edges (i, f) are constant over (ao, bo]. During the second phase the
set of pairs (x, y) for which k,y(r) is constant is gradually increased (while the interval
is gradually narrowed down) until we reach the final interval. The second phase is
organized in the form of O(log n) stages determined by a centroid decomposition
[16], [6] of the tree. During each stage we consider O(n 2) pairs of vertices, however,
only O(log2 n) jump points are tested, i.e., M(r) is evaluated at no more than O(log2 n)
jump points.

2.2. Phase 1. Let the tree be rooted at an arbitrary vertex u. We will use the
convention that if (i,]) is an edge such that/’ is closer to u than i, then belongs to
the set of points of (i,/’) while] does not. Thus every vertex except for u belongs
precisely to one edge.

Consider the related problem P(r) (see 1). It is easy to verify the truth of the
following:

ASSERTION 1. In order [or every point to be within a distance of r from at least
one center, at least kii(r) centers must be located on the edge (i, f) (including exactly
one endpoint).

ASSERTION 2. [rt order to satisfy the requirement mentioned in Assertion 1 with
respect to points of the edge (i, f) it is sufficient to allocate kii(r) + 1 centers to that edge.

COROLLARY. Ill(r) -’(i,/’)E kq(r) then

f(r) <-M(r) <= f(r) + (n 1).

Consider the case r rv. First, by definition M(rv)<-p. We also claim that p-
(n-1)<M(rp). For if M(rv)+(n-1)<=p then rp<=rM(r,)+(n_) and rM(r,)+(n-1)<rM(r.)
since by adding one more center per edge the radius certainly decreases. On the other
hand, obviously rM(r,)-’-rp and a contradiction has been reached. It now follows that

p -2(n 1)<M(rv)-(n 1)<=f(rp)<=M(rv)<-_p.

For every r the function f jumps at r if and only if one of the ki’s jumps at r.
Consider the number r’=zY(,i)zd(i,]). By the definition of f, f(r’)<-
.i)ud(i,])/2r’= p. Also f(r’) > Y.i.i)u ((d(i,])/2r’)- 1) p -(n 1). We have, thus,

754 NIMROD MEGIDDO AND ARIE TAMIR

obtained the following bounds,

p-2(n-1)<f(r,)<-p,

p (n 1) <f(r’) <= p.
Compute M(r’) to determine whether r’=> rp or r’< rp. Suppose first that r’-> ro and
imagine that we continuously decrease r, starting from r r’ until we reach f(r) p + 1.
It follows from the above discussion that we will approach at most p + 1-f(r’)<n
jump points of f. All these jumps are at points of the form 1/2dij/(kii(r’)+l) where
1 <= <=p + 1-f(r’). As a matter of fact, these jumps occur at the p + 1-f(r’) largest
elements of the set

{1 d "(i,f)E,l=l,... p+l-f(r’)}Ro - kij(r’) +l
Since Ro is naturally partitioned into n- 1 sorted subsets, corresponding to the n- 1
edges, we can find and sort all these jumps in O(n+(p+l-f(r’))logn)=
O(n +min (n, p)log n) time using a standard priority queue [1]. Similarly, if r’< rp
imagine that we continuously increase r, starting with r r’ until we reach f(r)=
max(0, p-2(n-1)). It follows that we will approach at most f(r’)-
max (0, p 2(n 1)) -< min (2n, p) jump points of f. Using the scheme of the previous
case, all these jumps are found in O(n +(’(r’)-max (0, p-2(n- 1))log n)) time. In
any case, the effort so far is O(n +min (n, p) log n).

Once we have all the jumps in the relevant domain (depending on whether r’< r
or r’ => r), we can search for two consecutive jump points a0, b0 such that ao < rp -< b0.
The search amounts to O(log(min (n,p))) evaluations of the function M(r). This
completes Phase 1, at the end of which we have the interval (ao, b0] such that kii(r),
(i,f)E, is constant for all r(ao, bo]. The total effort during this phase uses
O(q log n + n log q) time where q min (n, p). We note in passing that at this point,
when we have k(r,), (i, f) E, r, can be found in O(n) time using the method of [14]
as described in 1; this is because the evaluation of M(r) takes O(n) time and the
method of [14] always leads to no more than the squared amount of time of the
master algorithm used. We note that the number of centers on (i,/’) is either k(r,) or
kgi(r)+ 1 so that the value of M(r) is computed O(n) times.

2.3. Phase 2. When the second phase starts, we have an interval (a0, bo] such
that ao < rp-<bo, over which the functions kij(r) (for (i, f)eE) are constant; we have
to narrow this interval down until all the kxy(r)’s become constant. We will describe
the algorithm here in a recursive way.

Given is a tree T together with an interval (a, fl] such that a < rp-<fl and the
functions kii(r) ((i, f) 17.) are known to be constant over (a,/]. Our recursive routine
in the present subsection will produce the following: A subinterval (a’,/3’]
(a =<a’ <rp-<fl’-</) will be found such that all the functions k,y(r) (for any vertices
x, y of T) will be constant on (a’, fl’].

Let c be a centroid of T, i.e., T can be represented as a union of two subtrees
T1 and T2 whose only common vertex is c, such that each has at most of the vertices
of T. Such a vertex can be found in linear time [10], [13], [16]. We call this partition
a centroid decomposition [7], [16]. The decomposition may proceed into the subtrees
and their components and so on, and that whole hierarchy (done in O(log n) phases)
will be called a total centroid decomposition.

We first apply the routine recursively to the trees T1 and T2. We thus obtain an
interval (ao, flo] (ao < r. _-</30) such that kx (r) is constant on (ao,/30] whenever x and

NEW RESULTS ON COMPLEXITY OF p-CENTER PROBLEMS 755

y are in the same subtree (either T1 or T2). It takes linear time to find all the distances
d (x, c) and d (c, y) (x e T1, y T2), and hence the constant value over (ao,/30] of kxc (r)
for x e T1 and of kcy(r) for y e T2 is also assumed to be known. Moreover, kx(r)+
ky (r) <- kxy (r) <- kx (r) + ky (r) + 1. Thus, the function ky (r) (x Ta, y e T2) may have
at most one jump in the interval (Co,/30], namely, when it jumps from k,c (r) + kcy (r) + 1
to kx(r)+ kcy(r). This occurs at the value

1 d(x, y)
2 kx (r) + ky (r) + 1"

Denote ax 2’-d (x, c), by 1/2d (c, y), c, kx (r) and dy key (r) + 1. As a matter of fact,
we now have to search for rp within the set

’=Ia+by }R tcx/d’XT,yT2
In other words, we look for ’, fl’ R’U {ao, flo} such that o <= ’ < rp <-_ fl’ <= flo

and (a’,/’) CR’ . It is explained in the Appendix how to perform this search in
O(n log2 n) time. It follows from the definition of the centroid that the total centroid
decomposition consists of O(log n) phases. Therefore our routine runs in O(n log3 n)
time.

This implies that the continuous p-center problem is solvable by our algorithm
in O(n log3n) time.

3. The weighted discrete case. As pointed out in the Introduction the weighted
discrete case is equivalent to searching for the optimal value, denoted here by r*, in
the set R* {d(x, y)/(w-’ + w-’): x, y e V}. The solution process here is quite similar
to that of the continuous case. It is easy to see that an adaptation of Phase 2 to the
present problem solves the problem in O(n log3 n). However, a further improvement
is yet possible.

All the intervertex distances d(x, y) can be organized in the form d(x, y)=
d(x, ci)+d(ci, y) where ci is a centroid in the total decomposition of our tree (see
2.3 and [7], [16]). Let I denote the index set of these centroids ci and let T} and

T/2 denote the two subtrees given by the decomposition of a previous subtree as
induced by ci (see 2.3). We then have to search for r* in a collection of sets of the
form

Ri{d(x,!int-d(,Y) }"xeTi,yT
W +W

s I, where Yt [T[= O(n log n) and]t Ir/ l log),
The search procedure employed here is similar to the two-stage scheme described

in the Appendix. In the first stage we identify an interval Is1, t] such that s <r*<=ta
and such that for each i, the linear order induced on the vertices of T by the numbers
w-r-d(x, ci) is independent of r provided r sis1, tl]. For each sI we employ
"processors" for sorting {w-’r- d(x, c)’ x T }. We use Valiant’s [18] parallel sorting
algorithm which takes O(log log I) time. Thus, Y. IT2I- O(n n) pro-
cessors suffice for parallel sorting of each of the [/I sequences {w-’r-d(x, ci)" x T }
in O (log n log log n) time.

As in the Appendix, a single step of the parallel sorting scheme gives n log n
critical values for the parameter r. Given these n log n values, and an interval (So, to]
which contains r*, we can in O(n log n) time (as in the Appendix) narrow down the
interval so that it will still contain r* but none of the above n log n critical values in

756 NIMROD MEGIDDO AND ARIE TAMIR

its interior. Hence, the total time for the first stage is O((itlT[+
n log n) log n log log n) O(n log2 n log log n).

The second stage is the same as Stage 2 of the Appendix, with the exception that
here we use Y.it ITI O(n log n) processors. However, the total effort for this stage
still remains O(n log2n). Thus, the total effort involved in finding r* is
O(n log2 n log log n).

We note that if the tree is a path connecting two vertices v and vn then r* is an
element of the set

Therefore, using the scheme described in the Appendix, r* is found in O(n log2 n) time.

4. NP-hardness of the continuous p-center problem. The result of the present
section was not particularly hard to achieve even though it has not been previously
proved to our knowledge. The NP-completeness of other versions of p-center problems
was proved in [13].

In order to establish that the p-center problem is NP-hard on general graphs,
we will reduce the minimum dominating set problem (see [9]) to the following problem:
Given a graph G (V, E), all of whose edges are of unit length, find out whether
there exists a set of p "centers" (anywhere on the edges of G) such that every point
of G is within a distance of 2 from some center. We should remark that it may be
necessary to locate centers in the interior of an edge in order to solve the latter
problem (see Fig. 1).

FIG.

The reduction is as follows. Suppose that G (V, E) is a graph for which we
have to recognize whether there exists a dominating set of cardinality p. Let G’ denote
a graph obtained from G by adjoining one vertex v’ per each vertex v of G, such
that v’ is adjacent only to v. All the edges of G’ will be of unit length. We consider
the problem of p centers on G’. Obviously, a dominating set for G will solve the
center problem. Conversely, suppose that we have p centers on G’ such that every
vertex is at distance not greater than 2 from some center. Clearly, every vertex of the
original graph G is within unit distance from some center. If we translate every center
to one of its respective nearest vertices, then every vertex of G still has a center within
unit distance from it. We thus have a dominating set of the appropriate cardinality.

Finally, we remark that since the dominating set problem is NP-complete even
on bipartite planar graphs of maximum degree 3 (see [13, proof of Lemma 3.1]), then
the above reduction implies NP-hardness of the continuous p-center problem even
on bipartite planar graphs of maximum degree 4.

NEW RESULTS ON COMPLEXITY OF p-CENTER PROBLEMS 757

Appendix. Searching in {(at +bj)/(ct +dj)}. In this appendix we describe how to
search for the number rp within a set of the form S={(ai+bj)/(ci+dj): l<=i,j<=n}.
Thus there will be given 4n numbers, ai, b., c, d. (1-< i, j <-n), and we will have to
find two elements s, S such that s < r, <= and no element of S is strictly between
s and t.

We first note that the set S consists of the points of intersection of straight lines
y (cx-a)+(dix-bi) with the x-axis. The search will be conducted in two stages.
During the first stage we will identify an interval [s l, tl] such that s < ro -< ta and such
that the linear order induced on {1,. ., n} by the numbers cx -ai is independent of
x provided x [s l, ta]. The rest of the work is done in Stage 2.

Stage 1. An equivalent description of Stage 1 is that we search for r among the
points of intersection of lines y cx -a with each other. The method was introduced
in [15]. It is based on Preparata’s [17] parallel sorting scheme. This scheme employs
n log n "processors" during O(log n) steps. Imagine that we sort the set {1,..., n}
by the (cix-a)’s, where x is not known yet. Whenever a processor in Preparata’s
scheme has to compare some cx- ai with cix- ai, we will in our algorithm compute
the critical value xj (a- ai)/(c-ci). Thus, a single step in Preparata’s scheme gives
rise to the production of n log n points of intersection of lines y cix- a with each
other. Given these n log n points and an interval (So, to] which contains to, we can in
O(n log n) time narrow down the interval so that it will still contain r but no
intersection point in its interior. This requires the finding of medians in sets of
cardinalities n log n, 1/2n log n, In log n, plus O(log n) evaluations of M(r). We then
proceed to the next step in Preparata’s scheme. We note that since the outcomes of
the comparisons so far are independent of x in the updated interval, we can proceed
with the sorting even though x is not specified. The effort per step is hence O(n log n)
and the entire Stage 1 takes O(n log2n) time.

Stage 2. When the second stage starts we can assume without loss of generality
that for x [s, tl] CiX--ai <=ci+ix--ai+, 1,..., n- 1. Let] (1-<j =<n) be fixed and
consider the set Si of n lines S. {y cix ai + djx b., 1, , n }. Since Si is "sorted"
over Is1, tl], we can obviously find in O(log n) evaluations of M(r) a subinterval [s, t
such that s/1 < rp _<- t, and such that no member of S. intersects the x-axis in the interior
of this interval. We will, however, work on the Si’s in parallel. Specifically, there will
be O(log n) steps. During a typical step, the median of the remainder of every Si is
selected (in constant time) and its intersection point with the x-axis is computed. The
set of these n points is then searched for r, and the interval is updated accordingly.
This enables us to discard a half from each S.. Clearly a single step lasts O(n log n)
time and the entire stage is carried out in O(n log2n) time.

At the end of the second stage we have the values {Sl} and {t/l},] 1,..., n.
Defining s maxl__<i_<_n {S/l} and minl__<.__<n {t{ } we obtain s < rp <- t, and no element
of S is strictly between s and t.

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1976.

[2] R. CHANDRASEKARAN AND A. DAUGHET, Problems of location on trees, Discussion Paper, 357,
Center for Mathematical Studies in Economics and Management, Northwestern Univ., Evanston,
IL, 1978.

[3], Location on tree networks: p-center and n-dispersion problems, Math. Oper. Res., 6(1981), pp.
50-57.

[4] R. CHANDRASEKARAN AND A. TAMIR, An O((n log p)2) algorithm for the continuous p-center on
a tree, SIAM J. Alg. Disc. Meth., 1(1980), pp. 370-375.

758 NIMROD MEGIDDO AND ARIE TAMIR

[5] G. N. FREDERICKSON AND D. B. JOHNSON, Generalized selection and ranking, in Proc. 12th Annual
ACM Symposium on Theory of Computing, Los Angeles, April 1980, Assoc. Comput. Mach.,
New York, 1980, pp. 420-428.

[6], Generating and searching sets induced by networks, in Proc. 7th EATCS Colloquium on
Automatic Languages and Programming, Noordwijkerhout, the Netherlands, July 1980, Lecture
Notes in Computer Science, 85, Springer-Verlag, Berlin, 1980, pp. 221-233.

[7] ., Generating and searching sets for path selection and p-center location, Computer Science
Department, Pennsylvania State Univ., University Park, PA, August 1981.

[8],Finding k-th paths and p-centers by generating and searching good data structures, J. Algorithms,
to appear.

[9] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

10] A.J. GOLDMAN, Optimal center location in simple networks, Transportation Sci., 5 (1971), pp. 212-221.
[11] G. Y. HANDLER, Minimax location of a facility in an undirected tree graph, Transportation Sci., 7

(1973), pp. 287-293.
[12] ., Finding two-centers of a tree: The continuous case, Transportation Sci., 12(1978), pp. 1-15.
[13] O. KARIV AND S. L. HAKIMI, An algorithmic approach to network location problems, Part I. The

p-centers, SIAM J. Appl. Math, 37(1979), pp. 513-538.
14] N. MEGIDDO, Combinatorial optimization with rational obfective function, Math. Oper. Res., 4(1979),

pp. 414-424.
[15], Applying parallel computation algorithms in the design of serial algorithms, in Proc. 22nd

Annual IEEE Symposium on Foundations of Computer Science, 1981, IEEE Computer Society
Press, Los Angeles, 1981, pp. 399-408; J. Assoc. Comput. Math., to appear.

[16] N. MEGIDDO, A. TAMIR, E. ZEMEL AND R. CHANDRASEKARAN, An O(n log2 n) algorithm for
the k-th longest path in a tree with applications to location problems, this Journal, 10(1981), pp.
328-337.

[17] F. P. PREPARATA, New parallel-sorting schemes, IEEE Trans. Comput., C-27(1978), pp. 669-673.
[18] L. G. VALIANT, Parallelism in comparison problems, this Journal, 4(1975), pp. 348-355.

SIAM J. COMPLrI.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics

0097-5397/83/1204-0012 $01.25/0

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING IN R3

AND RELATED PROBLEMS*

NIMROD MEGIDDOt

Abstract. Linear-time algorithms for linear programming in R and R are presented. The methods
used are applicable for other graphic and geometric problems as well as quadratic programming. For
example, a linear-time algorithm is given for the classical problem of finding the smallest circle enclosing
n given points in the plane; this disproves a conjecture by Shamos and Hoey [Proc. 16th IEEE Symposium
on Foundations of Computer Science, 1975] that this problem requires lq(n log n) time. An immediate
consequence of the main result is that the problem of linear separability is solvable in linear time. This
corrects an error in Shamos and Hoey’s paper, namely, that their O(n log n) algorithm for this problem
in the plane was optimal. Also, a linear-time algorithm is given for the problem of finding the weighted
center of a tree, and algorithms for other common location-theoretic problems are indicated. The results
apply also to the problem of convex quadratic programming in three dimensions.

The results have already been extended to higher dimensions, and we know that linear programming
can be solved in linear time when the dimension is fixed. This will be reported elsewhere; a preliminary
version is available from the author.

Key words, linear programming, 1-center, weighted center, smallest circle, linear time, median,
separability, quadratic programming

1. Introduction. The problem of finding the convex hull of n points in the plane
has been studied by many authors, and its complexity is known to be O(n log n) not
only in the plane but also in R 3 (Graham [G], Preparata and Hong [PHI and Yao
[Y]). Several known problems in computational geometry, such as farthest points,
smallest circle, extreme point, etc., are closely related to the problem of finding the
convex hull of n points in the plane (Shamos [Sh], Shamos and Hoey [ShH] and
Dobkin and Reiss [DR]). We have not found in these references an explici statement
about the complexity of linear programming in two and three dimensions. A closely
related problem is the "separability" problem for which a statement of complexity
was made. The separability problem is to separate two sets of n points in R a by means
of a hyperplane. Dobkin and Reiss [DR] report that this problem is solvable in
O(n log n) time when d -< 3, referring to Preparata and Hong’s work [PH]. Moreover,
Shamos and Hoey solve the separability problem in R 2 in O(n log n) time and claim
(erroneously) [ShH, p. 224] their algorithm to be optimal. The truth is that the
separability problem in R e is obviously solvable by linear programming in d variables.
In particular, it follows from the results of the present paper that it can be solved in
O(n) time when d -< 3.

We may learn about the state-of-art of the complexity of linear programming in
R by considering the "extreme point" problem, i.e., the problem of determining
whether a given point Po in R 2 is a convex combination of n given points P1,""", Pn
in R 2. Dobkin and Reiss [DR, p. 17] state without proof or reference that this problem
(in R 2) is solvable in linear time. This statement is rather obvious since the extreme
point problem in the plane can be modeled as a problem of finding a straight line
which crosses through Po and has all the points P1,..., Pn lying on one side of it.
The latter, however, amounts to linear programming in R which is trivial. The same

* Received by the editors February 9, 1982, and in revised form November 15, 1982. This research
was partially supported by the National Science Foundation under grants ECS-8121741 and ECS-8218181,
at Northwestern University.

t Department of Statistics, Tel Aviv University, Tel Aviv, Israel. Currently visiting Department of
Computer Science, Stanford University, Stanford, California 94305.

759

760 NIMROD MEGIDDO

observation implies that the separability problem in R a (d => 2) can be solved by linear
programming in d- 1 variables so that, in view of the present paper, it is solvable in
linear time in R #.

Another problem, related to linear programming in three variables, which we
solve in O(n) time, is that of finding the smallest circle enclosing n given points in
the plane. Shamos and Hoey [Shill solve this problem in O(n log n) time, improving
the previously known bound of O(n 3) very significantly. A seemingly related problem,
namely, that of finding the largest empty circle, was shown to require D,(n log n) time,
and that led Shamos and Hoey to the (wrong) conjecture that lq(n log n) was also a
lower bound for the smallest enclosing circle problem. They were convinced that the
so-called Voronoi diagram would always provide optimal algorithms, so they stated
[ShH, p. 231]: "... the proper attack on a geometry problem is to construct those
geometric entities that delineate the problem...". Our results prove that this is not
always the case, since the construction of the Voronoi diagram does require lq(n log n)
time, while the smallest enclosing circle can be found in O(n) time.

The problems discussed in this paper are presented in order of increasing difficulty.
We start with linear programming in R 2 which is a subroutine for the three-dimensional
problem. The two-dimensional case is discussed in 2. In 3 we consider the problem
of the weighted center of a tree. The latter is more complicated than linear program-
ming in two variables but yet does not involve the difficulties which arise in the
three-dimensional case. The best known bound for it was O(n logn) [KH]. The
problem of the smallest circle enclosing n points in the plane, which is discussed in
4, is more complicated than linear programming in the plane. It is in fact a three-

dimensional problem in a certain sense, and the algorithm which we present for it
leads to the design of a linear-time algorithm for linear programming in R 3. In 4
we also point out how our results apply to other location-theoretic problems in the
plane. The problem of linear programming in three variables is discussed in 5. Our
linear programming algorithm for R 3 can easily be extended to solve convex quadratic
programming problems in R 3 in O(n) time. The latter is also discussed in 5. In the
Appendix we include an efficient algorithm for the extreme-point problem in the
plane (discussed earlier in this Introduction) which is a routine for solving the smallest
circle problem.

2. Linear programming in the plane.
2.1. Preliminaries. The linear programming problem in the plane can be stated

as follows:

minimize clxl 3t-C2X2
XI,X2

s.t. ailx -t- ai2x2 -> fli (i 1, ., n).

It will be convenient for us to deal with the problem in an equivalent form, which
can be obtained from the original one in O(n) time:

minimize y

Sot. y >= ax + bi

y <=ax +bg

(iI),

(i I),

a<=x<=b

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 761

where]Il + 1121 < n and -c =< a, b -< . We also define the following functions:

g (x) max {aix + hi: I1},

h (x) min {aix + bi: 12}.

Obviously, both of these functions are piecewise linear, and g is convex while h is
concave. A number x, a =< x -<_ b, is said to be feasible if g(x)<= h (x). We can pose our
problem also in a one-dimensional form’

minimize

s.t.

g(x)

g(x)<-h(x),

a<__x<_b.

Our algorithm works as follows. We test values of x in a fashion resembling binary
search. Each test runs in linear time and enables us to drop at least a quarter of the
constraints of the problem. We first have to describe our test in detail.

2.2. Testing a value of x. Given any value x’ of x (a =<x’=<b), we test the
following: (i) Is x’ feasible? (ii) If x’ is not feasible then if there are any feasible values
of x then they must lie on one side of x’; our test either determines that side or
concludes that no feasible values exist; (iii) If x’ is feasible then our test will recognize
whether x’ is also optimal and if not then it will tell us on what side of x’ the minimum
lies.

We start with the case of infeasible x’. In other words, g(x’)> h(x’). Consider
the function f(x)= g(x)-h (x). This function is convex so the values of x such that
f(x)-<_0 (if there are any) all lie on one side of x’. In order to tell the correct side we
look at the one-sided derivatives of f at x’. This is done as follows (see Fig. 1). Define

Sg min {a;: 11, aix’ + bi g(x’)},

Sg max {ai I1, aix’ + bi g(x’)},

s min {ai I2, aix’ + bi h (x’)},

S max {ai I2, aix’ + bi h (x’)}.

If sg > Sh then f(x) is ascending at x’ so that a feasible x can only be smaller than x’.
Analogously, if Sg < Sh, then f(x) is descending at x’ so that a feasible x can only be
larger than x’. The remaining case is when Sg- Sh =< 0 <= Sg- s. In this case f attains
its minimum at x’, i.e., there are no feasible values of x.

Consider now the case when x’ is found to be feasible. We are interested in
finding out on what side of x’ the optimal solution lines. Assume, first, that g (x’) < h (x’).
Here the analysis is quite simple. We need to look only at the numbers Sg and Sg. If
sg > 0 then an optimal solution (denote it by x*) must satisfy x* < x’. Analogously, if
Sg < 0 then x* < x’. Otherwise, Sg -< 0 -< Sg and x’ itself is a minimum of g. If g(x’) h (x’)
then the situation could be one of the following: (i) If Sg >0 and sg Sh then x* <x’.
(ii) If Sg <0 and Sg <=sh then x*> x’. Otherwise x’ itself is a minimum of g(x) under
the constraint g (x) <- h (x).

In summary, if x’ is any value in [a, b then in linear time we can either find that
the problem is infeasible, recognize that x’ itself is an optimal solution, or decide that
the rest of the computation may be confined to one of the subintervals [a, x’], Ix’, b].

2.3. The algorithm. We start the procedure by arranging the elements of I1 in
disjoint pairs and, similarly, those of I2 in disjoint pairs (a single element from either

762 NIMROD MEGIDDO

X

FiG,

set may be left unmatched). Consider, for example, a pair i,/" I1. If ai at then,
obviously, one of the constraints y >-aix +bi, y >=ax +b may be dropped without
affecting the optimal solution of the problem. Otherwise, a a. and the number
xi=(b-b)/(a-ag) (i.e., the solution of the equation ax+b=ax+bi) has the
property that if x is confined .to an interval which does not contain x0 in its interior
then, again, one of the two constraints is redundant and may be dropped. A similar
observation is of course valid for a pair of constraints of the form y <= ax + bi.

Consider all the pairs that have been formed. First, drop every constraint which
is redundant according to the previous observation, i.e., either because of an inequality
a at or because of a relation x0g (a, b). We now consider only those pairs i,/’ (that
have been formed) for which a a. and a <x < b. The next step is to find the median
x, of the set of xi.’s. This can be done in linear time (see [AHU]). We then test the
value x,, along the lines described in 2.2, i.e., we either recognize that our problem
is infeasible, find out that x, is an optimal solution for our problem, or deduce that
the interval [a, b] may be redefined (the new interval being either [a, x,,] or [x,, b]).
In the first two cases our task is finished. In the latter case we do the following. At
least half of the critical values xg (as defined by the original pairs) will not be in the
interior of the new interval. We will thus be able to drop one constraint per each such
pair which is at least a quarter of the set of constraints (including those that have
been dropped prior to the evaluation of x,). We are thus left with a linear programming
problem in the plane with at most [3n/4] constraints. This implies that the runtime
time (n) of our algorithm on an n-constraint problem satisfies time (n)<=C.n +
time (3n/4) and hence time (n)= O(n). Of course, when n is small (e.g., n <-4) the
problem will be solved directly.

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 763

3. The weighted center of a tree.
3.1. Introduction. The weighted center of a tree is defined as follows. Given is

a tree T (V, E) with n vertices. A nonnegative length dij is associated with every
edge (i,/’) and a nonnegative weight wi is associated with every vertex i. An edge (i,)
is identified with a line segment of length dij so that we can talk about any "point"
on the edge (i,/’); formally, a point x (i,/; t) is characterized by being located at a
distance of from and di-t from/. Thus the distance d(x, y) between any two
points x, y on the tree is well defined, namely, it is the length of the unique path from
x to y. The weighted center of T is a point x which minimizes the function r(x)=
max {wid(x, i): s V}. The center is unique unless all the weights equal zero. A related
problem is to find a vertex/" which minimizes the function r(x), i.e., x is restricted to
be a vertex of the tree.

The best known algorithm for the weighted center problem is an O(n log n)
procedure by Kariv and Hakimi [KH]. Other algorithms which run in O(n 2) time
have been given in Dearing and Francis [DF], Levin ILl and Hakimi, Schmeichel and
Pierce [HSP].

The unweighted case, namely, when all the weights wi are equal, is much easier
and is solvable in O(n) time (see Handler and Mirchandani [HM]). We will present
here a linear-time algorithm for the general weighted case.

3.2. Preliminaries. The function r(x) is convex on every simple path of the tree.
Specifically, if P is a simple path and is any vertex, then consider the vertex j which
is on the path P and is nearest to i. The vertex / partitions the path into two pieces
over each of which the function gi(x)= d(x, i) is linear and increasing as we move
away from/. Thus, gi(X) is piecewise linear on P (with at most two pieces) and convex.
The function r(x) is hence piecewise linear and convex, being the maximum of convex
functions.

Let x be any point on the tree. A vertex/" (/ x) is said to be adjacent to x if x
lies on an edge which is incident upon / (x may itself be a vertex but then it is not
considered adjacent to itself). Let V.(x) denote the set of vertices such that/’ lies
on the simple path from x to (see Fig. 2). Let T.(x) denote the subtree which is
spanned by the set V.(x) U {x }; in particular, this subtree contains an edge (j, x) which
is just a subsegment of (j,k) for some k V. Consider the function ri(x)=
max {wid(x, i): s V(x)}. Clearly, ri(x) decreases as we move from x in the direction
of/. Let/’1, ,/’l be all the vertices adjacent to x (l 2 if x is interior to some edge).
Obviously, r(x)=max {ril(x),..., rh(x)}. Moreover, if the maximum is attained at
more than one index then x is a local minimum of the function r, and hence it must
be the center since r is convex. On the other hand, if the maximum is attained at a
unique index, then the center must lie in the corresponding subtree. Formally, if

Tk(X)

FIG. 2

764 NIMROD MEGIDDO

rj(x)>rk(x) for every vertex k (k /’) adjacent to x then the center lies in T.(x). In
summary, given any point x, we can easily tell (in O(n) time) in which of the subtrees
T.(x) the center lies.

Kariv and Hakimi [KH] based their procedure on the above observations. Given
that the center lies in a subtree T’ they "test" the centroid x of T’ to find out which
of the subtrees of T’, rooted at x, contains the center. Since the centroid defines
subtrees whose sizes are at most half the size of T’, the process terminates within
O(log n) tests and hence runs in O(n log n) time. The improvement we suggest here
is in reducing the cost of a test. We will also perform O(log n) tests; however, the
cost of each test will be no more than three quarters the cost of the preceding one.

3.3. The linear-time algorithm. Let c denote the centroid of T, i.e., c is a vertex
such that for every adjacent vertex j, V(c)l <= n/2 (where n is the number of vertices
of T). We note that c can be found in O(n) time [HM]. This is accomplished by a
walk over the vertices, always moving in the direction in which the number of vertices,
in the subtree entered into, is being maximized. Now assume that c is known.

First, evaluate rj(c) for each adjacent vertex j. This amounts to finding all the
distances d(c, i) and hence can also be carried out in O(n) time. If there are two
vertices jl, j2 (jl #/2) adjacent to c, such that rj(c)=ri2(c)=r(c), then c itself is the
center and we terminate. Thus, let us now assume that j is adjacent to c and rj(c) > rk (c)
for every other adjacent vertex k. We now know that the center lies in T(c).

If u is a vertex not in V.(c) and if x is in T.(c) at a distance of t from c, then
d(u,x)=d(u,c)+t. If u and v are vertices not in V.(c) then by solving (for t) the
equation wu(d(u,c)+t)=wo(d(v,c)+t) we can tell the following: Assume, without
loss of generality, that wud(u, c)>= wd(v, c). There is a value t, (0-< t, =<oe) such
that, for every x in T(c) at a distance of from c, w,d(u, x) >= wd(v, x) if and only
if 0 =< t-< t,o. Thus, if we knew that the center lay at a distance smaller than tu from
c then we could disregard the vertex v from that point and on in the process of finding
the center. Similarly, the vertex u could be eliminated if we knew that the center lay
at a distance greater than tuo from c. We will show below how to efficiently exploit
this observation. However, we first need to show how to recognize whether or not
the center lies within a distance of from x, where x is any leaf vertex and is any
positive real number; our discussion applies to the tree T(c) where x c is a leaf and

is some value of the type t,, derived from data which are external relative to the
tree T (c).

Given a leaf x and a positive real number t, we can (in linear time) find all the
points y1,"’, yz such that d(x, yv)=t, u 1,..., l. This is done as follows. First,
evaluate all the distances d (x, i). Now note that every edge (i,/’), such that d (x, i) <- =<
d(x,j), contains a unique point yv at a distance of t-d(x, i) from i, and hence
d(x, y)= t. The set of all points z such that d(x, z) >- can be represented as a union
of subtrees rooted at the points y 1,..., yl (each yv may contribute several such
subtrees). Let these subtrees be simply denoted by T,..., T, and let their roots be
denoted ul,. ., u, ({u, ., u,,}c {y,. ., y}). Let V,. denote the set of vertices
of T/except for ui (see Fig. 3). Define Ri(x)=max {wkd(x, k): k Vi}. Since the sets
Vi are pairwise disjoint, it follows that we can evaluate all the quantities Ri(ui),

1,..., re, in O(n)time. LetR =max {Ri(ui): 1,..., m}.First, ifR(u)<R then
the center is certainly not in T. Similarly, if R(u)=R2(ui)=R for some i i,
then the center cannot lie inside any T, 1,..., m. The remaining case is when
there is a unique (1_-<i <-m) such that Ri(ui)=R. In this case the center may lie in
T. However, this can be recognized by evaluating the functions r.(y), where/’ is any

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 765

Yl

FIG. 3

vertex adjacent to ui and y ui. All this again requires only O (n) time. In summary,
we can decide whether or not the center is within a distance of from x (equivalently,
whether or not it lies in one of the Ti’s) in O(n) time.

Returning to the original tree T, its centroid c and the subtree T.(c) which is
known to contain the center, we now do the following. Arrange the vertices outside
T.(c) in disjoint pairs (Ul, Vl), (U2, V2), (Us, 1As) (leaving one out if there is an odd
number of them). Note that there will be at least [n/4]-1 such pairs since at most
n/2 vertices are in T.(c). For every such pair (u, v) consider the equation w(d(u, c)+
t)= w(d(v, c)+t), assuming, without loss of generality, that wd(u, c)>-wd(v, c).
If w>-w then the vertex v is "discarded"; otherwise, let t,=(wd(u,c)-
wvd(v,c))/(wv-w,).

Having calculated the values tu,v, (for all pairs from which no vertex was discarded),
we now find the median of these values. This is done in O(n) time (see [AHU]). Let
the median be denoted by t,,. We now check whether the center lies (in T/(c)) within
a distance of t, from c. This can be carried out in O(n) time as we have already seen.
Suppose, for example, we find that the center indeed lies within a distance of t, from
c. Consider a pair (u, v) such that t, => t,. It follows that wherever the center x* lies
(provided it is in T.(c) at a distance of no more than t, from c) it must be true that
wud(u, x*)>-wd(v, x*). Thus, the vertex v is "dominated" by u in the sense that if
the maximum weighted distance from the center is determined by v then it is also
determined by u. Hence, we can safely discard the vertex v in this case. Similarly, if
x* is known to be at a distance greater than t, from c, then from pairs (u, v), such
that t <= t,, we can discard the vertex u.

It follows that one vertex is discarded from approximately half the pairs. In other
words, we will discard approximately of the vertices of the tree. At this point we
have reduced our problem to the weighted center problem on a tree T’ which is
defined as follows. For each vertex u not in T.(c), which has not been discarded, form
an edge (c, u) and let its length be precisely d(c, u). Also, let w, be the same as in T.
Adjoin all these edges to the tree tj(c) and call the new tree T’. Since n/8 vertices
have been discarded, it follows that the run time, time(n), for a tree of n vertices,
satisfies time (n) =< time (7n/8) + Cn, which implies time (n) O(n).

The discrete problem of finding a vertex which minimizes the function r(x) can
now be solved. It follows from the convexity of the function r(x) that the vertex
minimizing r(x) is either identical with or adjacent to the point at which r(x) has its
global minimum. Thus, by finding this global minimum we obtain at most two vertices
(endpoints of an edge), one of which is minimizing r(x) relative to the set of vertices.

766 NIMROD MEGIDDO

4. Smallest circle enclosing n points.
4.1. Introduction. In the present section we shall deal with the classic problem

of finding the smallest circle enclosing n given points (a, b), 1,..., n, in the
Euclidean plane. In the language of location theory this is the (unweighted) Euclidean
1-center problem in the plane. Formally, we are looking for a point (x, y) so as to
minimize Max {((x-a):Z+(y-b):)/:z: l<=i <=n}. Thus, the point (x, y)is an optimal
location for a facility if we wish to minimize the largest distance that a customer would
have to travel from his residence (in one of the given points (a, be)) tO the facility.

The smallest enclosing circle problem has a long history. It was posed by Sylvester
[Syl] in 1857 and different solutions have been suggested in Sylvester [Sy2],
Rademacher and Toeplitz [RT], Courant and Robbins [CR], Francis IF], Smallwood
[Sm], Francis and White [FW], Nair and Chandrasekaran [NC], Elzinga and Hearn
[EH], and finally, Shamos and Hoey [ShH]. Shamos and Hoey’s algorithm runs in
O(n log n) time and is the only one which has been proved to run in o(rt 3) time. It
is based on constructing the so-called "farthest point Voronoi diagram" which we
review below. This powerful structure is very useful for solving a number of computa-
tional geometric problems and its construction requires fl(n log n) time. This led
Shamos and Hoey to the (wrong) conjecture that the smallest enclosing circle problem
also had a lower bound of iq(n log n) [ShH, p. 154]. We shall present here a linear-time
algorithm for this problem.

The diagram is a partition of the plane into regions V. where a point (x, y) is in
V. if and only if the point (ai, bi) is farthest from (x, y) among the points (a, bi),

1,..., n. These regions are either empty or unbounded polyhedral sets. The
construction of the diagram also yields the vertices of the polytope 7r convex hull
{(a , b), , (a,, b,)} in their cyclic ordering on the boundary of 7r. Once the boundary
is known, it takes O(n) time to find the two farthest points. These two points define
a circle whose diameter equals the distance between them. If the entire r is contained
in this circle then this is the smallest possible circle. Otherwise, the smallest enclosing
circle is centered at a point where some three regions V, V., V meet, i.e., the circle
is defined by the points (a, b), (a., b.), (a, bg). It can be shown that there are at most
n -2 such points in the diagram (relying on the fact that, as a graph, the farthest-point
Voronoi diagram has no circuits) and the distances from such points to their respective
defining points (a, bg) can be produced during the construction of the diagram. It thus
takes O(n) time to find the center of the smallest enclosing circle once the diagram
has been constructed.

4.2. A constrained version of the smallest circle problem. We will first develop
an algorithm for a constrained problem, namely, where the center of the enclosing
circle is forced to lie on a given straight line. For simplicity of presentation assume
this line is the x-axis. Furthermore, at the end of the computation in this constrained
problem we will be able to tell on which side of the straight line the unconstrained
center lies. This will play an important role in the solution of the unconstrained
problem.

Consider the problem of minimizing g(x)=max {(x-ai)a+bi" 1 <-_i <=n}. Let i, f
be any two distinct indices and consider the equation (x -ai): -t- b (x -a) + bf This
is in fact a linear equation’-2nix + ai + bi -2ax +a + b. If a a then (assuming,
for example, b < b]) we may drop the function (x-a) +b from the definition of

2 2
g. If ai ai then there is a critical value xi=(a -a +b -b)/2(a-ai) such that
(assuming a > ai) (x ai)2 + b 2i >= (x a.)2 + b f if and only if x > xii.

The algorithm for the constrained center problem works as follows: Consider the
pairs (1, 2), (3, 4), ... For each pair (i, + 1) (i odd), such that a; ag+l, drop one of

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 767

the functions as explained above. Compute the critical values xi.i+l. Find the median
x, of the values xi,i+l by any linear-time median-finding algorithm (see [AHU]). Let
x* denote the minimizer of g. Compute g(xm). We shall now discuss the question of
recognizing whether x,,, <x*,x,,, =x* or x,, >x*. Let/={i" (x,,-ai)2+b g(x,,)}. If
x,,, < ai for every s I then x < x*. If x,, > ai for every s I then x,, > x*; otherwise,
x, x*. Knowing either that x* < x,, or that x* > x,,, we can discard a quarter of our
functions as follows. Assume for example x* < x,. We have at least half of our critical
values xi.i+l, greater than x*. If xi,i+ >x,, then, since (x -ai)2+bZi >=(x-ai+)2+b’+l
if and only if x =>xii+l,, we may discard the function (x-ai)2+b 2i. This is because
(x*-ai)2+b’ <=(x*-ai+l)2+bZi+l. Thus for at least half the pairs we can discard one
function per pair. This implies that at least one quarter of the functions are dropped
at the end of this stage. The linearity of the run time follows.

We now address the question of recognizing on which side of the straight line
the unconstrained center lies. First, note that the function f(x, y)=max {(x-ai)2+
(y- bi)2" <-i <= n} is convex. It is essential to note that f is convex, not only in each
variable, but also as a function of two variables. This also implies that the function
h (y) minx)(x, y) is convex. By minimizing g(x) we in fact evaluate h (0). The
y-coordinate of the unconstrained center is precisely where h (y) attains its minimum.
Denote this value by yC. Since h(y) is convex we can tell the sign of yC simply by
looking in the neighborhood of y 0. Thus, let (x*, 0) be the constrained center we
have found. Let I ={i" (x*-ai)2+b2 g(x*)}. Obviously, if I ={i} then x*=ai and
yC has the sign of bi. If I {i,/’} then (x*, 0) lies on the perpendicular bisector of the
line segment [(ai, bi), (ai, b.)]. Obviously, yC has the sign of the y-coordinate of the
midpoint of this segment, i.e., 1/2 (bi + bi). In general, all the points (ai, bi), I lie on
a circle centered at (x*, 0). If (x*, 0) is in the convex hull of these points then y 0.
Otherwise, there exist two points (ai, bi), (at, hi), (i,f I) such that]’(x, y) decreases
as we move from (x*, 0) in the direction of the midpoint of the line segment
[(ai, bi), (a., bi)] (i.e., along the perpendicular bisector of that segment; see Fig. 4). In
this case y has the sign of 1/2 (bi + bi). It should be noticed that the determination of
these two points or the recognition that (x*, 0) is in the convex hull can be carried
out in linear time with the aid of linear programming in the plane (see 2); a more
straightforward method is given in the Appendix.

In summary, given any straight line in the plane, we can in O(n) time determine
on which side of the line the center of the smallest enclosing circle lies. Moreover, if

FIG. 4

768 NIMROD MEGIDDO

this center happens to lie on the line then we discover its exact location during the
procedure.

4.3. The O(n) algorithm for the smallest circle. We shall now utilize the result
of the preceding section for finding the center of the unconstrained problem. We start
by producing the perpendicular bisectors of the line segments [(a2i-1, b2i-1), (a2i, b2)],

1,..., In/2]. Denote them by Li. Consider the angles c (-zr/2-< c < zr/2) which
these lines form with the positive direction of the x-axis. Let a, denote the median
of these angles. Consider the linear transformation that takes the x-axis to the line
y c,x and leaves the y-axis fixed. By applying this transformation we can have at
least half of our lines with nonnegative angles and at least half with nonpositive
angles. It is obvious that this can be achieved in linear time.

The next step is to form pairs of lines (L, Lj) so that each pair has one line with
nonnegative angle and one line with nonpositive angle; the pairs are disjoint. Thus,
there will be In/4] such pairs. For each pair (L, L.) define a value y as follows. If Li
and Lj are parallel to the x-axis then let Y0 be the mean of their constant y-coordinates.
Otherwise, they must intersect; let (x0, Y0) denote their point of intersection. Now,
let y, denote the median of the In/4] values Y0. The value y, can be found in linear
time. At this point we test on what side of the straight line y y, the center must
lie. This test runs in O(n) time as we have shown in 4.2. If the center lies on the
line y y, then we are done. Thus, suppose it does not lie on the line and assume,
without loss of generality, that it lies underneath this line. Consider a pair L, L. of
parallel lines such that yi -> y,. At least one of these lines lies above the line y y,.
Suppose it is the line Li (which is the perpendicular bisector of the line segment
[(a2-, b2-1), (a2, b2)]). We can now drop one of the two defining points, namely the
one which lies underneath the line Li, since the other point is farther from the center.
However, in general the lines Lg, L. are not expected to be parallel.

Consider now the set of all pairs (L, L.) of nonparallel lines for which Y0 -> Y-.
We find the median x, of the xj’s corresponding to such pairs. Like in the case of
the y-coordinate, we now test on what side of the line x x, the center of the smallest
enclosing circle must lie. Suppose, for example, it lies to the left of this line. Consider
pairs (i, l) such that x0 =>x, and yj => y,. One of the lines, say L, forms a nonpositive
angle with the positive direction of the x-axis. It follows (see Fig. 5) that one of the

!1

FIG. 5

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 769

points defining Li, namely, the one which lies "southwest" of it, can be dropped since
the other point will be at least as far from the center.

It follows that during this process we drop one point per pair for at least a quarter
of our pairs of lines. In other words, at least In/16] points will be dropped with an
O(n) effort. It thus follows that the entire process runs in linear time.

4.4. A remark on other planar location problems. An analogous problem is the
rectilinear 1-center problem in the plane for which linear-time algorithms are known
[FW]. However, the weighted rectilinear problem, i.e.,

minimize max {wi(lx -a,l+ly bl)’ 1,..., n}
x,y

(where (ai, b) are given points and w are given positive weights) can now be solved
in O(n) time by our methods in the present paper. The previously known bound was
O(n log n) and followed from separating the planar problem into two one-dimensional
problems. The one-dimensional problem is a special case of the weighted center
problem of a tree, provided the numbers are sorted.

A much more complicated problem is the weighted Euclidean 1-center problem.
The best known bound for this problem used to be O(n 3) [EH], [DW], [CP]. In a
recent paper the author [M2] presented an algorithm which required O(n (log n)3(log
log n)2) time. The methods presented in the present paper combined with those of
[M1], [M2] can yield an O(n(log n)2) algorithm for the weighted Euclidean 1-center
problem. The details will be given elsewhere.

5. Linear programming in R3.
5.1. Preliminaries. In this section we will be dealing with the following problem"

minimize ylXl +2X2 +3X3
l,X2,X3

s.t. aix + ai2x2 + a3x3 >-_ Bi (i 1, , n).

We first transform the problem into the following form (in O(n) time)"

s.t. z >-aix +biy +ci (i I1),

z <= ax + by + c (i I2),

aix + bi y + c <= 0 (i I3)

where Iql + II.1 / 1131 n. We define the following functions"

g(x, y)=max {aix +biy +ci" I1},

h (x, y) =min {aix + biy + ci I2},

e (x, y) max {aix + bi y + ci" I3}

which are all piecewise linear, g and e being convex while h is concave. Let also
f(x, y)=max {g(x, y)-h(x, y), e(x, y)}. Note that our problem is equivalent to the
following:

minimize g(x, y)

s.t.]’(x, y) _<- 0,

where]" is convex. We call a point (x, y) feasible if f(x, y)<= O.

minimize z
x,y,z

770 NIMROD MEGIDDO

The algorithm in R 3 generalizes that of the plane along the following lines. We
will first develop a routine which tests straight lines in the plane. The goal of the test
is to select one of the half planes determined by the line, such that the rest of the
computation may be confined to that half plane. Then a procedure is developed during
which applications of the test enable us to drop relatively large families of inequalities,
so that the cost of the tests which follow becomes smaller and smaller.

5.2. Testing a line. Giver, any straight line in the x, y-plane, we wish to recognize
which of the two half planes, determined by the line, is relevant for our problem. For
simplicity, assume that the line coincides with the x-axis (otherwise transform the
coordinate system accordingly). So, the goal of the test is to find whether we should
look for a point (x, y) with positive y or negative y. The conclusion of the test may
be one of the following: (i) The problem is infeasible. (ii) There is a global minimum
with y- 0. (iii) The problem is unbounded. (iv) The rest of the computation should
be in the half plane {(x, y): y > 0}. (v) The rest of the computation should be in the
half plane {(x, y)’y < 0}.

We may reach conclusions (iv) or (v) in one of the following circumstances. We
may find that there are no feasible solutions on the x-axis and realize that if there
are any feasible points then they all must lie in the half plane we have found. On the
other hand, we may find a feasible point on the x-axis but realize that, in order to
decrease the value of the function g, we must proceed into the half plane we have
identified.

The test amounts to finding the minimum of g (x, 0) subject to f(x, 0) -<_ 0 and then
analyzing the picture in the neighborhood of the solution of this optimization problem.
Our planar .linear programming algorithm in 2 is capable of reaching one of the
following results" (i) It may find out that the problem is unbounded (even when
restricted to the x-axis). (ii) It may find out that the problem (on the x-axis) is infeasible,
in which case it will produce a point (x*, 0) which minimizes [(x, 0) (in this case
f(x, 0) > 0 for every x). (iii) It may find a point (x*, 0) which minimizes g(x, 0) subject
to the constraint f(x, 0) _<- 0. If the problem is unbounded on the x-axis then, of course,
we are done. So, assume a point (x*, 0) has been produced. Without loss of generality
assume x* -0 (otherwise, translate the x-coordinate accordingly). The test relies only
on the inequalities which are tight at (0, 0). Formally, we define subsets I c I.
(] 1,2, 3) as follows. An index iI belongs to I1" if C =g(0, 0) (i.e., ci-

max{c’]I}). An index iI2 belongs to I2" if c =h(0, 0) provided f(0, 0)=
g (0, 0) h (0, 0) >= 0. Note that 12" if either f(0, 0) < 0 or f(0, 0) > g (0, 0) h (0, 0).
Finally, an index 13 belongs to I3" if c e (0, 0) provided f(0, 0)= e (0, 0)-> 0.

Distinguish two cases according to the circumstances of producing the point (x*, 0)
(which is now assumed to be equal to (0, 0))"

Case 1. f(0, 0)<-0. In this case we have found a feasible point and are interested
in decreasing the value of the function g (subject to f(x, y)-< 0). The test is based on
the following:

PROPOSITION 1. The existence of a point (x, y) such that y >0, g(x, y)<g(0, 0)
and f(x, y)<-_ 0 is equivalent to the existence of a.h such that

(i) max {aiA + bi" I* } < O,

(ii) max {aiA 4- bi s 11" } -< min {aiA 4- bi I’ }, and

(iii) max {aiA + bi" I } <- O.

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 771

Proof. Suppose there is such a point (x, y). Let A x/y. It follows that

max {aiAy +biy +ci" I* }-< g(Ay, y) < g(0, 0) max {ci" I*}
so that (i) holds. If I2" then (ii) is trivial. Thus, assume I2" 0. This implies
f(0, 0) g(0, 0) h (0, 0) 0. Here for every I1" and/" I2", ci c.. Since

max {aiAy + bi y + ci’ I’ } <-- g (Ay, y) <- h (Xy, y)

-<min {aiAy +biy +ci" Iz*},
it follows that (ii) holds. The validity of (iii) is proved analogously. Conversely, suppose
that there is A which satisfies (i), (ii), and (iii). If y >0 is sufficiently small, then
obviously g(Ay, y)< g(0, 0) and f(Ay, y)<-0. This completes the proof.

PROPOSIa’ION 2.. The existence of a point (x, y) such that y < O, g (x, y)< g(0, 0)
and f(x, y)<-0 is equivalent to the existence of a number A such that

(i) min {aiA + bi" I* } > O,

(ii) min {aih + bi" 11" } ->- max {aiA + bi" l }, and

(iii) min {aiA + bi" I’ } >= O.

The proof is analogous to that of Proposition 1.
We can now describe the rest of the test in the case where/(0, 0)<-0. Given the

sets I (] 1, 2, 3), we solve the following problem"

minimize rt
A,

S.to rl >= aiA q- bi (i I*),

rl <= aih + bi (i I*),

aiA -t- bi <- 0 (i l’).

If a negative r/ is obtained then the half plane {(x, y)’y >0} is the proper one.
Otherwise, we need to solve the following problem"

minimize

Sot. rl <= aiA q- bi (i I*),

r >= aiA q- bi (i I’),

aiA -b bi >= 0 (i I’).

If a positive r/ is obtained then the half plane {(x, y): y < 0} is the proper one. In the
remaining case the constraint y 0 does not affect the global minimum and hence
the point (0, 0) (i.e., (x*, 0)) is an optimal solution.

Case 2. f(0, 0) > 0. We are then interested in decreasing the value off by entering
one of the half planes. The conclusions in this case are based on the following
propositions whose proofs are similar to that of Proposition 1.

PROr’OSITION 3. The existence of a point (x, y) such that y > 0 andf(x, y) <f(O, O)
is equivalent to the existence of a number h such that

(i) max {aiA q- bi" s I* } < min {aih h- bi" I* } and

(ii) max {aih -b bi" I’ } < O.

772 NIMROD MEGIDDO

PROPOSITION 4. The existence of a point (x, y) such that y < 0 and f(x, y) <f(O, O)
is equivalent to the existence of a number A such that

(i) min {aih + bi" I’ } > max {aA + b’ I’ } and

(ii) min {aiA + b’ I3" } > 0.

Thus, in the case where f(0, 0)>0 the test proceeds as follows. Consider the
function

o (A) max (max {aiA + bi" I} min {aih + bi" 12" }, max {aih / bi" I }).

This is a convex piecewise linear function, and our methods in 2 are applicable for
finding its minimum in O(n) time. In minimizing (h) we form pairs (i,]) of indices
only when and/" belong to the same set I’ (1 <- k <-_ 3). If attains a negative value
then the half plane {(x, y): y > 0} is the correct domain wherein to look for feasible
points (see Proposition 3). Otherwise, we need to consider the function

(h) min (min {aiA / bi" sI }- max {aiA -F bi" I2" }, min {aiA -k- bi" I }).

Analogously, if attains a positive value then the half plane {(x, y): y <0} is the
correct one. In the remaining case f attains its global minimum on the x-axis, and
that implies that our original problem is infeasible.

This completes the statement of our test of a given straight line.

5.3. The algorithm. The algorithm is based on the following principle. Consider
two inequalities of the form z >-_aix +biy +ci, z >=ajx +bjy +ci, i.e., i,/" I1. If (ai, b)
(ai, bi) then one of these constraints is redundant. Otherwise, let L=
{(x, y): agx + by + c ajx + biy + ci}. If (a, b) (ai, bi) then Lij is a straight line which
divides the plane into two halves. If we know that an optimal solution to our problem
(if there is any) must lie in a certain half plane determined by Li then we may discard
one of the two inequalities. A similar observation is true for pairs of inequalities
z <- ax + bg y + Ci, Z ajx + bjy + c, i.e., when i,/" 12 as well as for pairs i,/" such that
i,/I3.

We start the procedure by arranging the inequalities (except for at most three of
them) in disjoint pairs so that the two members of each pair belong to the same set
Ik (1 --< k =< 3). For each pair, either we can drop one of the participating inequalities
right away, or we have a dividing line L/. Consider the set of lines that are generated
in this way. At this point our procedure is essentially the same as in the problem of
the smallest circle enclosing n points (see 4.3). We review the basic ideas here in
short. Given a set of straight lines, we will in O(n) time find a subset of at least a
quarter of the lines, such that for each line in that subset, it is known which of the
two corresponding half planes may contain the solution. This is done as follows’ First,
we transform the coordinate system so that half the lines will have nonnegative slope
and half the lines will have nonpositive slope. We then form pairs of lines where in
every pair we will have one line with nonnegative slope and one line with nonpositive
slope. Let the lines be redenoted L 1, ",Lk. If L and Li are members of one of our
pairs then let (xi/, yi) denote their point of intersection if there is a unique point.
Otherwise, the two lines must be parallel to the x-axis and we define yi to be the
mean of their y-coordinates. By testing the line y y,, (where y,, is the median of the
yi/’s) we identify a set of at least half the pairs whose yj values are either all greater
than the y-coordinate of an optimal solution or all smaller than that. We then test
the line x x,, (where x,, is the median of the x0.’s of those pairs of nonparallel lines,
that have been identified after the test at y =y,,). For at least a quarter of the pairs

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 773

we will be able to find a line and a corresponding half plane in which the optimal
solution cannot lie. This enables us to drop one inequality per pair for at least a
quarter of the pairs, i.e., at least 6 of the inequalities are dropped. This establishes
the linearity of the run time of our algorithm. Again, the details are given in 4.3.

5.4. Quadratic programming in R3. Our results can be extended to solve the
problem of minimizing a convex quadratic function, subject to linear constraints, in
R 3 inlinear time. Formally, the problem is

minimize v T A v + b T /)
oER

Ts.t. ai v <-Bi (i 1,..., n)

where A is a 3 3 positive semidefinite matrix and b, a,..., a, R 3. If A is not
identically zero then by an appropriate affine transformation of R 3 (which can be
found in constant time) we can transform our problem (in linear time) to the following:

minimize ax + BY + ",/xy + z
X,y,Z

s.t. z > aix + biy + ci (i I),

z <=aix +biy --ci (i eI),

aix "Jr" bi y + Ci 0 (i I3)

where ,y2 4a/3, c,/3 > 0. The algorithm for linear programming can be extended to
solve a problem of this kind along the same lines. That includes a routine for solving
quadratic programming problems in the plane. The latter can be modeled as

minimize ax 2 q_ [3x -+. y 2

s.t. y >-- aix + bi (i I),

y <= aix + bi (i I:),

where a,/3 ->0. Let g(x) and h(x) be defined as in 2.1. Also, let g+(x) Max (0, g(x))
and h-(x) Min (0, h (x)). Consider the following problems"

(1) minimize ox2+x +(g/(x))2

s.t. g+(x)<=h(x),

a< <

(2) minimize ax 2 +x + (h-(x))2
s.t. g(x)h-(x),

axb.

It can be verified that our problem reduces to solving both these problems. A solution
for our problem is then produced as follows: Select the problem whose minimum is
smaller and let x be its minimizer. We then let y be equal to either g/(x) or h-(x),
according to the case. The solution of either problem is analogous to linear program-
ming inR 2. A similar observation holds for the variable z in the three-dimensional case.

774 NIMROD MEGIDDO

6. Conclusion. We have demonstrated a powerful computational method for
solving different problems which is based on successive reductions of the input of the
given problem. The method yields linear-time algorithms. The natural question now
is whether the general linear programming problem is solvable in linear time in any
fixed number of variables. We already know that the answer is in the affirmative [M3];
however, this requires a nontrivial extension of the present paper, as we argue below.

Consider any pair of constraints

d-1 d-1

y >= aljxj + bl, y > a2ixi + b2
i=1 j=

in a linear programming problem where we seek to minimize y. In the space of the

x.’s we have the hyperplane H19_alixj+b1=azixi+b2 which defines two half
spaces; in each of these half spaces we have one of the two constraints dominated by
the other one. Thus, it may be useful to know on which side of Ha2 the solution lies.
Attempting to generalize what we know from the case where d 3, we do the following:
Let H12 be represented by an equation of the form aix b, and for any S
{1,. ., d-l}, denote

RS =(x eR a-a. x >_O if] eS andx <=O if fe!S}.

Also let T {/" ai => 0} and T {1,..., d- 1}\T. It can be easily verified that at least
one of the two orthants, R 7- and R , lies entirely on one side of H2 (depending on
the sign of b). For example, if b =< 0 then R 7- lies entirely on one side of Ha2. In this
case, if we knew that our solution lay in R 7- then we could drop one of our two
constraints mentioned above.

For the case where d --3 we found a way to exploit this useful observation. We
will now review that method from a somewhat different point of view.

First, the lines are grouped in disjoint pairs in a manner which takes their slopes
into account. Then a single point (x,,, y,,) is found with the following property" If the
origin is translated into (xm, y,,), and if a certain linear transformation is applied, then,
relative to the new coordinate system, the solution lies in an orthant which lies entirely
on one side of each line, for of the set of all lines. This is based on the property
that if the solution lies in the orthant R , then at least a quarter of the pairs of lines
intersect in R , and each pair is guaranteed to contain a line whose coefficients suit
the sign type of R 7-. This idea works in the case where d 3, since then there are
only two pairs of "opposing" orthants (recall that the space of xi’s is of dimension
d-l)" (R{I’Z/,R) and (Rt,R(2i). Thus if, for example, the solution is known to
belong to R ar, then we also have a quarter of our pairs intersecting in R (2}, and at
least one line per such pair has the orthant R lying on one side of it.

In higher dimensions we face the following difficulty. Suppose that in the d-
dimensional case (the dimension of the x-space is d- 1) we group the hyperplanes in
disjoint sets of cardinality d-1. Suppose that each such set is linearly independent
so that it determines a single point (the other case is even simpler). Now, it is obvious
that we can find a point (x a,..., Xd-1) and an orthant Rr (defined relative to this
point), such that R 7‘ contains the solution, and at least 1/2e-1 of the sets intersect in
R r. However, here is the critical point. The number of pairs of opposing orthants is
2d-2. We need each set of d-1 hyperplanes to contain (for each pair of orthants
(R r, R)) at least one member whose coefficients match the signs pattern of (R r, R).
It is thus required that d-12a-E, which holds only if d 3. Thus, a different
approach is needed here. It is also interesting to mention here .that previous work on

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 775

the convex hull [PHI applied only for d-< 3. However, we already know that the
methods of the present paper do extend to higher dimensions [M3].

With regard to practical implications of the algorithms in the present paper we
can say the following" First, we do not expect the linear-time median-finding algorithm
to be useful. Thus, it is preferable to use a good practical algorithm like Floyd and
Rivest’s [FR]. Moreover, we do not have to find the exact median. Another practical
consideration is that information may be saved when starting a new iteration of the
process. A practical version of our algorithm would be very efficient for solving
problems arising in computer graphics such as hidden-line elimination by means of
linear programming (see [BS]).

Appendix. The extreme-point problem in the plane. In this Appendix we solve
the following problem: Given n points (ai, bi), 1, , n, in the plane and another
point (a, b), find out whether or not (a, b) is a convex combination of the points
(al, bl),..., (an, bn). If so, then represent (a, b) as a convex combination of three
points; otherwise, find two points (ai, bi), (ai, b,;) such that all the points belong to the
cone whose vertex is at (a, b) and whose extreme rays are determined by (ai, bi) and
(a, b.). This problem can be solved by our linear programming algorithm in the plane.
However, a more straightforward method can be developed as follows"

Without loss of generality assume (a, b)= (0, 0) and (a, b)= (0, 1) (otherwise
apply an affine transformation accordingly). If (0, 0) is not in the convex hull of the
n given points, then there exists an c such that b > ca; for every i. That is, there is
a separating line (as mentioned in the introduction). Thus, c must satisfy

max {bi/ai: ai < 0} < ce < min {bi/ai: ai > 0},

and also b > 0, for every such that ag 0. If this is indeed the case, then the extreme
rays are determined by a point at which the maximum on the left-hand side is attained
(or the point (0, 1) if ai >= 0 for every i), and by a point at which the minimum on the
right-hand side is attained (or, again, the point (0, 1)). Otherwise, the point (0, 0) is
either a convex combination of two such points together with the point (a 1, bl) (0, 1),
or a convex combination of two points on the y-axis.

REFERENCES

[AHU] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[BS] R.P. BURTON AND D. R. SMITH, A hidden-line algorithm for hyperspace, this Journal, 11 (1982),
pp. 71-80.

[CP] R. CHANDRASEKARAN AND M. J. A. P. PACCA, Weighted min-max and max-min location
problems: Finite and polynomially bounded algorithms, Oper. Res., 17 (1980), pp. 172-180.

[CR] R. COURANT AND H. ROBBINS, What is Mathematics?, Oxford Univ. Press, New York, 1941.
[DF] P.M. DEARING AND R. L. FRANCIS, A minimax location problem on a network, Transportation

Sci., 8 (1974), pp. 333-343.
[DR] D.P. DOBKIN AND S. P. REISS, The complexity of linear programming, Theoret. Comput. Sci.,

11 (1980), pp. 1-18.
[DW] Z. DREZNER AND G. O. WESOLOWSKY, Single Facility lp-distance minimax location, SIAM J.

Alg. Disc. Meth., (1980), pp. 315-321.
[EH] J. ELZINGA AND D. E. HEARN, Geometrical solutions for some minimax location problems,

Transportation Sci., 6 (1972), pp. 379-394.
[FR] R.W. FLOYD AND R. L. RIVEST, Expected time bounds for selection, Comm. ACM, 8 (1975),

pp. 165-172.
IF] R.R.L. FRANCIS, Some aspects of a minimax location problem, Operat. Res., 15 (1967), pp.

1163-1168.

776 NIMROD MEGIDDO

[FW] R.L. FRANCIS AND J’. A. WHITE, Facility Layout and Location, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[G] R.L. GRAHAM, An efficient algorithm for determining the convex hull of a finite planar set, Inform.
Process. Lett., (1972), pp. 132-133.

[HSP] S.L. HAKIMI, E. F. SCHMEICHEL AND J. G. PIERCE, On p-centers in networks, Transportation
Sci., 12 (1978), pp. 1-15.

[HM] G.Y. HANDLER AND P. B. MIRCHANDANI, Location on Networks Theory and Algorithms, MIT
Press, Cambridge, MA, 1979.

[KH] O. KARIV AND S. L. HAKIMI, An algorithmic approach to network location problems, Part I. The
1-centers, SIAM J. Appl. Math., 37 (1979), pp. 513-538.

[L] N. LEVIS, Location problems on weighted graphs, unpublished thesis, Tel Aviv Univ., 1977.
[M1] N. MEGIDDO, Applying parallel computation algorithms in the design of serial algorithms, in Proc.

22nd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Angeles, 1981, pp. 399-408; J. Assoc. Comput. Math., to appear.

[M2] The weighted Euclidean 1-center problem, Math. Oper. Res., to appear.
[M3] Linear programming in linear time when the dimension is fixed, J. Assoc. Comput. Mach.,

to appear.
[NC] K.P.K. NAIR AND R. CHANDRASEKARAN, Optimal location of a single service center of certain

types, Naval Res. Logist. Quart., 18 (1971), pp. 503-510.
[PH] F.P. PREPARATA AND S. J. HONG, Convex hulls offinite sets ofpoints in two and three dimensions,

Comm. ACM, 20 (1977), pp. 87-93.
[RT] H. RADEMACHER AND O. TOEPLITZ, The Enjoyment of Mathematics, Princeton Univ. Press,

Princeton, NJ, 1957.
[Sh] M.I. SHAMOS, Geometric complexity, in Proc. 7th Annual ACM Symposium on Theory of

Computing, 1975, ACM, New York, 1975, pp. 224-233.
[ShH] M.I. SHAMOS AND D. HOLY, Closest-point problems, in Proc. 16th Annual IEEE Symposium

on Foundations of Computer Science, 1975, IEEE Computer Society Press, Los Angeles, 1975,
pp. 151-162.

[Sm] R.D. SMALLWOOD, Minimax detection station placement, Oper. Res., 13 (1965), pp. 636-646.
[Syl] J.J. SYLVESTER, A question in the geometry of situation, Quart. J. Math., (1857), p. 79.
[Sy2] On Poncelet’s approximate valuation of Surd forms, Philosophical Mag., XX, 4th Series

(1860), pp. 203-222.
[Y] A.C. YAO, A lower bound for finding convex hulls, J. Assoc. Comput. Mach., 28 (1981), pp.

780-787.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

983 Society for Industrial and Applied Mathematics

0097-5397/83/1204-0013 $01.25/0

THE COMPLEXITY OF COUNTING CUTS AND OF COMPUTING THE
PROBABILITY THAT A GRAPH IS CONNECTED*

J. SCOTT PROVAN+ AND MICHAEL O. BALLS

Abstract. Several enumeration and reliability problems are shown to be P-complete, and hence, at
least as hard as NP-complete problems. Included are important problems in network reliability analysis,
namely, computing the probability that a graph is connected and counting the number of minimum cardinality
(s, t)-cuts or directed network cuts. Also shown to be P-complete are counting vertex covers in a bipartite
graph, counting antichains in a partial order, and approximating the probability that a graph is connected
and the probability that a pair of vertices is connected.

Key words, complexity, P-complete, graphs, reliability, network reliability

1. Introduction. The inherent intractability of certain counting and reliability
problems has been studied by Ball [1], Rosenthal [11], and Valiant [12]. Valiant
defines the notion of the # P-complete class of counting problems, and shows that
problems in this class are at least as hard as NP-complete problems. He then goes on
to show that several important counting and reliability problems are # P-complete,
among them, counting perfect matchings in bipartite graphs and evaluating the proba-
bility that two given nodes in a probabilistic graph are connected. Three important
problems are mentioned by Ball and Valiant, for which the complexity is not known,
namely:

(1) evaluating the probability that a probabilistic graph is connected,
(2) approximating the probability that a probabilistic graph is connected,
(3) approximating the probability that two vertices of a probabilistic graph are

connected.
In view of results by the authors in [2], the probability measure associated with

problems (1) and (2) seems to have considerably more structure than that associated
with (3). In [3] they also show the power of the structure in providing good upper
and lower bounds for this measure. We show in this paper, however, that all three
of these problems are NP-hard, in particular, # P-complete. In the process, we show
that several counting problems are also # P-complete, among them" counting the
number of node covers in a bipartite graph, counting antichains in a partial order,
and counting minimum cardinality directed network cuts.

We now fix some terminology. Let G (V, E) be a graph with vertex set V and
edge set E and let rn vI and n IEI. When specified, G directed.implies that the
edges are taken to be ordered pairs, and G undirected implies the pairs are unordered.
When not specified, G is allowed to be either. We allow loops (edges whose two end
points are the same) and multiple edges (edges with the same pair of end points),
although these are not strictly required for the results of this paper. Let s and be
two vertices in the graph G (directed or undirected). An (s, t)-path in G is any
sequence s =v0, el, vl,..., Vk-1, ek, Vk =t of vertices Vo, v,.., and edges e,
e2, with ej (vj-1, vi) for/" 1, , k. An (s, t)-cut in G is any minimal set of edges
that intersects every (s, t)-path. A network cut (with respect to s) is any minimal set
of edges that is an (s, t)-cut for some vertex in G. A spanning tree (rooted at s) is a

* Received by the editors January 23, 1981, and in final revised form October 26, 1982.

" Curriculum in Operations Research and Systems Analysis, University of North Carolina, Chapel
Hill, North Carolina, 27514. This work was performed while this author was an NRC/NAS postdoctoral
associate at the National Bureau of Standards.

College of Business and Management, University of Maryland, College Park, Maryland 20742.

777

778 J. SCOTT PROVAN AND MICHAEL O. BALL

minimal set of edges that contains paths from s to all other vertices in G. Note that
if G is undirected, a network cut comprises any minimal set of edges whose removal
disconnects G and a spanning tree is any minimal set of edges that connects all
vertices; in both cases the definition is independent of the choice of s.

We now define our reliability measures. Given any real p, 0<_-p-<_ 1, we impose
the stochastic structure on G in which the edges of G are subject to random failure,
independently and each with equal probability p. Edges that have not failed are said
to be operative. We are concerned with two composite reliability measures on this
stochastic model, which we will denote as functions of p. The first is the (s, t)
connectedness measure" given vertices s and t in G,

f(G,s, t; p) Pr {there is a path of operative edges froms to t}

Pr {the failed edges of G do not contain an (s, t)-cut}.

The second is the connectedness measure" given vertex s in G,

g(G, s; p) Pr {there is a path of operative edges from s to every other vertex in G}

Pr {the failed edges of G do not contain a network cut}.

These measures are defined for both directed and undirected graphs. If G is undirected,
then f(G, s;p) is the probability that the operative edges in G form a connected graph
on V, and is independent of the vertex s. The combinatorial significance of these
reliability measures can be seen by expanding f and g"

f(G, s, t; p) Z fipi(1 _p),-i,
j=0

g(G, s; p) , gip (1 _p)--i,
i=0

where

f. number of sets of edges of cardinality/" whose complement admits a path
from s to t,
number of sets of edges of cardinality f that do not contain an (s, t)-cut;

g. number of sets of edges of cardinality/" whose complement admits a path
from s to every vertex in G,
number of sets of edges of cardinality/" that do not contain a network cut
with respect to s.

The use of this form of the polynomial might seem slightly unnatural since coefficients
are defined in terms of complements. However, it is consistent with the independence
system interpretation of the reliability analysis problem used in other papers [2], [3].
Thus, the evaluation of f and g depend on the counting problems associated with
(s, t)-cuts and network cuts in a way that will be shown precisely below.

We explore the computational complexity of counting and reliability problems
in the manner proposed by Valiant [12]. The study of the complexity of feasibility
and optimization problems has been pursued in the setting of recognition problems
[5]. An important class is NP, which consists of those recognition problems accepted
by a nondeterministic Turing machine of polynomial time complexity. The "hardest"
problems in NP are called NP-complete; it is generally considered unlikely that
polynomial algorithms exist for solving problems in this class. Valiant defines # P to
be the set of integer-valued functions that can be computed by counting the number

COMPLEXITY OF COUNTING CUTS 779

of accepting computations of some nondeterministic Turing machine of polynomial
time complexity. We extend Valiant’s definition slightly to include rational and multiple
valued functions that can be evaluated using functions of the above type. We say that
a function f is polynomially reducible to a function g(f oc g) is there exists an algorithm
which, for any input z, evaluates f(z) with a number of elementary operations and
evaluations of g that is polynomial in the length of z. A function is called 4# P-complete
if (a) f is in 4# P and (b) every function g in 4 P can be reduced to by a polynomial
time reduction. The classes 4# P and 4# P-complete provide a natural setting for studying
the complexity of counting and reliability problems. We remark that the counting
problem associated with a given recognition problem is at least as hard as the
recognition problem. In particular, the counting versions of NP-complete problems
are NP-hard, i.e. at least as hard as NP-complete problems. To illustrate this point,
note that a polynomial algorithm to determine the number of Hamiltonian circuits in
a graph would immediately give a polynomial algorithm to determine if a graph
contained at least one Hamiltonian circuit. In fact, the counting versions of most
NP-complete problems can be easily shown to be 4# P-complete. See [5] for a detailed
treatment of NP-completeness and its relationship to 4# P-completeness.

With these definitions in mind we state our main result:
THEOREM. The following functions are 4# P-complete:
1. BIPARTITE VERTEX COVER

Input" bipartite graph G (V, E)
Output: I{S

_
V: for each e (u, w)

2. BIPARTITE INDEPENDENT SET
Input" bipartite graph G (V, E)
Output: I{S

_
V: for all u, w

3. ANTICHAIN
Input: partial order (X, <-_)
Output: I{S

_
X: there are no x, y S with x <-Y}I;

4. MINIMUM CARDINALITY BIPARTITE VERTEX COVER
(MAXIMUM CARDINALITY BIPARTITE INDEPENDENT SET,
MAXIMUM CARDINALITY ANTICHAIN, RESPECTIVELY)
Input: same as 1 (2, 3, resp.)
Output: the number of minimum cardinality (maximum cardinality, resp.)
elements of the output set;

5. BIPARTITE 2-SAT WITH NO NEGATIONS
Input" Boolean expression B in the variables , , Xk, y, , y of the form
B (Xil v Y]l) A A (Xin V y]n
Output: [{x, ", x, y," ’, y) that satisfy B}[;

6. MINIMUM CARDINALITY (s, t)-CUT
Input: graph G V, E), s, t V
Output: I{C _E: C is a minimum cardinality (s, t)-cut in G}I;

7. MINIMUM CARDINALITY DIRECTED NETWORK CUT
Input: directed graph G (V, E), s V
Output: [{C _E: C is a minimum cardinality network cut with respect to s}l;

8. CONNECTEDNESS RELIABILITY
Input: graph G (V, E), s V, rational p, O<-_p <- 1
Output: g G, s; p);

9. CONNECTEDNESS RELIABILITY e-APPROXIMATION
Input: graph G V, E), s V, e <= O, rational p, 0 <-p <- 1
Output: rational r with r-e < g(G, s; p)<r +e;

780 J. SCOTT PROVAN AND MICHAEL O. BALL

10. (s,t) CONNECTEDNESS RELIABILITY e-APPROXIMATION
Input: graph G V, E), s, t V, e > O, rational p, 0 <-p <- 1
Output: rational r with r-e <f(G,s, t; p)<r +e;

Before going on to the proof of the theorem, we illustrate how our results fit in
with previous results concerning reliability and important related counting problems.
Computation of the functions f and g are considered the two most important and
well-studied network reliability problems. The theorem settles the complexity of
computing g exactly and the e-approximation problem for f and g. In terms of
computing or approximating f, two important quantities are the number of minimum
cardinality (s, t)-cuts and the number of minimum cardinality (s, t)-paths. These
correspond, respectively, to the first fi < (7) and the last fi > 0. The two corresponding
quantities for g are the number of minimum cardinality network cuts and the number
of minimum cardinality connected sets, i.e. spanning trees, and these correspond,
respectively, to the first gg < (,".) and the last g >0. Table 1 describes the known

TABLE

Min. card. Min. card.
pathset cutset Rel. poly. Rel. approx.

undirected and directed two-terminal (f)
undirected network (g)
directed network (g)

*[3] !TH ![12] !TH
* [10] *[3] rTH !TH
* [10]t !TH !TH’ !TH

Either the appropriate reference is given or TH which indicates the result is contained in the theorems
given in this paper; * implies polynomial; !implies P-complete.

"I" Reference 10] reduces the problem to computing the determinant of a matrix. It is (now) well known
that determinants can be computed in polynomial time.

These results have recently been proven independently by Jerrum [9].
This result has recently been proven independently by Hagstrom [6].

complexity results for all of these problems. It uses the generic term pathsets to refer
to both spanning trees and (s, t)-paths and cutsets refer to both (s, t)-cuts and network
cuts. Columns 1 and 2 refer to the problems of determining the number of minimum
cardinality pathsets and cutsets respectively, column 3 to the problem of determining
the polynomial f or g, and column 4 to the approximation problem defined in parts
9 and 10 of the theorem.

2. Proof ot the theorem. The format for establishing a function f as P-complete
is as follows. We first establish that f is in 4 P by showing that, for any input z, there
exists a polynomial algorithm for recognizing structures associated with the input z
whose number is f(z). In the context of the functions given in the theorem this is a
trivial matter, since virtually all the functions count easily recognizable objects in the
graph G associated with the input z. To show that f is = P-complete, we start with
a known = P-complete function g, and show that there exists an algorithm which, for
any z, evaluates g(z) using a polynomial number of evaluations of f. In many cases
this simply involves altering the input z (here the graph G) in polynomial time to a
new input z’ (here a new graph G’) for which g(z)=f(z’). In some cases, however,
we must evaluate f for a number of inputs z , , z,, that number being polynomial
in the size of z. We then relate the values f(z), 1,..., n to the value of g by

COMPLEXITY OF COUNTING CUTS 781

equations of the form

k

(1) vi =/(z)= Y. aobj, 1,..., k

where the aj are known and g(z) is some simple function of the b. If we can show
that the k k matrix of the coefficients a for (1) is nonsingular, we can perform k
evaluations of , and then solve the linear system to obtain the values of b, and hence
the value of g(z).

Valiant, in [12], has made use of a special class of matrices to produce the desired
nonsingular systems discussed above. A Vandermonde matrix is an (n + 1) (n + 1)
matrix of the form

1 o tZo tZo
2

A= 1. /.LI /.tl

21 /z, /z,,

(or its transpose), where to,""’, tzn are arbitrary real numbers. A well-known fact
about these matrices (see, for example [7, 5.1]) is det A=l-I>i (tz-/z). We have
immediately from the previous discussion"

LEMMA. Suppose we have v and b, 1, , n + 1, related by the equation

n+l

v Y aibi, 1,..., n +1.
j=l

Further, suppose that the matrix of coefficient (ai) is Vandermonde, with parameters
tZo," , w, which are distinct. Then, given values for Vl, , V,+l, we can obtain the
values b, b,+x in time polynomial in n.

We will make repeated use of this lemma throughout the proof of the theorem.
It is easy to see that the problems 1-10 of the theorem are in # P. To show that

they are # P-complete, we establish a sequence of reductions, starting with the
following counting problem.

CARDINALITY VERTEX COVER
Input: graph G (V, E), integer k
Output: I{$ - V: S is a vertex cover for G and Is k}[.

This problem is known to be # P-complete (see [5, p. 169]). We also define one
intermediate problem for purposes of the proof, namely,

0. VERTEX COVER
Input: graph G V, E)
Output: I{S - V: for each e (u, v)

We now give the reductions.
0. CARDINALITY VERTEX COVER oc VERTEX COVER. Given G

(V, E), for 1,. ., rn [VI, construct graph G’(l) with vertex set V’(l) ={v: v V,
1,..., t} and edge set E’(1)={(ui, vi)" (u, v)E, 1,..., l,] 1,..., l}. This

construction is illustrated in Fig. 1. Now every cover C’ of G’(l) has the property that
if (u, v) E then {u ,. ., u}_ C’ or {v ,. ., v}_ C’. Therefore, for each cover C
of G there corresponds a class f(C) of covers of G’(l) with elements of the form
UvS’o, where S’ ={v’l-I"V}c if vC and S,${v,...,v} if vC. The class
f(C) consists of (2- 1)"- covers, and the classes {fI(C):C a cover of G} partition

782 J. SCOTT PROVAN AND MICHAEL O. BALL

G:

G’ (3)

FIG. 1. Example of transformation used in reduction O.

the covers of G’(1). The number of covers of G’(l) is therefore
m--1

(2) F(/) Y A,(2t- 1) i,
i=0

where Ai is the number of covers of G of cardinality m- i, 0,..., m- 1. Now
the m m matrix B (bit) with entries bit (2t- 1)i-1 j 1,..., m, 1,..., m, is
Vandermonde with /,l 2t- 1 distinct for 1, , m. Therefore, by the lemma we
can solve (2) to obtain each Ai, and hence solve the cardinality vertex cover problem.

1. VERTEX COVER ec BIPARTITE VERTEX COVER. Given G=
(V, E), for 0, , N (’2) 1 construct bipartite graph G’(l) by replacing
each edge (u, v) in G by the subgraph shown in Fig. 2. (Note that when 0, the
graph F’(I) has no edges at all.) This subgraph has the property that the number of
vertex covers containing neither u nor v is 2, the number of covers containing a
particular one of u or v is 3 and the number of covers containing both u and v is
5 t. Thus, the number of covers of G’(l) is

(3) F’(I) Aiik(21)i(3t)i(51)k Aqk(2i3i5k)t,
i+j+k i+j+k

i,hk-O i,Lk-O

COMPLEXITY OF COUNTING CUTS 783

FIG. 2

where Aiik is the number of sets S of vertices in G for which edges of G have neither
vertex in S,/" edges have exactly one vertex in S, and k edges have both vertices in
S. The N x N matrix B (bq) defined

b,t (2iq3J"5k") l, q 1, , N, O, , N- 1,

where (iq, I", kq) are all triples summing to n, is Vandermonde. Further, tzo 2iq 3i 5 k"
2i’3i’5 k’ =/zr if and only if i, ir,]q =], and kq k. Therefore, the/xq are distinct and
by the lemma we can solve (3) to obtain each Aiik, for +/’ +k =n, >=0, /" >-0, k >=0.
In particular, we can obtain

Y. Ao,
i+k
i,k>--O

which is the number of sets of vertices of G for which no edge of G is uncovered,
that is, the number of covers of G.

2. BIPARTITE VERTEX COVER oc BIPARTITE INDEPENDENT SET.
Given G (V, E) we note that C

V is a cover for G if and only if V-C is an

independent set in G. The reduction follows.
3. BIPARTITE INDEPENDENT SET oc ANTICHAIN. Given bipartite

graph G (V, E) with V Vx LI V2 and E
_
V1XV2, define partial order (X, =< with

X V and order defined for x # y X: x _-< y if and only if x V, y V2, and (x, y) E.
(X, -<) is trivially transitive and antisymmetric. Further, a set S __.X is an antichain
in (X, -< if and only if it is independent in G. The reduction follows.

4. BIPARTITE VERTEX COVER oc MINIMUM CARDINALITY
BIPARTITE VERTEX COVER (MAXIMUM CARDINALITY BIPARTITE
INDEPENDENT SET, MAXIMUM CARDINALITY ANTICHAIN, RESPEC-
TIVELY). Given bipartite graph G (V, E), construct bipartite graph G’= (V’,E’)
by adding vertices {v’: v V} to V and pendant edges M {(v, v’): v V} to E. Now
since M consists of m disjoint edges that cover all vertices of G (a perfect matching),
it follows that a minimum cardinality vertex cover of G’ is of cardinality m. Further-
more, there is a 1-1 correspondence between vertex covers of G and minimum
cardinality vertex covers of G’ obtained by associating with cover C of G the cardinality
m cover

C’ {v v c} t.J {v " v C}.

In view of the discussion in reductions 2 and 3, it follows easily that the bipartite
vertex cover problem reduces to any of the three given minimum or maximum
cardinality problems.

5. BIPARTITE VERTEX COVER oc BIPARTITE 2-SAT WITH NO
NEGATIONS. Given bipartite graph G (V, E)with V V 1.3 V2Va ={u, .., Uk},

784 J. SCOTT PROVAN AND MICHAEL O. BALL

V2-(/31,""", Ul define Boolean expression in xl,’’’, Xk, yl, Yl by

f(Xl, ,Xlc, yl, yt)= / (xi v Yi).
=(ui. yi)EE

Then f(xl,..., Xk, Y l, ", Yt) is true if and only if {ui:xi T} LI {vj yj T} forms a
cover of G. The reduction follows.

6. BIPARTITE INDEPENDENT SET c MINIMUM CARDINALITY
(s, t)-CUT. Given a bipartite graph G (V, E), V V1LI V2, E V1 x V2, construct
the graph G’ with vertices V LI {s, t} and edges consisting of E along with sets M’o of
multiple edges of the type (s, v), v e V1 or (v, t), v V2 with multiplicity equal to the
degree of v in G. An example of this construction is given in Fig. 3. Now a minimum

FIG. 3. Example of transformation used in reduction 6.

cardinality (s, t)-cut in G’ is of cardinality [El, since (a) E is an (s, t)-cut and (b) an
(s, t)-flow of size IEI can be obtained by directing all edges from s to and giving
each a flow of 1. It is clear that if a minimum cardinality (s, t)-cut C’ of G’ contains
one edge of a set M’o then it must contain every edge in M’o. Further, if the edges
(s, v) and (w, t) are in C’, then (v, w) cannot be an edge, since we can obtain a cut
with one less edge by replacing M’o and M’w with all edges in E adjacent to either v
or w. Thus, the sets M’o of C’ have ends in G which are independent in G and the
remaining edges in C’ must be all those edges in E which do not have a vertex in
common with these sets. Conversely, any set of edges of this type must be a minimum
cardinality (s, t)-cut in G’. Thus, there is a one to one correspondence between
minimum cardinality (s, t)-cuts in G’ and independent sets in G. The reduction is now
complete. Note that this reduction applies in both the directed and undirected cases.

COMPLEXITY OF COUNTING CUTS 785

The use of multiple edges could have been avoided but we omit the argument for the
sake of simplicity.

7. DIRECTED MINIMUM CARDINALITY (s,t)-CUT oc MINIMUM
CARDINALITY DIRECTED NETWORK CUT. Given directed graph G=
(V, E), s, t V, let k be the cardinality of a minimum cardinality (s, t)-cut. (It is well
known that k can be calculated in polynomial time using a network flow algorithm.)
Construct directed graph G’ from G by adding multiple edges of the form (t, v) with
multiplicity k + 1 for each v V-{s, t}. Fig. 4 illustrates this transformation. Now any

G

FIG. 4. Example of transformation used in reduction 7.

minimum cardinality (s, t)-cut in G remains a network cut in G’ since all of the added
edges point out of t. Thus, the size of a minimum cardinality network cut in G’ is at
most k. But since removal of any set $ of at most k edges from E’ must leave at least
one edge from to every vertex x s in V, then $ is a network cut in G’ if and only
if $ is an (s, t)-cut in G. Therefore, the minimum cardinality network cuts for G’ are
of cardinality k, and they consist precisely of sets of edges which are (s, t)-cuts for G.
This completes the reduction. As in the previous argument, the use of multiple edges
could have been avoided.

8A. MINIMUM CARDINALITY DIRECTED NETWORK oc DIRECTED
CONNECTEDNESS RELIABILITY. Given G (V, E), we write, as in 1,

(4) g(G,s ;p)= gp
=0 =o p

where gj is the number of sets of edges of cardinality/" whose complement admits a
path from s to every other vertex in G. Thus, j (7)-g is the number of sets of edges
of cardinality/" that contain a directed network cut. Further, the matrix B (b) with
bi (p/(1-pi)) for =0,..., m,/" =0,..., n is Vandermonde for any choice 0<
po"" <p, <1. Therefore, by evaluating g(G,s;p)/(1-p)" for i=0, ,n, and

786 J. SCOTT PROVAN AND MICHAEL O. BALL

solving (4) we can obtain gi, and hence gi for/" 0,..., n. The value of the first
nonzero gi then solves the minimum cardinality directed network cut problem.

8B. MINIMUM CARDINALITY UNIDIRECTED (s,t)-CUT c UNI-
DIRECTED CONNECTEDNESS RELIABILITY. Given undirected graph G,
vertices s, t, write the network reliability polynomial of G with respect to s as above

g(G, s ;p)= (1 -p)/1 g,
i=o 1 -p

where gi is the number of sets of cardinality whose complement admits a path from
every vertex to s. Consider now the graph G’ obtained from G by replacing the

in every edge in which either appears. The networkvertices s and with the vertex v st

isreliability polynomial of G’ with respect to v st

g(G’, l)st;p)- gp’(1-p)"-’ (l-p)/1 g, ,
i=0 i=0

n-i

Now g is the number of sets of edges in G’ of cardinality whose complement admits
a path from every vertex of G to v t, or equivalently, the number of sets of edges in
G of cardinality whose complement admits a path from every vertex of G to either
s or t. Therefore, g-g is the number of sets of edges in G of cardinality whose
complement admits a path from every vertex to s or but does not admit a path from
every vertex to both s and t. Such a set in particular contains an (s, t)-cut. Let k be
the cardinality of a minimum cardinality (s, t)-cut. Then the complement of any set
of k edges that contains an (s, t)-cut must allow a path from every vertex to either s
or t (otherwise, an edge could be added to the component containing a vertex not
connected to either s or and still not allow a path from s or t). Thus g’k--gk is the
number of minimum cardinality (s, t)-cuts in G. As in problem 8A, by evaluating
g(G,s;pi) and g(G’,vt;p) for 0<p0<’" <pn, we can obtain gi and g for i=
0, ., n, and in particular, the value g’k- gk. This completes the reduction.

9. MINIMUM CARDINALITY NETWORK CUT c CONNECTEDNESS
RELIABILITY APPROXIMATION. Suppose we are given G (V, E) and s V.
We produce this reduction by showing how to compute the g successively for
0, 1, , using as a subroutine an algorithm for the connectedness reliability approxi-
mation problem. Suppose we. have computed gi for 0, 1, , k 1; define

k-1

a , gipi(1-p)/1-i;
1--0

then for 0 <p < 1 we have

g(G, s ;p)-a Z giPi(1

P
gi

1
=pk(1--P)n-k gk d-

1-p i=k+l -p

Using the fact that 0 _-< g -<_ (.) for k + 1, , n, we obtain the inequalities

g(G,s;p)-a
k)n-kp (1 p

COMPLEXITY OF COUNTING CUTS 787

and

Now if r is an e-approximation to g, it follows for 0 <p < 1 that

gk <-

so that, if we choose

r+e-a (r-e)-a +2e
pk(1--p)n-k= pk(1--p)n-k <-- g(G, s ;p)-a + 2e

pk(1--p)"-k
n) p)._gk+

k+l (1-p
2

+ k n-kp (l-p)

=gk +
(1 _p)n-k k + 1

p +

p min I 1 2-a/"-k)
l (n)

-x

2- k+l

and e =pk/4, then

1),,_t[(n)p+2e]< 1 [(n)1(n)(1-p k+l 1 k+l k+l

Hence,

The proof is now complete.

r+e-a Jgk kp (l--p)k

10. MINIMUM CARDINALITY (s,t)-CUT oc

-1

+P /21
j 1.

(s, t)-CONNECTEDNESS
RELIABILITY APPROXIMATION. The reduction here is identical to that in
problem 9. This completes the proof of the theorem.

3. Further discussion. We remark that problems 9 and 10 easily show the
6 P-completeness of the a-approximation problem (see [11], called the point estimate
problem in [1] for the functions g and f. This problem is: given c < 1, 0_-<p _-< 1, find
a number r such that ar < g(G,s ;p) (respectively f(G,s, ;p))<r/c. We should note
that a seemingly more difficult unsolved problem involves the case where c (or e) is
constant, i.e. is not allowed to vary as part of the input list.

We complete our discussion by considering the complexity of certain reliability
and counting problems for two special classes of graphs. One class is that of directed

788 J. SCOTT PROVAN AND MICHAEL.O. BALL

acyclic graphs, that is, graphs that have no closed (directed) paths. For these graphs
the minimum cardinality (s, t)-cut problem (6) still remains : P-complete since the
network constructed in the proof of the theorem is acyclic; hence, the (s, t)-connected-
ness problem (10) for acyclic graphs remains P-complete. The directed network cut
problem (7), however, is polynomial, and, in fact, the connectedness reliability prob-
lems (8 and 9) are also polynomial (see [3]). The second class of graphs is that of
planar graphs (directed and undirected). Here, both the minimum cardinality network
cut problem and the minimum cardinality (s, t)-cut problem are polynomial (see also
[3]). The complexity of the reliability problems, however, are open questions. Table
2 summarizes known results for these classes of graphs.

TABLE 2

Min. card. Min. card
pathset cutset Rel. poly. Rel. approx.

directed acyclic two terminal
directed acyclic network
undirected and directed planar two

terminal
undirected and directed planar network

* [3] !TH !TH !TH
*[3] *[3] *[3] *[3]

*[3] *[3]
*[10] *[3]

The table entries have the same interpretation as those in Table 1.

REFERENCES

[1] M. O. BALI_., The complexity of network reliability computations, Networks, 10 (1980), pp. 153-165.
[2] M. O. BALL AND J. S. PROVAN, Bounds on the reliability polynomial]’or shellable independence

systems, SIAM J. Alg. Discr. Meth., 3 (1982), pp. 166-181.
[3],Calculating bounds on teachability and connectedness in stochastic networks, Networks, 13

(1983), pp. 253-278.
[4] Z. GALIL, On some direct encodings of nondeterministic Turing machines operating in polynomial time

into P-complete problems, SIGACT News, 6, (1974), pp. 19-24.
[5] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability" A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, 1979.
[6] J. N. HAGSTROM, Computing rooted communication reliability is P-complete, unpublished manu-

script, 1981.
[7] G. H. HARDY, J. E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge Univ. Press, Cambridge,

1952.
[8] A. S. HOUSEHOLDER, Principles ofNumerical Analysis, McGraw-Hill, New York, 1953.
[9] M. JERRUM, On the complexity of evaluating, multivariate polynomials, Ph.D. thesis, Tech. Rep.

CST-11-81, Dept. Computer Science, Univ. Edinburgh, 1981.
[10] G. KIRCHHOFF, Uber die Auflosung der Gleichungen, auf welche man sei der Untersuchung der

linearen Verteilung Galvanischer Strome gerfuhrt wird, Poggendorf’s Ann. Phy. Chem., 72 (1847),
pp. 497-508" English translation, IRE Trans. Circuit Theory, 5 (1958), pp. 4-8.

[11] A. ROSENTHAL, Computing the reliability of complex networks, SIAM J. Applied Math, 32 (1977),
pp. 384-393.

[12] L. G. VALIANT, The complexity of enumeration and reliability problems, this Journal, 8 (1979),
pp. 410-421.

SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

(C) 1983 Society for Industrial and Applied Mathematics
0097-5397/83/1204-0014 501.25/0

ASYMPTOTIC EXPANSIONS OF MOMENTS OF THE WAITING
TIME IN A SHARED-PROCESSOR OF AN INTERACTIVE SYSTEM*

DEBASIS MITRA, AND J. A. MORRISONf

Abstract. An interactive computer system’s service is characterized by the random waiting (or
response) time perceived by users. This paper presents a novel solution to the problem of efficiently
computing the second moment of the waiting time of a class of large interactive systems. The physical
system consists of a bank of terminals, each of which asynchronously alternates between "thinking" and
waiting for service from a CPU which operates under the processor-sharing discipline. The problem of
obtaining higher order waiting time moments is quite different from that of obtaining CPU queue statistics.
Only the first moment of the waiting time is obtainable from the CPU queue statistics.

The technique for arriving at the second moment of the waiting time consists of developing an
asymptotic expansion in inverse powers of the number of terminals. Hence, as the system grows, quite
fortuitously, fewer terms of the series require computation to achieve the desired accuracy. Beside its
numerical advantages, the results give new insight since the leading terms of the series, which contain most
of the information, are obtained explicitly. The novelty also rests on the fact that instead of solving matrix
equations, the problem is turned into one of solving a second order differential equation. A simple two-
dimensional recursion yields all the terms of the asymptotic expansion.

Key words, queueing networks, queueing theory, asymptotic expansions, waiting time moments

1. Introduction. An interactive computer system’s service is characterized by the
random waiting (or response) time perceived by users of the system. This paper
presents a novel approach to the problem of efficiently computing the first and second
moments of the waiting time for large interactive systems. The physical system, see
Fig. 1, consists of a bank of user terminals in series with a CPU which feeds back to
the terminals. Each user spends alternating time periods in the "think" mode and the
"waiting" mode; in the former, the user takes an independent amount of time to
generate jobs with random service time requirements, while in the waiting mode the
job, now transferred to the CPU, contends with other jobs for service. On completion
of service the job returns to the terminal and a new cycle resumes.

The waiting time distribution for such a model has been considered in and the
moments have been given there in terms of the solution of a matrix equation. These
equations have dimension (N+I), where (N+I) is the number of user terminals.
Practical interest is focused on large systems, i.e. large N, and in this case the
equations pose a computational challenge which is compounded by the equation’s
worsening conditioning with increasing system usage. Also, insight into the nature of
solutions is less readily forthcoming. In this paper we give a quite novel technique for
arriving at the second moment E[W]. Given here is an asymptotic expansion for
E[W] in inverse powers of N, so that the larger N is, fewer terms of the series
require computation to achieve the desired degree of accuracy. Also, it is possible to
give explicitly and simply the leading terms which contain most of the information and
are most amenable to interpretation.

The novelty of the technique also rests on the fact that, instead of inverting
matrices, we transform the problem into a differential equation for the generating

*Received by the editors September 1, 1982, and in revised form December 21, 1982. This paper
was typeset by Carmela Patuto at Bell Laboratories, Murray Hill, New Jersey, using the troff program
running under the UnixTM operating system. Final copy was produced on April 4, 1983.

Bell Laboratories, Murray Hill, New Jersey 07974.

789

790 DEBASIS MITRA AND J. A. MORRISON

function of the matrix quantities. The differential equation is linear and only of
second order, but is still not nice (a reflection of the nontrivial nature of the problem)
in that its solution is not a classical special function. Nevertheless, we are able to use

TERMINALS

((::1) THE PHYSICAL SYSTEM

C ENTRAL
PROCESSING

UNIT

THINK
CPU

THINK cPU"’I
WAITING TIME

TIME

NODE
OO- SERVER

NODE 2
PROCESSOR-SHARING

(b) JOBS SPEND ALTERNATE PERIODS OF TIME IN THE
THINK NODE AND PROCESSOR-SHARING CPU NODE.

FIG.

certain properties of the solution to obtain its asymptotic expansion. The simplicity of
the solution technique obtained here is reflected in the fact that a two-dimensional
linear recursion yields the coefficients of the expansion.

1.1 The model, parameters and stationary distribution. The model and problem
have three distinguishing features; first, the CPU’s discipline is "processor sharing"
[2]-[4], [8]-[12]; second, the network is closed [2]-[4]; finally, the problem concerns
not the stationary distribution of jobs in the CPU, but the equilibrium waiting time
distribution, where waiting time is defined to be the interval from time of entry to the
CPU to time of exit.

In the processor sharing discipline there is no overt queueing because all, say n,
jobs present in the CPU simultaneously receive 1In times the rate of service which a
solitary job in the CPU would receive. Therefore, the rate of service received by a
specific job fluctuates with time and, importantly, its waiting time depends not only on
the jobs in the CPU at its time of arrival there, but also on subsequent arrivals. This

EXPANSIONS OF MOMENTS OF WAITING TIME 791

makes the processor sharing discipline intrinsically harder to analyze than, say, the
first-come-first-served discipline.

The network is closed so that the total number of jobs in the think and the
processing states is constant at (N+I), the number of terminals. We refer to (N+I)
as the population. Notice that on account of the network closure the job stream
arriving at the CPU is not characterized by any nice stochastic properties.

The required service times for all jobs are independent, identically and
exponentially distributed. The unit of time is selected to give unity as the mean
required service time. The "think" times are also independent, identically and
exponentially distributed with mean lip. Thus

(1) p Mean required service time/Mean think time.

We also define

(2) p Np,

and assume throughout this paper that

(3) p < 1.

This assumption is equivalent to the "normal usage" assumption in [5].
We give next the known results on the equilibrium distribution of jobs in the

CPU. As the analysis of the waiting time problem for a population of (N+I) requires
as a prerequisite the stationary distribution of jobs with a population of N (f. 1]), it
is the latter that is given here.

For 0,1, ,N let

71" equilibrium probability of jobs being in CPU for population of N
(4)

[7] i!p/G (N)’

where

(5) G(N)-
j j

j-o

is the normalizing constant. It is also referred to as the partition function (of N).

2. Moments of the waiting time distribution.
2.1 Known results. It is proven in 1] that

(6) 1 E[W2 c’b,
2

where c is the solution of the following matrix equation,

(7) c’[I-A] a-’B.

Here r’= [71"0,7I’1,""" ,Tt"N] and b’- [1,2,... ,N+I]; B and I are (N+l)-dimensional
matrices where B diag {b} and I is the identity matrix. The matrix A is a generator
of a birth-and-death Markov process and is therefore tridiagonal. (The reader is
cautioned that this birth-and-death process is not the natural process associated with

792 DEBASIS MITRA AND J. A. MORRISON

the jobs in the CPU, cf. [1].) For 0,1,"

hi,i_ "-i Ai,i+

,N,

(i+l)p,

Ai, {Ai,i_l-I-Ai,i+l].

The matrix [I-A] in (7) is invcrtiblc by Proposition 4 of [1]. Consequently, there
exists a unique solution e to (7). This uniqueness property will play an important role
in 4.2.

It is also known that

(9) E W] c’l.

Recently Gaver, Jacobs and Latouche [6] have considered the model described
above and its extensions. The central theme of their work is that in heavy traffic the
response time for a long job is approximately normally distributed.

The open network version of our problem in which a Poisson stream of jobs is
submitted to a processor-sharing CPU is analyzed in [8]. Also of interest in this
connection are [9] and [10]. Certain important natural generalizations of the
processor-sharing discipline may be found in [111 and [12].

stationary probabilities:
2.2 Generating functions. Let us define the following generating function of the

(10) G (z;N) (,-o rizi

so that in particular,

(11) G (1;N) G (N).

G(N),

Thus the above generating function is a natural generalization of the partition
function. A methodology for analyzing partition functions of a large class of networks
is given in [5]. Using certain notions from [5] we find that the generating function
has the following integral representation:

(12) G(z;N)- e-u 1+ zu du.
0

To arrive at (12) substitute

i[-- _f e-U u du(13)
0

in (4) and use the binomial theorem.
It will also be convenient to define another related generating function,

(14) H (z ;N) zG (z ;N).

Note that

(15) G(N) H(1;N)

EXPANSIONS OF MOMENTS OF WAITING TIME 793

and

(16) H’(z;N) ffi{.o (i+l)rz} G(N)

where, as in the rest of the paper, the derivative is with respect to the first argument.
Now let

(17) C(z;N) ci zi G(N)
i-O

where is the sought after solution of (7). By multiplying the th component equation
of (7) by z and summing with respect to we obtain the differential equation which
will provide the basis for most of th analysis in this paper:

"P-(1-z)z2C"(z;N)+(1-z){1-pz+2Pz}C’(z;N)-{I+p(1-z)}C(z;N)NN
(8)

H’(z;N)

The homogeneous version of the above differential equation has singularities at 0,1
and oo of ranks 1,0 and 0, respectively [7]. For this reason we are unable to express
the solution of even the homogeneous version of (18) in terms of standard special
functions.

We note that the first two moments of the waiting time are easily obtained from
the solutions of (18): from (6) and (9),

(19)

1__ E[W {C(1;N) + C’(1;N)}/G(N);
2

E[WI C(1;N)/G(N).

Moreover, we note from (14) and (18) that

C(1;N) H’(1;N) G(1;N) + G’(1;N).

The above concludes for the present the discussion on the generating function
C(z;N) of the vector e. We return now to G (z;N), defined in (10) as the generating
function of r, and show that it too satisfies a related differential equation.

A lemma in [1] states that r’A 0’, which may be compared to (7). By a
derivation analogous to that of (18), it follows that

"P-- z2G"(z ;N) + 1-pz+ 2pz G’(z ;N) pG (z ;N) 0.
N N

This equation may be integrated once to obtain

(20) -P--zG’(z;N) + (1-pz)G(z;N) 1,
N

where we have used the fact that G (0;N) roG (N) 1. Equation (20) may also be
obtained directly from the birth-and-death equations given as a-’F 0’ in].

We remark that (20) leads directly to the integral representation (12) for
G (z;N). Equation (20) is interesting in its own right for it suggests a new avenue for

794 DEBASIS MITRA AND J. A. MORRISON

calculating the partition function. Indeed, some of the relevant asymptotic expansions
in {}3, which rely for their derivation on the integral representation, are also obtained
in {}4.4 from (20).

2.3 An outline of the procedure for the moments’ asymptotic expansions. An
outline of the procedure is given here and subsequent sections will provide the
necessary clarifications.

(i) Since we are interested in the behavior of C (z;N) for z in the neighborhood
of 1, it is convenient to make the transformation

(21) f(u;N) AC 1- -;N
From (18),

p 1-----+’- uf"(u;N)- (1 uf’(u;N)-

(22)

(23)

+pu |f (u ;N)
N

(ii) The right-hand side has an asymptotic expansion

as N oo.

The results in 3, 4.1 and 4.4 give J, (u) explicitly. It is shown that J, (u) is a
polynomial of degree r in u.

(iii) Let

(24) f (u ;N) fr (u)/N" as N oo.

On substituting (23) and (24) in (22) and upon matching coefficients of 1INr we
obtain the following infinite set of differential equations to be satisfied by {fr (u)}:

(25) puff’ (l-o)uf fo Jo(u),

(26) Pull 2pu fo (1-p)ufl p(2+u)ufo -f -pufo J(u),

and, for r > 2,

PUfr 2pu J-I + pu ’fr-2 (l-P) uf;
(27)

2P(2+u)ufr-1 + 2pu "fr-2 f, PUfr-. Jr (u).

(iv) In {}4.2 we show that the solution f, (u), like Jr (u), is a polynomial in u of
degree r:

EXPANSIONS OF MOMENTS OF WAITING TIME 795

r
(28) fr (u)" brl ul r-O,1,2,""

I-0

On substituting this form and the previously derived polynomial form for Jr (u) in
(25)-(27) and then matching the coefficients of powers of u, a set of relations is
obtained which must be satisfied by {brt}. These key relations given in (59) are in the
form of recursions and, being complete, they constitute a procedure for computing
{b,}.

(v) Finally, from (19), (21), (24) and (28),

E[W2] r0
(bro._br+l,1)/Nr(29) G(N)

(30) EtW] G(N----" E bro/N’.
r-’O

The asymptotic expansion for G (N), which is known from previous results [5], is also
available from the generalized framework of 3. This completes the procedure for
generating the asymptotic expansions for the first and second moments.

3. Asymptotic expansion of the generating function of the stationary distribution.
The reader should view this section as a digression from the main theme of this paper.
However, the results obtained here are essential for the subsequent derivation of the
main result of this paper. We have also chosen to collect certain results here since
they follow in a natural manner from the framework established in [5]. Indeed these
results represent a conceptual generalization of the framework in [5]. However, the
results in [5] are for a large class of networks while here we have under consideration
the network in Fig. 1.

3.1 Generating functions. Briefly, a procedure is given in [5] for obtaining the
asymptotic expansion of the partition function G (N), i.e. a procedure for generating
the coefficients {G,} where

(31) 6 (N) E Gr/N" as N--*.

The method of [5] is applicable for the case of "normal usage, which here is
equivalent to p < 1, as in (3). Here we use these techniques to arrive at the
asymptotic expansion

(32) H(z;N) zG(z;N) Hr(z)/N’, as N .
r--O

The above subsumes (31) since Gr Hr (1). We will find no need for detailed proofs
regarding asymptoticity since the proofs in [5] will suffice.

Recall from (12) and (14) that
N

(33) H(z;N)-z f e-u 1+ uz du
0

(34) z e-a(z)u -tzue
0

du

796 DEBASIS MITRA AND J. A. MORRISON

where we have introduced an important parameter

(35) a(z) A 1- pz.

We shall require that

(36) a(z) > O,

which however will allow z E [0,1], since p < 1. Note that the parameter a of [5] is
simply a(1).

A change of variables in (34) to v -a(z)u gives

(37) H (z ;N) z f e-"h (v,z,N-1) dva(z) "o

where

(38) h (v,z,N-l) e
(z)v

1-1-
N

and

(39) (z)
a(z)

Again @(z) is the natural generalization of in [5]:

(40) - (1) P
1-p

The parameter I’ will be familiar from single-server queueing theory.
The procedure for obtaining the asymptotic expansion for H(z;N) as N

namely,

(41) H(z;N) Hr (z)/Nr

r--O

consists of first obtaining a power series for h (v,z,N-1),

(42) h (v ,z ,N-l) hr (v ,z)/Nr

and then integrating term by term to obtain

Z 5 e-v hr (v ,z) dv.(43) H (z)
a(z) o

The functions h, (v,z) are the coefficients in a Taylor series in N-1 of h (v,z,N-1)
which is obtained directly from (38). It may be verified that

ho(v,z) m 1,
(44)

h,+(v,z)- (r+l-m) v}r+2_mhmr+l (r-(-’;2--m) {--’(z) (v,z), r 0,1,2,.-.
m-0

This recursive formula shows that h, (v,z) is a simple polynomial of degree 2r in v

EXPANSIONS OF MOMENTS OF WAITING TIME 797

and, consequently, the integration in (43) is easy to carry out.
be obtained in a straightforward manner. In particular,

H, (z) (z)/, r 0

This enables H, (z) to

(45)
3(z)/p, r

{2P4(z)+3(z)}/, r-2

{65(z)+206(z)+157(z)}/p, r 3.

A pattern in the above expressions which prevails generally is that H, (z), r > 0, is a
polynomial in (z) of degree (2r+l), with coefficients which are inversely
proportional to p.

This completes the description of the procedure for systematically generating the
asymptotic expansion for H (z;N).

We conclude by observing that later in the paper we shall require quantities of
the form Hk) (1), i.e.

H00) (1)

(46) H0) (1) H0(2) (1)

Hl) (1) H2) (1) H00) (1)

Of course computing the above array to the depth desired is straightforward once the
functions {H (z)} have been obtained. In particular,

k! p+,H(Ok) (1) k > 1,

3 4, H2) (1) 4 1...2 5(47) HI) (1)
p2 p2 p2

8 5 15 6.H2(’) (1) 7 +--
In 4.4 we will give an alternate, and also complete recursive procedure for

generating the above quantities. This procedure treats G (z;N) as given by (20) in a
manner similar to the treatment in 2.3 for C (z;N) as given by (18).

3.2 Partition function. We have already stated that the above procedure for
generating the asymptotic expansion for the function H (z;N) subsumes the procedure
for obtaining the asymptotic expansion for the partition function G (N). To make this
quite explicit and also because the asymptotic expansion for G (N) is required later in
the paper, we now give the leading terms.

Recall from (32) that

(48) G (N) H(1,N) Hr (1)/N", as N --* oo

r--O

where, from (45),

798 DEBASIS MITRA AND J. A. MORRISON

(49)

Hr (1) /p, r -0

(24+35)/p, r--2

(65+206+157)[p, r 3.

4. Asymptotic expansions for waiting time moments. This section presents the
main results of the paper.

4.1 The forcing terms. Consider in detail the term H’(1-u/N;N) in (22).
Recall that H(z ;N) is a polynomial of degree (N+ 1) in z but Hr (z) is not.

(50)

i.e

u N H(k+)(1;N) [--uH’(1- -;N)- E ’k’k-O k-O** H(k+)k!(" ;N) [__-u
Hs(k+l) (1)

s-O NS

1v"
1 { (--1)kHr(-k’l)(1)k! uk},r-0 k-0

(51) H’

where

(52)

u
--ff;N E

r--O

{ tI,,r-k (1) }uk r 0,1,2,Jr(u)
(._,k r_r (k+l)

-o k!

It has been shown in 3.1 that the quantities H:_.k’)(1) may be systematically
obtained. Thus the rt degree polynomials Jr(u), r- 0,1,2,.-. are known
quantities.

4.2 The recursions on ,the expansion coefficients. The nonhomogeneous
differential equations in (25)-(27) may be rendered into the homogeneous form by
transforming the dependent variables from {fr (u)} to

(53) fr (U) brl ul
l-0

by an appropriate choice of the constants {brt} which will depend linearly on the
coefficients of the polynomials {Jr (u)}. These observations are simple corollaries of
the form in (25)-(27) and the fact that Jr (u) is a polynomial in u of degree r.

EXPANSIONS OF MOMENTS OF WAITING TIME 799

(54)

The homogenized differential equations certainly admit the trivial solutions

fr (u) brt u!--0.

We now claim this as the correct solution because of the uniqueness property,
discussed previously in 2.1, of the solution vector c in the original equation (7). We
also arrive at this conclusion from the fact that the nontrivial solutions of the
homogenized equation are inadmissible. This is so because it can be shown that one
solution of the homogenized version of (25) grows exponentially with u, and the other
solution has an infinite derivative at u- 0. We have arrived at an important
conclusion, namely, f, (u), like J, (u), is a polynomial in u of degree r.

The following procedure allows the quantities {brt} in (54) to be identified. If we
substitute in (25)-(27) the forms for {fr(u)} and {Jr(u)} in (54) and (52)
respectively, we obtain polynomials which must vanish for all u. This procedure is
undertaken below.

From (25),

(55) boo no(1) (1).

From (26),

(56) bo H) (1),

(57) b

From (27), for r >/ 2,

Ho2) (1) +pH(o) (1) }.
r--1

pu l (l-1)b,lU1-2 2pu2 l (l-1)bt-,lU
-O ,..O

r-2
1-2 + pu 3 l(l_l)br_2,1ul-2

I-O

(58)
r-1 r-2

(1--p)u lbrlul-l- p(2u+u 2) lbr-l,l ul-1 + 2pu 2 lbr-2,1 ul-1
l-O l-O l-O

brl ul pit br_l,l ul
t-o t-o k-O k!

After rearranging and equating coefficients of Um, m --0,1, ,r in (58) we obtain,
forr > 2,

{l+(1-p)r}brr -prbr-,r- + (-1)r H(or+) (1)"
r[

(59) {l+(1-p)m}brm pm(m+l)br,m+ 2pm2br-l,m + pm(m-1)br-2,m-1

-pmbr-,m-1 + (--1)m H(mm+) (1),
m[

m 0,1,2, ,r- 1.

The above recursions together with the end values in (55)-(57) form a complete
system. Notice that (55)-(57) imply that (59) holds also for r 0 and r 1.

800 DEBASIS MITRA AND J. A. MORRISON

We may schematically represent the dependencies in the above recursions thus:

m-1 m m+l r-2 r-1 r

4.3 The dominant terms in the moments’ asymptotic expansion.
outline in 2.3 and (29)-(30) in particular that

(29) 1 E[W2] o {bro-br+l }/Nr

T G(N)

Recall from the

(30)

Also, from (48),

E[W] G (N) ,o- b’/Nr

G (N) Hr (1)INr.
--O

In particular therefore,

(60) -- etrv’l Ho(1)

and

1{(boo-boo) + " (b

(61)

lo-b21) Ho(1) (b-bl 1)

[,{etw]- boo + -ff b
H,(1)

10 Ho(1) boo

After some straightforward calculations we obtain

E[W2 2 2,o2(13-80)(62)
(1-0)2(2-0) N (1-0)4(2-0)2’

and

1 1 2p2(63) EtW]
p N (l-p) 3

We note that the first term in (62) and the first term in (63) give the exact

known results for the open network [8] in which a Poisson stream of jobs with rate

parameter p is offered to the processor-sharing CPU. This observation is in agreement
with the previously established [1, 3] correspondence between open networks and a

limiting case of the closed network.

EXPANSIONS OF MOMENTS OF WAITING TIME 801

4.4 An alternate derivation of the forcing terms. We now consider an alternative
to the procedure in 3.1 and 4.1 for calculating the coefficients in the polynomials
J,.(u) defined by (23). As given by (52), these coefficients involve the quantities
Hk) (1), to obtain which the procedure in 3.1 has been presented. In the technique
given here, these quantities are obtained from a simple two-dimensional linear
recursion. Thus, the primary recursion in (59) may be coupled with the recursion
given below in (73); together with (76), they form an alternate, completely recursive
solution.

The starting point is (20), in which we let

(64) g (u ;N) A G 1- ;N
so that

(65) 0 1- +-- g’(u;N)- 1-0+ E. (u;N)--
N

g

Let

(66) g (u ;N) g,. (u)]N" as N oo.

Then, from (65), we obtain the following infinite set of differential equations to be
satisfied by {g, (u) }:

(67) pgo (1-p)g0--1;

(68)

and, for r >/ 2,

(69)

pg (1-p)g 2pugo + pugo;

2Pgr (1--p)g 2pug,_ + pug,_ pu gr-2.

A solution of (67) is

(70) go(u)- (l-p) p

Since the solution of the homogeneous equation grows exponentially, (70) is the
desired solution. It may be shown by induction that gr (u) is a polynomial in u of
degree r:

(71) gr (u) grtU t.
I-O

It follows from (68), (70) and (71) that

(72) go0-- /,O gll 2/0, glO-- 3/.0.

802 DEBASIS MITRA AND J. A. MORRISON

Also, from (69), for r >/ 2 we obtain

grr "-rg,_,,_;

(73)grin [(m+l)gr,m+l-2mgr-l,m-gr-l,m-l+(m-1)gr-2,m-l], m 1, ,r-l;

go

The above recursions together with the end values in (72) form a complete system.
Now, from (14), (23), (64) and (66), it follows that

(74) Jr (u) ug(u) + g, (u) g+l (u).

Hence, from (71), we obtain

(75) Jr(u)-" (k+l)(grk--gr+l,k+l)tlk,
k-O

and (52) implies that

(76) (--1)kH/k) (1) (k+ 1)!(g,k--g,+,k+).

Thus we have a rursiv procedure for calculating these quantities, which are
required in the rcursions (59). We also note, from (48), (64), (66) and (71) that

(77) H,(1) g,0, r 0,1,2,.’..

We have verified that (76) and (77) are consistent with (47) and (49).

REFERENCES

[1] D. MITRA, Waiting time distribution from closed queueing network models of shared-processor
systems, Proc. Eighth Intl. Symp. on Computer Performance, Modeling, Measurement and
Evaluation, Performance 81, F.J. Kylstra, ed., North-Holland, Amsterdam, 1981, pp. 113-131.

[2] F.P. KELLY, Reversibility and Stochastic Networks, John Wiley, New York, 1979.
[31 F. BASKEd’r, K. M. CHANDY, R. R. MUNTZ, AND F. G. PALACIOS, Open, closed and mixed networks

of queues with different classes of customers, J. ACM, 22 (1975), pp. 248-260.
[4] L. KLEINROCK, Queueing Systems, Vol. II: Computer Applications, John Wiley, New York, 1976.
[5] J. McKI/NNA AND D. MITRA, Integral representations and asymptotic expansions for closed

markovian queueing networks: normal usage, Bell System Tch. J., 61 (1982), pp. 661-683.
[6] D.P. GAVER, P. A. JACOIIS AND G. L,TOtCR., The normal approximation and queue control for

response times in a processor-shared computer system model, Proc. Intl. Sem. on Modelling and
Performanc Evaluation Mothodology, INRIA, Paris, January 24-26, 1983, pp. 25-41.

[7] F.W.J. OLVER, Asymptotics and Special Functions, Academic Press, New York, 1974, p. 148.
[8] E. COFFMAN, R. R. MUNTZ AND H. TROTTER, Waiting time distributions for processor-sharing

systems, J. ACM, 17 (1970), pp. 123-130.
[91 M. SAKOTA, S. Noucm AqD J. OZUM, Analysis of processor-shared queueing model for time

sharing systems, Proc. Second Hawaii Intl. Conf. System Sciences, B.S.M. Granborg, d., Western
Poriodicals, 1969, pp. 625-627.

[10] R. MUNTZ, Waiting time distributions for round robin queueing systems, Proc. Symp. Computer-
Communications Notworks and Toletratfic, J. Fox, ed., Poly. Inst. of Brooklyn, New York, 1972.

Ill] J. W. COHEN, The multiple phase service network with generalized processor sharing, Acta
Informatica, 12 (1979), pp. 245-284.

12] G. FAYOLLE, I. MITRANI AND R. IASNOCRODSKI, Sharing a processor among many job classes, J.
ACM, 27 (1980), pp. 519-532.

	SMJCAT_V12_i1_p0001
	SMJCAT_V12_i1_p0028
	SMJCAT_V12_i1_p0036
	SMJCAT_V12_i1_p0060
	SMJCAT_V12_i1_p0071
	SMJCAT_V12_i1_p0082
	SMJCAT_V12_i1_p0101
	SMJCAT_V12_i1_p0118
	SMJCAT_V12_i1_p0144
	SMJCAT_V12_i1_p0157
	SMJCAT_V12_i1_p0166
	SMJCAT_V12_i1_p0189
	SMJCAT_V12_i2_p0215
	SMJCAT_V12_i2_p0227
	SMJCAT_V12_i2_p0259
	SMJCAT_V12_i2_p0267
	SMJCAT_V12_i2_p0286
	SMJCAT_V12_i2_p0294
	SMJCAT_V12_i2_p0300
	SMJCAT_V12_i2_p0316
	SMJCAT_V12_i2_p0329
	SMJCAT_V12_i2_p0347
	SMJCAT_V12_i2_p0354
	SMJCAT_V12_i2_p0366
	SMJCAT_V12_i2_p0388
	SMJCAT_V12_i2_p0395
	SMJCAT_V12_i3_p0411
	SMJCAT_V12_i3_p0426
	SMJCAT_V12_i3_p0447
	SMJCAT_V12_i3_p0463
	SMJCAT_V12_i3_p0473
	SMJCAT_V12_i3_p0484
	SMJCAT_V12_i3_p0508
	SMJCAT_V12_i3_p0526
	SMJCAT_V12_i3_p0539
	SMJCAT_V12_i3_p0551
	SMJCAT_V12_i3_p0565
	SMJCAT_V12_i3_p0580
	SMJCAT_V12_i3_p0588
	SMJCAT_V12_i3_p0601
	SMJCAT_V12_i4_p0611
	SMJCAT_V12_i4_p0616
	SMJCAT_V12_i4_p0641
	SMJCAT_V12_i4_p0645
	SMJCAT_V12_i4_p0656
	SMJCAT_V12_i4_p0667
	SMJCAT_V12_i4_p0677
	SMJCAT_V12_i4_p0708
	SMJCAT_V12_i4_p0717
	SMJCAT_V12_i4_p0734
	SMJCAT_V12_i4_p0751
	SMJCAT_V12_i4_p0759
	SMJCAT_V12_i4_p0777
	SMJCAT_V12_i4_p0789

