SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0001 $01.25/0

THE COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS*
V. STRASSENT

Abstract. The Knuth-Schonhage algorithm for expanding a quolynomial into a continued fraction is
shown to be essentially optimal with respect to the number of multiplications/divisions used, uniformly in
the inputs.

Key words. continued fraction, Euclidean representation, symbolic multiplication, computational
complexity, computation tree, lower bound, degree method

1. Introduction. Let k be a field, k[x] the polynomial ring over k in the
indeterminate x. Let A, A, be polynomials, A, # 0. Applying the division algorithm
successively (Euclid’s algorithm) we get

A1=Q1A+A;,

A, =QrA3+A,,
(1.1)

.......

A= Qt—lAu

where A; # 0, deg A;+1 <deg A; for i > 1. The sequence (Qj, * - -, Q,—1) depends only
on the quolynomial A;/A, and is called the continued fraction of A;/A,. (For its
significance in several branches of mathematics see [13], [26].) The name comes from
the identity

A1/A2=Q1+1/(Q2+1/(- - +1/(Qi2+1/Qi=1) -),

valid in k(x), which follows from (1.1) by dividing the ith equation by A;,; and
eliminating all A;/A;.; withi>1.(Qy," -, Q,—1) determines A;/A, uniquely.

Knuth [8] associates with (A1, A,) the extended sequence (Qq, -+, Q,_1, A,),
which he calls the Euclidean representation of (A, A,). It represents the pair (A, A,)
uniquely. In fact, one has a bijection between pairs of polynomials (A, A5) such that
deg A1 =deg A, =0 and finite sequences of polynomials (Q;, - * -, Q,—1, A;) such that
t=2,degQ1=0,degQ;>0 for 1<i<t and deg A, =0. If we put n =deg A;, m =
deg A,, then obviously Z'l_l deg Q;+deg A, =n, Z;_l deg Q; +deg A, =m.

The Euclidean representation is rather informative. It contains the continued
fraction of A;/A, and the gcd A, of Ay, A,. Brown [3] and Collins [4] have exhibited
the resultant of A, A, essentially as a power product of the leading coefficients of
the Q; and A,. In particular, if A,=d/dx A, one gets the discriminant of A;. If in
addition k =R, one can read off from the Euclidean representation the number of
zeros of A in any real interval in linear time, since Sturm’s algorithm may be carried
out using the values of the Q; and A, at the endpoints of the interval.

In the sequel we will exclusively work with the Euclidean representation; however,
our results will apply mutatis mutandis also to continued fractions.

* Received by the editors May 26, 1981, and in revised form December 21, 1981. The results of this
paper were announced in Proc. Internat. Congress Math., Vancouver, 1974. Significant portions of this
paper are reprinted with permission from “The Computational Complexity of Continued Fractions”, by
Volker Strassen, which was published in the Proceedings of the 1981 Symposium on Symbolic and Algebraic
Computation, Copyright 1981, Association for Computing Machinery, Inc.

+ Seminar fiir Angewandte Mathematik, Universitat Ziirich, Freiestrasse 36, CH-8032 Ziirich, Swit-
zerland.

2 V. STRASSEN

How fast can we compute the sequence (Q, '+, Q,—1, A;) from (A, A,)? For
simplicity and elegance we will allow in this paper additions, subtractions and multipli-
cations by fixed scalars (which are thought to be stored in the program) for free and
will thus only count ‘“‘nonscalar” multiplications and divisions (Ostrowski’s measure).
For n = m, Euclid’s algorithm requires in the worst and ‘““normal”’ case, whendeg Q; = 1
for 1<i<t and deg A, =0, about n> mult/div. The algorithm cannot be essentially
improved if one insists on computing the A; in addition to the Q; (use a linear
independence argument).

Lehmer [10] suggested employing the fact that for small deg Q; only a small initial
segment of A; A;,; is needed to compute Q;. Taking up this idea, Knuth [8] and
Schénhage [16] constructed an ingenious O(n logn) algorithm for computing the
Euclidean representation. Actually, all three authors were concerned with the number
theoretic analogue of our situation (Z instead of k[x]). The translation to the somewhat
simpler polynomial setting is due to Moenck [11].

In the present paper we will show that the Knuth-Schonhage algorithm is optimal
up to a multiplicative constant. In fact we will prove this not only for the worst case,
but in a strong sense uniformly over the set of input polynomials A, A,, at least
when k is algebraically closed.

We use the model of a computation tree, allowing tests of the form

“if a =0 goto i else goto j”’

free of charge. A computation tree computes a “collection’ (¢,), where ¢ is a
function on the set J of inputs and 7 a finite partition of J (see § 5). Fixing n and
m, we have in the case of the Euclidean representation

J={(A1,A,):degA;=n,deg A, =m}
={(@o,"* ", An bo, "+, b) €K™ agbo # O}
(with the identification A; =Yg a¢" ™, A=Y bt™),
(A1, A2)=(Q1, ", Qi1,A)

(also represented by its sequence of coefficients of total length n +1¢),

7= {D(nl, e n)it=Z2,n,n,=0,n;,>0for1<i<t, Ztl ni=n, Z; n; =m},
where

D(ni, -+, n)={(A1,A2)€J: (deg Q, -, deg Q;—1,deg A)) = (n1, - -+, n)}
is the set of inputs, whose Euclidean representation has the “format” (ny,: - -, n,).

Our main result is the following (see §§ 4 and 6):
1. The Knuth-Schonhage algorithm computes the Euclidean representation with
cost
=30n(H(ny,++,n)+6.5)

onD(ny, -, n:) (H is the entropy function, see (2.1)).
2. Let k be algebraically closed. Any algorithm that computes the Euclidean
representation has cost

zn(H(ny, -+, n)—2)

on a Zariski dense open subset of D(ny, * * -, n,). (Any algorithm may, of course, be
speeded up on particular inputs by a table-look-up procedure.)

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 3

In particular, for n =m, the order n log n of the worst case of the Knuth—
Schonhage algorithm cannot be improved. The above result 2 remains true also for
nonclosed fields, if the algorithm is assumed to yield the Euclidean representation
over the algebraic closure as well. If this condition is not satisfied, we still get
order-sharp lower bounds on those D(ny, -, n,;) with t=G+e)m. (e >0; this of
course covers the worst case.) Similar results hold in the important situation of
polynomials over a field Z,,, where p is not known in advance.

For proving lower bounds we employ the geometric degree method (Strassen
[23], see also Borodin-Munro [2], Schonhage [17], Heintz [6'], Schnorr [15]). For
this reason the paper assumes some knowledge of the language of classical algebraic
geometry (see Mumford [12], Shafarevich [18], Samuel [14]). Let k be algebraically
closed. The degree of a closed irreducible set X < k" is the typical number of points
of intersection of X with an affine subspace of k" of complementary dimension. (This
coincides with the degree of the closure of X in P".) The degree of a closed, but
reducible subset of k" is the sum of the degrees of its components. The degree of a
locally closed set X is the degree of its closure X (thus also the sum of the degrees
of its components). We have Bezout’s inequality

1.2) deg(XNY)=degX degY

for closed X, Y <k". We will use this inequality mainly in the case, when Y is an
affine subspace of k", where it becomes deg(XNY)=degX. If fi, - ,f €
k(xy, -, x,) are rational functions, we denote by deg (f1, * : -, f;) the degree of the
locally closed graph W = k""" of the rational map k" - k" defined by (f1, * - -, f,). Then
if L(f1, -+, f,)is the complexity of fy, - - -, f. with respect to the cost measure intro-
duced above (see [23], [2]), we have the degree bound

(1.3) L(f1,*+,f)zlogdeg (fi, -+, f).
(In this paper log always means log,.)

2. Symbolic multiplication of several polynomials. The results of this section will

be used later, but they are also of independent interest. Let ny, - - -, n, be nonnegative
integers, n =Y., n;. We denote the entropy of the probability vector (n1/n, -+, n,/n)
by H(nl,) nt)a i°e~9
2.1) H(ny,)= % “log—.

n>0 N n
(In case n =0 we set H(ny,**+,n,)=0.) Obviously the entropy does not change if
we remove from (nq, -+, n,) all n; which are =0. We list a few properties of the
entropy, some of which will be used in later sections (for detailed proofs see Fano
[5]). We have 0=H(ny,:*+,n)=logn for n>0, with both bounds attained.
nH(ni, - -+, n,) is monotonic in each argument n; (as one sees by differentiating): If

ni=n! for alli and if n' =Y, n}, then

2.2) nH(ny, - n)=n'H(nt, - -, ny).
Since inserting zeros into the sequence (n1, - - -, n,) does not change the entropy, this
implies

-1
(2.3) (Z ni) Hmy, - ,n-)=nH (g, -, n).

1

4 V. STRASSEN

The following crucial property is easily checked:

(; n,.) Hn,- -, ns)+(» n,~> H(ngor, - m0)

s+1

(2.4) t
=n (H(nl, cee, n,)—H(g ni 3, n,)).

s+1
It is convenient to extend the definition (2.1) by allowing nonnegative real numbers
p;: in place of n;. Since the entropy is invariant under scaling, we can reformulate (2.4)
as follows: If ¥'; n; = pn, then

(2-5) pH(nla tt ns)+(1_p)H(ns+la R nt)=H(n19 Tty nt)_H(p, 1_P)~

In the sequel we will often write H for H(n1, - * -+, n,).
LEMMA 2.1.

log (”—') =n(H(ng, -, n)—2).

ny--on!

Proof. We may assume that all n; are positive. By Stirling’s formula with error

estimate, we have
n! ! _ _
g211}-1(27_‘_’1)1/2 n (27Tnj) 1/2e 1/(12"1‘).
nl! e n,! j=1

(See, e.g., Fano [5, (8.87)]; notice that Fano works with natural logarithms.) Because
of ny -+ n.=(n/t), this implies

n! 1 t 2@n t
log(m)_E_nH+510g(21m)—§logT~Eloge,
t 27n ¢
an—Elog——t——l—z-loge.

Given n, the sum of the absolute values of the last two terms is maximal for
t=2mne 'S,
and for this value of ¢, we have

t 27N t
— - — =
2log(p >+1210ge_2n.

Let k be an infinite field and let x, p11,** *, P1ny» * * * > Pe1s * * * » P, D€ indeterminates
over k. We put

(2.6) Pi=x"4pax" "+ 4,
and
2.7) A=P;---P,

The polynomial A has the form
A=x"+ax" '+ +a,,

where the a; are polynomials in the p;, i.e., a;€ k[p11,* * *, Pm,] = k[p]. The following
theorem holds true irrespective of whether we interpret the complexity L(a, * -+, a,)

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 5

in k[p] (not allowing division) or in the field of rational functions k (p). In either case
linear operations are not to be counted.
THEOREM 2.2.

nHny, - ,n)=2)sL(@, - ,a,)=nHny, -, n)+1).
In particular, as H -» oo,
L(ay, -+ ,a,)~nH(ny, 0.

Proof. We may assume that all n; are positive.

Left inequality. Without loss of generality let k be algebraically closed. Choose
@y, ,a, €k such that the polynomial x" +a;x" '+ -+ +a, has n simple roots in
k,say 6y, - - -, 6,. We will determine the number of solutions of the system of equations

(2*8) ar=ay,* " ,a8, = Q.
A point (K11, " * * » Kingy " * * 5 Ke1y * * * 5 Kin,) €K™ is @ solution of (2.8) if and only if
(x—=861) -+ (x—0.,)=(x"1+;<11x"‘_1+' CetKip) (x"‘+;<,1x"‘_1+- o Kn)-

Therefore we have a bijection of the set of solutions of (2.8) and the set of partitions
of {6, - 6,} into ¢ classes with nq, -, n, elements, respectively. Thus they are
exactly n!/(n;! - - - n,!) solutions. By (1.2) and Lemma 2.1 this implies

|
2.9) log deg (a1, - - -, a,) Zlog (”—') = n(H -2),
te

ny--en
and therefore by (1.3)
L(ala Y an)én(H—-2).

Right inequality. A word is a finite (possibly empty) sequence from the set {0, 1}.
An s-code is a sequence wy, -+ +, wy of s words such that for any i #j the word w; is
not an initial segment of the word w;. We will first show by induction on ¢ (¢ being
the number of polynomials to be multiplied symbolically, see (2.7)) that for any ¢-code
Wi, o, W,

t
(2.10) L(ay, -+ ,a,)=Y n; length (w;).
1

This is clear for ¢ =1. Now let ¢ > 1. It suffices to show (2.10) for a ¢-code wy, * + +, w;
for which Y n; length (w;) is as small as possible. Because of #>1 the code does not
contain the empty word. We partition {1, - - -, ¢} into the set E of those i for which
w; begins with 0 and its complement F. E is nonempty. Otherwise all w; would begin
with 1. Deleting the initial 1 in each w; would still leave us with a ¢- code, in contradiction
to the assumption of minimality above. Similarly F is nonempty. We assume without
loss of generality that E ={1, - - -, s}. Deleting the initial zeros in wy, * - * , w, and the
initial ones in wg.1,***, w, we obtain an s-code wi,--:,Ww; and a (f—s)-code
Wert, '+, W Weput m =n;+- -+ +n, and define by, , b, €1, * *, Ch_m € k[pP] by

x'"+b1x'"_1+---+bm=P1---Ps,

n—m -m-1

X +c1x" +“‘+Cn——m=Ps+1“'Pr~

Obviously

1 1 1

" tax" T+ ta, =" b b)) X T e T T+t Cue).

6 V. STRASSEN

Our induction hypothesis implies

L(by,* -, bwm) =Y n; length (W),
1

t
L(ci, *,cn-m)= Y, n;length (W;).
s+1

Since the symbolic multiplication of two monic polynomials of degrees m and n —m
can be achieved with n nonlinear operations (cf. [23, p. 244]) we conclude

L(aly T an)gL(bly T, bm)+L(C1’ e 9Cn-—m)+n

=

M«

t
n; length (W;)+ Y. n; length (W;)+n
s+1

I
HM\'A

t
n; (length (w;)+1)+ ¥ n; (Ilength (w;)+1)
s+1
N t
=Y n; length (w;)+ Y. n; length (w;)
i s+1

t
=Y n; length (w;).
1

Thus, we have proved (2.10) for an arbitrary ¢-code wy, * + +, w. Now we can always
choose a t-code wy, * * +, w, such that

t
Y n;length(w)=n(H +1)
1

(see Fano [5, § 3.5]). Therefore,
L(ay,*+,a,)=n(H+1).
This completes the proof of the theorem.

3. Conversion of a continued fraction into a rational fraction. We need the
following:

LEMMA 3.1. Let k be algebraically closed and let
fl(Ya X1, " ’xn),

fr(Ya X1, ° axn)
be polynomials. For u € k let W,, k""" be the graph of the map

(aly trt, an)"—)(fl(ﬂ‘a a)y tt afr(ﬂa (!.)).
Then the function
n—>deg (W)

is Zariski lower semicontinuous (i.e., it equals its maximum value except on finitely
many points).

Proof. Let W be the graph of the map

(I"'aaly e ’an)'-—)(fl(l"a a)) e ’ff(/“" a))-

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 7

W is an (n +1)-dimensional closed subvariety of k k""", For any u € k the graph
W, is an n-dimensional closed subvariety of k"*’, and we have

(3.1 {wIx W, =WN{u}xk"") =W {u}xk"™),

since W and {u}Xx k""" intersect transversally (see van der Waerden [27], Samuel
[14], Hartshorne [6], Mumford [12]). Let W be the closure of W in k X P"*", W, the
closure of W, in P"™". Since

dim (W N ({u}xP"*)) =dim (({r} X W) U(W - W)

(3.2) -
=max {dim W,, dim (W — W)} =n,

W and {u} X P"*" intersect properly. By conservation of number (see van der Waerden
[27], Samuel [14]), the quantity

deg (W - ({u}xP"™)

is independent of u, say =c.
On the other hand we have

(3.3) {u}x W, =W - (u}xP"™)

for all but finitely many points wy, * * *, u,. For if we restrict both sides of (3.3) to
affine space k X k""", we get equality by (3.1). So (3.3) can be invalidated only by the
appearance of components of W N ({u}xP""") disjoint from k x k"*". Now any such
component lies in W —W and has dimension n by (3.2), so it is a component of
W — W. But {u}xP"*" can contain a component of W — W for only finitely many u.
Equation (3.3) implies

deg (W,)=deg (W,) =deg (W - {u}xP"*"))=c

for we&{m1, * * *, wo}. Also we have
deg (W,,) =deg (W,,)=deg (W - ({u}xP""))=c

since W, is always a component of W - {u:} xP"*"). These two statements prove the

lemma. (As has been observed by J. Heintz, the lemma can also be proved without
using the principle of conservation of number.)

Now let k be an arbitrary infinite field, t=2 and n,, -+, n, be nonnegative
integers such that n; >0 for 1 <i <t Let x and

q10,°* * > qlnp

.......

be indeterminates over k. Put
Qi=qiox" + * *+qin,
for 1=i<tand

A= qtox"' + o+ qm,e

8 V. STRASSEN

Then the system of polynomial equations

A;1=Q1A+A;,,

Ar=QA3+A,,

A 1=QA,;
uniquely determines polynomials A4, - -+, A,—_1. We have

Ar=aopx"+ +a, Ary=box"+:+by,

wheren =Y n, m=Y,n; and ao, "+, au, bo,* * * , b € k[q].
In the following theorem we can interpret L(ao, " * *, an, bo, * * *, by) either in
k[q] (not allowing division) or in k(q). As usual, linear operations are free.
THEOREM 3.2, Let n>0. Then

n(H(nl’ e ant)_2)§L(a0’ c Ay bO’ e 9bm)§8n(H(nls vt ant)+7)-

Proof. Left-hand inequality. Without loss of generality let k£ be algebraically
closed. By induction one easily sees

()= (5 o) (5 0 (B)

in particular,

Al) _ (Ql 1) . (Qt—l 1) (At)
34 (Az_ 1 0 1 o/\o/)
Let u € k be different from 0. In (3.4) we make the substitution
1
qio—>—, qii—>— Pij

(where 1 =i =t, 1 =j=n, and the p;; are new indeterminates) and multiply both sides
of (3.4) by u'. We get

ao(u)x"+a1(u)x"“1+°'~+an(u))___(P1 “>...(Pt—l M)(Pt)’

(3.5) (bo<u)x'"+bl(u)x""1+~'+bm(u) b 0 w 0/\o

where
Pi=x"+pux""'+ 4P,

and where a;(w), b;(u) are obtained from a;, b; by the above substitution and subsequent
multiplication by u . Since the graph of the polynomial map defined by a;(u), * * *, a. ()
is essentially an affine linear section of the graph of ai, - -, a,, the degree of the
former is less or equal than the degree of the latter. Thus, for any u #0,

(3.6 log deg (ao, * * *, @, bo, * * +, bm) Zlogdeg (ay, * -+, an)

) =logdeg (ai(w), * * +, an(w)).
(3.5) shows that the a;(u) are polynomials in p which depend polynomially on the
parameter u. In particular, a;(u) make sense for u =0 and (3.5) remains correct in
this case, i.e.,

3.7 x"+ai(0)x" '+ +a,(0)=P; -+ P,

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 9

By Lemma 3.1 we have

(3.8) logdeg (a1(w), * * , an(n)) =log deg (a1 (0), - + +, a,(0))
for all but finitely many u. Equation (3.7) together with (2.9) imply
(3.9) log deg (a1(0), - -, a,(0))=n(H —2).
Equations (3.6), (3.8) and (3.9) yield

(3.10) logdeg (ao, " * *, an, bo,** *, b)) =n(H —2).

Now (1.3) gives the left-hand inequality of the theorem.
Right-hand inequality. For any 2 X 2 matrix

G= (g 11 8 12)
821 822
whose coefficients g; are polynomials in x with coefficients in k(q), we put
max deg G = maximum of the degrees with respect to x of the g,

L(G) =L (the set of the coefficients with respect to x of the g;).
Let

o-(3)

fori=¢—1and

G,=(A' 0).

0 0
Then max deg G; = n;, and by (3.4), it suffices to show
(3.11) LGy - G)=8n(H(ny,:**,n)+7).

The problem of computing the matrix product G; - - - G, is similar to the problem of
computing the product of polynomials P; - - - P, as in Theorem 2.2 (of course, in both
cases we are dealing with symbolic computations, i.e., computations on coefficients),
the main difference being that matrices do not commute. We replace (3.1)) by

(3.12) LGy -G)=cn(H(ny, "+, n)+d)+7(-1),

where we will choose ¢, d =1 at the end of the proof, which is by induction on ¢. (To
carry out the induction, we will use the special form of the G; only in as far as
max deg G; =n; and the coefficients of the polynomials in x appearing in any G; are
either indeterminates or constants.)

The start (t =2) being clear, let t>2 and, therefore n >0. There is a unique s
(1 =s =1¢) such that

Define p, p' by

pn=% n; p'n=Yn.
1

Then we have p =3<p'. Choose 0<g <3.

10 V. STRASSEN

Case p'=1—¢. We first compute G, * - * G, and G,.; * * + G, and then, by one
matrix multiplication, G, * + * G.. Using the matrix multiplication algorithm of [20]
together with the fact that

max deg (G1-*-G)=n
and then the induction hypothesis and property (2.5) of the entropy function, we get

LG G)=L(G1*+* G)+L(Gsi1 - - G)+T(n+1)
scp'nH(ny, - ,n0)+d)+7(s —1D)+c(1—pn(H (ngr1, +*, 1) +d)
+7t—s—-1)+7(n+1)
scn(H(ny, -, n)+d)+7(t—1)+7n—cnH(p', 1-p").

Now H(p',1—-p')=H(1—¢, €). Thus, if the condition
(3.13) T=cH(e,1—¢)

is satisfied, we have (3.12).

Case p'>1—¢, p=e. We first compute G; -+ G,—; and G, - G, and then
G1 - -+ G, Again (3.13) implies (3.12).

Case p <eg, p'>1—¢e. We first compute G; - - - G,_; and G, - * + G, and then,
by two matrix multiplications, (G;: ‘- G-1)Gs(Gs+1* -+ G,). Using induction
hypothesis and properties (2.3) and (2.5) of the entropy function, we get

L(G1 - G)=L(Gy+ Gs-1)+L(Gg1++» G)+14(n+1)
sScpn(H(ny, -+ -, n0-1)+d)+7(=2)+c(1—p"n(H (n541,* * *, 1) +d)
+7(t—s—-1)+14(n+1)
=cn(p'H(ny, - -, n)+(1=pH(ng41,* 1)
+(p+1-pd)+7(@—1)+14n

=cn(H(ny, ++,n)+2ed)+7(t—1)+ 14n.

Thus in this case the condition

(3.14) 14=(1-2¢)cd

implies (3.12). Now we choose £ =0.325, c =8 and d = 5. Then (3.13) and (3.14) are
satisfied and the theorem follows from (3.12), because n; >0 for 1<i <t implies
t—-1=n+1.

4. Conversion of a rational fraction into a continued fraction: Analysis of the
Knuth-Schonhage algorithm. Let k& be an infinite field, » =m nonnegative integers.
Given univariate polynomials A1, A, over k with deg A, =n, deg A, =m, there are

unique nonzero polynomials Qq, -+, Q,—1, A3, * +, A, such that
A1=Q1A2+A;,
@.1) A,=QrA3+ Ay

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 11

and deg A, <deg A, for i =2 (Euclid’s algorithm). The sequence

(Qb Tt Qt—l,Al)
is called the Euclidean representation of (A1, A,) (Knuth [8]). We have ¢ =2. If we put
(4.2) n; =degQ; 1=i=t-1), n.=deg A,

then n; =0 for all i and n; >0 for 1 <i <t. Furthermore

t
n=zni’ m=2"i-
1 2
We define A,.1=0 and
0 1
4. i=)
(4.3) M=})
Then
A Aq
4.4 s): APRRE ()
(4.4) (Am Moy M ()]

for s =t. (The reader will notice that (4.4) for s =¢ is just the inverse relationship of
(3.4) if there the indeterminates g;; are replaced by elements of k.)

In this section we will show, using an algorithm that is essentially due to Knuth
[8] and Schonhage [16] (see also Moenck [11]), how to compute the coefficients of
A1, A, in a rather efficient way. Since the length of the output (number of coefficients
of the Q; and of A,) depends on the input (A, A»), it is clear that our computational
model has to be extended by allowing branching instructions, say of the form

“if f =0, then goto i else goto j”.

In this way we get the well-known model of a computation tree. For the purpose of
proving lower bounds for the complexity of our problem, we will discuss this model
in some detail in the next section. In the present section we will analyze the cost
(number of nonlinear multiplications/divisions as a function of the input) of the
Knuth-Schénhage algorithm and implicitly present the algorithm using an informal
approach. The style is such, however, that it can easily be formalized with the help
of Propositions 5.2 and 5.3. For completeness we will give an ALGOL-like formulation
of the algorithm at the end of this section.

We need a preliminary result. Given a polynomial A =aox?+-:-+a,€k[x] of
degree ¢ =0 and an integer [, we set

0 if 1 <0,
(4.5) All={ax'+++a if0=l=gq,
aox'++++ax'"? ifl>q.
(A|l consists, so to speak, of the significant part of A of length [+ 1.) Obviously
(AxH|I=AlL
Given two pairs of polynomials (A, B) and (A’, B’) such that

deg A=deg B =0, deg A'=deg B'=0,

12 V. STRASSEN

and an integer /, we say that (A, B) and (A’, B') coincide up to [if and only if
All=A'|l,
B|(l—(deg A —deg B))=B'|(I - (deg A’ —deg B")).
Coincidence up to [is an equivalence relation. (A4, B) and (Ax’, Bx’) coincide up to
| for every j =0 (given that deg A =deg B =0). If (A, B) and (A’, B’) coincide up
to | and [=deg A —degB, then deg A —deg B =deg A'—deg B'. The qualitative
idea of the following lemma is due to Lehmer [10].
LEMMA 4.1. Besides (4.1) consider Euclid’s algorithm for another pair A}, Az €

k[x] with deg A1 =deg A5:

Al=QiA}+AS,

A= QA5 +AL

v-1=Qp 1Ay

Let | be a nonnegative integer and 1=s =t be such that Zi_l n; =1 and either s =t or
Y3 ni>1 Define s' similarly (using A}, A} instead of A, Ay). Then, if (A1, Ay) and
(A1, A%) coincide up to 21, we have s =s' and Q; = Q) for 1=i=s—1.

Proof. We show by inductionon 1=j=s:

j=s’, Q;=Q; foralli<j,

and either j =s or (4;, A;+1) and (A}, A},1) coincide up to 2(/ —Z’;l n;). (This implies
the lemma by symmetry.) The start of the induction is clear and the induction step is
a consequence of the following statement:

Let (A, B) and (A’, B') coincide up to 2/, where [=deg A —deg B, and let

A=Q0QB+C, deg C <deg B,
A'=Q'B'+(C', deg C'<degB'.

Then Q =Q' and either C =0 or /—deg Q <degB —deg C or (B,C) and (B’,C")
coincide up to 2(/ —deg Q). To prove this statement, we may assume

deg A=deg A'>2l

(4.6)

(by multiplying (A, B) and (A’, B') with appropriate powers of x) and, therefore,
deg(A-A"Y=degA—-2[-1,
deg B =degB’,
deg (B—B') =degA-2[—-1.

Subtracting the equations (4.6), we get

4.7) A-A'=QB-B""+(Q-Q")B'+C-C'.

The polynomials A—A’', Q(B—B') and C —C' all have degrees <deg B. Therefore,

deg (Q—-Q')B'<deg B,
which implies Q = Q'. But then (4.7) gives
(4.8) deg (C—C'Y<deg Q+deg A —2lI.

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 13

Now assume C #0, [—deg Q =deg B —deg C. Comparing this with (4.8) we get
deg C =deg C' (in particular C' # 0). But then (4.8) implies
Cl2(I—deg Q)—(deg B—deg C)=C'|2(I —deg Q) — (deg B' —deg C").

This proves the statement and the lemma.

In the sequel when we speak of computing polynomials from polynomials, we
always think of computing their coefficients from the coefficients of the given poly-
nomials. At the end of such a computation, one will, of course, also know the degrees
of the output polynomials. Similar remarks apply to matrices built up from polynomials.

LEMMA 4.2, Let n=zm =0 and [=0. The function that assigns to any pair of
polynomials A1, A,, with deg A1 =n, deg A, =m, the sequence

(01, Ty Qs—l, M, - Ml),

with Zi_l n; =1 and either s =t or Y] n; >1, is computable in time
s—1
cl(H(nl, ceeonel, =Y n,->+d) +e(s—1)+1,
1

where ¢ =30,d =5 and e = 16.

Proof. Induction on I. The cases / =0 or [<n —m being clear, assume 1=/=n
without loss of generality and [=n —m. By working with the initial segments A 4|2/
and A,|2] — (n —m), instead of A, and A, respectively, and using Lemma 4.1, we may
assume without loss of generality that

deg A;=2], deg A, =21
By the induction hypothesis (applied to |[/2] instead of /) and (2.2), we can compute
(A1, A)=>(Qy, -+, Qr1, M, 1 -+ - My)
in time
[[2
e5 (B i3-S m) +d)+elr=1)+1,
where Y, n; =1/2 and either r =t or Y1 n; >1/2. By (4.4) we can compute
(AL, Ay M, - M)~ (A, Ary)

in time
r—1
4 ((» ni)+21+ 1) <100 +4,
1
Therefore
(4~9) (Al’ AZ)'_)(QI’ ttty, Qr—l’ Mr-l tee Ml, Ar, Ar+1)
is computable in time
l [2!
¢ (H(nl, SRR n,~> +d) te(r—1)+10+5.
1

Novy, if r=s (this can be tested at no cost since r=s if and only if A,.;=0 or
Y. ni+degA,—degA,.,>10), no further computation is necessary. Otherwise, we
can compute

(An Ar+1)'_) (Qr’ Ar+19 Ar+2)

14 V. STRASSEN
in time
6n,+1+21+1=8[+2

(by a division with remainder, using Sieveking [19], Strassen [23], Kung [9]). If
A,»#0, we apply the induction hypothesis to (A, .1, A,.,) instead of (A, A,) and
[-Y n; instead of L Thus,

(A1, Ari2)=>(Qri1, »+ 5 Qs—1, M1+ - M,4q)

is computable in time

C(I—Z:, n,~>(H(n,+1, C L R, (I—Z:, n,-) —sil n,-)+d) +e(s—r—1)+1.

r+1

If A,,»=0 we have r =s —1. So in any case (if r <s) we can compute

(Ql, ttt, Qr—b M—l v Mla Ar, Ar+1)
(4.10)

'__)(Qla Y Qs—l, Ms—l v Mr+1’ Mr—l te Ml)

in time

r s—1

c(l—-z n,)(H(n,H, SN R £ n,->+d>+e(s—r—1)+81+3.
1 1

By two matrix multiplications, taking into account the special form (4.3) of M,, we
can compute

M1+ Meyi, My,M, -+ - M)~ (M, -+ - M)
in time
20+ 1) +7(+1)=9(+1).
Together with (4.10) we see that
Q1+, Q-t, My My, A, A i) (Q1, 0 0, Qg Mooy - - - M)

is computable in time
r s—1
c(l—Zn,-)(H(n,+1, e - Y n,~) +d) te(s—r—1)+171+12,
1 1
when r <s. Finally, we combine this with (4.9). Thus, (in any case),

(A1, A2)—~>(Qy, ++, Qs_1, M1+ - - M)

is computable in time

s—1
c% (H(nl, . ns_l,%— ¥ n,.)+d)+e(s—1)+101+5=: f
1

if r =s, or in time

et om '3) +d)
02 ni, ,nr—12 1”:‘

r s—1
+c (I—Z n,-)(H(n,+1, SOENE T) ni>+d)+e(s—1)+27l+1=2 t
1 1

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 15
if r <s. (We have used ¢ = 16.) To complete the induction, we have to show
(4.11) wscllH(m, -+ e, l—sg m)+d)+e(s—1)+1.
Now by (2.2)
nsclH(ns, - ne, l—sg n,~> +d) —c%d+e(s —1)+100+5,

implying (4.11) easily for ¢ =30, d =5. To estimate ¢,, choose 0 <g <1/2.
Case ¥; n;<(1—¢)l. By (2.2) and (2.4) we have

r r s—1
b=cYyn(H(ny,- -, nr)+d)+c(l—Z ni)(H(nr+1’ SRR N A} ni>+d>
1 1 1
+e(s—1)+271+1
s—1
écl(H(nl, - n,.)+d)+e(s—1)+1+1(27—cH(1—e,e)).
1

Thus, in this case (4.11) is a consequence of the condition
(4.12) 27T=cH(1—¢,¢).

Case ¥ n; = (1—¢)l. Here we have

t,=c ini(H(nl, ce ,n,)+d)+c(e—%) ld
1

r s—1
+c(1—zn,.)(H(n,+1, AL ni)+d>+e(s—l)+27l+l
1

1
s—1 1
gcl(H(nl, e nee, 1Y ni> +d) +e(s—1)+1+270+c¢ (e —§> ld.
1
In this case (4.11) is implied by
(4.13) 27§(%—e> cd.

Now (4.12) and (4.13) are satisfied for ¢ =0.32, ¢ =30, d =5.

THEOREM 4.3. Let n=2m =0, n>0. The function that assigns to any pair of
polynomials A,, A, with degA,=n, degA,=m their Euclidean representation
(Qq,*++, Qi-1, A,) is computable in time

30n(H(ny, -+, n)+6.5).
Proof. Lemma 4.2 with [= n shows that
(A1, A2)=>(Q1,++, Q-1, M, - - - M)
is computable in time
30n(H(nq,* -+, n)+5)+16(t—1)+1.
By (4.4),
(A1, A, M,y - - - M1)— A,

is computable in time 2(n +1). Now use ¢t —1=n + 1. For completeness we now give

16 V. STRASSEN

an ALGOL-like procedure for the function that appears in Lemma 4.2.

procedure SCH (A, B, u; z, Q,M):
if B=0or u<degA—degB then

begin z = 1;
M= D)
Q =9,
end
else

begin F = Al2u;
G = B|(2u — (deg A —deg B));

v=|u/2];
SCH (F,G,v;z,Q,M);
&) =M(5);

if (Y. deg Q[i])+degF—deg G =u and G #0 then

i<z

begin Q[z]:=div (F, G);

H =rem (F, G);
F =G;
G =H;

vi=u-—Y degQ[i];
SCH (F, G,v;z',Q"\M");
fori:=1toz'—1do Q[i+z]:=Q'[i];
M=M(Q _q.)M;
z=z+2
end
end

Remarks. 1. u, v, z, z', i are variables for numbers, A, B, F, G, H are variables
for polynomials, M, M' are variables for 2 X2 matrices of polynomials, Q, Q' are
variables of sequences of polynomials.

2. Given A, B such that B # 0, we have

A =div(A,B) B+rem (A, B)

such that deg rem (A, B) <deg B.

3. Let the contents of A, B, u be A;, A,, [respectively (see Lemma 4.2). Then,
after running the procedure SCH, the contents of A, B, u will be unchanged, the
content of z will be s, the content of Q[i] will be Q; for 1=/ <s and the content of
M will be M,_; - - - M; (hopefully).

5. The computational model. We will discuss here the notion of a computation
tree in some generality. Let), P be disjoint types (sets together with arity functions).
The w € Q) are called operational symbols, the p € P are called relational symbols. A
structure of type ({), P) is a set A together with an interpretation for each m =0 of
any m-ary o €{) as an m-ary partial operation in A and of any m-ary p€ P as an
m-ary relation in A. Notationally we will not distinguish between a symbol and its
interpretation.

Example. Q={0,1,+, -, %, /}, P={=}, A =R. (See also [21], [22].)

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 17

Let s34, 52, * * * be variables (symbols which denote storage locations). A computa-
tion tree of type (Q, P) is a binary tree B (see [1]) together with

1. A function that assigns:
¢ to any vertex with exactly one son (simple vertex) an operational instruction
of the form

§; = w(sha T, sjm)’

where m =0, i, j;, -+, jm >0 and w € () m-ary,
e to any vertex with two sons (branching vertex) a test instruction of the form

p(sip R Sim)a

where m =0, j1,**,jn >0 and p € P m-ary,
¢ to any leaf an output instruction of the form

(sjl, t s]'q)y

where ¢ =0, j1, -+, j;>0;

2. A partition o of the set of leaves such that the length q of the assigned output

instructions is constant on o- classes.

The purpose of the partition is to collect the relevant part of the information
gathered by the various tests of the tree, as is most easily visualized in the case of a
decision tree, i.e., a computation tree with () = ¢. Computation trees will have inputs
as well as outputs of the form

(Ay ag, ", an)a

where A is a structure of type (), P) and a4, - - -, a, € A. n is called the length of the
input (output). Let J be a set of inputs of length n (A may vary).

A collection for J is a pair (¢,), where ¢ is a function that assigns to any input
a=(A,ay, - -,a,)eJ an output p(a)=(A, by, -+, b,) (the structure of ¢(a) is the
same as that of a, ¢ may vary as a function of a) and where = is a finite partition of
J such that the length of ¢(a) is constant on - classes.

Examples. If it is clear from the context which structure is in front of an input
(or output) we will often neglect to write it.

(5.1) Matrix inversion. Let k be a field, J = k"™",

(a,-,-)_l if det (a,']') # 0,
¢ otherwise,

o((a) =

7 = {{regular matrices}, {singular matrices}}. Then (¢, 7) is a collection for J. Other
interesting input sets for the same problem are, e.g.,

J= U {Z,}xz;™,

p prime
J ={(a;)€ek"™": (a;;) orthogonal}.
(5.2) Knapsack. Consider R as an ordered field and let J = R",
pa)=¢ forallacR",
7 ={E,R"\E}, where
E={aeR":aIc{1,- Y ai=1}.
jeI

Then (¢, 7) is a collection for J.

18 V. STRASSEN

(5.3) Euclidean representation. Let k be an infinite field, considered as a commu-
tative k-division algebra with equality (Q={0,1,+, —,*, /}LIk, where
Aek is interpreted as multiplication by A, P={=}). Let n=zm=0, J=
(k™ x k™)X (k*xk™) k™ ™*? (k™ = k\{0}). Think of inputs € J as pairs of polynomials
A1, A; such that deg A, =n, deg A, =m. Put

0(A, A))=(Q1, "+, Qi-1, A))
(see (4.1)) and let 7 be the partition of J into the fibres of the map
(A1, Az)—>(deg Qy, - - -, deg Q;—1,deg A,).

In other words, given nonnegative numbers x4, - « + , 1, such that n; >0 for 1 <i <t and
t t

Z n;=n, Z n; =m,

1 2

letD(ny, - - -, n,) <J be the set of those (A1, A,) for whichdeg Q; =n; (i <t),deg A, =
n;. Then the D(ny, -, n,) are just the m-classes. (¢, 7) is a collection for J, which
we call the Euclidean representation.

We will skip a detailed semantics of computation trees and just state the following

conclusion: An input a= (A, ay, -, a,) fed into a computation tree B of the same
type may or may not produce a leaf together with an output b= (A, by, - -, by). (At
the root of B the variables are assigned the values (aq, as, * * *, @y, 0, 0, * + *). Then

a directed path starting from the root together with an assignment to the variables
for any vertex of the path is constructed.) If it does, we say that B is defined on a. If
B is defined on a set J of inputs of the same length, we let ¢(a) =b, where b is the
output produced by B on a, and we let 7 be such that a and a’ are in the same 7r-class
if and only if the leaves that B produces at a and a' are in the same o-class. Then
(@,) is a collection for J. We say that B computes (¢, 7). Now let a cost function

z:QUP->R"

be given. By adding the costs of the various instructions encountered when going
from the root of B to a leaf, we may define the cost of any leaf of B. If B is defined
on J, this gives us a function

t: J->R",

the cost of B on J (t(a) is the cost of the leaf of B produced by the input a). Finally,
given J, a collection (¢, 7) for J and a function

t:J >R,

we say that (¢, w) is computable in time t if there is a computation tree B which
computes (¢,) and has cost =¢ on J. We also say that (¢, 7) is strictly computable
in time ¢ if in addition B is required to have o ={{v}: v leaf of B} (i.e., B has to
output all the information gained by performing tests). Obviously, (¢, 7) is computable
in time ¢ if and only if there is a partition 7' of J finer than 7 such that (¢, 7') is a
collection, strictly computable in time ¢.

In order to eliminate the clumsy notion of a computation tree, we will now
axiomatically characterize the correct statements of the form

(5.4) “(¢, m) is computable in time ¢,

To this end fix (Q, P), z and J.
AxioM. (id, {J}) is computable in time 0.

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 19

Rules of inference. Let (¢, 7) be a collection for J, computable in time ¢, D € 7w and

oD =(po,* " ", @q)-

(Thus for ae D we have ¢o(a) = A, ¢;(a)e A fori=1.)
(I) If t=¢, then (¢, 7) is computable in time ¢'.
(I1) If ¢'=¢ on J\D and

(PIFD = (‘POa @iy " T (Pip)a
where 1 =i, ', i, =q, then (¢’', w) is computable in time ¢.
(III) If ¢'=¢ on J\D and
@D = (@0, @1, " * » Pgs @ (@1, * * 5 @m)),
where m =q, w € Q) m-ary and (¢1(a), * * * , om(a)) € Defw for any ae D, then (¢, m)
is computable in time ¢+ 2z (w)1p (where 1p = indicator of D).

av) 1t
m'=(mr\{DhU{{aeD: (¢:1(a), - -, pm(@)) ep}, {acD: (p1(a), - -, om(a)) p}},

where m =q, p € P m-ary, then (¢, ') is computable in time ¢+ 2z (p)1p.
(V) If
7' =(m\{D, Eh U{D UE},

where E € 7, E # D but length (¢ E) =g, then (¢, ') is computable in time ¢.

THEOREM 5.1. The correct statements of the form (¢, w) is computable in time
t” are exactly those which can be deduced from the above axiom with the Rules of
Inference (I)—(V). (Similarly for “strictly computable” and Rules (I)-(IV).)

Proof. “Deducible=>> correct”: Straightforward. “Correct=>deducible”’: Show
that if (¢, 7r) is strictly computable in time ¢, then the corresponding statement may
be deduced from the axiom by the Rules (I)-(IV), using induction on the size of a
‘“strict”” computation tree which computes (¢, 7).

A convenient way to use Theorem 5.1 is by axiomatic induction: Given z and J,
let % be a statement about triples (¢, m, t) such that the above axiom and the Rules
(I)-(V) hold when all statements of the form (5.4) have been replaced by the
corresponding statements (e, 7, ¢). Then we can conclude

(¢, 7) computable in time ¢ > (e, m, t).

As simple applications of axiomatic induction, the following two propositions can
be proved.

PrOPOSITION 5.2. Let (¢,) be a collection for J, computable in time t and let
D, e m. Moreover, let (¢1, 1) be a collection for J1, computable in time t,, and assume
(p(Dl)CJ1 Put

. _{tp onJ\D;,
¢ ¢1°¢ onD;y,
#=(@\{DiPUe 'my,

t~=t+(l‘1°<P)‘ 1p,.

Then (¢, 7) is computable in time ‘.
PROPOSITION 5.3. Let (¢;, m:) be collections for J, computable in time t; (i =1, 2).
Define ¢ by

(P(a)=(A9 b1’ DY bqla Cy,** ’cq2)9

20 V. STRASSEN

where ¢1(a) = (A, b1, *, by,), e208)=(A,c1, "+, Cg,), and let
T=TmT1ANT2.

Then (@, m) is a collection for J, computable in time t, +1t>.

Both propositions remain correct when everywhere ‘‘computable” is replaced by
“strictly computable”.

Application. Consider the collection (¢,) of Example (5.3) (Euclidean rep-
resentation). If we take the cost function z = 14, 5, i.e., if we allow linear operations
and tests for free and count the remaining multiplications/divisions, then Theorem 4.3
(or rather its proof) shows that

(5.5) (@,) is strictly computable in time 30n (H +6.5).

In fact, using Propositions 5.2 and 5.3, the proof of § 4 can easily be formalized for
the present model.

6. Conversion of a rational fraction into a continued fraction: Lower bounds. Let
k be an infinite field, considered as a k-field with equality (Q={0, 1, +, —, =, /}LIk
with constants 0, 1 and unary A €k, P ={=}). As before, let z =1, .

THEOREM 6.1. Assume that k is algebraically closed. Let J = k" be Zariski open
and (@, m) be a collection for J, strictly computable in time T. Let D € w and oD =
(@1, " *, @q) (disregarding @o=k). Then:

1. D is a Zariski locally closed (see [12]) subset of k" - @D is the restriction to D
of a rational map k" - k®, whose domain of definition includes D. Graph (¢|D) is a
locally closed subset of k",

2. TID z=log deg graph (¢ D).

Proof. By axiomatic induction we first show: If (¢, 7) is strictly computable in

time T, then for any D € 7 with ¢} D = (1, - - - , ¢.) (say) there are rational functions
Fy,---,F,Gy ,G, Hy, -+ ,H, on k" such that

6.1) D={G,=-+-=G,=0,H, -+ H, #0}NJ,

(6.2) the F; are defined on D and ¢; =F; D,

(6.3) T'DzL(Fy, F,Gi,+,Gy,Hy, -+, H,).

(The domain of definition of a rational function F is the set of points in k" for which
the reduced denominator does not vanish. The condition G =0 is satisfied at a point
a if and only if G(a) is defined and equals 0. Similarly H () # 0 is meant to imply
that H () is defined.) The inductive proof is quite straightforward, and we content
ourselves with giving two instances of treatlng the rules of 1nference ((V) excluded).
First, Rule (III) with w = /: The case D #D bemg clear, let D =D. Then u = q and
the rational functions Fy,:::,F,, Fi/F,,Gy,+*+,Gy Hy, +++, H, will do. Second,
Rule (IV): Take Fi,--- ,F,,, Gy, +, G, F1—F2, Hl, +++,H, in case D=
DN{¢1=¢>} and F,---,F,Gy, - ,G,Hy, ,H, F;—F, in case D=
D N{p1 # @2}

Equations (6.1) and (6.2) imply the first assertion of the theorem. By (6.3), (1.3)
and (1.2) (intersection with a linear space), we have

TFD~§L(F1,‘ . ',Fu,Gl,' * .’G‘U’Hl’. * .3Hw)
=logdeg (Fy, -+, F,, Gy, **, Gy)
=log X deg C.

C component of
graph (Fy,+++, F,)N{G1="+-=G,=0}xk")

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 21

Now by (6.1) and (6.2)
graph (¢ | D) =graph (F," - -, F,)
N{Gi=:=G,=0}xk"YN(({H, - - H,, #0}NT) X k™).

Thus the closure of any component of the graph of ¢ | D is also the closure of a
component of graph (Fy, -+, F,)N({G1="+ =G, =0}xk"). Therefore,

T!D=log Y deg C,

C component
of graph (¢ D)

proving assertion 2 of the theorem.

We remark that there are finite partitions 7 of k" into locally closed subsets, for
which (id, 7) is not strictly computable: Take k =C, n =2 and = ={D, E, F}, where
D={y=x>-1,x#1}, E={-y=x*-1,x # -1}, F=C\(D UE).

Now for any field k let

Je(n,m)={k}x(k*xk™)x(k*xk™).

This is an open subset of k" *™*2, A typical input (k, @o, * * *, Gn, bo, * * * » bm) €Ji(n, m)
is interpreted as a pair of polynomials A; =Y aix" ™, A, =Y bix™ " € k[x] of degrees
n and m, respectively. Let (¢4,) be the Euclidean representation for Ji.(n, m) (see
(5.3)). Then = consists of the classes Dy (ny,**n,) t=2,n1=0,n,,***,n,-1>0,
n=0,Y n;=n, Y, n,=m), which by ¢, are mapped bijectively onto

T, m) = kb TT (k™)

Ji(nq, + + +, n,) is an open subset of k""",
LEMMA 6.2. Let k be algebraically closed.
1. Di(ny, * * +, 1) is a locally closed irreducible subvariety of k"™ *2.
2. ¢ | Di(ny, -+ +, n,) is an isomorphism of varieties

Dk(nla Tt nt)_)Jk(nla Y nt)‘

Its inverse is given by polynomials of degree =t.
3. Let Wi, < k"™ >x k""" be the graph of ¢« | Di(n1, « + -, n;). Then W, is locally
closed, irreducible and

logdeg W, =n(H(ny, + +, n,)—2).

4. Put N=(n+m+2)+(n+t), z=m+m+2). There are polynomials
Fi, - ,F,ek[xy, -, xn]of degree =t such that

W,={F,=-+--=F,=0}.

Proof. By (5.2) the Euclidean representation is strictly computable. Thus, by
Theorem 6.1 Dy (ny, - -, n,) is locally closed and ¢y [Di(n1,* * *, n,) is @ morphism
into Ji (ny, * * +, n,). Equation (3.4) interpreted as a function ¢ on J.(ny, - * -, n,) gives
its inverse. So ¢ [Jr(n1, * * +, n,) is an isomorphism, D, (ny, * * *, n,) is irreducible and
¢ is defined by polynomials of degree =t. Since W, is up to a permutation of the
coordinates the same as graph ¢, (3.10) gives

logdeg W, =n(H —2).

Finally, let f1, - -, f. €k[x,+1,** *, xn] be_the polynomials defining ¢. Put F; = x; — f;
for1=i=z.Thenby 3.4)degF;=tand W, ={F;=---=F, =0}

22 V. STRASSEN

THEOREM 6.3. Let k be algebraically closed and let the Euclidean representation
for Ji.(n, m) be computable in time T. Then any Dy (nq, - -+, n;) contains a dense open
subset U such that

TIUznHny, -, n)—2).

Proof. There is a refinement 7' of 7, such that (¢, 7') is strictly computable in
time T. =’ further subdivides Dy (n1, - - -, n,) into Dy, - -+, D,, say. By Theorem 6.1
the D; are locally closed subsets of the irreducible variety Dy (n4,* - -, 1), so one of
them (call it U) is a dense open subset of Dy (ny, * * *, n,). Then the graph of ¢, [U
and the graph of ¢ [Di(ny, * * *, n,) have the same closure. Therefore, the graph of
¢k | U is irreducible and, by Lemma 6.2. 3,

log deg (graph ¢, | U)=n(H —2).

Theorem 6.1. 2 now yields T | U = n(H —2).

Next we will discuss the Euclidean representation for nonclosed fields. Let k be
an infinite field, K its algebraic closure. A point of K" that belongs to k" is called
rational. k" has a Zariski topology (generated by the sets {f#0}, where fe
klx1, "+, x.]). This is also the topology induced by the Zariski topology in K". (If
feKIx],let{fi, - -, f.}beits orbit under the action of Gal (K/k) on K[x]. Put g =[1; f;
if char k =0 and g = ([]; f;)”" with e sufficiently large if char k = p. Then g € k[x] and
(Eck™: f(E)=0}={Eck": g(£)=0}.) Since k is infinite, k" is dense in K", hence, it is
an irreducible topological space. Since Euclid’s algorithm is “field independent”, we
have

(6'4) Dk(nla“"nt)':Dk(nl’.”’nt)n"k(n’m)a

(6'5) (Pker(nl"”’nt):(pker(nl".'ant)

(disregarding k and K in front of an input or output). Therefore, Dy (ny, -+ -, n,) is
mapped onto Jy(n1, * -+, n,) under ¢k. Since k""" is dense in K", Ji(ny, -+, n,) is
dense in Jx(ny, * * *, n,) and therefore Dy (ny, ' -, n,) is dense in Dk (n1, -+ +, 1), in

particular, irreducible. Also W, is dense in Wk.

COROLLARY 6.4. Let k be an infinite field, n Zm =0 and let B be a computation
tree which computes the Euclidean representation for Ji(n, m) in time T. Assume that
B computes also the Euclidean representation for Jx(n, m). Then any Dy(nq,* -+, n;)
contains a dense open subset U such that

TI'UznHny, -, n)=—2).
Proof. Let B compute (¢g, 7k) in time T. Then
T T, m)=T,

and by Theorem 6.3 there is a dense open subset U of Dx (n1, * * +, n,) such that
T)UznH-2).

Since Dy (ny, - -, n,) is dense in Dk (ny, -+, n), U= UNDy(ny, - ,n) is dense

open in Dy (n1, * * +, n,). Moreover, since U < J;(n, m) we have

TIU=TUznH-2).

Next we try to free ourselves from the assumption that B computes the Euclidean
representation also over the algebraic closure of k. To this end we will have to estimate
the degree of an unknown rational map that extends ¢, [Dy (n1, -+ +, n,). A result of

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 23

this nature is proved (for a similar purpose) in Strassen [24]. A more powerful method
is contained in the proof of Theorem 1 of Heintz-Sieveking [7]. The following lemma
comes out of their approach.

LEMMA 6.5. Let K be algebraically closed and X =K~ be a Zariski closed set;
all of whose components have the same dimension. Assume that there are polynomials
F,,- - ,F,eK[x1, " ,xn] of degree =d such that any component of X is also a
component of {F1=+++-=F,=0}. Then if X <Y <K~ and Y is closed, we have

deg Y =deg X - g¥mX-dmY

Proof. Induction on dim Y: The start dim Y =dim X being clear, let dim Y >
dim X. Cleaning Y of superfluous components we may assume that any component

of Y contains a component of X. Let Cy, - - -, C, be the components of Y of highest
dimension. If all F; would vanish on a C,, then a component of X contained in C,
would not be a component of {F; =- -+ =F, =0}. Thus, for each p there is an i((=z

and a ¢, € C, such that F; (c,) # 0. The set

{as,- A)ekm30=r 3 AFip(cU)=0}
1

p=

is a union of r proper subspaces of K', therefore, not all of K". So we can choose

A1, +++, A, €K such that },_ A F; does not vanish on any C,. Let
(6.6) Y= Yn{ Y ADF}0=0}.
p=r

Then dim Y <dim Y and X < Y. The induction hypothesis applied to Y yields
deg Y =deg X - d¥mX~dim Y
On the other hand, (6.6) and Bezout’s inequality (1.2) gives

deg f’édeg Y-d

The two last inequalities together complete the induction.

THEOREM 6.6. Let k be infinite and € >0. If the Euclidean representation for
Ji(n, m) is computable in time T, then any Di(n1,**+,n,) witht = G+ ¢)m contains a
Zariski dense open subset U such that

T!U=2enH(ny, " ,n)—5n.

Proof. By axiomatic induction (over k) one easily shows: Let a collection (¢, 7)
for Ji(n, m) be computable in time T. Then there is a collection (¢, 7) for Jy.(n, m),
strictly computable in time 7, such that

(6.7) ‘ﬁ er(nym)=‘Pa

(6.8) for any m-class D there are 7-classes, ﬁl, cee 15,, such that
p A
D = U (Dl rW‘Ik(na m))’
1

(6.9) T=T1Ju(n, m).

(Only Rule (IIT) with w = / requires some care: One has to insert a test as to whether
the denominator takes the value O or not.)

24 V. STRASSEN

We apply this to the Euclidean representation (¢, 7) for Ji (n, m). Unfortunately,
(¢, #) need not be the Euclidean representation for Jx (n, m). Let

6.10) Di(ny, -+, n)=U (D, NJe(n, m)).
1

Without loss of generality DiNJ(n, m)# ¢ foralli. Let E; be the closure of D;. Then
(6.10) implies

p A
Dk(nly e ’nt)CUEi'
1

Since Dy (ny, -+ +,n)is igreducible, itis contained in some E, say Dy (ny,* *+, ny) cE,.
Since D, € # is open in E; by Theorem 6.1 and DN Dy (n4, " * + , n,) # ¢, the irreduci-
bility of Dy (n4, * - -, n,) implies that

(6.11) U =D,NDy(ny," -, n,) is dense open in Dy (n1, - * , n).
From (6.7) we see that

V := graph (¢« | U) =graph (¢ | Dy).
Equation (6.11) implies that V is dense in W, thus also in Wx. Therefore,

X = Wx cclosure graph (¢ | D;) =Y.

Now we apply Lemma 6.5. We have dimX=n+t, dmY=n+m+2, N=
(n+m+2)+(n+¢t). By Lemma6.2. 4 (with k replaced by K) we can take d =¢,
z=n+m+2. Thus,

logdeg Y =logdeg X —(m +2—1t) log ¢
=nH-2)—-(m+2—t)logt
by Lemma 6.2. 3. Now Theorem 6.1. 2 applied to (&, 7#) and D, yields
TV Dyzn(H -2)—(m+2—1)logt,
and therefore, by (6.11) and (6.9),
TIUznH-2)—(m+2—t)logt.
Now, since n;/n =1/n for 2=i=t—1, we have

t=21 t—3
Hg_z —lognz—-n—logn.

i=2 N

Thus, for ¢t =(3+¢)m =m/2 we have m log n =2nH +6 log n and therefore,

T UznH-2)—(m+2—G+e)m)logn
=nH-2)—G—¢)m logn—2logn
=n(H-2)—(1-2&)nH —51logn
=2enH —5n.

In practice, one frequently wants to compute the Euclidean representation over a
field Z, (or several such fields, see [3]). Typically, p is not known in advance. So we
are led to consider the type Q={0,1,+, —, *, /}, P={=} and the following set of

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 25
inputs:
(6.12) J'(n,m)= U Jz, (n, m).

p prime

A typical input (Z,, ao,* " *, @n, bo, * * *, b) is interpreted as a pair of polynomials
Yoaix"", Yo bix™ " eZ,[x] of degrees n and m, respectively. Let (¢, 7') be the
Euclidean representation for J'(n, m). If we put

(6'13) Dl(nla Y nt) = U DZ,,(nla Y nt)y
p prime
we have
(PI = U ‘Pz,,,

p prime
t t
! . —_— —_
T ={D'(n1, ceeon)it=2,n120,n,, 000, 021 >0, n,éO,Zni—-n,Zni—m}.
1 2

Given n =m =0, Theorem 4.3 applies not only to infinite ground fields, but also to
fields Z, with p sufficiently large. Using a table-look-up procedure for small Z,, we
obtain:

(6.14) The Euclidean representation (¢, 7') for J'(n, m) is computable in time
30n(H(ny, "+ +,n)+6.5).

If we dismiss in the Knuth-Schénhage algorithm the symbolic multiplication of
polynomials by interpolation in favor of a slower direct method, the algorithm works
for any Z,. Thus, (¢, 7') is also strictly computable.

J'(n, m) carries a Zariski topology, a basis being given by the sets

U ={(Z, a,b)eJ'(n,m): f(a,b)#0 in Z,},

where fe€ Z[x1, * * , Xn+m+2]. Since U; # ¢ for f #0, and Uy N U, = Uy, any two non-
empty open sets intersect. Thus J'(n, m) is irreducible. Similarly,

(6.15) J'(ny, - yn)i= U Jz,(ng, -+, n)
p prime

is irreducible in its Zariski topology.
LeEMMA 6.7. 1. Let a collection (¢, w) for J'(n, m) be strictly computable. Then
any D € w is locally closed and

¢! D:D-> U {Z,}xZ;
p prime
is Zariski continuous.
2. ¢ :D'(ny, -, n)>T'(ny, -+, n)

is a homeomorphism. In particular, D'(n, + - * , n,) is irreducible.
Proof. 1. Similar to the proof of Theorem 6.1. 1.
2. By 1,

(P,: D,(nly DY nt)_)U {ZP}XZ:+t
p

26 V. STRASSEN

is continuous. But ¢' maps D'(ny, - -+, n,) into J'(ny, * - +, n,), whose Zariski topology
is induced from the Zariski topology of U, {Z,}*xZ,"*". Thus,

¢ :D'(ny, - ,n)>J'(ny,*++, n,)

is continuous. It is also bijective and its inverse is continuous (see (3.4)).

It follows easily from Lemma 6.7. 2, that all D'(n4, - * +, n,) are infinite and that
any Zariski dense open subset U of D'(ny, - - +, n,) has asymptotic density one (along
the decomposition (6.13)).

THEOREM 6.8. Let n=Zm =0 and B be a computation tree that computes the
Euclidean representation for J'(n,m) in time T. Assume that B also computes the
Euclidean representation for Jc(n, m). Then any D'(n,, + -+, n,) contains a dense open
subset U' such that

TIU'zn(H(ny, -+, n)—2).
Proof. We apply B to the “combined” input set
J'"(n,m) =J'(n, m)UJc(n, m).

J"(n, m) also has a Zariski topology (defined by polynomials € Z[x1, * * *, Xn+m+2))-
The Zariski topology on J'(n,m) is induced by that of J"(n, m), and the Zariski
topology on J¢(n, m) is finer than the induced topology. Similarly for

J"(nh tet ’nt)=J,(n19 e ’nt)UJC(nla e ’nt)~

B computes the Euclidean representation (¢", #") on J"(n, m). Lemma 6.7 also holds
for this situation, i.e.,

(P":D"(nly Y nt)_)J”(nla tt nt)

is a homeomorphism. ¢"” restricts to ¢’ on D'(ny, * * -, n,) and to oc on Je(ny, * * * , 1y).
Since, obviously, Je(n, * +, n,) is dense in J"(ny, * * +, n,), De(ny, * + -, n,) is dense in
D"(ny, -+, n,). Similarly D'(ny, * + -, n,) isdense in D"(n1, - - +, n,). Let T be the cost
of B onJ"(n, m). Then

(6.16) T J'(n,m)=T.

Each D"(n4, * - -, n,) is subdivided into locally closed sets D;, on which T} is constant.
Since D"(n4, - - *, n,) is irreducible, one of the D; is dense open in D"(ny, « * -, n,), say
D;. Then DN D¢(ny, -+ ,n:) is #¢ and open in De(ny, * -+, n,) with respect to the
induced topology, thus, also with respect to the Zariski topology. By Theorem 6.3
there is a dense open U in D¢(ny, * * -, n,) such that

T, U=n(H-2).
We have U N D; # ¢ and therefore
(6.17) Tll‘Dlén(H—Z)

Now U':=D;ND'(ny, -, n,) is dense open in D'(ny, " -, n,), and by (6.16) and
(6.17), we have

TI'U'zT,MU'zn(H-2).

THEOREM 6.9. Let ¢ >0, n=m =0, and let the Euclidean representation for
J'(n, m) be computable in time T. Then any D'(ny, - -+, n,) with t = (3+¢e)m contains
a dense open subset U' such that

TIU'z2enH(ny, -, n,)—5n.

COMPUTATIONAL COMPLEXITY OF CONTINUED FRACTIONS 27

Proof. Analogous to the proof of Theorem 6.8, with C replaced by Q and using
Theorem 6.6 instead of Theorem 6.3. One only has to show that a computation tree
which computes the Euclidean representation for J'(n, m) also computes the Euclidean
representation for Jo(n, m). This is achieved by looking at large p.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. C. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.
[2] A. BORODIN AND I. MUNRO, Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.
[3] W. S. BROWN, On Euclid’s algorithm and the computation of polynomial greatest common divisors,
J. Assoc. Comput. Mach., 18 (1971), pp. 478-504.
[4] G. E. COLLINS, Subresultants and reduced polynomial remainder sequences, J. Assoc. Comput. Mach.,
14 (1967), pp. 128-142.
[5] R. M. FANO, Transmission of Information, a Statistical Theory of Communications, John Wiley, New
York, 1961.
[5')W. HABICHT, Eine Verallgemeinerung des Sturmschen Wurzelzdhlverfahrens, Commentarii
Mathematici Helvetici, 21, 2 (1948), pp. 99-116.
[6] R. HARTSHORNE, Algebraic Geometry, Springer, New York, 1977.
[6']1]. HEINTZ, Definability bounds of first order theories of algebraically closed fields, Fundamentals of
Computation Theory, FCT 79, Berlin, 1979, pp. 160-166.
[7] J. HEINTZ AND M. SIEVEKING, Lower bounds for polynomials with algebraic coefficients, Theor.
Comput. Science, 11 (1980), pp. 321-330.
[8] D. E. KNUTH, The analysis of algorithms, Proc. Internat. Congress Math. (Nice, 1970), Vol. 3,
Gauthier-Villars, Paris, 1971, pp. 269-274.
[9] H. T. KUNG, On computing reciprocals of power series, Numer. Math., 22 (1974), pp. 341-348.
[10] D. H. LEHMER, in Amer. Math. Monthly, 45 (1937), pp. 227-233.
[11] R. MOENCK, Fast computation of GCD’s, Proc. Fifth Symposium on Theory of Computing, ACM,
New York, 1973, pp. 142-151.
[12] D. MUMFORD, Introduction to Algebraic Geometry, Chap. I, Harvard University Cambridge, MA
(mimeogr. notes).
[13] O. PERRON, Die Lehre von den Kettenbriichen, Teubner, Berlin, 1913.
[14] P. SAMUEL, Méthodes d’algébre abstraite en géométrie algebrique, Springer, New York, 1967.
[15] C. P. SCHNORR, An extension of Strassen’s degree bound, Proc. of the FCT Conference, Berlin/Wen-
disch-Rietz, 1979, L. Budach, ed. Akademie-Verlag, Berlin, pp. 404-416, 1979.
[16] A. SCHONHAGE, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Inform., 1 (1971), pp.
139-144.
[17] , An elementary proof of Strassen’s degree bound, Theor. Comput. Science, 3 (1976), pp. 267-272.
[18] 1. R. SHAFAREVICH, Basic Algebraic Geometry, Part 1, Springer, New York, 1974.
[19] M. SIEVEKING, An Algorithm for Division of Power Series, Computing, 10 (1972), pp. 153-156.
[20] V. STRASSEN, Gaussian elimination is not optimal, Numer, Math., 13 (1969), pp. 354-456.

[21] , Berechnung und Programm I, Acta Inform., 1 (1972), pp. 320-335.

[22] , Berechnung und Programm II, ibid., 2 (1973), pp. 64-79.

[23] , Die Berechnungskomplexitdt von elementarsymmetrischen Funktionen und von Inter-
polationskoeffizienten, Numer. Math., 20 (1973), pp. 238-251.

[24] , Computational complexity over finite fields, this Journal, 5 (1976), pp. 324-331.

[25] , Some results in algebraic complexity theory, Proc. Internat. Congress Math., Vancouver, 1974,

[26] H. S. WALL, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948.
[27] B. L. VAN DER WAERDEN, Einfiihrung in die Algebraische Geometrie, Springer, Berlin, 1973.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0002 $01.25/0

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS*
DAVID KIRKPATRICK Y

Abstract. A planar subdivision is any partition of the plane into (possibly unbounded) polygonal
regions. The subdivision search problem is the following: given a subdivision S with n line segments and
a query point P, determine which region of S contains P. We present a practical algorithm for subdivision
search that achieves the same (optimal) worst case complexity bounds as the significantly more complex
algorithm of Lipton and Tarjan, namely O (log n) search time with O (n) storage. Our subdivision search
structure can be constructed in linear time from the subdivision representation used in many applications.

Key words. computational geometry, analysis of algorithms, point location, planar graphs, hierarchical
search

1. Introduction. Any finite collection of finite, semi-infinite or infinite line seg-
ments induces a partition of the plane into polygonal regions. We will restrict our
attention, for the present, to collections of line segments whose pairwise intersections
are restricted to segment endpoints. We call such a collection (or the finite set of
polygonal regions induced by the collection) a (planar) subdivision.

We define the subdivision search problem to be the following: Given a subdivision
S with n line segments and an arbitrary query point P, determine which region of S
contains P. Our subdivision search problem is equivalent to the ‘‘region-searching”
problem of Dobkin and Lipton [6]. It is a slight (but, as we shall see, inconsequential)
generalization of both the ‘“point-location” problem studied by Lee and Preparata
[14] and the “‘triangle” problem of Lipton and Tarjan [18]. The ‘“point in polygon”
problem [1], [3], [24] (given a simple polygon, does it contain a specified query
point ?), the ‘“‘rectangle searching” problem [27] (given a set of nonoverlapping
rectangles, which, if any, contains a specified query point?), and the ‘line searching”
problem [6] (given a set of lines in the plane, which, if any, contains a specified query
point?) can all be formulated as instances of our subdivision search problem.

Dobkin and Lipton [6] were the first to cast Knuth’s [12] ¢“post-office” problem
(given a set of points in the plane, which is closest to a specified query point?) as a
subdivision search problem. Shamos [25] (and independently Dewdney [4]) refined
this formulation by introducing the Voronoi diagram of a point set, a planar subdivision
of remarkable utility in connection with nearest neighbor and other related problems.

In many applications, a planar subdivision is the object of numerous location
queries. For this reason, algorithms for point location are generally characterized by
three attributes: i) preprocessing time—the time required to construct a search structure
from a standard representation of S; ii) space—the storage used in the construction
and representation of the search structures; and iii) search time—the time required
to locate a specified query point, given the search structure. We restrict our attention
here to the worst-case behaviour of these attributes.

Dobkin and Lipton [6] employ a projective technique to reduce subdivision search
to linear search. The resulting algorithm is asymptotically optimal (among comparison-
based algorithms) in terms of search time but may be quite expensive in terms of both
preprocessing time and storage. Specifically, Dobkin and Lipton provide an O(Ign)’

* Received by the editors November 24, 1981. This work was supported in part by the National
Sciences and Engineering Research Council of Canada, grant A3593.

+ Department of Computer Science, University of British Columbia, Vancouver, British Columbia,
Canada V6T 1WS5.

! lg denotes log,.

28

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS 29

search-time, O (n?) space, and O(n’ Ig n) preprocessing-time algorithm for subdivision
searching. Dobkin and Lipton were also the first to raise the question: Can subdivision
searching be done with O(lg n) search-time and O(n) (or even O(n 1g n)) space?

Shamos [25] introduces an O((Ign)?) search-time, O(n) space, and O(n lgn)
preprocessing-time algorithm suitable for searching a class of subdivisions that includes
Voronoi diagrams. Employing an O(n lgn) algorithm for constructing a Voronoi
diagram on n points [28], this leads to an O((Ig n)?) search-time, O(n) space, and
O(n 1g n) preprocessing-time solution of the ‘“‘post-office”” problem. Shamos’ algorithm
is generalized by Lee and Preparata [15] to an O((Ig n)®) search-time, O(n) space,
and O(n 1g n) preprocessing-time algorithm for the location in arbitrary subdivisions.
Lee and Preparata’s approach is divide-and-conquer; each reduction of the subdivision
is achieved by discrimination of the query point with respect to a monotone chain of
edges that splits the subdivision (at a cost of O(lg n) comparisons, in the worst case).

The first affirmative answer to the question of Dobkin and Lipton was provided
by Lipton and Tarjan [18]. Lipton and Tarjan’s O(lg n) search time, O(n) space, and
O(n lg n) preprocessing time algorithm for search in arbitrary triangular subdivisions
(each interior region of the subdivision is bounded by exactly three line segments) is
one of many important applications of their planar separator theorem [18], [19]. That
general subdivision search can be efficiently reduced to triangular subdivison search
follows from the O(n lgn) polygon triangulation algorithm of Garey et al. [8]; the
details of this reduction are discussed in § 4. Unfortunately, Lipton and Tarjan’s
algorithm is of primarily theoretical interest; to quote Lipton and Tarjan [19], “We
do not advocate this algorithm as a practical one, but its existence suggests that there
may be a practical algorithm with an O(lg n) time bound and O(n) space bound”.

A recent result of Preparata [21] claims to come ‘“‘very close to providing a
complete substantiation” of Lipton and Tarjan’s conjecture. Preparata’s algorithm,
which he describes as an evolution of the approach of Dobkin and Lipton [6], uses
O(lg n) search time, O(n lg n) space, and O(n lIg n) preprocessing time.

The purpose of this paper is to affirm Lipton and Tarjan’s conjecture; we present
a new subdivision search algorithm with exactly the same asymptotic bounds as Lipton
and Tarjan’s algorithm. The simplicity of our approach (and the existence of an
implementation) suggests that it may also deserve to be called practical. A discussion
of the implementation and more detailed evaluation of our algorithm will be presented
elsewhere.

In the next section we present some preliminary definitions and comments on
the data structures used by our algorithm. Sections 3, 4 and 5 describe our algorithm
and a number of its applications. Section 6 concludes the paper with a discussion of
some related open problems.

2. Definitions and preliminaries. A finite planar subdivision is a planar sub-
division each of whose line segments is finite. Such a subdivision is indistinguishable
from a straight-line embedding of a planar graph. Thus we can refer without confusion,
not only to the vertices, edges and regions (or faces) of a finite planar subdivision,
but also to such graph-theoretic notions as degree, incidence and independence [10].
It is an immediate consequence of Euler’s formula (cf. [10]) that the numbers of
vertices and edges of a finite planar subdivision are linearly related, and hence either
number serves to characterize the size of such a subdivision. Hereafter, |S| will denote
the number of vertices of the finite subdivision S.

Let S be a finite planar subdivision. We take as a starting point for our algorithm
what we call an edge-ordered representation of S. Specifically:

(a) if x is a line segment joining vertex v to vertex w, then x is represented by

the pair of directed edges {(v, w), (w, v)};

30 DAVID KIRKPATRICK

(b) each vertex v has associated with it not only its coordinates but also a list,

in counterclockwise order, of all directed edges whose source is v; and

(c) each directed edge (v, w) has associated with it a pointer to the edge (w, v)

as well as the name of the region lying immediately to the right of (v, w).

An edge-ordered representation is provided either implicitly or explicitly by the
representations taken as standard in a number of earlier papers [20], [23]. It differs
from the basic (unordered) list of adjacencies chosen by Lee and Preparata [15] as
their initial representation. However, it should be clear that:

i) it occupies O(|S|) space;
ii) it can be constructed in O(|S|Ig|S|) time from a list of adjacencies or other
- standard representations of planar graphs;

iii) it can be constructed in O(|S|) time if the underlying planar graph has bounded

degree; and

iv) it can be constructed in O(|S|) time from the natural graph representation

provided in certain applications (cf. § 5).
Thus our choice of representation for subdivisions is intended to allow a realistic
estimate of actual preprocessing costs.

The obvious redundancy in an edge-ordered representation can be neatly
exploited in the development of our hierarchical search structure. A detailed descrip-
tion of the data structures used in one efficient implementation or our algorithm will
be presented elsewhere.

A finite planar subdivision $ has exactly one unbounded region, called the external
region of S. Its complement is called the interior of S. The edges bounding the external
region define what we call the boundary of S.

A convex subdivision is any finite planar subdivision whose interior is convex and
whose interior regions are all convex. A triangular subdivision is a special case of a
convex subdivision in which each region (including the exterior region) is bounded
by three line segments. It is easily confirmed that a triangular subdivision on n =3
vertices has exactly 3n —6 edges and 2n —4 regions (including the external region).

In § 3, we give a new constructive proof of the following:

THEOREM 3.1. There is an O(1g n) search time, O(n) space and O (n) preprocess -
ing time algorithm for the triangular subdivison search problem.

This result is extended to arbitrary planar subdivisions in § 4.

3. Fast search in triangular subdivisions. Let S be an arbitrary triangular sub-
division with n vertices. A subdivision hierarchy associated with S is a sequence
S1,82,* -+, Shmy oOf triangular subdivisions, where §; =8 and each region R of S;.1
is linked to each region R’ of S; for which R'N R # J (the so-called parents of R in
S;), for 1=i <h(n). We call h(n) the height of the subdivision hierarchy. Obviously
the space required for a subdivision hierarchy is just the space required for the
individual subdivisions (O (X.1?|S:])) plus the space used by the intersubdivision links.

Our basic point location algorithm involves a single pass through the subdivision
hierarchy, locating the test point at each level. Let p denote an arbitrary test point.

ArLcoriTHM HIERARCHICAL SUBDIVISION SEARCH
CANDIDATES;,(,,)(— regions of Sh(n)
R «region in CANDIDATES,, (., containing p
i<h(n)—1
while ; >0 do
CANDIDATES; « parents(R)
R <region in CANDIDATES; containing p
i«i—1
report (region R)

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS 31

Since membership in any triangular region can be tested in constant time, the
complexity of this search procedure is O (Y '?|CANDIDATES;|). Obviously we are
motivated to construct subdivision hierarchies in which both the height and the size
of all CANDIDATE sets are minimized.

We start by constructing a subdivision hierarchy of height two.

LEMMA 3.1. There exist positive constants ¢ and d such that for any triangular
subdivision S with |S|>3, a triangular subdivision T can be constructed in O(|S|) time,
satisfying

i) [T|=01-1/c)|S|, and

ii) each region of T has at most d parents in S.

Proof. Let v be any internal (nonboundary) vertex of S, and let deg (v) denote
its degree. Then, exactly deg (v) regions of S are incident with ». The union of these
regions, which we call the neighborhood of v, forms a star-shaped polygonal region
with deg (v) bounding edges. Now, if v and its deg (v) incident edges are removed
from S and the neighborhood of v is retriangulated (introducing deg (v) — 3 new edges)
what results is a new triangular subdivision with |S|-1 vertices. It should be clear that,
regardless of how the neighborhood of v is retriangulated, each new region intersects
at most deg (v) regions of S. Of course, the simplification achieved by this vertex
removal and retriangulation is minimal. However, if w is any vertex which is indepen-
dent of (i.e. nonadjacent to) v in S, then the neighborhoods of v and w do not intersect
except possibly along one or more edges of S. Hence, such a pair of vertices can be
removed in parallel and the triangular subdivision that is created by retriangulating
their vacated neighborhoods has the property that each of its regions intersects at
most max {deg (v), deg (w)} regions of S. By identical reasoning, if v, * * *, v, form an
independent set of vertices in S, then the |S|—¢ vertex triangular subdivision T formed
by removing vy, -, v, and retriangulating all ¢ vacated neighborhoods has the
property that each of its regions intersects at most max {deg (v;), 1 =j =t} regions of
S. To complete the proof it suffices to show that if ¢ and d are sufficiently large then
an independent set vy, * - +, v, with deg (v;))=d, 1=i=¢, and ¢ =|S|/c can always be
identified in O(|S|]) time. This is an immediate consequence of the following lemma. 0

LeEMMA 3.2. There exist positive constants ¢ and d such that every planar graph
on n vertices has at least n/c independent vertices of degree at most d. Furthermore, at
least n/c of these can be identified in O (n) time.

Proof. We make no attempt to optimize ¢ and d here. (Their optimal values
influence the asymptotic constants for each of space, preprocessing time, and search
time, and some tradeoffs can be expected.) We have already noted that an n-vertex
planar graph has at most 3n —6 edges. Hence the average vertex degree is less than
6, and so less than half of the vertices have degree exceeding 11. Starting with the
set V of vertices of degree at most 11 (which can be identified easily in linear time),
a straightforward elimination procedure identifies an independent subset containing
at least |V|/12=n/24 vertices. O

Of course, a subdivision hierarchy of height two provides no significant
simplification over the original subdivision. However, if Lemma 3.1 is applied itera-
tively, we are led to a subdivision hierarchy in which asymptotically improved (in fact,
optimal) search is possible.

LEMMA 3.3. There exist positive constants ¢ and d such that, for any triangular
subidivision S with n vertices, an associated subdivision hierarchy S, - - -, Sh(n) can be
constructed in O(n) time, satisfying:

D) [Shewl=3;
ii) |Sir1]=(1-1/c)ISi|; and
iii) each region of S;+1 has at most d parents in S,;.

32 DAVID KIRKPATRICK

Proof. Immediate from Lemma 3.1. 0

COROLLARY 3.1. The subdivision hierarchy above has height h(n) = O(lgn) and
uses O(n) space in total.

Proof. It suffices to note that the sequence |Si|, |Sal, * * , |Sk(n)| forms a decreasing
geometric progression. [J

We now restate and prove our basic result.

THEOREM 3.1. Thereis an O(lg n) search time, O (n) space, and O (n) preprocess -
ing-time algorithm for the triangular subdivision search problem.

Proof. We use the hierarchical subdivision search algorithm in conjunction with
the subdivision hierarchy constructed in Lemma 3.3. By Lemma 3.3, the preprocessing
time is O(n). By Corollary 3.1, the total space is O(n). By our earlier observations,
the complexity of search is O(|Shem)|+ L0 p;) where p; = maxges,,, ([parents (R)]).
But, by Lemma 3.1 and Corollary 3.1, Sy, and p; are O(1) and h(n) is O(lgn), so
the search time is O(Ign). 0O

4. Fast search in general subdivisions. In this section we consider the reduction
of general subdivision searching problems to triangular subdivision search. Let S be
an arbitrary planar subdivision. We can reduce the question of searching in S to
searching in a finite planar subdivision by intersecting S with a sufficiently large triangle
chosen to contain all intersections of line segments of S. The interior of this triangle
is clearly a finite planar subdivision. The exterior can be searched using a straightfor-
ward generalization of binary search, exploiting the fact that none of the semi-infinite
line segments intersect in this region. This reduction adds a factor of only O(|S]) to
both the preprocessing time and space and O(lg[S|) to the search time used in the
resulting finite subdivision search problem. Hence the asymptotic complexities of
general and finite subdivision searching are equivalent.

It remains to reduce finite subdivision searching to triangular subdivision search-
ing. Let S be a finite planar subdivision. We can assume from the preceding reduction
that the boundary of § is triangular. Let T be the subdivision formed from S by
triangulating each interior region of S. The size of T remains proportional to the size
of § and, since T is a refinement of S, the location of points in 7 immediately implies
their location in S. In the general case T can be formed from S in time O(|S|lg|S)),
using the general polygon triangulation algorithm of Garey et al. [8]. However, if the
regions of S are all convex, or even star-shaped, a straightforward linear algorithm
exists for constructing 7. Thus, we have demonstrated the following:

THEOREM 4.1. Thereis an O(1g n) search time, O (n) space and O(n 1g n) prepro -
cessing time algorithm for the general subdivision search problem.

THEOREM 4.2. There is an O(Ig n) search time, O(n) space and O(n) preprocess -
ing time algorithm for the convex subdivision search problem.

5. Applications. Earlier papers on subdivision search, notably [15], [21], have
mentioned a number of applications. We recall and expand on a few of these here.

5.1. Point in polygon problem. A planar polygon is a special case of a finite
planar subdivision. Theorem 4.1 gives an immediate O(lg n) search time, O(n lgn)
preprocessing time and O(n) space algorithm for testing the inclusion of an arbitrary
point in an #n vertex planar polygon. For convex or star-shaped polygons, or any other
family of polygons that can be triangulated in O(n) time, the preprocessing time is
linear.

5.2. Point in convex polyhedron problem. Lee and Preparata [15] note that the
problem of testing the inclusion of an arbitrary point in an n-vertex convex polyhedron
can be reduced to convex subdivision search with O(n) preprocessing. It follows, by

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS 33

Theorem 4.2, that an O(Ig n) search time, O(n) preprocessing time and O(n) space
algorithm exists for the point in convex polyhedron problem.

By dualization, an algorithm with identical attributes can be formulated for the
problem of testing for the intersection of an arbitrary plane and a polyhedron in
3-space [5].

5.3. Locating a set of points in a planar subdivision. Preparata [22] shows that
a set of k points can be located on an n-vertex planar subdivision in O(k Igk +n +
k 1gn) time, given O(n lgn) preprocessing time. This result is an immediate con-
sequence of Theorem 4.1. Furthermore, by Theorem 4.2, the preprocessing time can
be reduced to O(n) for convex planar subdivisions (which arise in a principal applica-
tion [20] of Preparata’s batched point location algorithm).

5.4. Closest point problems. The problem of determining which of a set of data
points is closest to a given test point has been extensively studied. Shamos [25] (and
independently Dewdney [4]) show how this problem can be reduced to point location
in a particular family of planar subdivisions known as Voronoi diagrams. Voronoi
diagrams (in any L, metric) can be constructed in O(n 1g n) time [13]. While Voronoi
diagrams in arbitrary L, metrics may involve curved edges, every region is star-shaped
and hence Voronoi point location can be solved using subdivision search followed by
at most one test against a curved edge. Furthermore, only linear preprocessing is
required following the construction of the Voronoi diagram. This fact can be exploited
in the dynamic maintenance of Voronoi diagrams and dynamic solution of closest
point problems [9].

By replacing Voronoi diagrams by what are called generalized Voronoi diagrams
[11], [14] it is possible to use an analogous approach to solve the closest line problem
(which of a set of lines or line segments is closest to a given test point?).

6. Open problems and conclusions. It is tempting to extend the approach of this
paper to the location of points in higher-dimensional subdivisions. Such an extension
is by no means obvious. The number of vertices, edges, faces and regions of three-
dimensional subdivisions are not necessarily linearly related, and the analogue of
triangulation (tetrahedralization) is not a straightforward process. A more detailed
discussion of subdivision search in higher dimensions will be taken up elsewhere.

Our algorithm seems to depend on the fact that the given subdivision is formed
out of straight line segments. While the algorithm can be adapted to certain other
situations (for example, when all internal regions are star shaped), the general problem
of optimal search in subdivisions formed from arbitrary curve segments may require
a totally new approach. As a concrete example of such a subdivision, consider those
subdivisions which arise in the so-called locus approach to the fixed-radius nearest
neighbor search problem [2]. Such subdivisions are formed by the intersection of
fixed-radius circles, and in general do not seem to admit a simple refinement using
straight edges. Thus the fixed-radius nearest neighbor search problem still awaits an
O(lgn) search time, O(n?) space and O(n’lgn) preprocessing time solution. A
solution using O(log n) search time, O (n” log n) space and O(n” log n) preprocessing
time is a byproduct of Preparata’s subdivision search algorithm [21]. Edelsbrunner
and Maurer [7] present search algorithms for subdivisions formed by segments other
than straight lines.

We have described a new subdivision search algorithm which, as pointed out by
Lipton and Tarjan [18], is optimal for both search time and space, assuming only
binary decisions are possible. Our algorithm is based on the hierarchical decomposition

34 DAVID KIRKPATRICK

of an arbitrary subdivision. It is conjectured that this technique will find a number of
other applications in computational geometry and elsewhere. On this point we should
acknowledge the fact that this technique does not originate with this paper; Lipton
and Miller [17] use a very similar idea in developing a fast algorithm for coloring
planar graphs.

REFERENCES

[1] J. L. BENTLEY AND W. CARRUTHERS, Algorithms for testing the inclusion of points in polygons, in
Proc. 18th Annual Allerton Conference on Communication, Control and Computing, 1980, pp.
11-19.

[2] J. L. BENTLEY AND H. A. MAURER, A note on Euclidean near neighbour searching in the plane,
Inform. Process. Lett., 8 (1979), pp. 133-136.

[3] W. BURTON, Representation of many-sided polygons and polygonal lines for rapid processing, Comm.
ACM, 16 (1973), pp. 230-236.

[4] A. K. DEWDNEY, Complexity of nearest neighbour searching in three and higher dimensions, Rep. 28,
Dept. Computer Science, Univ. of Western Ontario, London, Ontario, 1977.

[5] D. P. DoBKIN AND D. G. KIRKPATRICK, Fast detection of polyhedral intersections, Proc. 9th
International Colloquium on Automata, Languages and Programming, Aarhus, Denmark, 1982,
to appear.

[6] D. P. DOBKIN AND R. J. LIPTON, Multidimensional searching problems, this Journal, 5 (1976), pp.
181-186.

[7] H. EDELSBRUNNER AND H. A. MAURER, On region location in the plane, Rep. 52, Institut fiir
Informationsverarbeitung, Technical Univ. Graz, Graz, Austria, 1980.

[8] M. R. GAREY, D. S. JOHNSON, F. P, PREPARATA AND R. E. TARJAN, Triangulating a simple
polygon, Inform. Process. Lett., 7 (1978), pp. 175-179.

[9] I. G. GowpaA, D. G. KIRKPATRICK, D. T. LEE AND A. NAAMAD, Dynamic Voronoi diagrams,
IEEE Trans. Inform. Theory, to appear.

[10] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[11] D. G. KIRKPATRICK, Efficient computation of continuous skeletons, in Proc. 20th Annual IEEE
Symposium on Foundations of Computer Science, 1979, pp. 18-27.

[12] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

[13] D. T. LEE, Two-dimensional Voronoi diagrams in the L,-metric, J. Assoc. Comput. Mach., 27 (1980),
pp. 604-618.

[14] D. T. LEE AND R. L. DRYSDALE 111, Generalization of Voronoi diagrams in the plane, this Journal,
10 (1981), pp. 73-87.

[15] D. T. LEe AND F. P. PREPARATA, Location of a point in a planar subdivision and its applications,
this Journal, 6 (1977), pp. 594-606.

[16] D. T. LEe AND C. C. YANG, Location of multiple points in a planar subdivision, Inform. Process.
Lett. 9 (1979), pp. 190-193.

[17] R. J. LirTON AND R. E. MILLER, A batching method for coloring planar graphs, Inform. Process.
Lett., 7 (1978), pp. 185-188.

[18] R. J. LirTOoN AND R. E. TARJAN, Applications of a planar separator theorem, in Proc. 18th Annual
IEEE Symposium on Foundations of Computer Science, 1977, pp. 162-170.

[19] , A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979), pp. 177-189.

[20] D. E. MULLER AND F. P. PREPARATA, Finding the intersection of two convex polyhedra, Theoret.
Comput. Sci., 7 (1978), pp. 217-236.

[21] F. P. PREPARATA, A new approach to planar point location, this Journal, 10 (1981), pp. 473-482.

[22] , A note on locating a set of points in a planar subdivision, this Journal, 8 (1979), pp. 542-545.

[23] F. P. PREPARATA AND S. J. HONG, Convex hulls of finite sets of points in two and three dimensions,
Comm. ACM, 20 (1977), pp. 87-93.

[24] K. B. SALOMON, An efficient point-in-polygon agorithm, Comput. Geosci., 4 (1978), pp. 173-178.

[25] M. 1. SHAMOS, Geometric complexity, in Proc. 7th Annual ACM Symposium on Theory of Computing,
1975, pp. 224-233.

, Computational geometry, Ph.D. Thesis, Yale Univ., New Haven, CT, 1978.

[26]

OPTIMAL SEARCH IN PLANAR SUBDIVISIONS 35

[27] M. 1. SHAMOS AND J. L. BENTLEY, Optimal algorithms for structuring geographic data, in Proc.
Symposium on Topological Data Structures for Geographic Information Systems, Harvard Univ.,
Cambridge, MA, 1977, pp. 43-51.

[28] M. 1. SHAMOS AND D. HOEY, Geometric intersection problems, in Proc. 17th Annual IEEE Symposium
on Foundations of Computer Science, 1976, pp. 208-215.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0003 $01.25/0

TOOLS FOR TEMPLATE DEPENDENCIES*

RONALD FAGINT, DAVID MAIER%, JEFFREY D. ULLMAN§
AND MIHALIS YANNAKAKISY

Abstract. Template dependencies (TD’s) are a class of data dependencies that include multivalued
and join dependencies and embedded versions of these. A collection of techniques, examples and results
about TD’s are presented. The principal results are:

1) Finite implication (implication over relations with a finite number of tuples) is distinct from
unrestricted implication for TD’s.

2) There are, for TD’s over three or more attributes, infinite chains of increasingly weaker and
increasingly stronger full TD’s.

3) However, there are weakest (nontrivial) and strongest full TD’s over any given set of attributes.

4) Over two attributes, there are only three distinct TD’s.

S) There is no weakest (not necessarily full) TD over any set of three or more attributes.

6) There is a finite relation that obeys every strictly partial TD but no full TD.

7) The conjunction of each finite set of full TD’s is equivalent to a single full TD. However, the
conjunction of a finite set of (not necessarily full) TD’s is not necessarily equivalent to a single TD and
the disjunction of a finite set of full TD’s is not necessarily equivalent to a single TD.

8) There is a finite set of TD’s with an infinite Armstrong relation but no finite Armstrong relation.

9) A necessary and sufficient condition for the existence of finite Armstrong relations for sets of TD’s
can be formulated in terms of the implication structure of TD’s.

Key words. relational database, template dependency, finite implication, multivalued dependency,
join dependency

1. Introduction. Template dependencies (TD’s) were introduced by Sadri and
Ullman [SU] and, independently, by Beeri and Vardi [BV2]. Both sets of authors
introduced TD’s to provide a class of dependencies (sentences about relations) that
include join dependencies [Ri] and embedded multivalued dependencies [Fa2] and
that also has a complete axiomatization (no complete axiomatization is known for
either join dependencies or embedded multivalued dependencies). TD’s are examples
of the “tuple-generating dependencies” of Beeri and Vardi [BV2]. Tuple-generating
dependencies, along with “equality-generating dependencies” (which include func-
tional dependencies [Co)) together comprise Fagin’s [Fa3] class of embedded implica-
tional dependencies (which is equivalent to Yannakakis and Papadimitriou’s [YP]
class of algebraic dependencies). This paper is a compendium of techniques, examples
and counterexamples for TD’s.

In § 2, we present definitions. In § 3, we demonstrate the existence of a strongest
TD and a weakest nontrivial full TD. (Note. Unless stated otherwise, TD’s are not
assumed to be full.) We show that there is no weakest TD. In § 4, we show that there
are only three distinct TD’s on two attributes. In § 5, we demonstrate a useful
correspondence between TD’s and graphs and introduce the notion of an Ip-
homomorphism (label-preserving homomorphism). In § 6, we utilize this correspon-
dence to help prove the existence of infinite chains of progressively weaker and
progressively stronger full TD’s. In § 7, we show that for TD’s, implication is distinct

* Received by the editors May 21, 1981, and in revised form March 15, 1982.

+ IBM Research Laboratory, San Jose, California 95193.

t State University of New York, Center at Stony Brook, Stony Brook, New York, 11794. The research
of this author was supported in part by the National Science Foundation under grant IST-79-18264.

§ Stanford University, Stanford, California 94305. The research of this author was supported in part
by the National Science Foundation under grant MCS-79-04528.

9 Bell Laboratories, Murray Hill, New Jersey 07974.

36

TOOLS FOR TEMPLATE DEPENDENCIES 37

from implication restricted to finite relations. In § 8, we show that the conjunction of
a finite set of full TD’s is equivalent to a single full TD. However, we show that the
conjunction of a finite set of TD’s is not necessarily equivalent to a single TD, and
the disjunction of a finite set of full TD’s is not necessarily equivalent to a single TD.
In § 9, we show that there is a finite relation that obeys every strictly partial TD but
no nontrivial full TD. In § 10, we demonstrate a finite set of TD’s with no finite
Armstrong relation [Fa3] (although we know [Fa3] that there is an infinite Armstrong
relation). We also give a necessary and sufficient condition for the existence of finite
Armstrong relations for sets of TD’s.

2. Definitions. A relational database scheme consists of a universal set of
attributes U and a set of ‘“‘dependencies”. The attributes in U are names for the
components (columns) of relations in the database. The most common forms of
dependencies are functional dependencies, or FD’s [Co], and multivalued dependen-
cies, or MVD’s [Fa2]. We shall not discuss FD’s in this paper.

In database theory, a tuple is formally regarded as a mapping from attributes to
values, rather than as a list of component values, although the latter viewpoint is
handy when the order of the attributes in the list is understood. We often use {[Z],
where ¢ is a tuple and Z is a set of attributes, to stand for ¢ restricted to domain Z,
that is, the components of ¢ for the attributes in Z. If A is an attribute, then we call
t[A]the A entry or A value of t.

Multivalued dependencies are denoted syntactically by X - Y. The meaning of
this dependency is that if relation R obeys the dependency, and if ¢, and ¢, are tuples
of R with ;[X]=¢,[X], then there exists ¢; in R such that:

L 63[X]=t[X]=1[X],

2. 4 Y]=¢[Y]and

3. t3[U “XY] = tz[U —XY]

Intuitively, the set of Y-values associated with each given X-value is independent of
the values in all other attributes. By XY in 3 above, we mean X U Y.
Example. Consider the relation R, in Fig. 1.1, where U ={A, B, C, D}.

A B C D

noooo
=N N
LN =P,
DWW BRW

F1G. 1.1. The relation R.

The MVD A - B holds in R. For example, if ¢; and ¢, are the first two tuples in Fig.
1.1, then we may check that the tuple ¢5, where ts[A]=t;[A]=t,[A]=0,t:[B]=t,[B] =
1, and t;[CD]=t,[CD]=14, is present; it is row three. (By 14, we mean the tuple
with first entry 1 and second entry 4; we shall sometimes find this type of abbreviation
convenient.)

Let X be a set of dependencies, and let o be a single dependency. When we say
that = logically implies o or that o is a logical consequence of X, we mean that whenever
every dependency in ¥ holds for a relation R, then o also holds for R. That is, there
is no “counterexample relation” such that every dependency in X holds for R, but
such that o fails in R. We write 2k o to mean that 2 logically implies o. For example,
if A, B, and C are attributes, then {A - B, B » C}EA » C.

38 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

It appears that FD’s and MVD’s are almost sufficient to describe the ‘“‘real world,”
and thus could be used for a database design theory. However, there is at least one,
more general form of dependency that appears naturally, and this form causes severe
difficulties when we try to infer dependencies. This type of dependency, called an
embedded multivalued dependency (EMVD), was first studied by Fagin [Fa2] and
Delobel [De]. For disjoint X, Y and Z, we say X - Y | Z holds if, when any “legal”
relation over the set of attributes is projected onto the set of attributes XYZ (we
project by restricting tuples to these attributes), then the MVD X - Y holds. (Note
that X - Y holds in XYZ if and only if X - Z holds [Fa2]).

Another way of looking at the EMVD X —» Y| Z is that if the relation R over
attributes U obeys the dependency, then whenever we have two tuples ¢; and ¢, in
R, and ¢,[X] = ;[X], it follows that there is some ¢; in R, where

1. 6[X]=u[X]1=1t[X],

2. 3Y]=¢[Y]and

3. 6[Z]=18[Z].

Note that t:[U —XYZ] can be arbitrary; we can assert nothing about the values 3
has in these components.

Unfortunately, when we try to make inferences about EMVD’s we appear to run
into a stone wall. It is not known whether the decision problem for EMVD’s is
decidable (the decision problem for EMVD’s is the problem of deciding whether Xk o,
when X is a set of EMVD’s and o is a single EMVD). Neither is a complete
axiomatization for EMVD’s known. It is known [SW], [CFP] that there is no k-ary
complete axiomatization for EMVD’s for any fixed k, and, in particular, no finite
complete axiomatization.

To tackle these problems for EMVD’s, some more general types of dependencies
have been studied recently, with the hope that the more general class would have a
complete axiomatization or would provide insights on the EMVD decision problem.
In particular, Sadri and Ullman [SU] and, independently, Beeri and Vardi [BV2]
introduced template dependencies, or TD’s, and provided a complete axiomatization.
TD’s include as special cases (a) MVD’s, (b) EMVD’s, (c) subset dependencies [SW],
(d) mutual dependencies [Ni], (e) generalized mutual dependencies [MM] and (f) join
dependencies [Ri]. The class of TD’s was studied independently by Beeri and Vardi
[BV2] and by Paradaens and Jannsens [PJ], and still more general classes were
considered by Fagin [Fa3] and Yannakakis and Papadimitriou [YP]. Vardi [Val] and,
independently, Gurevich and Lewis [GL] have recently shown that the decision
problem for TD’s is undecidable.

A template dependency is an assertion about a relation R, that if we find tuples
ry,**+, . in R with certain specific equalities among the entries of these tuples, then
we can find in R a tuple r that has certain of its entries equal to certain of the entries
in ry, -+, n. Other entries of r may be arbitrary. Formally, we write a template
dependency as ry, -+ +, ri/r, Or as

r

T

r

where the r;’s and r are strings of abstract symbols (sometimes called variables). The
length of the r;’s and r equals the number of attributes in the universal set, and positions
in these strings are assumed to correspond to attributes in a fixed order. No symbol

TOOLS FOR TEMPLATE DEPENDENCIES 39

may appear in two distinct components among the 7;’s and r. It is, of course, permissible
that one symbol appear in the same component of several of the ;s or r.

Let R be a relation and let T be a TD. Let 4 be a homomorphism that maps
symbols in T into entries of R. By saying that 4 is a homomorphism, we mean that
h(a,: - a,)is defined tobe h(a,) * * * h(a,). We call i a valuation. Relation R is said
to obey TD T if whenever there is a valuation /4 on the symbols appearing in the r;’s
such that A(r;) is a tuple in R for all i, then we can extend A to those symbols that
appear in r but do not appear among the r;’s, in such a way that A(r) is also in R.

Example. Let U ={A, B, C, D} and let R be the relation previously given in Fig.
1.1. Let T be the TD

ai b1 C1 d1
as b1 Co dz
ai bz Ca d3

a by ¢ dy.

Definehby: h(a1)=h(az)=0;h(b1)=h(c1)=1;h(b2)=h(c2)=2;h(d2)=h(d3)=
3, and h(dl) =4. Then h (alblcldl) = 0114, h (azblczdz) = 0123, and h (a1b2c2d3) =
0223, which are rows three, one, and four of Fig. 1.1. Thus, we must exhibit a value
b for h(b3) such that A(asbscady) is in the relation of Fig. 1.1, if that relation is to
obey the TD T. However, for no value of b is 0624 a row of Fig. 1.1, so we may
conclude without further ado that R does not obey T. Of course, if a value of » had
been found, we would then have to check all other possible valuations that mapped
the first three rows of T into rows of Fig. 1.1.

When we say that a relation is finite (respectively, infinite), we mean that it has
a finite (respectively, infinite) set of tuples. Database theory is most concerned with
finite relations; however, sometimes it is convenient to consider infinite relations. If
T is a set of dependencies, such as TD’s, then by SAT (X), we mean the collection of
relations (finite or infinite) that obey all of X. Note that 2F ¢ if and only if SAT (2) =
SAT (o). If we wish to consider only finite relations, then we can write SATg, () to
mean the collection of finite relations that obey X. Similarly, we can define X kg, o
to mean that every finite relation that obeys X also obeys o. As above, I kg, o if and
only if SATg, ()= SATs, (o). Note that if SFo, then 2 Fg, 0. As we shall show in
§ 7, the converse fails for TD’s.

When we speak of two dependencies o and 7 being equivalent, we mean that
SAT (o) =SAT (r), or equivalently, that o k7 and 7 Fo. Similarly, we can define
equivalent sets of dependencies. We shall sometimes speak of conjunctions or disjunc-
tions of TD’s. A relation obeys the conjunction (respectively, disjunction) of a set of
TD’s precisely if it obeys all (respectively, at least one) of them. Thus,

SAT (AM{o: 0 €S} =N{SAT (0): c €S},
SAT (v{o: 0 €S})=U{SAT (0): c € S}.

The following terminology will prove helpful. If ry,:--,r/r is a TD, then
r, -+, re are called the hypothesis rows, or hypotheses, and r is the conclusion row,
or simply the conclusion. Each symbol that appears in the conclusion is said to be
distinguished. A TD is said to be full if each of its distinguished symbols also appears
in the hypotheses; otherwise, it is said to be strictly partial. If T is a TD, and if V is
exactly the set of attributes for which the hypothesis rows of T contain distinguished
variables, then we may call T a V-partial TD (we allow the possibility that V = U,

40 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

the set of all attributes). A TD is trivial if it always holds (in relations over the
appropriate attributes).

Remark. A V-partial TD is trivial precisely if some hypothesis row of T" contains
distinguished variables for every one of its V' entries. For if no hypothesis row of T
contains distinguished variables for every one of its V entries, then the relation that
consists of all of the hypothesis rows of 7" but not the conclusion is a relation not in
SAT (T); hence, T is nontrivial.

Example. Let U ={A, B, C, D}. Then the MVD A - B is synonymous with the
TD:

a; by c1 dy
ai bz Ca d2

ar by ¢ d>.
The EMVD A - B|C is written:

ai b1 C1 d1
ai b2 Ca dz

ai b1 c2 ds.

Note that this EMVD is a strictly partial TD. However, MVD’s are full TD’s.

3. Strongest and weakest TD’s. An important tool in the study of dependencies
is the chase process [ABU], [MMS], [SU]. When TD’s alone are involved, could the
chase go on forever in a nontrivial way? The question of the existence of infinite
chases where ‘“‘things keep happening” can be related to the existence of certain
infinite sequences of TD’s as follows. The set of rows in the tableau at any time during
a chase may be taken to be the hypothesis rows of a TD whose conclusion row is the
goal row for the chase. It is easy to show that as the chase proceeds, these TD’s get
progressively weaker. If the chase is successful, then we eventually arrive at a TD so
weak that it is trivial.

If the chase is unsuccessful, then we might obtain an infinite sequence of TD’s
that, although some could be equivalent to the previous TD, would include an infinite
subsequence of strictly weaker TD’s. Or, we might necessarily reach a point where
all successive TD’s were equivalent but not trivial, and if we knew that we had reached
that point, then we could deduce that the chase was unsuccessful.

These observations lead to the consideration of the structure of the space of
TD’s. Are there infinite sequences of strictly weaker TD’s? Can we construct such a
sequence by showing that for every nontrivial TD there is a weaker nontrivial TD?
The answers to these (yes and no, respectively) and related questions are contained
in later sections.

THEOREM 3.1. For each set of attributes, there is a strongest TD. That is, there is
a TD T such that TET' for each TD T' over the same set of attributes as T.

Proof. The TD that states a relation is a Cartesian product is the strongest TD.
For example, the Cartesian product TD over three attributes is

ai b1 b2
b3 as b4
b5 b6 as

ay as as.

TOOLS FOR TEMPLATE DEPENDENCIES 41

The Cartesian product TD is strongest because each relation that is a Cartesian product
is easily seen to obey every TD (over the same attributes). 0

Recall that a TD is said to be V-partial if V is the set of attributes for which the
hypothesis rows of T contain distinguished variables.

COROLLARY 3.2. There is a strongest V-partial TD. That is, there is a V-partial
TD T such that TET' for every V-partial TD T' over the same attributes.

Proof. The V-partial TD that says of a relation that its projection onto V is a
Cartesian product is the strongest V-partial TD. Thus, if U is ABC and V is AB,
then this TD is

ai b1 b2
b3 aj b4

a, as as.]

THEOREM 3.3. Assume that V contains at least two attributes. Then there is a
weakest nontrivial V-partial TD. That is, there is a nontrivial V-partial TD T such
that T'ET for every nontrivial V-partial TD T' over the same attributes. In particular
(when V = U) there is a weakest nontrivial full TD.

Note. The assumption that V' contains at least two attributes is necessary, since
it is easy to see that if V contains O or 1 attribute, then every V-partial TD is trivial.

Proof. Assume that the attributes in V are A, ---,A,. Denote by W the
attributes not in V. (Possibly, W is empty.) Assume that the attributes in W are
Ap+1, 0, A, The variables of T that appear in the column A; (1=i=m) of T are
a; and b;. The only variable that appears in the hypothesis rows of A}, for j >m, is c;.
The projection of the hypothesis of T into V' contains all possible rows e; - - * e,
where ¢; is either a; or b;, except that the row of all a’s does not appear. The conclusion
row contains all a’s. For example, if V=A1A,A; and W = A,A5, then T is

ai ar b3 Ca Cs
a, b2 as Ca Cs
a b2 b3 Ca Cs
bl as as Ca Cs
by ax bz ca cs
by b, as Ca Cs
b, by bs Ca Cs

ai ar as as as .

Clearly, T is nontrivial (see the remark near the end of § 2). We now show that
if T' is a nontrivial, V-partial TD, then SAT (T') < SAT (T), that is, that T'ET. Let
r be a relation (over set of attributes U) that is not in SAT (T'); we shall show that
r is not in SAT (T"'). Let g be a valuation that maps every hypothesis row of T to a
tuple in 7, but such that g(a; - * - a,,) does not appear in the projection r[V] of r onto
V. We know that g exists since r is not in SAT (T'). We define a valuation A on T’
as follows. We assume for convenience that 7' and T have the same distinguished
variables aj, - -, a, For each distinguished variable a, let h(a)=g(a). For each
nondistinguished variable d in T, if d is in the A; column, for some A; in V, then
let h(d) = g(b;); if d is in the A; column for A; in W, then let A(d) = g(c;).

Since T is nontrivial, no hypothesis row of T" contains a; * - - a,, as its V entries.
Let w' be an arbitrary hypothesis row of 7' and let w be the row in T that has a’s

42 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

in its V entries exactly where w' does. Since those entries are not all a’s, we know
that w exists. By definition of 4, we know that A (w')=g(w), and so h(w’) is a tuple
in r. However, h(a; '+ am)=g(a; " an) is not in r[V], so r violates T', as was to
be shown. 0

We shall conclude this section by showing that there is no weakest nontrivial TD
(including full and strictly partial TD’s) if the number of attributes is at least 3. We
first need a preliminary result.

THEOREM 3.4. Let X be a set of V1-partial TD’s and let o be a nontrivial V,-partial
TD. If 3ko, then Vo< V;.

Proof. Assume that XFo and that it is false that V,< V;; we shall derive a
contradiction. Let T; be the strongest Vi-partial TD constructed in the proof of
Corollary 3.2, and let T, be the weakest nontrivial V,-partial TD constructed in the
proof of Theorem 3.3. Since (a) T, kX (that is, T F 7 for every 7 in), (b) 2Fo, and
(c) o ET,, it follows by transitivity of logical implication that T;FT,. Let r be the
relation consisting of the hypothesis rows of 7. Then r violates T>. We shall show
that r obeys T}, a contradiction.

Since it is false that V, < V; there is an attribute A in V, but not V. It is easy
to verify that the projection r[U — A] of r onto every attribute except A is the Cartesian
product of the projection of r onto each attribute in U — A (see Fig. 3.1). So, r obeys
T,, which was to be shown. 0O

THEOREM 3.5. Assume that there are at least three attributes. Then there is no
weakest nontrivial TD. That is, there is no nontrivial TD T such that T'E T for every
nontrivial TD T' over the same attributes.

Note. The assumption that there are at least three attributes is necessary, as we
shall see in § 4. Also, observe that unlike Theorem 3.3, which might seem superficially
to contradict Theorem 3.5, we are not fixing our attention on V-partial TD’s for a
given V, but rather considering the whole class of TD’s at once.

Proof. Assume that there are at least three attributes, and that a weakest nontrivial
TD T exists. Then T is V-partial for some V (possibly V = U). Now V is nonempty,
since each V-partial TD with V = is trivial. So V contains an attribute A. Let
W =U —A. Then W contains at least two attributes, since U contains at least three
attributes. So there is a nontrivial W-partial TD T'. By definition of T, we know that
T’k T. This implication contradicts Theorem 3.4, since V is not a subset of W. 0O

4. TD’s over two attributes. In this section, we prove the following result.

THEOREM 4.1. There are only three distinct TD’s (up to equivalence) on two
attributes.

Proof. The three TD’s over two attributes are the following:

ai b,

ay b, by b,

a az by a by a»

ai as a a ai as
Ty T, T;

TD T, is the trivial TD, obeyed by every relation. TD T, says that the relation is a
Cartesian product; it is the strongest TD. T3 is the weakest nontrivial TD over two
attributes. It is easy to check that none of T, T», and T3 are equivalent. We must
show that every TD over two attributes, say T =t¢4, t,, * * *, t,/a1a> is equivalent to
one of these.

TOOLS FOR TEMPLATE DEPENDENCIES 43

Case 1. None of t;, -+, t, has a; in the first column, or none of ¢;, - -, ¢, has
a; in the second column, or some ¢; is a;a,. It is easy to show that T is trivial. Thus,
every strictly partial TD over two attributes is trivial.

Case 2. Case 1 does not hold, but there is no sequence of rows among ¢, * * , ,,

of the form

ai b1

by b

b2 b3
(*) by bs

b b1

bk ar
for any by, - -, by, with k =2. Then, we can divide ¢4, - -, ¢, into two groups. The
first group contains those ‘‘reachable” from a, in the sense that they appear in some
sequence a,1b1, b2b1, bobs, babs, - - -, and the second contains those that are not. Tuples

in the second category may be ‘‘reachable” from a, or they may be ‘“‘reachable” from
neither a; nor a,.

We now show that T and T, are equivalent. We know that 7T, F T, since the proof
of Theorem 3.1 shows that T, implies every TD over two attributes. To show that
TET,, we need only show that when we chase [MMS] the hypothesis rows of T,
using T, we get the conclusion row of T, [SU]. But this chase needs only one step.
Map all tuples of T in the first group to a;b, and all others to »1a,. This mapping
cannot map one symbol of T to two distinct symbols of T, or the groups are not
defined correctly. That is, we cannot have some tuple ¢; = cd mapped to aib,, and
then have some tuple ¢; = ed or ¢f mapped to bia,, because ed and cf would be in
group 1.

Case 3. A sequence (*) exists, with kK =2, and a;a, is not a hypothesis row. Then
T is nontrivial, so by the proof of Theorem 3.3, we know that Tk T; (since T3 is the
weakest nontrivial full TD).

To show that TsF T, we can chase the hypotheses of T with T’ to infer successively
the rows a1bs, aibs, * * +, a1bi_1 and then aia,. 0O

5. The correspondence between TD’s and graphs. For the upcoming examples,
it is useful to give a graphical interpretation to TD’s and relations. The graph for a
TD or relation will have a node for each row or tuple, and edges labeled with attribute
symbols, indicating in which components the rows or tuples agree. More precisely:

Definition. Given relation r on relation scheme R ={A 1, A,, - -+, A,}, the graph
of r, denoted G,, is defined as follows. Let {t1, t,, * * -, t,,} be the tuples in r; the nodes
in G, will also be ¢4, t,, * - *, t. For nodes ¢, and ¢,, there is an undirected edge (¢1, t2)
with label A (possibly among others) in R exactly when #1(A) = £,(A).

Example. Let r be

A B C
ti: 0 0 1
ty O 1 0
t3: 0 1 1
ta: 1 0 0
ts: 1 0 1
te: 1 1 0.

44 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

Then G, is as in Fig. 5.1. There is always a self-loop from each node to itself, labeled
by all the attributes, but we shall omit drawing such edges. We can also omit drawing
some of the edges implied by transitivity of equality, to help reduce the clutter. Figure
5.2 represents the same relation as Fig. 5.1 when transitivity of equality is considered.
The graph (denoted Gr) for a template dependency T is defined similarly, except
that there is a node denoted (*) that represents the conclusion row.
Example. Let T =

wa: a; b c

Then Gr is as in Fig. 5.3.

We can characterize when a relation obeys a TD in terms of certain homomorph-
isms between their respective graphs.

DEFINITION. An lp-homomorphism (label-preserving homomorphism) between
labeled, undirected graphs G1=(Vy, E;) and G, = (V>, E>) is a mapping h: V1> V,
such that if (v, w) is an edge of E; with label A (possibly among others) then
(h(v), h(w)) is an edge of E, with label A.

Example. Let G, and Gt be the graphs in the last two examples. Define the
mappings A, and &, as follows:

hi(x)=ts, ha(*) =ts,
hi(wi) =ts, ha(wq) =ts,
hi(wa) =11, ha(w2) =t,
hi(ws) =11, ha(ws) =ts.
Then 4, and A, are each Ip-homomorphisms from Gr to G..
The mapping

ha(x)=t1,

hs(w1) =t3,

ha(wz) =ts,

ha(ws)=ts

is not an lp-homomorphism from Gr to G, since (A (*), h (w3)) = (¢1, t6) does not exist
in G,, and thus certainly does not have label C, as (*, w3) does.

We can now interpret the criterion for a relation r to obey a TD T in terms of
their respective graphs.

THEOREM 5.1. Relation r obeys T if and only if every lp-homomorphism from
Gt —{*} to G, can be extended to an lp-homomorphism from all of G to G,.

The straightforward proof of Theorem 5.1 is left to the reader.

Example. Let T and r be the TD and relation used in previous examples. Some
Ip-homomorphisms from Gt —{*} to G, can be extended, such as 4; and A, below:

hi(wy) =ts, ha(wy) =ts,
hi(wz) =14, ha(w2) = t3,
hi(ws)=ty, ha(ws) =t3.

In fact, any lp-homomorphism that maps Gr—{*} to a single node in G, can be
extended to Gr. We shall later use this fact to show that a particular TD T is obeyed

TOOLS FOR TEMPLATE DEPENDENCIES

45

46 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

by r, by showing that every Ip-homomorphism from Gr —{*} to r maps all of G —{*}
to a single node in r.

Relation r in our previous examples does not obey T, because there are lp-
homomorphisms from Gr —{*} to G, that cannot be extended, such as

ha(wq) =t3,
ha(w2) = ts,
hi(ws) = te.

For, if h3(%) =t¢, then ¢ would have to agree with ¢; on A, with ¢5 on B, and with ¢
on C. Then ¢t would be (0, 0, 0), which is not in the relation r.

6. Chains of full TD’s. We now use the correspondence between TD’s and graphs
to help prove the existence of infinite chains of progressively weaker and stronger
full TD’s.

LEMMA 6.1. Let T' be a TD derived from TD T by the addition of hypothesis
rows that use no distinguished symbols not already used in some hypothesis row. Then
T is at least as strong as T'. That is, TET".

Proof. This result is easily verified by noting that any lp-homomorphism 4’ from
Gr —{*} to a relation r can be restricted to an Ip-homomorphism 4 from Gr —{*} to
r. Furthermore, if & cannot be extended to G, then A cannot be extended to Gr. O

THEOREM 6.2 (progressively weaker chain). There exists an infinite sequence of
full TD’s T4, Ty, T, * - such that SAT (T;) =SAT (T;1) fori = 1. Thus, T;F T;+, for
each i, and no T;’s are equivalent.

Proof. Consider the infinite graph G (Fig. 6.1). Let T; be the TD corresponding
tothe subgraph of G onnodes*,1,2,--+,i+1.ByLemma6.1,SAT (T;) = SAT (T},1).

A A A A

F1G. 6.1

To show proper containment, we need only exhibit a relation r in SAT (T;;;) that
does not obey T;.

Relation r is simply the hypothesis rows of T; considered as a relation. That is,
r is any relation such that G, is G restricted to nodes 1,2, -,i+1. We see that r
violates T, since the lp-homomorphism /4 from Gr,—{*} to G, defined by h(j)=],
1=j=i+1, cannot be extended to Gr,.

We now show that r obeys T;.i, that is, that each lp-homomorphism 4 from
Gr,,,—{*} to G, can always be extended to an lp-homomorphism from Gr,,, to G..

Case 1. For some nodes j and j +1 in Gr,,,—{*}, we have h(j)=h(j+1). Since
in G, all odd nodes agree on A, and likewise all even nodes, if 4 (j) = h(j +1) it follows
that 4(p) and h(q) agree on A for all p and q. In particular, 4 (1), h(2) and /1 (3) agree
on A, so we can extend & by letting A (*) = h(2).

Case 2. No nodes j and j+1 are mapped to the same node in G, by h. Let
h(1) =j. There are 2 subcases, depending on whether j is even or odd.

TOOLS FOR TEMPLATE DEPENDENCIES 47

Case 2a. j is odd. We shall show inductively that h(k)=j+k—1for 1=k =i+2.

Assume h(k—1)=j+k —2. Suppose k is odd. Since k —1 and k are connected
by a C-labeled edge, h(k — 1) and h (k) must be connected by a C-labeled edge. Since
j+k —2 is even, the only candidates for 4(k) are j+k—2 andj+k—1. The j+k -2
choice is ruled out, since we are not in Case 1. Hence, h(k)=j+k—1. A similar
argument holds if £ is even.

Now look at 4 (i +2). By our inductive argument, A(i +2)=j+i+1=i+2, which
is nonsense, since G, contains only nodes 1, - -,i+1. Thus, Case 2a cannot occur.

Case 2b. j is even. This case is very similar to Case 2a, except that we show
inductively that A(k)=j+1—k,for 1=k =i+2. Then h(i +2)=j—i—1=0, which is
nonsense, since G, contains only nodes 1, - - -, i + 1. Thus, Case 2b cannot occur.

We have shown that Case 2 cannot occur. Thus, r obeys 7.1, and the proof is
complete. O

THEOREM 6.3 (progressively stronger chain). There exists an infinite sequence of
full TD’s Ty, T,, T, + - * such that SAT (T;+1) = SAT (T;). That is, T;+1F T; for each i,
and no two T;’s are equivalent.

Proof. Let T; be the TD corresponding to the finite graph of Fig. 6.2, which we
shall call Gi. G; is just the graph for TD T,: in the last proof wrapped around with
nodes 1 and 2° +1 overlaid.

FI1G. 6.2

The hard part of this proof is showing that SAT (T;.1) = SAT (T3).

Let r be any relation in SAT (7;.1); we shall show that 7 is in SAT (T;). To prove
this, let 4 be any lp-homomorphism from G; —{*} to G,; we must show that 4 can be
extended to an lp-homomorphism from G; to G,. We define an lp-homomorphism A’
from G,.1—{*} to G, in terms of k, by letting h'(j) be h(j), if 1=j=2', and h(j —29
if 2'< J =21 Essentially, &' wraps G;.1 twice around the image of G; in G, under
h. Since r is in SAT (T;.1), we know that 4’ can be extended to G;.,. The reader may
check that /& can be extended to G; by letting h () = h'(x).

The proof that SAT (T;.,) is a proper subset of SAT (T;) is by a counting argument
similar to that used in the proof of Theorem 6.2. The relation r to use is one

48 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

corresponding to G;.;—{*}. This relation is not in SAT (T;,,). However, it is in
SAT (T;). For, any Ip-homomorphism h from G;—{*} to G, must map two nodes j
and j+1 to the same node in G,, which means the extension of & by h(*) = h(2) will
always work. [

7. Finite implication versus implication. In this section we show that finite impli-
cation (implication where we restrict our attention to finite relations) and unrestricted
implication are distinct for TD’s. Thus, the inference rules of Sadri and Ullman [SU]
and of Beeri and Vardi [BV2] for TD’s, which are complete for unrestricted implica-
tion, are incomplete when implication over finite relations only is considered. To state
the result another way, let SATs, (T') be the set of all finite relations that obey a TD
T. We shall exhibit TD’s T, Ty, T5, * + +, Tk such that

SATg, (T, * - -, Ti) = SATg, (Th),
but

SAT (T4, -+, Te) 2 SAT (Ty).

Thus, {T4, - - -, T} Faa To, but it is false that {T}, - - -, T} F To. Further, we show that
there can be no such example with k = 1. That is, we show that if T, and T; are TD’s,
then T kg, T if and only if T F T.

Apart from its inherent interest, we note another reason for studying the issue
of whether finite and unrestricted implication are distinct. If finite implication and
unrestricted implication were the same, then the decision problem would be decidable.
That is, it would be decidable whether or not 2k o, whenever X is a finite set of TD’s
and o is a single TD. For, {2,): 2 is finite and 2k o} isr.e. (recursively enumerable),
by Gddel’s completeness theorem for first order logic [En] (or, in our special case,
by the known [BV2], [SU] complete set of inference rules for TD’s). Also, {(Z,0): =
is finite and it is false that 3 kg, o} is r.e., since it is possible to systematically check
for finite relations that obey X but not o. Hence, if F and kg, were the same, then
{(Z, o): 2 is finite and 2Fo} would be both r.e. and co-r.e., and hence decidable. As
we have noted, Vardi [Val] and, independently, Gurevich and Lewis [GL] have
recently shown that the decision problem for TD’s is undecidable.

THEOREM 7.1. F and kg, are distinct. That is, implication of TD’s over the universe
of all relations is distinct from implication of TD’s over the universe of finite relations.

Proof. This proof draws its basic outline from a proof by Beeri and Vardi [BV3]
of the same result for untyped TD’s, that is, TD’s in which a symbol may appear in
more than one column. The construction used here is greatly more complicated than
Beeri and Vardi’s. We exhibit TD’s Ty, T4, T, Ts, T4 for which there is an infinite
relation that obeys T4, - - -, T4 and violates T, but for which there is no such finite
relation, The TD’s Ty, - - -, T, are given by graphs G4, * -, G4 in Fig. 7.1.

There is an underlying logic to these TD’s. The intuition is that if we look at a
relation r, we interpret the subgraph of G, in Fig. 7.2 as representing a directed edge
from ¢4 to t3. The relation r can then be interpreted as a directed graph D, on some
subset of its tuples. TD’s T and T, together say that if D, has an edge u - v then
for some w it has edge v - w. That is, no node v is a sink. TD T3 says roughly that
D, is transitively closed. What it actually tells us is that if we have the linked
configuration of Fig. 7.3, then for some tuple ¢’ we have Fig. 7.4, where ¢ is the tuple
* of G3. As we shall see, TD T, applies nontrivially when D, has an edge u such that
u->u.

The last TD, Ty, corresponds to graph Gy in Fig. 7.5.

TOOLS FOR TEMPLATE DEPENDENCIES 49

FiG. 7.1

50 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

The property of directed graphs we shall exploit is that any finite directed graph
D that has no sinks and that is transitively closed has at least one loop edge. This
statement is not true for infinite graphs; consider the graph on the natural numbers,
where { -] is an edge if and only if { <j.

We now present an infinite relation r;, and show that r; obeys T, T, T5 and T,
but violates T. Thus, it is false that {T;, T>, T3, Ta}F To.

Letrr={(i,,j,0): 1=i <j}U{(0, i, i, i): 1=i}. We shall refer to tuples of r; of the
form (i, i, j, 0) with 1 =i <j as tuples of the first type and tuples (0, i, i, i) with 1=/
as tuples of the second type.

1. rr obeys T1. We shall show that if we chase r; with T, then no new tuples
appear. Consider the first time that a new tuple could appear. The only AC combina-
tions not already present in 7; that could be forced by chasing with T, are those in
which the A entry is i (we write this informally as A =i), C=j, and i=j=1. To
obtain such an AC combination, an application of T; must have ¢,= (-, b,j,) and
t3=(i, b, -,). (By this we mean that ¢; and ¢, have the same B entry b, and the -’s
represent entries we don’t care about now.) Since i =1, we know that ¢; is a tuple of
the first type, so b =i. So t4 is (-, 4,j,+) with i =j. Thus, ¢4, is a tuple of the second
type, so t,=(0,i,i,1i). Since t, agrees with ¢, in D, we know that ¢, =¢,. Hence, ¢,
agrees with 3 in C (since ¢, agrees with ¢3 in C). So the A and C entries of 3 are
both i, and hence equal. But in no tuple of r; do the A and C entries agree. This is
a contradiction, so chasing 7y with T; can produce no new AC entries. Hence, r; obeys
T,, since T, is an AC-partial TD.

2. ry obeys T,. The only BD combinations that can be generated by chasing r;
with T, and that are missing have B=i, D =j, i #j and j #0. So t3=(-, -, ¢, J), and
ta=(-,i,c,). Since j #0, we know that t3=(0,j,/,j). Since j =c #i, we know #;,=
(i, 1,],0). Now t, agrees with ¢4 in A, so t,=(i, i, -, 0). Thus, ¢, does not agree with #;
in B, a contradiction.

3. rrobeys Ts. Since t, and ¢4 agree on D, they are both tuples of the first type
or they are both tuples of the second type. If they are both tuples of the second type
then they are equal, since they agree on D. In this case, either can serve as * (* must
have C from t4, and BD from ¢,). So we can assume that ¢, and ¢4 are both of the
first type. The only way that no tuple of r; can serve as * is if the B entry of #; (and
1), say i, is greater than or equal to the C entry of ¢s (and t,), say j. So assume i =].
Let ts=(a,i',j’,). Since t,=(i, i, ', 0), we know that / <j'. Similarly, ¢, = (', i',, 0)
and i’ <j. There are now two cases. Case 1. a #0. Then, ¢, t3 and ¢5 are all of the
first type. Since ¢; is of the first type, a =i'. Now, the B entry of ¢ is i, so the A entry
of ¢t; is i. Thus, a =i, so i =i'. Since i’ <j, it follows that { <j, a contradiction. Case
2.a=0.Then i{'=j', soi<j'=1i'<j, a contradiction.

4. rr obeys T4. Since t; and ¢, agree on B and C, it follows easily that ¢, =¢,.
Thus, * can be taken to be ¢;.

5. rr violates T,. Let t;=(0,1,1,1), t,=(1,1,2,0), t3=(0,2,2,2) and t,=
(2,2, 3,0). Then * must be (0, -, -, 0), and r; contains no such tuple.

We now show that no finite relation r in SAT (T, T, T3, T4) violates Ty. Suppose
re violates T,. Then, G,. contains the configuration in Fig. 7.6 (ignoring X and its
edges), where no tuple in rr can serve as the node marked X (and so ¢; #), even if
we allow other edges connecting X to #;,- -+, ts. By TD’s T and T, we know that
rr must also contain tuples ¢s and t¢ such that G, contains the subgraph in Fig. 7.7.
We do not require that the tuples be distinct. Further applications of T and T, give
the subgraph in Fig. 7.8, which we shall abbreviate as in Fig. 7.9. We remarked before
that the tuples need not be distinct. Actually, if we extend this chain far enough they

TOOLS FOR TEMPLATE DEPENDENCIES 51

F1G. 7.10

FiG. 7.11

cannot be distinct, since rr is finite. The chain must eventually loop back on itself
(Fig. 7.10). By repeated application of the “transitivity”” TD, T3, we eventually get
an edge from ¢ to itself (Fig. 7.11). The self-loop from ¢; to itself means the same as
the configuration shown in Fig. 7.12, where ¢; appears twice, and where the exact
identities of ¢' and " do not matter (except that t'[D]=t.1[D]=t[D]). As we see,
t' agrees with #; on both B and C. T, now applies to give us a tuple ¢ where Fig. 7.13
holds. But #;,{A]=1t;[A] and ¢[D]=¢,[D], so Fig. 7.14 holds. Hence, ¢ serves as the

52 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

slot marked by X in the original figure, a contradiction. Relation rr cannot violate
T, concluding the proof. 0O

Although, as we just proved, there are TD’s Ty, T3, -+, Tk such that
{Ty, -+, T} Fgn To but for which {T4, - -, Ti}E T fails, we now show that this is
impossible if £ = 1.

THEOREM 7.2. Let Ty and Ty be TD’s. Then T1Fg, Ty if and only if T1ET.

Proof. 1t is immediate that if T1FT,, then TiFs, To. So assume that T Fg, To.
We must show that T FT,. Assume that T is V;-partial, and that T, is V,-partial.
Now Theorem 3.4 holds when k" is replaced by “Fq,”’, by the same proof. So, since
T1 Ean To, it follows that Vo< V;. So, when we use T to chase the hypothesis rows
of Ty, it is easy to see that we never need to add a new row whose projection onto
V' is already present. No new variables are added in the V; columns during the chase,
so the chase terminates after a finite number of steps. Thus, as in the theory of the
chase for full TD’s [MMS), if there is a “counterexample” relation that obeys T'; but
not T, then there is a finite such counterexample. The result follows. 0O

Fi1G. 7.14

We note that Theorem 7.2 was proven by Sadri [Sa] in the case where T, and
T, are EMVD’s. Also, Beeri and Vardi [BV1] showed if X is a set of V-partial TD’s
and o a TD, then XF o if and only if = kg, o. This implies Theorem 7.2.

8. Closure of full TD’s under conjunction. In this section, we show that full TD’s
are closed under finite conjunction. That is, we show that if X is a finite set of full
TD’s, then there is a single full TD T that is equivalent to X (in other words,
SAT (T)=SAT (2)). The same result was obtained independently by Beeri and Vardi
[BV2]. However, we show that the conjunction of a finite set of TD’s (not necessarily
full) is not necessarily equivalent to a single TD, and the disjunction of a finite set of
full TD’s is not necessarily equivalent to a single TD.

TOOLS FOR TEMPLATE DEPENDENCIES 53

Since every multivalued dependency is equivalent to a full TD, it follows in
particular that (the conjunction of) every set of multivalued dependencies is equivalent
to a TD. However, sets of multivalued dependencies that are not only equivalent to
a TD, but even to a join dependency (which are special cases of TD’s), are quite
special [BFMMUY], [BFMY], [FMU].

Our main tool is the direct product construction of Fagin [Fa3]. Let r and r' be
relations, each with attributes U = A, * - - A,.. The direct product r ®r' has the same
set U of attributes. The possible entries in the A; column of r® r’ are elements (a, a’),
where a is an entry in the A; column of r, and a’ is an entry in the A; column of r'.
A tuple (a1, a1), « * +, (an, a,)) is a tuple of the direct product if and only if (a4, * - + , a,)
is a tuple of r and (ai, -, an) is a tuple of r'. Fagin [Fa3] shows that if T is a TD
(or even more generally, an embedded implicational dependency), and if and r' are
nonempty relations, then T holds for *®¢’ if and only if T holds for each of r and
', This property is called faithfulness of T.

THEOREM 8.1. Full TD’s are closed under finite conjunction.

Proof. 1t is sufficient to prove that if T; and T, are full TD’s, then there is a TD
T that is equivalent to their conjunction; the result then follows by an easy induction.
We use the direct product construction on hypothesis rows of the TD’s T; and T5.
That is, let T, be

€11 C12 *'* Cin

Cr1 Cr2 tee Crn

ai a2 e an
and let T, be

d11 d12 e dln

dsl ds2 tre dsn

ai a; *°° a,.

We now define a new TD T, that we shall prove is equivalent to T A T». The hypothesis
rows of T are the direct product of the hypothesis rows of T, (treated as a relation)
and the hypothesis rows of T, (treated as a relation). Thus, let the symbols for the
kth column of T be the product symbols {(c;, dy.) for 1 =i =r and 1 =j =5, with (ay, ax)
being the distinguished symbol for column k. The rs hypothesis rows of T are all of
the rows of the form

(ci, djl) (Ci2, dj2> < Ciny djn)

for all i and j. The conclusion row of T is {a, a;)as, a,) - - * {a,, a,.), of course.

TET,, as we can show in one step of a chase by using the mapping that sends
(ci;, d) to ¢;; for each d. Similarly, T ET.

We shall show, by chasing the hypothesis rows of T, that {T;, T,}F T. First, for
each (fixed) j, apply T} to the r hypothesis rows of the form {(c;1, d;1) * * * {Cin, d;n) fOr
1=i=r to infer the rows of the form (ai, d;1) - * {(an, d;») for 1=j =s. Then apply T>
to these rows to infer (ay, aq)* « * (A, a,). O

Although the finite conjunction of full TD’s is equivalent to a single TD, we now
show that the finite conjunction of TD’s (not necessarily full) is not necessarily
equivalent to a single TD.

THEOREM 8.2. There is a pair of TD’s whose conjunction is not equivalent to a
single TD.

54 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

Proof. 1t is sufficient to show that there is a finite set Ty, - -+, T, of TD’s such
that Ty A + -+ ATy is not equivalent to a single TD. For, if the conjunction of a pair
of TD’s were always equivalent to a single TD, then by induction, the conjunction of
a finite set of TD’s would be equivalent to a single TD.

Let Ty, Ty, * +, T4 be the TD’s of § 7 (for which {Ty, « - -, T4} Egn To but for which
{T1, -+, Ta}E Tofails). If Ty A+ - - A T4 were equivalent to asingle TD T, then T kg, To,
since {T, * * -, Ta} Fan To. By Theorem 7.2, it follows that Tk T. So, {T1, * * -, Ta}F To.
This is a contradiction. [

Vardi [Va2] has posed the interesting question as to whether the conjunction of
a pair of V-partial TD’s (for the same V') is necessarily equivalent to a TD.

We now prove a result that implies (by Corollary 8.4 below) that TD’s are not
closed under finite disjunction.

THEOREM 8.3. Let Ty and T, be incomparable TD’s (that is, neither T1= T nor
T,k T,). Then the disjunction Ty v T, is not equivalent to a single TD.

Proof. Let r; be a relation that obeys T'; but not T, and let r, be a relation that
obeys T, but not T;. Let r be the direct product r;®r,. Then by faithfulness of T4,
we know that r does not obey T}, since r, does not obey T;. Similarly, r does not
obey T, and so r does not obey T; v T,. However, each of r; and r, obeys T3 v T5,
since r; obeys T, and r, obeys T,. If T, v T, were equivalent to a TD T, then the
faithfulness of T would be violated. [

COROLLARY 8.4. There are full TD’s T and T such that T1 v T is not equivalent
to a single TD.

Proof. Let T, and T, beincomparable full TD’s. For example, over three attributes
ABC, let T, be the MVD A - B and let T, be the MVD B - A. By Theorem 8.3,
it follows that T, v T, is not equivalent toa TD. 0O

We note that Ginsburg and Zaiddan [GZ] have considered questions similar to
those discussed in this section, but for FD’s instead of TD’s, by studying intersections
and unions of “functional dependency databases.” Classes SAT (X), where X is a set
of FD’s, are called functional dependency classes by Fagin [Fa3]. Functional dependency
databases differ from functional dependency classes by explicitly defining the domains
for each attribute.

9. A set of strictly partial TD’s cannot imply a full TD. In this section, we prove
the following result.

THEOREM 9.1. There is a finite relation that obeys every strictly partial TD but
no nontrivial full TD. In particular, if X is a set of strictly partial TD’s and o is a
nontrivial full TD, then it is false that T+ o (or even that X kg, o).

We give two proofs of Theorem 9.1, since both proofs are amusing and both give
additional information.

Proof 1. This proof is in the spirit of Sadri’s [Sa] proof that there is a finite
relation that obeys every EMVD that is not a MVD but violates every MVD. Let R
be the relation that contains every tuple consisting only of 0’s and 1’s except the tuple
of all 0’s. For example, if there are three attributes, then R is

0 O 1
o 1 0
0 1 1
1 0 O
1 0 1
1 1 0
1 1 1.

TOOLS FOR TEMPLATE DEPENDENCIES 55

This relation obeys every strictly partial TD, since the projection onto each proper
subset V' of the attributes U is the Cartesian product of the projection onto each
attribute of V. However, R clearly violates the weakest nontrivial full TD T construc-
ted in the proof of Theorem 3.3. Hence, R violates every nontrivial full TD (if R
obeyed a nontrivial full TD 7", then R would obey T, since T'E T by Theorem 3.3). O

Proof 2. Let o, be the set of all relations (with attributes U) such that every
entry of the relation is a member of {1, : - -, n}. Thus, &, contains 2"“ members, where
u is the number of attributes (that is, the size) of U. If P is a property of relations,
then we say that ‘“‘almost all relations have property P’ (or “a random relation has
property P”) if the fraction of members of «f, with property P converges to 1 as
n —» 0. Fagin [Fal] showed that if P is a first-order property of relations, then either
almost all relations have property P or almost all relations fail to have property P.
Using his techniques, it is easy to show that if o is a strictly partial TD, then almost
all relations obey o, while if o is a nontrivial full TD, then almost all relations violate
ag.

Let Ty be the strongest V-partial TD (which exists by Corollary 3.2), and let
3 ={Ty: V is a proper subset of U}. Then X is a finite set of TD’s, since U contains
only a finite number of subsets. By the above remarks, for each TD Ty in £, almost
all relations obey Ty (since Ty is strictly partial). Since = is finite, it follows from
elementary probability theory that almost all relations simultaneously obey every
member of 2. Furthermore, if o is the weakest nontrivial full TD, whose existence
is guaranteed by Theorem 3.3 (with V = U), then it follows by our earlier remarks
that almost all relations violate o (since o is full). Thus, almost all relations obey X
and violate o. If a relation R obeys X, then it obeys every strictly partial TD, since
if T is a V-partial TD, then T is implied by Ty, which is in X, if V' is a proper subset
of U. Further, if a relation R violates the weakest nontrivial full TD o, then it violates
every nontrivial full TD T (since T ko). Thus, almost all relations simultaneously
obey every strictly partial TD and violate every nontrivial full TD. This is even stronger
than the statement of Theorem 9.1. O

10. Finite Armstrong relations. Let = be a set of TD’s. Let &, be {o: = ks, o).
Thus, =, is the set of all TD’s that hold in every finite relation obeying =. A finite
Armstrong relation [Fa3] for 2 is defined to be a finite relation that obeys 2, but no
other TD’s. The following facts are easy consequences of results by Fagin [Fa3].

Fact 1. There is an Armstrong relation (not necessarily finite) for 2. This fact
can be interpreted in two distinct ways, both of which are correct. One meaning is
that there is a relation (not necessarily finite) that obeys every TD in £*={o: 2k o},
but no other TD’s. The second meaning is that there is a relation (not necessarily
finite) that obeys every TD in 2%, but no other TD’s; this is true because (2#,)* == #,..

Fact 2. Let & be a fixed finite set of TD’s (such as the set of all EMVD’s over
some fixed set of attributes). Then, there is a finite relation that obeys every TD in
S, but violates every TD in & that is not in 2.

In this section, we shall show (Theorem 10.1 below) that the second sentence of
Fact 2 is not necessarily true if & is the set of all TD’s (this set is infinite by § 6, if
there are at least three attributes). Also, we note that Fagin shows [Fa3] that the
second sentence of Fact 2 is false if “TD” is replaced by “EID” (embedded implica-
tional dependency) and if & is the set of all EID’s.

By Theorem 10.1 below, there is a finite set £ of TD’s that have no finite
Armstrong relation (although = has an infinite Armstrong relation, by Fact 1 above).

56 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

However, there are certainly some sets X of TD’s that do have a finite Armstrong
relation; for example, if X is the set of all TD’s, then X has a finite Armstrong relation,
namely, any one-tuple relation. Also, we show at the end of this section that if X is
the empty set, then X has a finite Armstrong relation. In Theorem 10.2 below, we
give several characterizations of those sets £ of TD’s that have a finite Armstrong
relation.

THEOREM 10.1. There is a finite set 3 of TD’s such that X has no finite Armstrong
relation (with respect to TD’s). That is, there is no finite relation that obeys =%, and
no other TD’s.

Proof. Let X be {T5, T4}, where T5 and T, are as in the proof of Theorem 7.1.
We shall show that there is no finite Armstrong relation for =. Let T be the TD that
looks like T, of Theorem 7.1, except that the quadrangle is repeated k times; i.e.,
T* is the TD shown in Fig. 10.1.

F1G. 10.1

We shall show that 1) for every %, it is false that = kg, T*, and 2) every finite
relation obeying = also obeys some T . It follows easily from 1) and 2) that there is
no finite Armstrong relation for X.

1) holds. Let r* be the relation {(i,i,/,0): 1=i<j=k+2}U{(0,i,i,i):1=i=
k +1}. Then r* is roughly the truncation of the relation r; in the proof of Theorem
7.1 to the first k +2 positive integers. Now r* obeys . The proof is exactly the same
as the proof in Theorem 7.1 that r; satisfies T3 and T4, However, r* violates T*. For,
let t,;_1=1(0,1i,i,i), and t;=(i,i,i+1,0) for i=1, -+, k+1. Then the role of * in
the TD T* must be filled by (0, -, -, 0), although r* contains no such tuple. We have
shown that r* obeys £ but not T*. This proves 1).

2) holds. Let r be a finite relation that obeys = and that has exactly k tuples.
Consider the TD T*. Every lp-homomorphism from the graph G« —{*} to G, must
map two distinct nodes 2i +1, 2j+1 to the same node (since there are k +1 odd-
numbered nodes in G+« —{*} and only k nodes in G,). Then, as in the proof of Theorem
7.1, we can show that there is a tuple of r that can play the role of *. Therefore, r
obeys T*. This completes the proof of 2), and hence the proof of the theorem. 0

An alternative proof of Theorem 10.1 can be obtained by using Vardi’s result
[Val] that there is a single finite set = of TD’s such that the set of all TD’s o for
which 2 k4, o is not recursive. This result implies that there is no finite Armstrong
relation for 2, since we could test whether or not X kg, o by simply checking whether
or not the finite Armstrong relation obeys o

THEOREM 10.2. Let X be a set of TD’s. The following are equivalent:

(a) There is a finite relation that obeys X%, and no other TD’s (“Z has a finite
Armstrong relation”).

(b) There is a finite set T of TD’s, disjoint from X%, such that for each TD T not
in 3% thereisa TD T' in T where TET'.

TOOLS FOR TEMPLATE DEPENDENCIES 57

(c) There is a finite set T of TD’s, disjoint from X, such that TEv{T': T:e T}
for each TD T not in =&,.

(d) There is a finite set I of TD’s, disjoint from &, such that v{T: T X%} is
equivalent to v{T': T'e T}.

Note that {T': T'e 7} in (d) is a finite subset of {T: T¢ 2%} in (d). So, (d) is a
kind of compactness result, that says that a certain set has a finite subcover (that is,
it says that a finite number of disjuncts of v{T: T'g =%} “covers” all of it).

Proof. (a)=> (b). Let R be a finite relation that obeys =%, and no other TD’s. We
now define a finite set 7 of TD’s, each of which R violates. For each set P of rows
of R and for each set V (V < U) of attributes, let contain every V-partial TD with
P as its hypothesis rows that is false about R. It is easy to see that J is a finite set
of TD’s. The set 7 is disjoint from 2, since R obeys =&, and violates every member
of 7. Now let T be a TD not in 7,. We must show that there is a TD T’ in 7 where
TET'. Assume that T is V-partial. Since T is not in 2%, we know that R violates
T. So, there is a valuation /4 that maps the hypothesis rows of T onto rows of R such
that there is no way to extend 4 to get the conclusion row of T mapped onto a row
of R.

Let T' be the V-partial member of J whose hypothesis rows are the images
under A of the hypothesis rows of T, and such that for each attribute A in V, the A
entry of the conclusion row of T" is the image under 4 of the A entry of the conclusion
row of T. We now show that T £ T"'. For, assume that a relation S obeys T'; we must
show that S obeys T'. To show this, assume that the hypothesis rows of 7" can be
mapped by a valuation #' onto rows of S. We must show that 4’ can be extended to
a mapping from the conclusion row of 7' onto a row of S. Now A o &' is a valuation
from the hypothesis rows of T onto these same rows of S. Then s ch' is already
defined on the V entries of the conclusion row of T, and (since T holds for S) can
be extended to map all of the conclusion row of T onto a row of S. This gives us an
extension of &' to map all of the conclusion row of 7' onto the same row of S, by
mapping the A entry of the conclusion row of T’ (for each A not in V) onto the
same entry of S as the extension of 4 o &' maps that entry. This was to be shown. So,
TET', as desired.

(b)=>(c). Let the set I of (c) equal the set I of (b). Take T not in 2&,. By (b),
there is some T’ in 7 such that TET'. Hence, TEV{T": T'e J}.

(¢)=>(d). LetthesetJ of (c) equal the set I of (d). Itis obvious that v{T': T'e T}k
v{T: Tg3k), since {T:T'eT}c{T: T¢Z%}. Conversely, we must show that
V{T: T¢3E}ev{T": T'e T}. Let R be a relation that obeys v{T: T¢ 2.}; we must
show that R obeys v{T": T' € J}. Since R obeys v{T: T 2%}, this means that R obeys
some T not in 2%,. By (c), we know that TEv{T": T'e I}, so R obeys V{T": T'e T},
which was to be shown.

(d)=>(a). Assume that (d) holds. By Fact 2 above, there is a finite relation R
that obeys every TD in =&, but violates every member of 7. Since R violates every
member of 7, we know that R violates v{T': T'e J}. By assumption, v{T': T'e '}
is equivalent to v{T': T¢ 2&.}. Thus, R violates v{T': T¢ 2%,}. Hence, R obeys 27, and
no other TD’s, which was to be shown. 0

As a simple application of Theorem 10.2, we now show that there is a finite
Armstrong relation for the empty set, that is, that there is a finite relation that violates
every nontrivial TD. Let I be the set of weakest nontrivial V-partial TD’s, one for
every subset V, with at least two members, of the set U of attributes. These weakest

58 R. FAGIN, D. MAIER, J. D. ULLMAN AND M. YANNAKAKIS

nontrivial V-partial TD’s exist by Theorem 3.3. But this set I can play the role of
T in (b) of Theorem 10.2. Hence, (a) of Theorem 10.2 holds, and so the empty set
has a finite Armstrong relation.

11. Acknowledgment. The authors are grateful to Moshe Vardi for several useful
suggestions.

REFERENCES

[BFMMUY] C. BEERI, R. FAGIN, D. MAIER, A. O. MENDELZON, J. D. ULLMAN AND
M. YANNAKAKIS, Properties of acyclic database schemes, Proc. Thirteenth Annual ACM
Symposium on the Theory of Computing, 1981, pp. 355-362.

[BFMY] C. BEERI, R. FAGIN, D. MAIER AND M. YANNAKAKIS, On the desirability of acyclic database
schemes, J. Assoc. Comput..Mach., to appear.

[BV1] C. BEERI AND M. Y. VARDI, A proof procedure for data dependencies, Technical Report, Hebrew
Univ. of Jerusalem, August 1980.

[BV2] , Formal systems for tuple and equality generating dependencies, Technical Report, Hebrew
Univ. of Jerusalem, April 1981.
[BV3] , The implication problem for data dependencies, Proc. 8th ICALP, Acre, Israel, July 1981,

in Lecture Notes in Computer Science 115, Springer-Verlag, New York, 1981, pp. 73-85.

[CFP] M. A. CASANOVA, R. FAGIN AND C. PAPADIMITRIOU, Inclusion dependencies and their interaction
with functional dependencies, Proc. First ACM SIGA CT-SIGMOD Principles of Database Systems,
1982, pp. 171-176.

[Co] E. F. CopD, Further normalization of the data base relational model, in Courant Computer Science
Symposia 6: Data Base Systems, May 24-25, 1971, R. Rustin, ed., Prentice-Hall, Englewood
Cliffs, NJ, 1971, pp. 33-64.

[De] C. DELOBEL, Normalization and hierarchical dependencies in the relational data model, ACM Trans.
Database Systems, 3 (1978), pp. 201-222.

[En] H. B. ENDERTON, A Mathematical Introduction to Logic, Academic Press, New York, 1972.

[Fal] R. FAGIN, Probabilities on finite models, J. Symbolic Logic, 41 (1976), pp. 50-58.

[Fa2] , Multivalued dependencies and a new normal form for relational databases, ACM Trans.
Database Systems, 2 (1977), pp. 262-278.
[Fa3] , Horn clauses and database dependencies, Proc. 1980 ACM SIGACT Symposium on Theory

of Computing, pp. 123-134. J. Assoc. Comput. Math., to appear.

[FMU] R. FAGIN, R. A. O. MENDELZON AND J. D. ULLMAN, A simplified universal relation assumption
and its properties, ACM Trans. Database Systems, to appear.

[GZ] S. GINSBURG AND S. M. ZAIDDAN, Properties of functional dependency families, J. Assoc. Comput.
Math., 29 (1982), pp. 678-698.

[GL] Y. GUREVICH AND H. R. LEWIS, The inference problem for template dependencies, Proc. First ACM
SIGACT-SIGMOD Principles of Database Systems, 1982, pp. 221-229.

[MMS] D. MAIER, A. MENDELZON AND Y. SAGIV, Testing implications of data dependencies, ACM
Trans. Database Systems, 4 (1979), pp. 455-469.

[MM] A. MENDELZON AND D. MAIER, Generalized mutual dependencies, in Proc. 1979 Very large
Data Bases Conference, pp. 75-82.

[Ni] J.-M. NicoLAS, Mutual dependencies and some results on undecomposable relations, in Proc. 1978
Very Large Data Bases Conference, pp. 360-367.

[PJ] J. PARADAENS AND D. JANNSENS, Decomposition of relations: A comprehensive approach, in Formal
Bases for Databases, J. Minker and H. Gallaire, ed., Plenum, New York, 1978.

[Ri] J. RISSANEN, Theory of relations for databases—A tutorial survey, Proc. 7th Symposium on Mathemati-
cal Foundations of Computer Science, Lecture Notes in Computer Science, 64, Springer-Verlag,
New York, pp. 537-551.

[Sa] F. SADRI, Personal communication.

[SU] F. SADRI AND J. D. ULLMAN, Template dependencies: a large class of dependencies in relational
databases and its complete axiomatization, J. Assoc. Comput. Mach., 29 (1982), pp 363-372.

TOOLS FOR TEMPLATE DEPENDENCIES 59

[SW] Y.SAGIV AND S. WALECKA, Subset dependencies and a completeness result for a subclass of embedded
multivalued dependencies, J. Assoc. Comput. Mach., 29 (1982), pp. 103-117.

[Val] M. Y. VARDI, The implication and finite implication problems for typed template dependencies, in
Proc. First ACM SIGACT-SIGMOD Principles of Database Systems, 1982, pp. 230-238.

[Va2] , Private communication, Oct. 1981.

[YP] M. YANNAKAKIS AND C. PAPADIMITRIOU, Algebraic dependencies, Proc. 1980 IEEE Symposium
on Foundations of Computer Science, pp. 328-332.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0004 $01.25/0

BOUNDS FOR MULTIFIT SCHEDULING ON UNIFORM PROCESSORS*
D. K. FRIESENt AND M. A. LANGSTON}

Abstract We examine the nonpreemptive assignment of N independent tasks to a system of M uniform
processors with the objective of reducing the makespan, or the time required from the start of execution
until all tasks are completed. Since the problem of finding a minimal makespan has been shown to be
NP-hard, and hence unlikely to permit an efficient solution procedure, near-optimal heuristic algorithms
have been studied. It is known that LPT (longest processing time first) schedules are within twice the length
of the optimum. We analyze a variation of the MULTIFIT algorithm derived from bin packing, and prove
that its worst-case performance bound is within 1.4 of the optimum.

Key words. multiprocessor scheduling, worst-case performance, heuristic algorithms, bin packing,
uniform processors, near-optimal schedules, independent tasks

1. Introduction. A well-known deterministic scheduling problem concerns the
nonpreemptive assignment of independent tasks to a set of processors in an effort to
minimize the makespan (the total elapsed time from the start of execution until all
tasks are completed). A multiprocessor system consists of a set of processors denoted
by P={Py, P,, - - -, Pps}. We seek to best schedule a list L ={a, a,, - * *, ax} of tasks
to P, each task a having a length or size s (a). We restrict our attention to nonpreemptive
scheduling, whereby a task, once assigned to a particular processor, may not be
removed until it has finished execution. It is assumed that the elements of L are
independent, i.e. do not require scheduling in accordance with any precedence con-
straints.

This problem has been demonstrated to be NP-hard, and is therefore as intractable
as those in a large class of notoriously difficult problems (see [GJ] and [Ul] for a
detailed discussion). It is unlikely that there exists a polynomial-time algorithm for
producing a minimal makespan, so we consider heuristic algorithms in hope of
providing near-optimal results.

When all elements of P are exactly the same, we say that we have an identical
multiprocessor system. For this special case the LPT (Largest Processing Time first)
algorithm has been analyzed [Gr] and proved to have a “tight’ worst-case performance
bound of 3—3M. Informally, this means that the length of an LPT schedule can be
no more than about 33% longer than the optimum. Techniques derived from bin
packing are used in the MULTIFIT algorithm [CGJ]. It has been shown [Fr] that the
worst-case performance of MULTIFIT lies between 13 = 1.1818 and 1.2.

We consider here a more general model, that of a uniform multiprocessor system,
in which the elements of P may differ in speed. We associate with P a set of relative
speeds {ry, 2, * * *, rm}, where r; denotes the ratio of the speed of P; to that of P;. This
problem has drawn considerable attention [CS], [HS], [LL]. It is known from [GIS]
that the LPT algorithm can be implemented such that its worst-case bound is between
1.5 and 2 times optimal. In this paper we modify the MULTIFIT algorithm for the
uniform multiprocessor case and prove that its worst-case performance is substantially
better than the LPT algorithm, with a worst-case bound lying between 1.341 and 1.4.

Our work is organized as follows. The next section introduces the necessary
notation and discusses some implementation details and preliminary results. In § 3,

* Received by the editors July 17, 1980, and in final revised form April 25, 1982.

+ Division of Computer Science, Department of Industrial Engineering, Texas A&M University,
College Station, Texas 77843.

1 Department of Computer Science, Washington State University, Pullman, Washington 99164,

60

BOUNDS FOR MULTIFIT SCHEDULING 61

we assume the existence of a counterexample to our desired bound of 1.4, and hence
the existence of a minimal counterexample whose properties we analyze. Section 4
contains the proof of our main result. We show that MULTIFIT can do no worse
than 1.4 times the optimum by establishing a contradiction based on the presumed
existence of a counterexample.

The final section of this paper contains the worst example we have found and
some remarks and suggestions for further research.

2. Notation and preliminary results. In this section we describe the notation we
use in the proof of Theorem 4.1 and some results needed to state it. To transform a
scheduling problem to a bin packing problem, we consider each processor as a bin
and, in the case of identical processors, the size of the bin corresponds to the schedule
length or deadline (see [CGJ] for more details). Extending this idea to uniform
processors, we fix the bin size corresponding to one of the processors, say Pj,
the slowest one. Then for the ith processor P; we let its bin size be r; times that
of P1, where r; is the ratio of the speed of P; to the speed of P;. We assume that
r1§rz§‘ . --<_=rM.

The FFD bin packing algorithm arranges the list of items in nonincreasing order
of size. Then each item in the list is placed in the first bin (the P; with smallest subscript)
in which it will fit. To change deadlines, all bin sizes are multiplied by a constant, or
expansion factor. We would like to find the smallest expansion factor, Ry, such that
any list that can be packed in a set of bins of sizes {a1, az, * * * , anr}, Will be successfully
packed by the FFD algorithm when the bin sizes are multiplied by the expansion
factor R,.

If there are M processors, we use P ={P1, P, * +, Py} to denote the M bins of
the FFD packing and P* to denote those of the optimal packing. We let a; denote
the size of P¥, let R be the expansion factor (i.e. the ratio of the size of P; to that of
P¥), and let B; = Ra;. We use FFD(B1, L) to describe the success or failure of the
packing. If the FFD packing of a list meets the deadline, then FFD(B1, L) = succeed.
If the packing fails to pack all items of L, we set FFD(81, L) = fail. Our main result
states that FFD(81, L) = succeed if 8 =1q;.

To implement the algorithm MULTIFIT, we need an upper bound and a lower
bound for the FFD schedule length. Then a binary search can be used to find an
acceptable schedule. Note that the binary search is not guaranteed to find the least
FFD binsize which works for a particular list. But since any B8, greater than or equal
to Roa; will suffice (see [CGJ] for a discussion of this ‘‘monotonicity” property), we
know that the binary search will converge to a binsize = Roa1.

We utilize the results on LPT schedules to obtain the needed lower and upper
bounds. We know from [GIS] that LPT can do no worse than twice the optimum.
We thus first apply the LPT algorithm and then use:

lower bound = max {—S(L)—, lLPT},
ritecctrg 2

upper bound =LPT.

Naturally, if each iteration of our binary search fails to produce an acceptable FFD
packing and the binsize converges on the upper bound, we select the LPT schedule
since it must already be at most R, times the optimal schedule length.

Following the discussion in [CGJ] and using the techniques described in [Jo], k
iterations of MULTIFIT can be performed in O(N log N + kN log M) time, compar-
able to the LPT timing of O(N log N +N log M). For large N, the time required for

62 D. K. FRIESEN AND M. A. LANGSTON

both algorithms is dominated by the O(N log N) term of the initial sort. Using a
binary search scheme, no more than seven iterations of MULTIFIT are necessary to
produce a schedule whose finish time is less than or equal to (Ro+.01) times optimal.

3. Properties of a minimal counterexample. We suppose now that a =
{a1, as, -+, an} is a set of optimal bin sizes and that there is a list of items L such
that FFD (B, = Tay, L) =fail. To simplify our argument we assume that L is minimal—
that no set of fewer than M bin sizes can be used to provide a counterexample and
that, given M, no list with fewer than L items will fail to be packed into T by FFD.

Thus we can assume that the FFD packing with expansion factor 2 packed all
items but the last. For convenience we normalize all bin sizes and item sizes so that
the final item has size 1. Then every bin P; is filled to more than 8, — 1.

In this minimal counterexample, we use the concept of domination from [CGJ]
to prove our cancellation lemma, Lemma 3.1. Let I and J be ordered sets of indices
representing sets of bins in P or P*. We say that I dominates J (or alternatively, that
the bins of / dominate the bins of J) if there is a one-to-one mapping f from items
packed in the bins represented by J to items packed in the bins represented by I such
that for any [in a bin of J, [= f(I) if [is in a bin of I and s(!) =s(f(l)) otherwise.

LemMA 3.1, Letl,J {1, 2, -, M}represent ordered sets of bins. If |I|=|J|=n >
0 and I =J for 1 =k =n, then U ;.1 P; cannot dominate U ;c; PF.

Proof. Suppose we do have such domination. Consider the removal of all items
in U;c;P; from both packings, leaving n empty bins in the FFD packing. Next we
modify the optimal packing as follows: (1) move each remaining element [of U jc; P¥
to the position formerly occupied by f(/), leaving n empty bins since f(I/) does not
belong to a bin of J, and (2) for k=1,2, -+, n, move all items in Pf, to P¥. Now
delete U ;cra; from «. Thus we have constructed L'=L— U ;.;P; <L and M'=
M —n <M such that FFD (8, L") =fail, contradicting the presumed minimality of L
and M. O

As a simple consequence we can show that each bin P¥ for our minimal counter-
example must contain at least two elements.

LEMMA 3.2. If P¥ is any bin in the optimal packing of L, then |PF|=2.

Proof. Suppose P ={x}. Since x would fit in P; either the first item placed in P;
is as large as x, and P; dominates P¥, or x was not available when P; was packed.
Then x € P, j<i and P; dominates Pf¥. Thus Lemma 3.1 is contradicted in either
case. 0O

Since s(a) =1 for all a, we can conclude from this lemma that «; =2 for all i. For
any set A of items, let S(A)=Y.,.4 s(a).

LEMMA 3.3. If |P)| =1, then s(P;)>3.

Proof. Since @; =2 and s(P;)>Za; — 1, we have s(P,)>52)—1=2. 0

LEMMA 3.4. If s(P)) <s(P¥), then s(P;)) <a; <3.

Proof. 1f s(P;) <s(P¥), then Za —1<a; and s(P) <s(PH)=a;<3. O

*LEMMA 3.5. If P; is any bin of the FFD packing such that |P;| =2, then s(P,) =
S(P,')

Proof. Assume s(P;)<s(P¥). Then a; <3 by Lemma 3.4. Thus by Lemma 3.2
and the fact that any element has size =1 we have |P;| =|P}|=2. Let P¥ ={a, b}, s(a)=
s(b), Pi={u, v}, s(u)=s(v).

Suppose s(a)>s(u). Then a must have been packed before u. Thus a € P;, j <i.
By Lemma 3.2, 8; = %a,- =1 Moreover s(a) +s(b) <3 <% and hence b would fit in p.
Thus b € Py, k <j, else P; would dominate P}. But then P, must also contain an item
at least as large as a since S =% and a =3. Hence P, dominates P¥. In either case,
we contradict Lemma 3.1.

BOUNDS FOR MULTIFIT SCHEDULING 63

Suppose now that s(a)=s(u). If s(b)=s(v), then P; would dominate P¥. Thus
s(b)>s(v) and either b € P;, j <i, or s(u)+s(b)>B;. Noting that s(v) =5(h)—4, since
s(b)=3a; =3and s(v) = 1, we then have in the latter case,s(u)+s(v)>B; —i=Ta,-1>
a; = s(PF), contradicting our original hypothesis.

In the former case, u would have fitin P; since s (u) < s (P;) <s(P¥) < s<¥= %a,- =pB;
by Lemma 3.2. Thus P; contains both b and some item ¢ such that s(¢)=s(u)=
s(a).Hence P; dominates P}, again contradicting Lemma 3.1. O

The bins of P will be classified by type according to the following scheme. If,
after P; receives its first item, there is a total of k& items in P; when the next item is
placed in a bin that follows P;, then P; is called a k-bin. (Note that this excludes the
possibility of having 0-bins.) If no additional items are placed in P; it is called a regular
k-bin, otherwise it is called a fallback k-bin and the subsequent item, or items, are
called fallback items. Items in a regular k-bin will be called items of type X, the first
k items in a fallback k-bin will be of type Y and fallback items of type F.

The final step in preparation for the proof of the main result is to define a weight
function w. We do this by assigning the weight w(a) of an item, a, to be s(a) if a is
an item of type X; and s(a)=%". w(a) will be s(a)—5 if one of the following holds:

(1) a is a fallback item in a fallback 1- or 2-bin;

(2) a is in a regular 2-bin P, and P¥ contains no items of type X;;

(3) a is an item of type Y; in a fallback 1-bin P, and P§ contains no items of
type X1;

(4) a is an item of type Y, in a fallback 2-bin P; such that s(P;) >s(P¥)+2.

In all other cases w(a) = s(a) —i5. This information is summarized in Table 3.1.

We extend the function w to sets of items by w(A)=Y ., w(a). In the next
section we will show that w(P;) =w (P¥) for almost all bins. Using this we can prove
that the FFD algorithm will pack the items of L in bins at most 2 the size of the
optimal packing.

TABLE 3.1
Item types and weights

Bin type Item types Restriction Weights
Regular 1 X s(Py)= 1?4 s
s(P)>% s—1o
Fallback 1 Y, F P¥ contains no X s—1s-1
P¥ contains an X S =16, —%
Regular 2 X, P¥ contains no X; s—%
P¥ contains an X s—i5
Fallback 2 Ya, F s(P)=s(Pf)+2 S—10,5—%
s(P)>s(P¥)+3 s=% 53
Other Other - s — %

4. Proof of the main result. In this section we prove that using the MULTIFIT
algorithm for scheduling uniform processors produces a schedule whose length is at
most £ times the minimal schedule length, that is, FFD (8, = tay, L) =succeed for any
list L. In a sequence of lemmas preceding the result, we narrow the possibilities that
could occur in a minimal counterexample. Using the weight function w described in
§ 3, we show that in almost all cases, the sum of the weights of the items in an
FFD-packed bin P; is at least as great as the sum of those in the corresponding optimal

64 D. K. FRIESEN AND M. A. LANGSTON

bin P¥. Moreover, in all cases but one, if w(P;) <w (P¥) then the loss is compensated
for by a gain in an easily specified bin P;.

LEMMA 4.1, If |Pi|=1, then w(P) 2w (P}).

Proof. If a; <%, then by Lemmas 3.2 and 3.3, P} cannot contain an item of type
X1. Hence w(P¥)=a;—2(i5). In this case w(P))=s(P;)=%a;~1 and Zo; ~ 1= a; —
since a; =2, by Lemma 3.2.

If a; =%, w(P,) =s(P;) — 16 = Za; — 1 — 15. Thus all we need to show is that Za;
a;. This is true for all @; >3, and a; =¥ >4 O

LEMMA 4.2. If P;is a fallback 1-bin, then w(P;)=w (PF).

Proof. Suppose w(P;)<w(PF¥). (Note that the first item of P; must be larger than
half the bin size.)

Case 1. Suppose |P;|=k =3. Since P; is a fallback 1-bin, the first item placed
must be larger than the sum of the other k — 1 items. Hence s(P;) >2(k — 1) and also
s(Pi)>%ai -1.

Case 1A. Suppose P} contains no X; items. Then w(P;)=max Ga;—1 -2k,
2(k —1)—3k) and w(P¥) =a; -3 since |P¥| =2 by Lemma 3.2. If w(P¥)>w(P;) then

11
10>

7 1
sa;—1—sk<a;—53

and hence
a; <2+3k.
Also
2k —1)—3k <a;—
and hence

9, 9
sk —s5<a;.

Combining these yields

implying

k <33<3, acontradiction.

Case 1B. Suppose that there is exactly one X; item in P¥. Then w(P)=
max (Ja; —1—3(k —1) =10, 2(k —1)—5(k — 1) —15) and w(P})=a; —7o. As in Case 1A
above, we derive sk —%<2+3k and thus k <3, a contradiction.

Case 1C. Suppose P} contains two or more X; items. Then w(P)=
max(%ai—l-%(k—l)—-%, 2(k—1)—-%(k—1)—%)) and w(P,*)éai. If w(P,?")>w(P,~)
then sa, 1—5(k 1) —15< a; and hence a; <4+2k Also2(k —1)— %k —1)—i5<a; and
hence 2k —13< a;. Combmmg these yields k <52 <4. Thus k =3. From Lemma 3.3
we know that a; =75 since P; contains two X 1 items. This implies 8; = 2. Hence
s(P)>52+2=42 smce the first item is at least 5 the bin size. From the table, k =3
implies w(P;) =s(P;) —%. Thus w(P;) > 52 —3>3+3k >a; > w(PF).

Case 2. Suppose |P;|=2. Let P;={l, m}, s(l)=s(m).

BOUNDS FOR MULTIFIT SCHEDULING 65

Case 2A. Suppose P?‘ contains an item of type X;. Then according to the table,
w(P;) —s(P) H=z%a; — 1. Since w(P¥)=a; in any case, we are done if loi—-Bzw
(i.e. a; =%2). So assume a; <. Then, since 2(3)>%, P¥ cannot contain two items of
type X, by Lemma 3.3. Thus w(P) =s(P¥)—1o. If w(P;) <w(P}), then

7. 13 1
50; —10<Q; —10
and hence
o <3.
Thus the size of the X;-item, x, is less than 2 by Lemma 3.2.
Since P; is a fallback 1-bin, 2s(/)>Za; and hence
s(1)> 150, Z15(s (x) +1)>5(x).

We must now have s(/) > or [would be an item of type X, packed before x since
it would fit in any bin. Hence

wB)zs()+s(m)—5>2>3>a;
Case 2B. Suppose P contains no item of type X;. In this case, w(P;) =s(P;)—
and w(P¥)=s(P¥)—%. If w(P;) <w(P}), then

7 2 1
sa;—1-5<a;—53

and
ai<3.

Thus |P¥|=2 and we let P} ={a, b}, s(a) =s(b).

Since P; is a fallback 1-bin, s(I) >3(Ga;) = 5a;. If s(a)>s(l), then s(a) >15a; and
1=s5(b) <i5a;. From this it would follow that a, >0 contradlctmg a; < 3 We conclude
that s(a) =s (/). Also, we note that if s(/)>%, s(P;)>% and w(P,)>¥>a; >w(PF).
Thus s(/) =% and every Py, k <i, contains an ;tem =/ in size.

If s(b)=s(m), P; would dominate P, so we assume s(b) >s(m). Suppose b € Py,
k <i. Then P, contains an item ¢ with s(c)=s(/)=s(a) and P, dominates P¥. Thus
b must have been available when m was packed. Since it wasn’t used, # must not
have fit and

s()+s(b)>1a
while
sN+s(m)—3=wP)<wPf)=a;—3
Subtracting, we obtain
s(b)>3a; +s(m)—3=5,
and
a;>s(a)+s(b)>2s(b)>3, acontradiction. a

LEMMA 4.3. If |P;| =2 and P; is regular, then w(P;) = w (P¥).

Proof. Suppose w(P;) <w(P¥).

Case 1. Suppose P¥ contams an 1tem of type X;. Then a; =% since s(P¥)=3+1

by Lemma 3.3. w(P;) = s(P;) — 1270 -8 Ifa; = S,Za, €= 4, s0 we can assume a; <3,
|P¥|=2, and P¥ contains just one item of type X; (by Lemma 3.3), but then

66 D. K. FRIESEN AND M. A. LANGSTON

w(PF)=a; —15 and
fo—$<ai—1s
would imply
a; <4 contradicting a; = =
Case 2. Suppose P contains no item of type X;. Then

wP)Z5a;~5 and w(Pf)Sai-s

Solving for a; we get a; <3 if w(P;) <w(P¥). Thus |P}|=2. Let P} ={a, b}, s(a) =s(b)
and P; ={u, v}, s(u)=s(v).

Suppose s(a)>s(u). Since a; <3, s(a)<2. Then a€P;, j<i. If P; does not
dominate P, then P; cannot contain a second item as large as b. Thus either b € Py,
k <j,ors(a)+s(b)>B;= %2 In the former case, P, dominates P} since P, must contain
an item at least as large as a since a is available and would have fit in P,. Thus
s(a)+s(b)>pB; and P; is a fallback 1-bin since a is not an X item by assumption. By
Lemma 3.2, |P¥|=2.1f P¥ contains an X, item, o; =% by Lemma 3.3 and s(a) +s(b) >
%aj >3 > q;, which is impossible. Thus P can contain no X, items and w(a) =s(a)— i
Hence w(P¥)=a; —15. Since w(P,) =Za; -1, if w(P;) <w(P¥) we would have o; <.
But now s(a)+s(b) <3t <% and s(a)+s(b)< B;, a contradiction.

Suppose now that s(a)=s(u). If s(b) =s(v), then P; dominates P}, so we conclude
s(b)>s(v). Moreover, if b € P;, j <i, P; would dominate P} since P; must contain an
item at least as large as a. Thus

(i) s{u)+s(b)>p;
since b was available and not used. But s(u)+s(v)—2=w(P) <w(P¥)<a;—*%so
(ii) su)+s(v)<a;+5.

Subtracting (ii) from (i) we get s(b) > 2o, —t+s(w)=%and a; = 25(b) >"2>3, a contra-
diction. 0O

LEMMA 4.4, If P; is a fallback 2-bin, then w(P;) = w(PF).

Proof. Assume w (P;) <w (P}).

Case 1. Suppose |P;|=k =4. Since P; is a fallback 2-bin, the size of the second
item packed in P; is more than the sum of the sizes of the k —2 smallest items. Hence
s(P;)>3(k —2) and w(P;) > 3(k —2) — k. Also, as usual, w(P,) = B; — 1 —sk. If w(P¥)>
w(P;), then Ta;—1—-1tk <a; and hence a; <3+3k. Also 3(k —2)—§k < a; and hence
Br —6<a; Thus ¥k —6 <3 +3k. Solving this inequality for k yields k < 83 <4, contra-
dicting the assumption of Case 1.

Case 2. Suppose |P;|=3. Let P, ={u, v, m}, s(u) =s(v)=s(m).

Case 2A. s(P,)—s(P¥)=% Then w(P,)=s(P)—%=%a;— 1. If a; =7, then w(P,) =
ta;—tz=a; Zw(P}). Hence we may assume a; <3, |P¥|=3, and P} cannot contain
more than one item of type X, since each such item has a size exceeding 2. Thus
w(P¥) = a; —1g, and if w(P;) <w(P¥) we have

s(P)<ai+75

since w(P,) =s(P;)—2.

Since P; is a fallback 2-bin, s(u)+2s(v)>%a;. But s(u)+s@)+s(m)<a; +15.
Subtracting we get s (v) >3, +s(m)—15=3,since a; = 3. s(P;) = 2s(v) + 1 =4 and, since
a; <3, 4<a; +15<’s, which is impossible.

Case 2B. s(P;))—s(P¥)>3. Then w(P))=s(P,)—32>s(PF)zw(PF). O

BOUNDS FOR MULTIFIT SCHEDULING 67

LEMMA 4.5. If |Pi| =4, then w(P)) = w(PF).

Proof. Lemmas 4.2 and 4.4 take care of the cases in which P; may be a fallback
1- or 2-bin. Thus for any a€ P, w(a)=s(a)— fo=10s(a). Hence w(P)=15s(P;)=
(&) Gai —1). It w(P,) <w(P¥), then

9 7
oo — 1)<y
and
13 9 45
500 <10, a; <13.

Then %a; <$ <5 and |P;| = 4. But then w(P)) =s(P)—16=4—16>5>w(P¥). O

LEMMA 4.6. If w(P;,)<w(P}¥), then P; is a regular 3-bin, |P*|—2, P¥ contains
exactly one X, type item, and o; <%

Proof. Suppose w(P;)<w(PF). From Lemmas 4.1-4.5 we know that P; must be
a regular 3-bin. Hence w(P;) = s(P)—15>%a;—1—15 and a; = w(PF) > w(P) implies
a; ='7. Consequently |P¥|=3, and P} cannot contain two items of type X; or one
such item and two other items. If |P¥|=3, then the fact that, by Lemma 3.5,
s(P,)>s(P¥) implies w (P;) > w(P¥) since w(P})=s(P§)—15. If |P¥|=2 and P} con-
tains no X;-type item, then w(P¥)=a; —% and

—1-15<a;—

implies a; <! But thens(P)=3 implies Za;—1=3 and hence a; =%, and so we have
our final contradiction. 0

LEMMA 4.7. Let w(P;) <w(P¥) and Pt ={x, z}, x e P, j <I, x an X, item, z not.
Then there is at most one such bin Py for which w(Pp)+w(P;) <w(P¥)+w(PF).

Proof. From Lemma 4.6 we know that if w(P;)<w(P¥), P; is a regular 3-bin,
P¥ ={x, z} where x is an item of type X; and a; <L Thus P={x},s(x)=a;—1 =2
Since s(x)>%a;— 1 we must have o; <53 and |P¥|=2. Let P¥ ={a, b}, s(a) =s(b). If
a were of type X, «a; >2+1=2>% Hence, for each of a, b, and z, w(*) =s(*)—15
If any of them satisfy w (*) = s(*) —3, then

w(Pr)+w(Py) > (3)ar +a;)—2—15,
w(P}k)+w(P,*)§a1 +C¥j—
If w(Pr)+w(P)<w(PF)+w(PF), then
19

GICT +a;) <16

and
19
oy +C¥j< 4.

Thus a; <P-2=14 < d Buta;=2+1= % and we conclude that none of a, b, and z
satisfies w (*) = s (*) — 5 (hence all satisfy w (*) = s (*) —15).

Let P be the ﬁrst regular 3-bin. Then unless one of a, b, z is placed before Py,
P, UP; would dominate Pf U P} since P, contains the three largest available items.
Thus at least one of these three must precede the regular 3-bins. If s(a) +s(b)+s(z)=
£ then a; +a;=5 by Lemma 3.3 and w(P;) +w(P;)) =B, +8;— 2—-S=a; +a;— 2=
w(PF)+ w(P*) We see that the maximum size for the item precedmg the regular
3-bins is . If such an item were a fallback item, its weight would be % less than its
size. Therefore it is a regular item. The only remaining possibilities are that the item
be in a regular 2-bin or a fallback 2-bin since if the largest item placed in a bin has
size =%, the bin cannot be a regular 1-bin, or a fallback 1-bin since the first item
packed in a fallback 1-bin must be larger than half the bin size.

68 D. K. FRIESEN AND M. A. LANGSTON

Suppose the bin, P;, containing this item is a fallback 2-bin. Then since a third
item of size =¢ would not fit, while one of size =1 does fit, Za; —s(P;)<% and
s(P)—s(PF)>2, causing each item in P; to have weight % less than its size, a contra-
diction.

The last possibility is for P; to be regular 2-bin. If P} contains no X;-type item,
the items in P; have weight % less than their size. Thus P} must contain an X;-type
item a; >%+1=% and Bi =2 If both items in P; are less than £ in size, s(P;) would
be less than B; — 1. Thus P; can contain only one such item and hence there can be at
most one such 2-bin, namely the last regular 2-bin preceding Py, since all later bins
have size at least 35 and 33 <%2. O

The proof of the main result is now easy.

THEOREM 4.1. FFD (8, = %a;, L) = succeed for any list L.

Proof. 1If the theorem fails we may choose L to be a minimal counterexample.
Using the weight function w, and grouping by FFD bins,

M 1
w(l)= E,l W(PI)+1—T6

since the last item has size 1 and weight 1—15. Using the optimal bins,
M
w(L)= Y w(P}).
i=1

For the exceptional bin P; mentioned in Lemma 4.7,
w(Pr)=s(P;)—15, since P;isa regular 3-bin,
and
w(PF)=s(P¥)—1s, since P¥ contains exactly one X item.
Since s(P;) =Zs(Pf) by Lemma 3.5 we have
w(Pr)Zw(P¥)-s.

For the remaining bins, w (U .y P;) Zw(U ;. P¥). Thus
M M 1 1
w(l)=Y wP)+1-16= ¥ wPf)-3+1-1>w(L),
i=1 i=1

and we have a contradiction. 0O

5. Remarks. In the previous section we have shown that our version of MULTI-
FIT for uniform processors will produce a schedule whose length is at most Z times
the optimum. In the arguments used, enough slack exists for the bound to be tightened.
However, the difference is very slight and even a bound of 1.39 would entail
significantly more work. The worst example we know of, Example 1, is a little more
than 1.341 times optimal. (The interested reader may note that Example 1 can be
modified to show that Ro=anyr such that 2r®+4r*—3r—8=0.) Thus we can only
conclude that 1.341<R,<1.4.

At this point, it may be appropriate to mention a few other implementation
considerations. We assume our bins are sorted in nondecreasing order initially. In
terms of worst-case performance this is preferable to the reverse ordering. As Example
2 shows, sorting the bins in nonincreasing order allows instances for which the FFD
algorithm fails for expansion factors up to 1.5, while for our ordering, Theorem 4.1
insures that Ro=1.4.

BOUNDS FOR MULTIFIT SCHEDULING 69

Example 1. FFD packing with nondecreasing bin size. N =12, M = 6. Item sizes
are 1.683, 1.683, 1.683, 1.299, 1.299, 1, 1, 1, 1, 1, 1, 1. Optimal bin sizes are 2, 2,
2,2.683,2.982,2.982.

For R in [1, 1.341], FFD fails. See Figs. 1(a) and (b).

7

7
/;/jc 1.299 :
1.683 1299)
3 1 2

FIG. 1(a). Attempted FFD packing with R in [1, 1.341]. Item of size 1 left over.

1 1.299
1
1.683 1.683
1
3 1 2

F1G. 1(b). Optimal packing.

Example 2. FFD packing with nonincreasing binsize. N = M + 1. Item sizes are
2,2—¢,2-2¢,2-3¢,: -+, 14+2¢, 1+¢, 1, 1. Bin sizes are 2, 2, 2—¢, 2—2¢, + -,

1426, 1+¢.
FFD fails for R in
. (3 3—e 3-2¢ 2+¢ 2 3—-¢ . 3
[1,m1n{2, 2 ' 2—e -,1+2€,1+8}— > whlchapproacheszaSe—»O).

See Figs. 2(a) and (b).

4 Z

.

2 2-e 2-2¢

.

2-3¢ o 1+e 1

F1G. 2(a). Attempted FFD packing with R in [1, 1.5). Item of size 1 left over.

1 1+2¢ 1+¢

F1G. 2(b). Optimal packing.

70

[CGI]
(Cs]
[Fr]
[GIS]
[GI]
[Gr]
[HS)

[Jo]
[LL]

(U1

D. K. FRIESEN AND M. A. LANGSTON

REFERENCES

E. G. COFFMAN, JR., M. R. GAREY AND D. S. JOHNSON, An application of bin-packing to
multiprocessor scheduling, this Journal, 7 (1978), pp. 1-17.

Y. CHO AND S. SAHNI, Bounds for list schedules on uniform processors, this Journal, 9 (1980),
pp. 91-103.

D. K. FrRIESEN, Tighter bounds for the MULTIFIT processor scheduling algorithm, this Journal, to
appear.

T. GONZALES, O. H. IBARRA AND S. SAHNI, Bounds for LPT schedules on uniform processors,
this Journal, 6 (1977), p. 155-166.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

R. L. GRAHAM, Bounds on multiprocessor timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416-429.

R. HOrROWITZ AND S. SAHNI, Exact and approximate algorithms for scheduling non-identical
processors, J. Assoc. Comput. Mach., 23 (1976), pp. 317-327.

D. S. JOHNSON, Fast algorithms for bin packing, J. Comput. System Sci., 8 (1974), pp. 272-314.

J. W.S. Liu AND C. L. L1u, Bounds on scheduling algorithms for heterogeneous computing systems,
Proceedings of the 1974 IFIP Congress, 1974, pp. 349-353.

J. D. ULLMAN, Complexity of sequencing problems, in Computer and Job-Shop Scheduling Theory,
E. G. Coftfman, ed., John Wiley, New York, 1976, Chap. 4.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0005 $01.25/0

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK
IN O(nlog’ (n)) TIME*

JOHN H. REIFY

Abstract. Let N be a planar undirected network with distinguished vertices s, ¢, a total of n vertices,
and each edge labeled with a positive real (the edge’s cost) from a set L. This paper presents an algorithm
for computing a minimum (cost) s-¢ cut of N. For general L, this algorithm runs in time O(n log? (n)). For
the case when L contains only integers§no(”, the algorithm runs in time O(n log (n) log log (n)). Our
algorithm also constructs a minimum s-¢ cut of a planar graph (i.e., for the case L ={1}) in time O(n log (n)).
Our algorithm can also be used to compute a minimum cut for a general undirected planar network.

The fastest previous algorithm for computing a minimum s-¢ cut of a planar undirected network (Itai
and Shiloach [SIAM J. Comput., 8 (1979), pp. 135-150]) has time O(n?log (n)); the s-t cut is a byproduct
of the maximum flow computed by their algorithm. The best previous time bound for minimum s-¢ cut of
a planar %raph (Cheston, Probert and Saxton [report, Dept. Computer Science, Univ. Saskatchewan, 1977])
was O(n”).

Key words. planar, network, minimum s-¢ cut, graph algorithm

1. Introduction. The importance of computing a minimum s-¢ cut of a network
is illustrated by Ford and Fulkerson’s [6], [7] theorem which states that the value of
the minimum s-¢ flow of a network is precisely the minium s-¢ cut. The best known
algorithm (Sleator [12] and Sleator and Tarjan [13]) for computing the maximum s-¢
flow or minimum s-¢ cut of a sparse directed or undirected network (with n vertices
and O(n) edges) has time' O(n?log(n)). This paper is concerned with a planar
undirected network N, which occurs in many practical applications.

Ford and Fulkerson [6], [7] have an elegant maximum s-¢ flow algorithm for the
case N is (s, t)-planar (both s and ¢ are on the same face) which when efficiently
implemented by priority queues as described in Itai and Shiloach [9] has time
O(n log (n)). Moreover, O(n) executions of their algorithm suffice to compute the
maximum flow of a general planar network in total time O(n* log (n)). Also, Cheston,
Probert and Saxton [3] have an O(n?) algorithm for the minimum s-¢ cut of a planar
graph and Shiloach [9] gives an O(n log (n))* algorithm for the minimum cut of a
planar graph.

Let QL(n) be the asymptotic time complexity to maintain a priority queue of
O (n) elements with costs from a set L of nonnegative reals, and with O(n) insertions
and deletions. For the general case, Q. (n) = O(n log (n)) as described in Aho, Hopcroft
and Ullman [1]. For the special case when L is a set of positive integers=n °", Boas,
Kaas and Zijlstra [2] show Q. (n) = O(n log log (n)). Itis obvious that if L is of constant
cardinality then Q.(n) = O(n).

A key element of the Ford and Fulkerson [6], [7] algorithm for (s, t)-planar
networks was an efficient reduction to finding a minimum cost path between two
vertices in a sparse network. Dijkstra [4] gives an algorithm for a generalization of
this problem (to find a minimum cost path from a fixed ‘“source” vertex s to each
other vertex). Dijkstra’s algorithm may be implemented (see Aho, Hopcroft and

* Received by the editors February 27, 1981, and in revised form February 1, 1982. This work was
supported in part by the National Science Foundation under grant NSF-MCS79-21024 and the Office of
Naval Research under contract N00014-80-C-0647.

1 Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.

! We assume throughout this paper that our machine model is a unit cost criteria RAM (see Aho,
Hopcroft and Ullman [1]).

71

72 JOHN H. REIF

Ullman [1]) in time O(Q(n)) for a sparse network with n vertices, and L is the set
of nonnegative reals labeling the edges.

Our algorithm for computing the minimum s-¢ cut of a planar undirected network
has time O(Q.(n)log(n)). This algorithm also utilizes an efficient reduction to
minimum cost path problems. Our fundamental innovation is a ‘‘divide and conquer”
approach for cuts on the plane.

The paper is organized as follows: The next section gives preliminary definitions
of graphs, networks, minimum cuts, maximum flows, and duals of planar networks.
Section 3 gives the Ford-Fulkerson algorithm for (s, ¢)-planar graphs. Section 4
describes briefly an efficient algorithm due to Itai and Shiloach [9] for finding a
minimum cut intersecting a given face of the primal network. Our divide and conquer
approach is described and proved in § 5. Section 6 presents our algorithm for minimum
s-t cuts of planar networks. Finally, § 7 concludes the paper.

2. Preliminary definitions

2.1. Graphs. Let a graph G =(V, E) consist of a vertex set V and a collection
of edges E. Each edge e € E connects two vertices u,v €V (edge e is a loop if it
connects identical vertices). We let e = {u, v} denote edge e connects u and v. Edges
e, e' are multiple if they have the same endpoints. Let a path be a sequence of edges
p=e1, " ,e such that e, ={v,_1,v;} for i=1, .-,k (we say p traverses vertices
vo, * * *, Ux). Let p be a cycle if vo = vy (cycles containing the same edges are considered
identical). A path p'is a subpath of p if p' is a subsequence of p. Let G be a standard
graph if G has neither multiple edges nor loops and is triconnected. Generally we let
n =|V| be the number of vertices of graph G. If G is planar, then by Euler’s formula
G contains at most 6n — 12 edges.

2.2. Networks. Let an undirected network N = (G, c¢) consist of an undirected
graph G =(V, E) and a mapping ¢ from E to the positive reals. For each edge
e €v,c(e) is the cost of e. For any edge set E'c E, let c(E') =Y., c(e). Let the cost
of pathp=ey, -+, e, be c(p) =Zf=1 c(e;). Let a path p from vertex u to vertex v be
minimum if c(p)=c(p') for all paths p' from u to v. Let N =(G, ¢, s, t) be a standard
network if (G, c¢) is an undirected network, with G = (V, E) a standard graph, and s, ¢
are distinguished vertices of V' (the source, sink, respectively). Note that triconnectivity
can easily be achieved by adding O (n) edges with cost 0.

2.3. Minimum cuts and maximum flows in networks. Let N =(G, ¢, s, t) be a
standard network with G =(V, E). An edge set X < E is an s-t cut if (V, E—X) has
no paths from s to t. Let s-t cut X be minimum if ¢(X)=c(X') for each s-t cut X'.
See Fig. 1.

F1G. 1. A network N with source s and sink t. The heavily drawn edges indicate a minimum s-t cut
{{v2, va}, {v3, va}, {V4s 1), {04, V7}, {V6, 073} with cost S.

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 73

Let A be the set of directed edges {(u, v)|{u, v}€ E}. A function f mapping A to
the nonnegative reals is a flow if

(i) Forallee€ A, f(e)=c(e), and

(ii) For all v e V, if v&{s, t} then IN (f, v) = OUT (f, v), where

IN(f,v)= ¥ f(u,v) and OUT(f,v)= Y f(v,u).

(u,v)eA (v,u)eA

The value of the flow f is OUT (f, s) —IN (f, t). The following motivates our work on
minimum s-¢ cuts:

THeOREM 1 (Ford and Fulkerson [7]). The maximum value of any flow is the
cost of a minimum s-t cut.

2.4. Planar networks and duals. Let G = (V, E) be a planar standard graph, with
a fixed embedding on the plane. G partitions the plane into connected regions. Each
connected region is called a face and has a corresponding cycle of edges which it
borders. For each edge e € E, let D (e) be the corresponding dual edge connecting the
two faces bordering e. Let D(G) = (%, D(E)) be the dual graph of G, with vertex set
% =the faces of G, and with edge set D(E) =U..g D(e). Note that the dual graph is
not necessarily standard (i.e., it may contain multiple edges and loops), but is planar.
Let a cycle g of D(G) be a cut-cycle if the region bounded by g contains exactly one
of s or t. Note that a cycle is a cut-cycle independent of the way in which the dual
graph is embedded in the plane, although a particular embedding may change which
of s or ¢t the cycle contains. See Figs. 1 and 2. The following proposition is trivial to
derive:

PRrOPOSITION 1. D induces a 1-1 correspondence between the s-t cuts of G and
the cut-cycles of D(G).

Let N=(G,c,s,t) be a planar standard network, with G =(V, E) planar. Let
the dual network D(N) = (D(G), D(c)) have edge costs D(c), where the edge cost of
each dual edge D(e) is the cost of the original edge e € E. (Generally we will use just
¢ in place of D(c) where no confusion will result.) See Fig. 3. For each face F; € %,
let a cut-cycle q in D(N) be F-minimum if q contains F; on (rather than inside) the
cycle q and c(q) =c(q’) for all cut-cycles q' containing F;. The next proposition is easy
but tedious to prove.

PROPOSITION 2. A minimum s-t cut has the same cost as a minimum cost cut-cycle
of D(G).

N

F1G. 2. The same planar network N as in Fig. 1, with faces Fy, -, Fyo, and with a nonminimal s-t
cut X ={{v,, v3}, {2, va}, {v4, v6}, {vs, v7}} Of cost 6, indicated by heavily drawn edges.

74 JOHN H. REIF

DIN)

F1G. 3. The dual network D(N) derived from the planar network N of Figs. 1 and 2. The heavily drawn
edges give an Fy-minimum cut cycle D(X) = {{F10, F3}, {F3, Fa}, {F2, Fe}, {Fs, F10}} which is the dual of the
s-t cut X given in Fig. 2.

3. Ford and Fulkerson’s minimum s-¢t cut algorithm for (s, ¢)-planar
networks. Let N=(G,c,s,t) be a planar standard network. G (as well as N) is
(s, t)-planar if there exists a face F, containing both s and t. Let planar network N’
be derived from N by adding on edge e, connecting s and ¢ with cost 0. Let ¢, be
embedded onto a line segment from s to ¢ in Fy, which separates F, into two new
faces F; and F,. Ford and Fulkerson [6] have the following elegant characterization
of the minimum s-¢ cut of (s, ¢)-planar network N.

THEOREM 2. There is a 1-1 correspondence between the s-t cuts of N and the
paths of D(N') from F, to F, and avoiding D (e,). Furthermore, this correspondence
preserves edge costs. Therefore, the minimum s-t cuts of N correspond to the minimum
cost paths in D(N') from F, to F;.

By use of Dijkstra’s [4] shortest path algorithm, we have:

COROLLARY 2. A minimum cut of (s, t)-planar network N with n vertices may be
computed in time O(Q)(n)), where L =range (c).

Note that applications of this corollary include the O(n log (n)) time minimum
s-t cut algorithm of Itai and Shiloach [9] for (s, ¢)-planar undirected networks, and
the O(n) time minimum s-¢ cut algorithm of Cheston, Probert and Saxton [3] for
(s, t)-planar graphs.

4. An efficient algorithm for F-minimum cut cycles. Let N =(G,¢,s,t) be a
planar standard network, with G =(V, E) and L =range (c). Our algorithm for
minimum s-¢ cuts will require efficient construction of an F-minimum cut-cycle for a
given face F. For completeness, we very briefly describe here an algorithm for this,
due to Itai and Shiloach [9].

Let % be the set of faces bordering s and let %, be the faces bordering ¢. Let a
w (s, t) path be a minimum cost path in D(N) from a face of %, to a face of %..

ProrosITION 3 (Itai and Shiloach [9]). Let w be a (s, t) path traversing faces
Fi, -+ ,Fy Let D(X;) be a Fi-minimum cut-cycle of D(N) fori=1,--+,d. Then X,
is a minimum s-t cut of N, where ¢(X;,)) =min {c(X))|i=1, -, d}.

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 75

To compute a u (s, ¢) path in time O(Q.(n)), let M be the planar network derived
from D(N) by adding new vertices v, v, and an edge connecting v, to each face in
%, and an edge connecting each face in %, to v,. Let the cost of each of these edges
be 1. Let p be a minimum cost path in M from v, to v,. Then p, less its first and last
edges, is a w (s, t) path. See Fig. 4.

F1G. 4. Network M derived from the dual network D(N) given in Fig. 3. The heavily drawn edges are
the w (s, t)-paths.

Let u be a w(s, t) path in D(N) traversing faces Fi, - - -, F,. By viewing u as a
horizontal line segment with s on the left and ¢ on the right for each edge D(e) of
D(N) which is not in w(s, t) but is connected to a face F;, D(e) may be considered
to be connected to F; from below or above (or both). Let ' be a copy of u traversing
new vertices xi, - * +, xq. Let D' be the network derived from D (N) by reconnecting
to x; each edge entering F; from above. See Fig. 5. If p is a path of D’, then a
corresponding path p in D (N) is constructed by replacing each edge and face appearing
in w' with the corresponding edge or face of w. Clearly, c(p) =c(p).

THEOREM 3 (Itai and Shiloach [9]). If p is a minimum cost path connecting F;
and x; in D', then p is an Fr-minimum cut-cycle of D (N).

By applying Corollary 2 to Theorem 3 we have:

CoROLLARY 3. This is an O(QL(n)) time algorithm to compute an F-minimum
cut-cycle for any face F; of a u(s, t) path in D(N).

Note that for restricted L this may be more efficient than the O(n log n) upper bound
given by Itai and Shiloach [9]; for example this gives an O(n) time algorithm for an
F-minimum cut-cycle of a planar graph.

5. A divide and conquer approach. Let u be a w(s, ¢) path of D(N) traversing
faces Fy, -+, F, as in § 4. Note that any s-f cut of planar network N must contain
an edge bounding on a face in {Fi, - -, F,}. The algorithm of Itai and Shiloach [9]
for computing a minimum s-t cut of N is to construct an Fi-minimum cut-cycle D (X;)
in D(N) for each i=1,--:,d. This may be done by d = O(n) executions of the
O(Qy(n)) time algorithm of Corollary 3. Then by Proposition 3, X, is a minimum s-¢

76 JOHN H. REIF

FIG. 5. Network D' derived from dual network D(N) of Fig. 3 using the (s, t)-path of Fig. 4. The
heavily drawn edges give the F>-minimum cut-cycle D(X) of Fig. 3.

cut where c¢(X;,)=min{c(X1), *-,c(X,)}. In the worst case, this requires
O(Qvr(n) - n) total time. This section presents a divide and conquer approach which
utilizes recursive executions of an F;-minimum cut algorithm.

LeEmMMA 1. Let F, F; be distinct faces of u, with i <j. Let p be any F-minimum
cut-cycle of D(N) such that the closed region R bounded by p contains s. Then there
exists an Fi-minimum cut-cycle q contained entirely in R. (See Fig. 6.)

als,
L

FIG. 6. F1,Fs,- -+, Fyis a u(s, t) path in D(N). p=(F}, x4, x2,* * *, xi) is a F-minimum cut-cycle
enclosing region R. The Fi-minimum cut-cycle q = (F,, y1, y2,* * * , Y1) is contained in R.

region R

Proof. Let q be any F-minimum cut-cycle. Let q' be the cut-cycle derived from
q by repeatedly replacing subpaths of g connecting faces traversed by u with the
appropriate subpaths of u (only apply replacements for which the resulting q' is a
cut-cycle). Observe c(q') =c(q) (else we can show w is not a w (s, t) path). Let R’ be
the closed region bounded by ¢'. Suppose R’ Z R. Then there must be a subpath g, of
q' connecting faces F°, F® of p such that q; only intersects R’ at F* and F°. Let p;
be the subpath of p connecting F* and F® in R’. We claim c(p1) =c(q1). Suppose
¢(p1)>c(q1). By our construction of q', either ¢, avoids F}, F; = F* or F;=F". In any

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 77

case, we may derive a cut-cycle p' from p by substituting q; for p;. But this implies
c(p")<c(p), contradicting our assumption that p is an F;-minimum cut-cycle. Now
substitute p;, for q; in q'. The resulting cut-cycle is no more costly than q’, since
c(p1)=C(q1). See Fig. 7. The lemma follows by repeated application of this
process. [

F1G. 7. F1,Fy,+ -+, Fyis a u(s, t)-path, p =p, * p» is a cut-cycle containing F;. q = q; * 4> is a cut-cycle
containing F;. If c(q1) <c(p1), then p' =q1 * q2 is a cut-cycle containing F; and with cost c(p") <c(p).

The above lemma implies a method for dividing the planar standard network N,
given an s-t cut X. The network derived from N by deleting all edges of X can be
partitioned into two networks N°, N, where no vertex of N° has a path to ¢, and no
vertex of N has a path to s. Also, each edge e € X must have connections to a vertex
of N° and a vertex of N'.

Let No=DIVIDE (N, X, s) be the standard planar network consisting of N*,

(i) with a new vertex t, and
(ii) a new edge {u, to} with cost c¢({u, v}), for each edge {u, v}€ X such that u is
a vertex of N° and v is a vertex of N*;
(iii) finally (to insure N is standard) merging multiple edges and setting the cost
of each resulting edge to be the sum of the costs of the multiple edges from
which it was derived. See Figs. 8 and 9.

G

g N

° o — C) 2Ci ()

Fig. 8. The merging into a single edge of multiple edges connected to vertex x and vertex y.

Similarly, let N; =DIVIDE (N, X, t) be the standard planar network consisting
of N,
(i) with a new vertex s;, and
(ii) for new edge {s1, v} with cost c¢({u, v}), for each edge {u, v} X such that u
is a vertex of N° and v is a vertex of N', and finally applying step (iii) above.
See Fig. 9.

78 JOHN H. REIF

F1G. 9. The networks No=DIVIDE (N, X, s) and N, = DIVIDE (N, X, t) derived from the network N
and s-t cut X given in Fig. 2. No and N, will be further subdivided by the cuts Xy, X, respectively, indicated
by heavily drawn edges.

Let E be the set of edges of network N and let Y be a subset of the edges of
Ny=DIVIDE (N, X, s) or of N;=DIVIDE (N, X, t). Then let E(Y) be the set of
edges of E that were mapped into edges of Y when N, or N; was created. The next
theorem follows immediately from the above Lemma 1 and Proposition 3.

THEOREM 4. Let X be an s-t cut of a planar standard network N such that D (X)
is an F-minimum cut-cycle, for some face F in a w(s,t) path of D(N). Let X, be a
minimum s-to cut of No=DIVIDE (N, X, s) and let X1 be a minimum si-t cut of
N;=DIVIDE (N, X, t). Then E(X,) or E(X) is a minimum s-t cut of N.

6. The minimum s-¢ cut algorithm for planar networks. Theorem 4 yields a very
simple but efficient divide and conquer algorithm for computing minimum s-¢ cut of
a planar standard network. We assume the Ford and Fulkerson [6] algorithm given
in § 3:

(i) (s,t)-PLANAR-MIN-CUT(N) which computes a minimum s-¢ of (s, ¢)-
planar standard network N in time O(QL(n)).
We also assume algorithms (given in § 4):
(ii) m (s, t) PATH(D(N)) computes a w (s, ¢t) path of D(N) in time O(Q¢(n)).
(iii) F~-MIN-CUT(N, F;, u) computes q, where D(q) is an F-minimum cycle of
N (for any F; in w (s, t) path w), in time O(QL(n)).

RECURSIVE ALGORITHM PLANAR-MIN-CUT(N, w).
input planar standard network N =(G,c, s, t), where G =(V, E), and w(s, t)

path u.

begin
Let Fy, - - -, F,; be the faces traversed by u.
if d =1 then return (s,)-PLANAR-MIN-CUT (N);
else begin

X « F-MIN-CUT (N, F 14/2), &)
No«DIVIDE (N, X, s); N, « DIVIDE (N, X, t);
Let uo and w1 be the subpaths of w contained in N,
and N, respectively
X1« PLANAR-MIN-CUT (N, u1); Xo« PLANAR-MIN-CUT (Ny, ®o)
if ¢ (E(Xy)) =c(E (X)) then return E (X)) else return E(X,);
end;
end

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 79

Associated with this recursive algorithm we define a call tree T whose root is N
and whose descendants are the networks input to the algorithm on recursive calls.
Let d be the number of faces traversed by w, the w (s,) path of N. If d =1 then root
N has no children. Otherwise, N has left child N, and right child N, as computed
in the algorithm, and so on.

For any w €{0, 1}* inductively let N, =(G., c., So, t,) be the planar standard
network and let u, be the w(s,, t,) path in N, defined by some recursive calls to
PLANAR-MIN-CUT. Suppose PLANAR-MIN-CUT (N,, u,,)is called. If ., contains
only one face, then let N, and N,; be empty networks, and let w0 and u,,; be empty
paths. Else let X, be the set s,,-f, cut of N, computed by the call to F-MIN-CUT(.),
let N0, N,1 be the planar standard networks constructed by the calls to DIVIDE,
and let w0, u,1 be the subsets of u contained in N0, N,1. Then it is easy to verify
that w0 is @ w(s,0, two) path in N,o and w1 is a u(s,1, f,1) path in N, and the
length of .o and the length of w, are each =M3d, 7, where d,, is the length of wu..
Hence there can be no more than Mog (d)™ mutually recursive calls, so the call tree
T has depth at most "log (d)"="log (n)7, where n is the number of nodes in N.

Let m be the number of edges of N and let m,, be the number of edges of N,,.
The following theorem provides an upper bound of 2m +2" on the number of edges
of networks of depth r in the call tree T.

THEOREM 5. For eachr =0, Y, 0.1y Mo =2m +2".

Proof. Note that by definition of DIVIDE, the edges of N,o or N, are derived
from disjoint sets of edges of N,. Fix an edge e of N. Let ¢,, be the edge (if it exists)
of N, derived from a set of edges of N containing e. Let edge e contribute to N,, if
e #{s., t,} and let e fully contribute to N, if e, contains neither s, nor f,. For each
rz0,let B,(e) ={e,|es, # {Su, t.} and w €{0, 1}'}. Thus |B,(e)| is the number of networks
of depth r in T to which edge e contributes.

Let the strings of {0, 1}* be ordered lexicographically. We require a technical
lemma.

LEMMA 2. |B,(e)| =2, and furthermore if B,(e) ={e., e.} for w <z, z €{0, 1}, then
edge e, is connected to t, and edge e, is connected 10 s.,.

This lemma states that e contributes to at most two networks of depth r in T,
and e fully contributes to no two distinct networks of depth r. For example, consider
edge ¢ ={v,, v3} of network N given in Fig. 2. Edge e fully contributes to N. In Fig.
9, edge e contributes to Ny by edge eo={v,, to} and also contributes to N; by edge
e1={s1, v3}. Furthermore, in Fig. 10 edge ¢ contributes to Noo by edge eqo = {v2, too}
and in Fig. 11 edge e contributes to N1; by edge €11 ={s11, v3} but e contributes to
neither Ny; nor Nyo.

G@
Gor (1)

eAa 3

18

Noo Not
Fi1G. 10. Networks Noo=DIVIDE (Ny, Xy, s9) and Ny, =DIVIDE (Ny, Xy, to) derived from network
Ny with s-t, cut X, of Fig. 9.

80 JOHN H. REIF

F1G. 11. Networks N1o=DIVIDE (Ny, X1, s1) and Ny; =DIVIDE (Ny, X1, t;) derived from network
N, with s,-t cut X1 of Fig. 9.

Proof of Lemma 2 by induction. Suppose for some fixed ro, this lemma holds for
all r =ro. If B,,(¢) = & then clearly B,,.1(e) = &. Suppose 1 =|B,,(e)| =2 and consider
any e, € B, (e). If e, £ X, then by definition of DIVIDE, either e, =e,o appears in
N, or e, = e, appears in N, 1, but not both. On the other hand, if e, € X,,, then e,o
appears in N, connected to ¢,o and also e,; appears in N,; connected to s,1. In
either case, if |B,,(¢)|=1, then |B,,.1(e)| =2. Otherwise suppose |B,,(¢)|=2 so there
exists some e, € B, (¢) with w <z. By the induction hypothesis, e, is connected to ¢,
and e, is connected to s,. Thus for j =0, 1 edge e,,; (if it exists) is connected to ¢,; and
edge e,; (if it exists) is connected to s,;. Hence if e, € X,, then e,1 = {s,1, #,1}. In each
case, |B,+1(e)|=2. O

To complete the proof of Theorem 5, observe that |{{s., t,}lw € {0, 1}'}| = 2". Hence

m.s(3 |B,(e)|> + s 1} €00, 1} S2m +27
we{0,1}" ecE
by Lemma 2. 0O

THEOREM 6. Given a planar standard network N = (G, c, s, t) with L =range (¢),
and w is a u(s,t) path of N then PLANAR-MIN-CUT (N, u) computes a minimum
s-t cut of N in time O(Qr(n) log (n)).

Proof. The total time cost is

Y 0@Qumy)= ¥ O(Qu2m+2) byTheorems5,

we{0,1}" 0=r=rlog(n)”
0=r="log(n)”

=0(Qr(n)log(n)) since 2m +2"%" = O(n). 0

By known upper bounds on the cost of maintaining queues (as discussed in the
Introduction), we also have:

COROLLARY 4. A minimum s-t cut of N is computed in time O(n log® (n)) for
general L (i.e., a set of positive reals), in time O(n log (n) log log (n)) for the case where
L is a set of positive integers bounded by a polynomial in n and in time O(n log (n))
for the case where N is a graph with identically weighted edges.

7. Conclusion. We have presented a divide and conquer method for computing
a minimum s-¢ cut of a planar undirected network which improves on the running
time of the algorithm of Itai and Shiloach [9] by a factor of n/log n. An additional
attractive feature of this algorithm is its simplicity, as compared to other algorithms
for computing minimum s-¢ cuts for sparse networks (Galil and Naamad [8], Shiloach
[10] and Sleator and Tarjan [13]).

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 81

[1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.
[2] P. vAN EMDE BoAs, R. KAAS AND E. ZIJLSTRA, Design and implementation of an efficient priority
queue, Math. Systems Theory, 10 (1977), pp. 99-127.
[3] G. CHESTON, R. PROBERT AND C. SAXTON, Fast algorithms for determination of connectivity sets
for planar graphs, Dept. Computer Science, Univ. Saskatchewan, 1977.
[4] E. DUKSTRA, A note on two problems in connections with graphs, Numer, Math., 1 (1959), pp. 269-271.
[5] S. EVEN AND R. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.
507-518.
[6] C. FORD AND D. FULKERSON, Maximal flow through a network, Canad. J. Math., 8 (1956), pp.
399-404.
Al , Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962.
[8] Z. GALIL AND A. NAAMAD, Network flow and generalized path compression, in Proc. of Symposium
on Theory of Computing, Atlanta, Georgia, 1979.
[9] A.ITAI AND Y. SHILOACH, Maximum flow in planar networks, this Journal, 8 (1979), pp. 135-150.
[10] Y. SHILOACH, An O(nl - log2 I) maximum-flow algorithm, Computer Science Dept., Stanford Univ.,
Stanford, CA, 1978.
[11] , A multi-terminal minimum cut algorithm for planar graphs, this Journal, 9 (1980), pp. 214-219.
[12] D. SLEATOR, An O(nm log n) algorithm for maximum network flow, Ph.D. dissertation, Stanford
Univ., Stanford, CA, 1980.
[13] D. SLEATOR AND R. TARJAN, A data structure for dynamic trees, 13th Annual ACM Symposium
on Theory of Computing, 1981, pp. 114-122.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0006 $01.25/0

A TECHNIQUE FOR ESTABLISHING COMPLETENESS RESULTS IN
THEOREM PROVING WITH EQUALITY*

GERALD E. PETERSON+

Abstract. It is proved that an automatic theorem proving system consisting of resolution, paramodula-
tion, factoring, equality reversal, simplification, and subsumption removal is complete in first-order logic
with equality. When restricted to equality units, the system is similar to the Knuth-Bendix procedure for
deriving consequences from equalities. However, our proofs of completeness are restricted to the case in
which the ordering on words (terms or atoms) that is required in this type of process is order-isomorphic
to the positive integers. The completeness of resolution and paramodulation without the functionally
reflexive axioms is a simple corollary of our result. The methods used are based upon the familiar ideas
associated with semantic trees, and should be helpful in showing that other theorem proving systems with
equality are complete.

Key words. theorem proving, equality, first-order logic, semantic tree, simplification, completeness,
resolution, paramodulation, simplification ordering

1. Introduction. About fifteen years ago (see [3] for references) some quite
efficient and useful general-purpose theorem proving systems based on resolution in
first-order logic without equality were created and used to prove some theorems which
had not previously been proved automatically. Unfortunately, these systems were not
able to prove anything very complicated, and additions were sought which would
make them more powerful. Since it is awkward to express ideas involving equality in
a logical system without equality, various ways of incorporating equality into the
system were tried [9], [26], [30], [34], [35].

For example, Robinson and Wos [32] introduced paramodulation in 1969 and
proved that if the functionally reflexive axioms (axioms such as f(x, y) = f(x, y)) were
added to the set of clauses, then resolution and paramodulation constituted a complete
set of inference rules. Since that time, some effort [1],[2], [17], [18] has been expended
in considering the so-called “functionally reflexive problem,” that is, the problem of
proving that resolution and paramodulation are complete without the functionally
reflexive axioms. In fact, Brand [1] provided a solution to the functionally reflexive
problem in 1975. An independent solution is contained in this paper as a corollary
to Theorem 8.

Unrestricted paramodulation is a very weak inference rule because it produces
mountains of irrelevant clauses which rapidly clog the search space. In 1970 Knuth
and Bendix [15] (see [10] for a more complete treatment of the mathematics), working
independently of Robinson and Wos, created a very effective procedure for deriving
useful consequences from equality units. Their process used paramodulation, but since
it also used simplification and subsumption removal, most of the derived equalities
were discarded and the search space remained small.

The main defects with the Knuth-Bendix procedure were that each equality had
to be construed as a reduction, so equalities such as the commutative law were
excluded, and that the process works only on equality units, so axioms such as
x#0=>xx '=1 in field theory were excluded. The first defect has been at least
partially removed by using specialized unification algorithms such as associative-

* Received by the editors March 17, 1980, and in final revised form February 15, 1982.
+ Department of Mathematical Sciences, University of Missouri—St. Louis, St. Louis, Missouri 63121.

82

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 83

commutative unification [22], [27], [31], [36]. There has also been progress [17], [21]
in removing the second defect, but to the author’s knowledge, no one has developed
a refutation complete set of inference rules for all of first-order logic with equality
which reduces to the Knuth-Bendix procedure when restricted to equality units.

The inference system which is developed in this paper is refutation complete,
and it does reduce to a procedure which is nearly identical to the Knuth-Bendix
process when restricted to equality units, but completeness results are obtained only
when the underlying ordering of terms and atoms is order-isomorphic to the positive
integers. This is a condition which Knuth and Bendix did not impose on their ordering
and, indeed, many of the complete sets of reductions contained in their examples
used versions of their ordering which were not order-isomorphic to the positive
integers. However, our goal is somewhat different from that of Knuth and Bendix.
They were searching for complete sets of reductions; we are searching for an efficient
inference system which is complete in the logical sense. It does not matter to us (at
least not at present) whether or nor any complete sets of reductions are obtained in
the course of a proof, but only that useful consequences be derived and trivial ones
eliminated. This goal seems likely to be achieved even with the isomorphism condition
on the order. It may be possible to obtain completeness theorems without the
isomorphism condition, but the mathematics to do so might involve transfinite trees
and would be the subject of a separate paper.

The main result of this paper is that an automatic inference system consisting of
resolution, paramodulation, factoring and equality reversal is complete in first-order
logic with equality. Useful restrictions may be imposed which do not destroy the
completeness. These include: no paramodulation into variables, deletion of subsumed
or simplified clauses, and resolution only of simplified clauses.

In rough outline, these results were obtained as follows. A key idea is the
embedding of equality atoms in a simplification ordering of atoms and terms in a way
such that each equality occurs before terms or atoms which it may reduce. This is
described in § 3, and it is shown how to create one such ordering by modifying that
of Knuth and Bendix. In § 4 we show how to build E-interpretations inductively on
an ordered set B of atoms. This process can then be used to create E-semantic trees,
that is, trees whose branches correspond to E -interpretations. If S is an E -unsatisfiable
set of clauses, then each branch of an E-semantic tree for $ can be cut off at some
point and the remaining partial interpretation will still falsify some ground instance
of a clause in §. It is shown how a properly chosen resolvent or paramodulant can be
added to S so that the cut-off tree for the new S is in some sense smaller than the
cut-off tree for the original S. If a sufficient number of resolvents and/or paramodulants
are added, the tree will shrink to its root and thus imply that the empty clause has
been generated. These ideas are considered in § 6. A difficulty with this approach is
that initially the resolutions and paramodulations are known to be available on the
ground level and a “lifting lemma” is required to ensure that corresponding inferences
are available at the general level. Unfortunately, the paramodulation lifting lemma
does not always work. In order to ensure that the lifting lemma will work when
paramodulating from C;¢ into C,#, it is necessary to know that the replaced portion
of C,0 consists of a subtree of C»6 that begins in C,. We provide this assurance by
showing that it is possible to use only substitutions whose terms are not available for
paramodulations of the type necessary for the completeness theorem; that is, the
terms of the substitutions are ‘“‘completely reduced.” These ideas are considered at
the end of § 4 and in § 6 at the point where Ay is defined. In § 7 we discuss deletion
strategies, and in § 8 a hand example is cranked out.

84 GERALD E. PETERSON

The paper is meant to be theoretical. However, an implementation of a prover
based on these ideas will be created and experiments will be conducted to better
assess its usefulness. Some of the proofs are presented in excruciating detail. This is
felt to be necessary because intuition is of little, if any, value in these matters, and
the terrain is loaded with pitfalls.

2. Terminology. Basically we use [3] for terminology. Some differences and key
ideas are presented here. Let T be a labeled tree. The set of nodes of T will be called
the domain of T, dom T. If n edom T and the label at n is [, then we write Tn =1
or T(n)=1I If n,m edom T, then n is an ancestor of m, n = m, if n is on the branch
of T leading from m to the root, including the case when n = m. We write n L m and
say n is independent of n if n is not an ancestor of m and m is not an ancestor of n.
The subtree of T which begins at node n is denoted by T/n. If u is another tree, then
T[n < u] is the tree formed when T/n is replaced by u. When no confusion is likely,
this will be abbreviated to T'[u]. Similarly, if n, L n, and u; and u, are trees, then
Tlni< u1, naeus] is (T[n1 < u1])[n, < us] and will be shortened to T[uq, u>]. When
T[u.] and T[u,] are used in the same discussion, it is to be understood that there is
nedom T such that these are T[n < uy] and T[n « u,], respectively. See [34] for a
rigorous discussion of tree terminology.

We consider terms, clauses, etc., to be labeled trees. If A is a term or a clause
and 6 is a substitution, then A6 is the result of applying 6 to A; that is, each variable
of A is replaced by the term specified in 6. Let the restricted domain of A, rdom A,
be the set of all n e dom A such that An is not a variable.

We work in first-order logic with equality and use = as the equality symbol both
in the metalanguage and in the first-order language. To avoid confusion, equality
atoms in the first-order language will usually be enclosed in parentheses.

3. Simplification orderings. We will be concerned with a first-order logical system
with equality. Define a word to be either a term or an atom and an equality word, or
simply an equality, to be an atom whose predicate symbol is =. Let 9 denote the set
of all terms and %" the set of all words.

We assume that the set of all non equality words has been endowed with a partial
order, <, which satisfies the following properties.

W1. The full set of non equality words is well-founded [23, p. 205], [25, p. 183],

[4, p. 20].

W2. The subset of ground non equality words is order-isomorphic [4, p. 22] to

the set of positive integers.

W3. For all non equality words w, v and every substitution 6, if w <v, then

wé <vé.

W4. For each non equality word w and each term ¢, if ¢ is a subterm of w, then

t =w. In particular, if ¢ is a strict subterm of w, then t <w.
WS5. For every non equality word w, every n e dom w, and all terms ¢, s, if ¢t <s,
then win «t]<wln «s].

Note that W1 follows from W2 and W3. We include W1 only for emphasis.

Orderings on sets of terms which satisfy W4 and WS (with “non equality word”
replaced by ‘“‘term”) were called simplification orderings by Dershowitz[5], [6]. Plaisted
[28], [29], however, uses the denotation simplification ordering for an ordering on
terms which is total on ground terms and satisfies the analogues of W1, W3 and W5.
In either case we may consider the order < as a special kind of simplification order
which has been extended to apply to all non equality words.

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 85

The prototype of an order which satisfies W1-WS5 is the order of Knuth and
Bendix [15] in which every operator is given positive weight. Knuth and Bendix define
their order only for terms, but it is easily extended to apply to atoms as well. For
convenience we repeat their definition here. Let O be the set of operators, that is,
function (including constant) or non equality predicate symbols. Assume O is finite
and linearly ordered. Let A be a mapping from O into the positive integers which
assigns to each operator a weight. Extend A to apply to non equality words as follows.
Let w be a non equality word. If w is a variable, then A(w)= A, where Ao is the
minimum weight of a constant. If w =f(t;,* -+, #;), then A is defined by structural
induction as A(w)=A(f)+A(ty)+ - - +A(t). If w is a word and s a symbol, let n(s, w)
denote the number of occurrences of s in w. If w and v are words, then w >v if and
only if

(1) A(w)>A(v) and n(x, w)=n(x, v) for every variable x; or

2) A(w)=A(w) and n(x,w)=n(x,v) for every variable x and with w=

f(ty,+,t), v=g(s1, - -,s) either
(2a) f>g in the order on O; or
(2b) f=gand ty =51, -, tj_1=sj_1, t;>s; for some j, L =j=k.

The definition in [15] is slightly more complicated than this since Knuth and Bendix
allow some of their operators to have zero weight.

That this order satisfies W1-WS5 is quite easy to see. Knuth and Bendix show
that it is a well-order on ground words and that it satisfies W1 and W3. Properties
W4 and W5 are easily established and are left to the reader. Property W2 will follow
if we show that every ground word has only finitely many predecessors. Any ground
word w has some weight, A(w), and since there are only finitely many operator
symbols, each with positive weight, there are only finitely many ground words of any
given weight. Thus there are only finitely many ground words with weight less than
or equal to A(w). But, if v <w, then A(v)=A(w) by definition, so there are only
finitely many ground words less than w.

The author is unaware of any other easily calculable ordering which satisfies all
the properties W1-WS5. Other methods of defining such an order would be welcome.

In what follows it will be necessary to have the equality (s =¢) precede words
which can be simplified by (s =¢). It is therefore necessary to imbed equalities in the
order in a special way.

DEFINITION. Suppose w is a non equality word and a, b, s, t are terms. Then,

EOl. w<(s=t)means w <s or w <f;

EO2. (s=t)<w meanss=w and t =w;

EO3. (s =t)<(a =b) means

EO3a. s =a and t =) with one inequality strict, or
EO3b. s =) and ¢ = a with one inequality strict, or
EO3c. s=bandt=a and t<s, or

EO3d. s<a andt<a, or

EO3e. s<b and t <b.

THEOREM 1. The order < on words which has just been defined satisfies the
following properties.

O1. The set W is well-founded.

O2. The subset of ground words is order-isomorphic to the positive integers.

O3. For all w, v € W and every substitution 6, if w <v, then wf <v8.

O4. Ifte T, we W, tis a subterm of w and w is not an equality, then t = w.

OS5. IfweW,nedomw,t,seJ, and t <s, then wln «t]<wln «s].

06. Ift,se€ T and t <s, then (s =t) and (t =s) are adjacent and (t =s)>(s =t).

86 GERALD E. PETERSON

O7. Suppose t, s, a, be T, weW, t=s, and s is a subterm of w. If w is not an
equality, or if w=(a =b) and s is a strict subterm of a or b, or if w=(a =s)
or (s=a)andt<a,then (t=s)<w.

Proof (excerpts). Much of the proof of this theorem consists of tedious case-by-
case analyses. Therefore, we just give an outline and some highlights. Parts 1 and 2
of the proof establish that < is indeed an order, parts 3, 4, and 5 suffice to give O2,
and the relationship of the remainder of the proof to the theorem statement is
self-explanatory.

Part 1. < is irreflexive. Suppose w <w for some word w. Then w must be an
equality, say (s =t¢). From (s = t) <(s =) it follows using EO3 that s =s and ¢ =¢ with
one inequality strict, or s =¢ and ¢ <s, or s <s and ¢ <s, or s <t and ¢t <t. But none
of these is possible.

Part 2. < is transitive. We prove two representative cases and leave the rest to
the reader.

Case 1. Suppose w <(s =t¢) and (s =¢)<(a = b) where w is not an equality and
(s =t)<(a=0b) via EO3b. Then from EO1 and EO3b we have w <s or w <t, and
s=b and ¢t =a. It follows that w <b or w <a. Thus w <(a =b).

Case 2. Suppose (s =¢t)<(a =b) and (a = b) <(c =d) where the first inequality
is via EO3d and the second comes via EO3a. Then s<a and t<a and a =c¢ and
b=d. Thus s <c and t <c¢. By EO3d, (s =¢) <(c =d).

Part 3. < is a total order on ground words. Suppose w and v are ground words.
If neither is an equality, then from W2 it follows that w <v, w = v or w >v. Suppose
one of w and v is an equality, say w =(s =¢). If s=v and ¢ =v, then w <v by EO2.
Otherwise, either v <s or v <t and then v <w by EOL1. Finally, suppose both w and
v are equalities, w = (s =¢) and v = (a = b). Then there are many cases, but each is
covered by EO3, giving w <v or w =v or w >u.

Part 4. The ground words have a minimum element. Suppose this were not so
and let w; >w, >w5 « - - be an infinite descending sequence of ground words. By W2,
only finitely many of these can be non equalities and we may, therefore, suppose that
for every i, w; = (s; = t;). By EO3, one of the following conditions holds for each i.

(1) s;>si41 and ;> 144,

(2) si>siv1and t; =t;4q,

(3) si=si41 and ;> 14,

(4) s;>t;v1 and t; > 541,

(5) si>tiv1 and t; = 541,

(6) s;i=t+1 and t; > 541,

(7) si=t;+1 and t; = 5;41 and t;41 <Si41,

(8) s;>si41 and s; > 1,1,

(9) ti >Siv1 and i >tiv1.

Condition (7) cannot hold for two successive inequalities in the sequence because if
(si—1=t-1)>(s; = t;) > (s;+1 = t;+1) and both inequalities are via (7), it follows that s; > ¢,
and s; <t;. Therefore, there are infinitely many inequalities in the chain which obtain
for reasons other than (7). We construct two sequences of terms, A and B, as follows.
Begin with A =s; and B =t;. For { running from 2 to 00, add to the chains according
to the following rules. If condition (1) holds, apply rule (1), else if condition 2 holds,
apply rule (2), etc.

(1) A«<A,s;;yand B« B, t;,4,

(2) A<A, s,

(3) B (—B, ti+19

(4) A <—B, Si+1 and B <—A, tiv1,

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 87

(5) B<A, tin,

(6) A(_By Si+1,

(7) A«Band B< A,

(8) A (—A, Si+1 and B (—A, tiv1,

(9) A (—B, Si+1 and B (—B, tiv1.

Note that at the ith stage, A ends in s; and B ends in ¢, and that each of A and B
is a descending sequence. Let LA and LB be the length of A and the length of B,
respectively, each changing as i increases. Each of conditions (1), (4), (8) and (9)
increases min (LA, LB) and no condition decreases min (LA, LB). Thus, if any combi-
nation of inequalities satisfying (1), (4), (8) or (9) occurred infinitely often, we would
have LA and LB both increasing to infinity and A and B would both be infinite
descending sequences of ground terms. Since this is impossible, we must have some
combination of (2), (3), (5) and (6) occurring infinitely often. But each of (2), (3), (5)
and (6) increases the length of one of the two chains and leave the length of the other
one alone. Therefore, both of these chains cannot remain finite in length. Again this
is impossible, and we must conclude at this point that our original hypothesis of an
infinite descending sequence of ground words was in error.

Part 5. Every ground word has only finitely many predecessors. Let w be a ground
word. If w is not an equality, then by W2, w can have only finitely many non equality
predecessors and by EO2, w can have only finitely many equality predecessors. If w
is an equality, then by EO1 and W2, w can have only finitely many non equality
predecessors. Let w = (a =b). If (s =t) <w, then by EO3, both s and ¢ are less than
max (a, b). Thus there are at most finitely many equalities less than w.

This completes the proof of O2.

Part 6. O3. Suppose w <v and 6 is a substitution. A simple case analysis will
show that wé <v6. For example, if w = (s =¢), then we have (s =¢) <v and by EO2,
s =v and ¢t =v, then by W3, s8 =06 and 16 = v6, finally by EO2, (s@ = t0) <v6 which
is the same as wf < v6.

Property O1 follows from O2 and O3.

Part 7. O4. This is W4.

Part 8. O5. This follows from W5 and EO3a.

Part 9. 06. That (t =s)> (s =t) follows from EO3c. That (s =¢) and (¢ =s) are
adjacent requires showing that (s =¢)<w <(f =s) leads to a contradiction for any
word w. This is not difficult, but requires a tedious case-by-case analysis and is left
to the reader.

Part 10. O7. Suppose ¢t =s and s is a subterm of w. If w is not an equality, then
s=wbyO4 and (t=s)<w by EO2. If w=(a =b) and s is a strict subterm of a or
b, then either t=s5s<a or t=s <b. By EO3d or EO3e, (s=¢t)<w. If w=(a=s) or
(s=a)and t<a, then (t=s)<w by EO3a or EO3b. [

In what follows, we use only that < is a partial order on %" which satisfies O1
to O7.

4. Interpretations. Let & be the set of ground words and % the set of ground
atoms. An interpretation on a set B' < B is a mapping I : B' > {T, F}. An interpretation
is an interpretation on %. An E-interpretation on %' is an interpretation I on %3’
which satisfies

El. I(s=s)=Tif (s=s5)e®RB/,

E2. I(s=t)=1I(t=s)if (s=1t),(t=5)eRB’, and

E3. if (s =t), B[s] and B[t] are in B' and I (s =¢t) =T, then I(B[s]) =I(B[t)).
An E-interpretation is an E -interpretation on 2.

88 GERALD E. PETERSON

Note that E2 follows from E1 and E3 if 8'=2% and that the transitive law: if
(s=1t), t=a), (s=a)eB', I(s=t)=T, and I(t=a)=T, then I(s =a)=T: follows
from E3.

Since ¥ is order-isomorphic to the positive integers and B < 9, we may write
B ={B1, B,, * * *}, where B;<B; if and only if i <j. For each k=1, define %, =
{B1,B,,**,B}. A left segment of B is either RB itself or one of the sets B,. Note
that I is an E-interpretation on 4 if and only if I is an E-interpretation on %, for
all k.

Our immediate goal is to describe how an E-interpretation on %;-; can be
extended to an E-interpretation on %x.

Suppose [is an interpretation on a left segment B’ of 4. Let (%) be the power
set of ¥, that is, the set of all subsets of 4. We define a function f;: 4> P(¥%) by
induction as follows. If w is the smallest element in ¥, then f;(w) is the empty set,
. If fr has been defined for every element of ¢ which is less than w, then f;(w) is
defined as the set of all v € ¢ such that either

Fl. w=(t=s),t<s,fis=t)=F,andv=(s =t¢), or

F2. there is a subterm s of w, w =w([s], and a term ¢ such that t <s, (s =) <w,

(s=0eB' I(s=t)=T, fi(s=t)=, and v = wt].

We now define a partial order, - (I), or simply - if I is understood, on ¢ by
the statement: w - (I) v if and only if v € fy(w). It is clear that w >v if w > v and,
therefore, - is well-founded. We will say that w reduces (I') to v if w- (I) v, and
that w is irreducible (I) if fi(w)= . If w > v and v € f;(w) by reason of F2, then we
write w > v using (s =1t).

When constructing an E-interpretation, the truth values which are assigned the
various atoms cannot be chosen independently. The purpose of the reduction - (1)
is to provide an explicit relationship between an atom and other atoms below it in
the < order which all must be assigned the same truth value if I is to be an
E-interpretation. Condition F1 relates to the fact that (s =¢) and (¢ =s) must have
the same truth value, and F2 relates to the fact that replacing one side of a true
equality by the other, in any term, must not alter the truth value of that term.

An arbitrary partial order, R, is confluent [11]if for every x and y, if there exists
z such that zR*x and zR™*y, then there exists w such that xR *w and yR*w, where
R* is the reflexive, transitive closure of R. The following example shows that - is
not necessarily confluent.

Example. Suppose B’ contains the set of atoms shown in the left column of Table
1, A<B if A is above B in the table, and the interpretation I is as shown in the

TABLE 1
B’ I
*h=q T
a=>b F
*g(a)=a T
gla)=»b F

second column. We are supposing that a <b. We have marked with an asterisk those
equalities (s =¢) that are irreducible and satisfy I(s =t)=T. That is, they are the
equalities that may be used in reducing other words. Note that

(gla)=b)>(a=b)>(b=a),
(gla)=b)~>(g(a)=a),

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 89

(b = a) is irreducible, and (g{a) = a) is irreducible. Thus, - is not confluent, for with
x=(b=a),y=(gla)=a), thereisa z =(g(a)=>5), but no w.

The usefulness of - (I) stems from the following two theorems. The first of these
shows that — (I') does, in some cases, have a property similar to confluence.

THEOREM 2. Suppose I is an E-interpretation on By.-1. If B, » C and By - D, then
I(C)=1(D).

Proof. The only way for f;(By) to contain both C and D (if C # D) is for B, > C
using (s; =t¢;) and By » D using (s, =1t,). Let By/n1 =51 and By/n, =s,. The proof will
be by cases depending on the relation of n, and n, in dom B;.

Case 1. Suppose n; Ln,. If we write Bi[u, v]=By[n1< u, n,<v], then we have
by hypothesis

I(C) =I(Bkl[t1, s2]) = I (Bi[ts, t2]) = I (Bi[s1, t2]) = I (D).

Case 2. Suppose n; and n; are not independent. Then one must be an ancestor
of the other and we assume n; > n, for definiteness. Then s, is a subterm of s;. If s,
were a strict subterm of s;, then by O7, (s, =1¢,) <(s;=t;) and it follows that (s; =¢,)
is irreducible (I). Thus s, =s;. Write s =s, =s; and B, = Bi[s]. Since ¢, <s =B, and
t, <s = By, it follows from EO2 that (¢, =t,) <B;.Since I(s=t;)=Tand I(s =¢,) =T,
and [is an E-interpretation on %, _,, we have I (t; =t;) = T. Therefore

I(C)=I1(Bi[t:]) =I1(Bi[t2)) =I(D)

since C, B[t1], Bk[t.] and D are all in B, _,. O

THEOREM 3. Suppose I is an interpretation on B, which is an E-interpretation on
Bi-1. Then I is an E-interpretation on B, if and only if

(1) By is reducible (I') and for all C such that B, > C, I(B,)=I(C), or

(2) By is irreducible, of the form (t =t) and I (B,) =T, or

(3) By is irreducible and not of the form (t =t).

Proof. If neither (1), (2) nor (3) holds, then it is obvious that I is not an
E-interpretation on %,. Suppose that (1), (2) or (3) holds. We must show that I is
an E-interpretation on %, i.e., that E1, E2 and E3 hold on %. Since I is known to
be an E-interpretation on %, it will suffice to prove the following:

PO1. I(B,)=T if B, = (¢t =t) for some term ¢.

P02. If B, =(t=s) and t <s, then [(By)=I(s =1t).

PO3. If B, =(s =t), A[s]<By, A[t]<Bi and I(B,)=T, then I{A[s]) =I(A[r]).

P04. If B, = By[s], (s =t) < By, Bi[t]<Bi and I(s =¢t) =T, then I (B,) = I (B[t]).

POS5. If B, =Bk[t], (s=1) <By, Bk[S]<Bk andI(s =¢t)=T,thenI(By)= I(Bk[S])

PO1. If B, = (¢t =t) is irreducible, then neither (1) nor (3) holds, so we must have
(2) and I(B,)=T. If B, = (¢t =t) reduces using (s; =¢;) then s; must be a subterm of
t and we have

I(Bi) =1I(¢[s1]=t[s1])
=I1([t:]=1[s1]) by (1)
=I1(t[t;]=t[t1]) by hypothesis
=T by hypothesis.

P02. Suppose B, =(t=s) and ¢t <s. If (s =¢) is irreducible, then (t=s)> (s =1¢)
by F1 and I(By)=1I(s =t) by (1). If (s =¢) reduces to (s'=¢'), then (¢ =s) reduces to

90 GERALD E. PETERSON
(t'=s'"). Therefore
I(B)=1(t'=s") by(l)
=I(s'=t") byhypothesis
=I(s=t) by hypothesis.

P03. Suppose B, =(s =t), A[s]<B, A[t]<B; and I(B,)=T. If s <t, then by
P02, I(s=t)=1I(t=s)=T. By hypothesis, [(A[s])=I(A[¢]). If s =¢ the result is
obvious. Suppose s >t. By O7, A[s]=(s =a) or (a =s) and ¢ >a. For definiteness,
assume A[s]= (s = a); the other case will be similar. If B, is irreducible, then [(A[s]) =
I(A[t])=F. For, if otherwise, say I(A[s])=T, then I(A[s))=I(s=a)=I(s=a') =T,
where a' is irreducible and a >*a’. This implies that By is reducible (- <). Suppose
B, reduces using (s; =t;). If s, is a subterm of s, then T=1(s[s;]=1¢)=1I(s[t1]=1¢) by
(1). So by hypothesis

I(A[s])=1(s[s1]=a)
=I(s[t:}=a)
=I(t=a)
=I(A[t)).
If 5, is a subterm of ¢, then similarly T=1(s = ¢[s,]) =1 (s =¢[t1]) and
IA[s])=I(s=a)
=1(t[t:}=a)
=1(t[s1]=a)
=T(A[t]).
P04. Suppose By = Bi[s], (s =t) <By, Bi[t]< By and I (s =t) ="T. It follows from
B, [t]<B[s] that ¢t <s.
Suppose first that s is irreducible. Let ¢t >*¢' where ¢’ is irreducible. Then by
hypothesis, T=I(s =t)=I(s =t")=1I(t =t'). Thus
IBi[s)=I(Bi[t]) by(1)

=I(B[t]) by hypothesis.

Suppose now that s is reducible to s’ using (s; =t¢;). Write s =s[s;]. Then T=
I(s=t)=1I(s[t;]=1t) and

I(Bi[s]) =I(Bils[s1]]) = I(Bi[s[t:]]) = I (B.[t]).

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 91

P0O5. This becomes the same as PO4 with s and ¢ interchanged if we note that
s <t and therefore I(s =¢t)=I(t=s)=T. 0O

Theorem 3 will be used to construct semantic trees whose branches correspond
to E-interpretations. Completeness results obtained using semantic trees require a
so-called lifting lemma [3, p. 84] to make them applicable to clause sets containing
variables. The lifting lemma for the paramodulation inference rule works only if the
paramodulation was done on the ground level to a term which can be “seen” at the
general level; that is, the paramodulation was not done inside a term which came
from a substitution. It is necessary, therefore, to deal only with “fully simplified”
substitutions. The purpose of the following discussion is to formalize these ideas.

Let I be an E-interpretation on a left segment #B' of %B. Let 6=
{x1«t1, -+, xi <t} be a ground substitution. We write 8 > (I) 6’ if ' is identical to
0 except that one f; has been replaced by ¢; and ; > t;. We say that @ is irreducible if
every term ¢; of 6 is irreducible.

Let €(A’') be the set of clauses that can be formed from the atoms in B'. If I is
an interpretation on %’ then I can be extended to €(%’) in the usual manner by
defining I(~A) as ~I(A) for Ae%B’ and I(Lyv---vL,) as I(L;)v---vI(L,) for
literals Ly, - - -, L, whose atoms are in %’.

THEOREM 4. Suppose 0 is a ground substitution and C is a clause such that C9 is
in€(RB'). If 6 >* ', then I(CO) =1(C9").

Proof. Tt will suffice to prove that if 8 > 6’, then I(C8)=1(C8'). Suppose 6 - 6'.
Then a term ¢; of 6 has been replaced by ¢] in order to form 6’ and ¢; > ¢t;. Since ¢
occurs somewhere in C6 (if it doesn’t, the result is obvious), it follows that ¢; <A for
some A€’ and therefore (f;=t;)eB’. Now (;=t;)->(¢tj =t;). Since I is an E-
interpretation on 8’ and (¢; = t;) € B’, it follows that I (t; = ¢t;) =T. But C@’ differs from
C6 only in that 1 or more occurrences of ¢ have been replaced by ¢;. It follows that
I(Co)=1(Co"). O

S. Inference rules. Let S be a set of clauses. In the next section we will deal
with proof procedures which are composed of some or all of the following rules of
inference. In those rules involving two clauses, we assume that their variables have
been standardized apart.

Factoring. If L,, - - -, L, are literals of a clause C which are unifiable with mgu o,
then a factor of C is the clause C'=Co — (Lo v - - - v Lyo). The factoring rule states
that one may add to S a factor of a clause C € S.

Resolution. If C;=L,vC} and C,=L,v C} are clauses such that L; and "L,
are unifiable with mgu o, then a resolvent of C; and C, is the clause C = Cio v Cia.
The resolution rule states that one may add to S a resolvent of clauses C;, C, € S.

Paramodulation. If C; and C, are clauses such that C;=(s =¢)v C} and C; has
a subterm s' at node n which is unifiable with s with mgu o, then a paramodulant C
of C; into node n of C; is the clause C = (Cy[n « t]v C')o. The paramodulation rule
states that one may add to S a paramodulant of clauses C;, C, € S.

Equality reversal. If C = £(s =t)v C'is in S, then the equality reversal rule states
that one may add to S the clause +(t =s)v C'.

Simplification. If C,= (s =t), a clause C, contains a subterm which is an instance
so of s, and so > to, then the clause C = Cy[to] is a simplification of C, using C;.
The simplification rule states that one may replace in S a clause which has been
simplified, by its simplification.

Subsumption. If C; and C; are clauses such that C o = C, for some substitution
o, then C; is said to be subsumed by C;. The subsumption rule states that one may
delete from S any clause which is subsumed by another clause in S.

92 GERALD E. PETERSON

Examples. Suppose S is the set of clauses
Cl. P(x)vf(g(x, a))=x,
C2. ~P(g(a, x)) v Q(f(x)),
C3. P(x) Vv P(f(y)),
C4. f(x)=x,
C5. Q(x).
Then P(f(y)) is a factor of C3,

f(g(g(a, x),a))=g(a, x) v Q(f(x))

is a resolvent of C1 and C2,
~P(g(a, g(x,a)))vQ(x)vP(x)

is a paramodulant of C1 into C2, P(x) v P(y) is a simplification of C3, and C5 subsumes
C2.

The following fundamental result is due to G. Robinson and L. Wos [32].

THEOREM 5 (Paramodulation lifting lemma). If C' is a paramodulant of C,6 into
node n of C»60 and n € dom C, then there is a paramodulant C of C; into node n of
C, such that C' is an instance of C.

Proof. Let Ci=(s=¢t)vC1; then C16 =(s8 =t0)v C16. Let ¢ be the mgu of s
and C,0/n, so that

C'=(Cy0[n <t9]v C16)¢.

Now C,6/n =(C,/n)0, and s6¢ = (C,0/n)¢. Thus (C,/n)0¢ = s8¢ and it follows that
C,/n and s are unifiable. Let o be their mgu. Then there is a substitution ¢ such
that ¢ = oy and there is a paramodulant C of C; into node n of C, given by

C=(Cy[n«t]vCi)o.
Furthermore,
Cy =(Cyln«t]vCi)oy
=(Cyn «t]vCi)o¢
=(Cy0[n<1t9]v C10)p
=C'. a

6. Semantic trees. The usefulness of semantic trees in obtaining completeness
theorems for sets of clauses without equality has been considered in [16].

A truth-value tree is a binary tree such that each node other than the root is
labeled with T or F. If 7 is a truth-value tree and N is a node of 7, then 7(N) denotes
the label at N, i.e., 7 is considered to be a function from the nodes to the labels. A
numbered truth-value tree is a finite truth-value tree such that each leaf node is labeled
with a nonnegative integer in addition to its truth value. If N is a leaf node we write
7'(N) to denote the associated number. We partially order numbered truth-value trees
by writing 7, <7, if and only if

TO1. dom 7y =dom 75, or

TO2. dom7,=dom 7, and 7i(N)=75(N) for every leaf node N with the

inequality strict for at least one N.
It is clear that this partial order is well-founded.

Let N be a node in a truth-value tree at level k. Then Iy : %, - {T, F} is the
interpretation on %, defined by In(B;) = 7(M) where M is the ancestor of N at level
j. Similarly, if b is a branch of a truth-value tree, then I, is the interpretation (possibly

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 93

on a finite left segment of & if b is finite) defined by I, (B;) = 7(M) where M is the
node of b at level j.
An E-semantic tree is a truth-value tree 7 defined inductively as follows.
T1. The root of 7 is unlabeled and at level O.
T2. A node N of 7 at level kK —1 has one or two children according to the
following rules. (Compare with Theorem 3.)

T2a. If By is reducible (In), say By - C, then N has one child labeled I (C).

T2b. If By is irreducible (Iy) and of the form (¢=¢), then N has one child
labeled T.

T2c. If By is irreducible (In) and not of the form (¢ = t), then N has two children,
the left one is labeled T and the right one F.

Theorem 3 tells us that every Iy in an E-semantic tree is an E-interpretation on
B where k is the level of N. Furthermore, the set of all interpretations I, on the
branches of an E-semantic tree is identical to the set of all E-interpretations on %.

If S is a set of clauses, then 7(S) will denote an E -semantic tree over the Herbrand
base A of S.

A node N of 7(S) is a failure node if I falsifies some ground instance Cy of a
clause in S, but if M is an ancestor of N, then I, does not falsify any ground instance
of a clause in S.

LEMMA 1. If N is a failure node at level k then

(1) if IN(By) =F then By is a literal of Cx,

(2) if In(Bx) =T then ~By is a literal of Cn.

Proof. Since In(Cn) =F, it follows that if A is an atom of Cx, then A =B,. If
every atom of Cx were <B,, then we could find a strict ancestor M of N for which
Ii(Cn)=F and N would not be a failure node. Thus B; occurs as an atom in Cx. If
In(Bi) =F,then By occurs as aliteral in Cy ; otherwise, ~Bj occurs as aliteralin Cy. O

An E-model for a set S is an E-interpretation I defined on the Herbrand base
of S such that I(C8)=T for every ground instance C6 of a clause C in S. If § has
no E-model, then every branch of 7(S) will have a failure node.

We will next describe how to assign a nonnegative integer to each failure node
N which somehow measures the ‘“reducibility”’ of the clauses which are falsified by
In. For each failure node N of 7(S), let Sy be the set of ground instances of clauses
in S that are falsified by In. The definition of failure node shows that Sy is not empty.
If B; is an atom in one of the clauses of S, define

A (B)) = {0 if B; is i‘rreducible In),
j otherwise.

If L is a literal in one of the clauses of Sy and A is the atom of L, define Ax (L) = Axn(A).
Finally, if C=L;vL,v---v L is a clause in Sy, define AN(C)=Z:‘=1 An(L;). This
completes the definition of a function Ax which maps the elements of C to nonnegative
integers and is such that An(C) =0 if and only if C is irreducible. For each failure
node N, let Cy be a clause in Sy at which a minimum of Ax occurs. That is,
An(Cn) = AN(C)forevery C € Sn. Weassigntonode N the nonnegative integer An (Cn).
Now Cy is a ground instance of some clause Dy in S, thatis, Cx = Da#. This substitution
0 may and will be taken to be irreducible (Ix), because if it were not, say 6 >"6* where
0* is irreducible (In), we may select Cx =Dn8* since by Theorem 4, In(Dn8) =
IN(DNO*) =F so DNo*G SN and AN(DNG*) é)\N(DNG).

If S has no E-model, then the closed semantic tree for S, 74(S), will be the
numbered truth-value tree consisting of that portion of 7(S) which includes all nodes

94 GERALD E. PETERSON

that are at or above the failure nodes and has each failure node N labeled with
7% (N)=An(Cy). An example is shown in Fig. 1.

An R failure node is afailure node N such that Ay (Cn) =0, thatis, Cy isirreducible
(IN). A P failure node is a failure node which is not an R failure node. The bottom
two leaf nodes of Fig. 1 are P failure nodes and the top one is an R failure node.

P(a)

gla)=a

a=g(a) 4 o F
{a=g(a)}

gla)=g(a) ¢+ T

P(g(a)) 6eT
{~P(g(a)}

FIG. 1. The closed semantic tree 7,(S) for the set S ={x = g(x), P(a), ~P(g(a))}. The elements of B are
shown in order in the left-hand column. The truth-value of each node is shown on its right and the numeric
value 74 (N) is shown on the left of each failure node. Although not part of T4(S), the clause Cy is shown
in braces under each failure node N.

A reduction node is a non leaf node N of 7,(S) at level k such that By is an
equality, 7,(N)=T, and N has a brother. From this it follows that By is irreducible
(In) where M is the father of N, and By is not of the form (¢ = ¢). The only reduction
node in Fig. 1 is the node on the third level which is labeled T.

A resolution inference node is a node N of 14(S) such that all the children of N
are R failure nodes. There are no resolution inference nodes in Fig. 1.

A paramodulation inference node is a P failure node N such that every reduction
node ancestor of N has a brother which is an R failure node. In Fig. 1 the node with
number label 4 is a paramodulation inference node.

LEMMA 2. If S does not contain the empty clause and has no E-model, then 74(S)
has either a resolution or a paramodulation inference node.

Proof. Suppose 74(S) has no resolution inference nodes. Let’s start at the root
of 7,(S) and take a walk down 7,(S). As we walk we will obey the following rules.

Al. We will never walk on an R failure node.

A2. We will never walk on a reduction node unless its brother is an R failure node.
This walk must end at a paramodulation inference node. For, if we are not at a failure
node we can always keep walking since 7,(S) has no resolution inference nodes.
Therefore, when we stop we will be at a P failure node and it will be a paramodulation
inference node because of condition A2. O

Let % =S U{x = x}. Recall that numbered truth-value trees were endowed with
a partial order at the beginning of this section.

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 95

THEOREM 6. If S has no E-model and 74(S) has a resolution inference node, then
there is a resolvent C of clauses or factors of clauses in 8® such that 7,(S U C) <74(S).

Proof. We just give an outline since this result is well known in the context of
ordinary semantic trees [see 3].

Let N be a resolution inference node in 74(S). If N has two children, let these
children be nodes L and M. Then there are ground instances C; and Cy of clauses
of S such that I; (C;)=F and I;(Cy)=F. If N is at level kK —1, then L and M are at
level k. Thus I (Bx) =T and Iy (Bx) =F. It follows from Lemma 1 that ~B; occurs in
Cr. and By occurs in Cyy. Thus Cp and Cy, or factors of Cr. and Cas will resolve to
produce a clause C' which does not contain By, and therefore I (C') = F. Thisresolution
can be lifted to the general level to obtain a clause C of which C' is a ground instance.
In 7,(S UC) node N or one of its ancestors is a failure node. Thus 74(S U C) <7.(S).

If N has one child, say node M, and N is at level kK —1, then By is of the form
(¢t =t). There is a ground instance Cy, of a clause of S such that I;(Cys) =F. It follows
that Cys contains (¢ # t). Thus Cys or a factor of Cys resolves with (¢ = ¢) to produce a
clause C’ which does not contain (¢ #t). This resolution can be lifted to a general
level resolution with (x = x), and we proceed as above. 0O

In the proof of the following theorem we will use Var (8) to denote the set of
variables {x;,- -+, x:} appearing on the left of elements in a substitution 6 =
{x1ety, - X<t}

THEOREM 7. If 7,(S) has a paramodulation inference node, then there is a para-
modulant C of clauses or factors of clauses in S, or a clause C obtained by reversing
an equality (possibly contained in an inequality) in some clause of S, such that
TS U C) <14(S).

Proof. Let N be a paramodulation inference node of 7,(S) and let C, be a clause
in S such that C,0 = Cx for some irreducible (Ix) substitution 6. Since N is a P failure
node, C,0 is reducible (Iy). Let E be a clause such that C,6 > E.

Case 1. Suppose C»6 - E by reason of F1. Then C, contains an equality (f =s)
such that 10 <sf and E is identical to C,6 except that (¢ =s#) has been reversed.
Let C be the same as C, except that the equality (¢ =s) occurs as (s =¢) in C. Then
E = (6, and In(CO) = In(C260) =F. Also AN (CO) < An(C20). It follows that 7.(S U C) <
74(S).

Case 2. (Refer to Fig. 2) Suppose C,0 - E by reason of F2. Then there is an
atom A of C,60 and a ground equality (s, = ¢;) such that s, is a subterm of A, #; <sy,
(s1=t1) <A, In(s1=1t)=T, (s;=t;) is irreducible (Iy) and E = C,0[n « t;] where
n e dom C,6 is such that C,8/n =s1. Since 6 is irreducible (Iy), n € rdom C. Since
(s1=1H)<A, In(s;=t)=T, and (s;=1t;) is irreducible (Iy), it follows that N has a
reduction node ancestor M at level k, say, and B, = (s; =). Since N is a paramodula-
tion inference node, the brother K of M is an R failure node. Let C; €S be such
that C1¢y = Cx for some irreducible (Ix) substitution ¢. Now Ix(s;=t¢;)=F and it
follows from Lemma 1 that (s; =¢,) is a literal of Ck.

If (s; =t,) occurs twice or more in Cy, then there will be literals (s'=1¢Y, -,
(s“=1¢")in C; such that (s; = t;) = (s'¢ = t'y) for 1 =i =k. Thus (s'=th, -, (s“=¢"
are unifiable. Let o be their mgu and let ¢ be such that ¢ = o¢. Then

Ct =Cio—{s’a=1*a)v-+ v (s‘oc =t"0)}

is a factor of C; such that C¥¢ is identical to Cyiy except that C¥¢ has only one
occurrence of (s;=t;). Now ¢ may be chosen such that Var (¢)NVar (o) is empty
(to see this, note that the unification algorithm [3, p. 77] implies that none of the
variables in Var (o) occur in any of the terms of o) and it follows from the definition

96 GERALD E. PETERSON

T*(s)

(s1=1t1)

T K*F
{Cy}

N o
{C.6}

F1G. 2. The situation in the proof of Theorem 7.

of composition of substitutions [3, p. 76] that all the terms of ¢ are also terms of .
Thus ¢ is irreducible (I,,). We may assume, therefore, that (s; =¢;) occurs only once
in C1(/I.

Thus we have Ci=(s=t)vCi where (s;=t;))=(s¢y=t¢) and Ix(Ciy)=
Iy (C'iy) =In(Ciy) =F since all the atoms in Ciy are less than (s;=¢1), and Ing, In
and Ix have identical values on such atoms. Furthermore, C1y is irreducible (Ing, In
or Ix) since K is an R failure node.

Let C' be the ground paramodulant

C'=C0[n<ty]vCiy

of C1¢ into node n of C,0. If C; and C, have had their variables standardized apart,
and we assume they have, then we may think of C' as a paramodulant of C;(68 U)
into node n of C»(6 U ¢). By the paramodulation lifting lemma, there is a paramodulant
C of C, into node n of C, such that C' is a ground instance, say Ca, of C. Since C'y
is irreducible (In), AN(C')=AN(C20[n «ty]) <AN(C20)=An(Cy). It follows that
(SUC)<74(S). O

Note that in Theorems 6 and 7 all resolutions and factoring were done with
irreducible clauses and clause C;¢ which was used to paramodulate into C,6 was also
irreducible. Furthermore, equality reversal was only performed on an otherwise
irreducible equality.

THEOREM 8. If S has no E-model then S has a refutation by factoring, equality
reversal, resolution and paramodulation.

Proof. This follows from Lemma 2 and Theorems 6 and 7. 0O

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 97

This theorem implies that resolution and paramodulation (including factoring) is
complete without the functionally reflexive axioms.

7. Unnecessary clauses. Suppose S has no E-model. A clause CeS is
unnecessary if for every failure node N of 7,(S), there is a clause in Sy with minimum
An value which is an instance of a clause in S —{C}; that is, Cy may be chosen in
S —{C}. It is clear that an unnecessary clause may be deleted from S without affecting
74(S). We show here that subsumed clauses and most clauses which can be simplified
are unnecessary.

THEOREM 9. If C, is subsumed by C>, then C, is unnecessary.

Proof. Let Cro = C;. Let N be a failure node of 7,(S) and suppose Cx = C16 for
some 6. Then In(Ci0)=F. Since C,o0 < C,6, it follows that In(C.o6)=F and
An(C200) =AN(C10). Thus Cy may be chosen as C,a6, and C; is unnecessary.

THEOREM 10. Suppose Ci, C, and (s =t) are clauses in S such that for some
substitution o, C, contains an atom A which has so as a subterm, that is, C; = Cy[sc].
Suppose C,= Ci[to] and so > to. Suppose A is not of one of the forms (oo =p) or
(p =so) where p is a term such that p¢ <tod for some ground instances, p¢ and tod,
of p and to. Then C is unnecessary.

Proof. Suppose there is a failure node N of 7,(S) such that Cy = C;6. Then
C16 = C10[s06], C20 = C16[taf] and sad > tof. Thus An(C20) = An(Cy).

If (so6 =to0)= A6, then by O7, A0 must be of one of the forms (sc6 =q) or
(g = sa@) where q =tof. It follows that A must be of one of the forms (so =p) or
(p =so) where pd =q =to6. But this was ruled out in the hypothesis. Therefore,
(so0 =to8) < A6.

If In(so0 = ta6) were false, then since (so@ =to6) is a ground instance of the
clause (s =t)e S and An(sod =t00) <An(AB) =An(C10), it would follow that C;0 is
not a clause of minimum Ay value in Sn. Thus In (so6 = to0) =T.

Suppose N is at level k in 74(S). Then Iy is an E-interpretation on %,. Thus
In(C,0) = In(C10) = F. It follows that Cx may be reselected as C»6 and, therefore, C,
is unnecessary. O

As a practical matter, the restriction on the form of A in Theorem 8 is probably
not needed. To see this, consider first the case in which C;=C] v (so =p). Then
C,=C} v (fo =p) and a paramodulation of C, into (s =¢) yields Cy. Thus, if C; is
discarded it can be recovered and is unnecessary in that sense. Consider also the case
in which C; = C v (so # p). Then C,=C1 v (to #p). Now let L be some literal which
can resolve with (so # p). Then L6 = (sa@ = p@) for some substitution §. Paramodula-
tion of (s =¢) into L@ yields (to6 = p#) which resolves with (to # p). Thus no resolutions
are lost if C; is discarded and it again appears to be unnecessary. For these reasons,
implementors would very likely retain completeness if they ignored the restrictions
on the form of A in Theorem 8.

8. Practical considerations and examples. Putting these ideas together and con-
sidering carefully the proof of Theorem 5, we find that a complete theorem prover
for first-order predicate calculus with equality could consist of resolution, paramodula-
tion, factoring, equality reversal, simplification, and subsumption removal with the
following restrictions.

P1. Simplification and subsumption are performed first, since they do not increase

the size of S.

P2. No paramodulation into variables.

P3. All paramodulations replace s by ¢ where ¢t #s.

To be more precise (but ignoring the restrictions of Theorem 8), suppose RP(S)

98 GERALD E. PETERSON

is the set of clauses obtained from S by resolution, paramodulation, equality reversal
and factoring with subsumed clauses and clauses which have been simplified, deleted.
Suppose further that in forming RP(S) restrictions P1-P3 are obeyed. Then RP"(S)
contains the empty clause for some n, where RP"(S)=RP(RP""'(S)). This follows
from our theorems, since it is clear that 7, (RP(S)) <74(S).

If this procedure was applied to a set S consisting entirely of equality units, then
it would be very similar to the process that Knuth and Bendix [15] used for producing
new reductions from old since their process consisted of paramodulations into nonvari-
ables, simplifications, and deletion of clauses subsumed by (x =x).

As a hand example, let us prove that a two-element group is commutative. We
write s>t if the equality (s =¢) is such that s >¢ Our set of operators is O =
{e,a, b,c,d, ", } ordered as listed. Let A(f)=1 for every f€ O and use the Knuth-
Bendix order described in § 3. Clauses 2 through 11 below are the complete set of
reductions found for groups by Knuth and Bendix except that clause 11 has been
reversed in order to conform to our ordering. (Thus reductions 2-11 will not be a
complete set of reductions in our order.) Clause 12 states that the group consists of
two elements and clause 13 that it is not commutative. We use the abbreviations P,
S, and R for paramodulation, simplification and resolution, respectively. The proof
has been abbreviated somewhat by omitting certain rather obvious steps.

1. x=x

2. xe->x

3.ex>x

4. x -x 'oe

5.x ' xe

6. e ‘e

7. x ok

8. (x:y)rzox-(y-2z)
9. x:(x'-y)>y

10. x ' (x - y)>y
1oy tex s xey)
12. x=avx=>b

13. c-d#d-c
14. a»eve '»>b Pofl12.linto6
15. a»evb->e S of 14

delete 14

16. x=evx=bvb->e P of 15.1 into 12
17. ecd#d-evc>bvb->e P of 16.1 into 13
18. d#dvc>bvb-e S of 17

delete 17
19. co>bvb-e Rof18.1and 1
delete 18 Subsumed by 19

20. b-d#d-bvb->e P of 19.1 into 13
21. b-e#e-bvd->bvb-e P of 16.1 into 20
22. b#bvd->bvb-e S of 21

delete 21
23. d>bvb-e Rof22.1and1
delete 22 Subsumed by 23
24. b-b#b-bvb-e P of 23.1 into 20
25. b-e R of24.1and 1

delete 24,23,20,19,16 and 15 Subsumed by 25.

COMPLETENESS IN THEOREM PROVING WITH EQUALITY 99

26. x=avx-e S of 12
delete 12
27. e -d#d-evc->a P of 26.2 into 13
28. d#dvc—>a S of 27
delete 27
29. ¢c~>a R of28and 1
delete 28 Subsumed by 29
30. a-d#d-a S of 13

delete 13
3l.ae#e-avd-a P of 26.2 into 30
32. d»a S of 31 followed by R with 1
delete 31 Subsumed by 32
33.a*a#a-a S of 30
34. 0 Rof33and1

In this example, note that the many deletions made possible by subsumption and
simplification kept the total number of clauses down to a reasonable level. This is in
contrast to previous provers for first-order logic with equality whose main difficulty
was that space would quickly be exhausted. It is therefore hoped that a prover based
on the ideas of this paper will be better than previous complete ones.

Further research into automatic theorem proving in first-order logic with equality
could proceed in many directions. One could try to remove the restriction that the
ordering of terms must be order-isomorphic to the positive integers. This could involve
both extending Konig’s lemma [24, p. 69] to well-ordered sets with limit ordinals and
somehow dealing with trees constructed from such sets. Many strategies for improving
the power of resolution provers for logic without equality have been developed [3].
Which of these are useful in provers which use equality? See [24] for a description
of some work in this direction. Special unification methods such as associative-
commutative unification might be incorporated and completeness results sought [8],
[12],[13],[14],[19],[22],[27], [36]. Finally, experience has shown that in implementa-
tions of the Knuth-Bendix procedure, the majority of execution time is spent in
simplification. One could consider the possibility of ‘‘compiling” the simplifiers and
producing code that will speed the simplification process.

REFERENCES

[1] D. BRAND, Proving theorems with the modification method, this Journal, 4 (1975), pp. 412-430.

[2] T. C. BROWN, JR., A structured design-method for specialized proof procedures, Ph.D. Dissertation,
California Institute of Technology, Pasadena, CA, 1975.

[3] C.L. CHANG AND R. C. T. LEE, Symbolic Logic and Mechanical Theorem Proving, Academic Press,
New York, 1973.

[4] P. M. COHN, Universal Algebra, Harper & Row, New York, 1965.

[5] N. DERSHOWITZ, A note on simplification orderings, Tech. Rep. R-79-968, Dept. of Computer
Science, Univ. Illinois at Urbana-Champaign, Urbana, IL, April, 1979.

[6] , Orderings for term-rewriting systems, Tech. Rep. R-79-987, Dept. of Computer Science, Univ.
Illinois at Urbana-Champaign, Urbana, IL, August, 1979.

[7] N. DERSHOWITZ AND Z. MANNA, Proving termination with multiset orderings, Comm. ACM, 22
(1979), pp. 465-476.

[8] M. J. FAY, First-order unification in an equational theory, Presented at the Fourth Workshop on
Automated Deduction, Austin, TX, Feb. 1-3, 1979.

[9] J. R. GUARD, F. C. OGLESBY, J. H. BENNETT AND L. G. SETTLE, Semi-automated mathematics,
J. Assoc. Comput. Mach., 16 (1969), pp. 49-62.

100 GERALD E. PETERSON

[10] G. HUET, A complete proof of correctness of the Knuth-Bendix completion algorithm, INRIA and SRI
International, 1980.

, Confluent reductions: Abstract properties and applications to term rewriting systems, J. Assoc.
Comput. Mach., 27 (1980), pp. 797-821.

[12] G. HUET AND D. C. OPPEN, Equations and rewrite rules: A survey, Technical Report CSL-11, SRI
International, Menlo Park, CA, January, 1980.

[13] J. HULLOT, A catalogue of canonical term rewriting systems, Tech. Rep. CSL-113, SRI International,
Menlo Park, CA, April, 1980.

, Canonical forms and unification, Tech. Rep. CSL-114, SRI International, Menlo Park, CA,
April, 1980.

[15] D. E. KNUTH AND P. B. BENDIX, Simple word problems in universal algebras, in Computational
Problems in Abstract Algebras, J. Leech, ed., Pergamon Press, New York, 1970, pp. 263-297.

[16] R. KOWALSKI AND P. J. HAYES, Semantic trees in automatic theorem-proving, in Machine Intelligence
4, B. Meltzer and D. Michie, eds., American Elsevier, New York, 1969, pp. 87-101.

[17] D. S. LANKFORD, Canonical algebraic simplification in computational logic, Memo ATP-25, Dept.
Mathematics, Univ. Texas at Austin, Austin, TX, May, 1975.

(11]

(14]

[18] , Canonical inference, Technical Report ATP-25, Dept. Mathematics, Univ. Texas at Austin,
Austin, TX, Dec., 1975.

[19] , Mechanical theorem proving in field theory, Technical Report MTP-2, Dept. Mathematics,
Louisiana Tech Univ., Ruston, LA, January, 1979.

[20] , On proving term rewriting systems are Noetherian, Memo MTP-3, Dept. of Mathematics,

Louisiana Tech Univ., Ruston, LA, May, 1979.

[21] D. S. LANKFORD AND A. M. BALLANTYNE, The refutation completeness of blocked permutative
narrowing and resolution, Presented at the Fourth Workshop on Automated Deduction, Austin,
TX, Feb. 1-3, 1979.

, Decision procedures for simple equational theories with commutative-associative axioms: Com -
plete sets of commutative-associative reductions, Tech. Rep., Dept. Mathematics, Univ. Texas at
Austin, Austin, TX, August, 1977.

[23] L. S. LEVY, Discrete Structures of Computer Science, John Wiley, New York, 1980.

[24] D. W. LOVELAND, Automated Theorem Proving: A Logical Basis, North-Holland, Amsterdam, 1978.

[25] Z. MANNA, Mathematical Theory of Computation, McGraw-Hill, New York, 1974.

[26] A. J. NEVINS, A human oriented logic for automatic theorem-proving, J. Assoc. Comput. Mach., 21
(1974), pp. 606-621.

[27] G. E. PETERSON AND M. E. STICKEL, Complete sets of reductions for some equational theories, J.
Assoc. Comput. Mach., 22 (1981), pp. 233-264.

[28] D. A. PLAISTED, Well-founded ordering for proving termination of systems of rewrite rules, Tech. Rep.
R-78-932, Dept. Computer Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL, July,
1978.

, A recursively defined ordering for proving termination of term rewriting systems, Tech. Rep.
R-78-943, Dept. Computer Science, Univ. of Illinois at Urbana-Champaign, Sept., 1978.

[30] G. D. PLOTKIN, Building-in equational theories, in Machine Intelligence 7, B. Meltzer and D. Michie,
eds., John Wiley, New York, 1972, pp. 73-89.

[31] P. RAULEFS, J. SICKMANN, P. SZABO AND E. UNVERICHT, A short survey on the state of the art
in matching and unification problems, SIGSAM Bulletin, 13 (1979), pp. 14-20.

[32] G. A. ROBINSON AND L. Wos, Paramodulation and theorem proving in first order theories with
equality, in Machine Intelligence 4, B. Meltzer and D. Michie, eds., American Elsevier, New
York, 1969, pp. 135-150.

[33] B. K. ROSEN, Tree-manipulating systems and Church-Rosser theorems, J. Assoc. Comput. Mach., 20
(1973), pp. 160-187.

[34] J. R. SLAGLE, Automatic theorem proving with built-in theories including equality, partial ordering,
and sets, J. Assoc. Comput. Mach., 19 (1972), pp. 120-135.

, Automated theorem-proving for theories with simplifiers, commutativity, and associativity, J.
Assoc. Comput. Mach., 21 (1974), pp. 622-642.

[36] M. E. STICKEL, A unification algorithm for associative-commutative functions, J. Assoc. Comput.
Mach., 28 (1981), pp. 423-434.

(22]

[29]

(35]

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0007 $01.25/0

CHARACTERIZATION OF DIVISION ALGEBRAS OF MINIMAL RANK
AND THE STRUCTURE OF THEIR ALGORITHM VARIETIES*

HANS F. pe GROOTE+

Abstract. The purpose of this paper is to show that every finite dimensional division algebra of minimal
rank, i.e., of minimal complexity with respect to the noncommutative model of computation, is a finite
simple field extension. Moreover, we investigate the structure of the variety of optimal algorithms for the
computation of the multiplication in such fields modulo the isotropy group of the problem.

Key words. algebras, minimal rank, division algebras, simple field extensions, algorithm varieties

Introduction. Let &f be a finite dimensional algebra over a field k. We will assume
always that & is associative and has a unit element. Let of* be the dual of the
k-vectorspace &f. A (commutative) algorithm of length R for the multiplication in &/
is a tuple (U1, Vi, wy, * « +, Ur, Vg, Wr), where U,, V,e f* X f* and w,e A (p =
1,:-+,R)such that forall x, y € of

R
Xy = 21 U,(x, y)V,(x, y)w,
P
holds. The minimal R possible in such a representation is called the complexity £(sf)
of of. £(«) is the number of essential multiplications needed for the computation of
xy from x and y.

In this paper we use a somewhat coarser but more feasible computational model:
we shall consider only those algorithms for which the U,’s and V,’s have the special
form

U,=(u, 0), V,=(0,v,).
Then

R
Xy = 21 un(x)vp()’)wp
o=
for all x,y esf; this representation of the multiplication in & is equivalent to a
representation of the tensor fy € #* ® A* ® o of o as

R
ty= Y u, ®v, ®w,.
p=1

The minimal R possible in such a representation is called the rank of the
tensor ty or the rank of of for short, denoted by rk («f). This point of view goes
back to V. Strassen, and the reader who is not familiar with these notions should
compare [11] for further details. Obviously we have rk (#)=%(sf), and it is
not difficult to prove that rk (of) =2.2().

Recently, A. Alder and V. Strassen proved a general lower bound for the
complexity of algebras ([1]):

L(A)=2 dim of — # mspec (),

where mspec (&) is the set of two-sided maximal ideals of & (& itself is not considered
as an ideal). This lower bound contains almost all known lower bounds for the

* Received by the editors July 8, 1981, and in revised form March 25, 1982.
+ Fachbereich Mathematik, Johann Wolfgang Goethe-Universitét, Frankfurt am Main, Germany.

101

102 HANS F. DE GROOTE

complexity of concrete algebras. Of course 2 dim &f — #mspec (&) is also a lower
bound for rk ().

Now it is quite natural to ask for which algebras this lower bound is exact, i.e.,
which are the algebras & that satisfy

rk (f) =2 dim &f — # mspec ().

An algebra with this property is said to have minimal rank.

The problem of classifying algebras of minimal rank has two important aspects.
The first is a mathematical one: is it possible to describe such algebras by means of
their internal structure? If the answer is positive (at least for some special classes of
algebras), then this has applications in complexity theory: we will obtain new lower
bounds for the rank of algebras whose structure differs from that which is determined
by the minimal rank condition. This is the second aspect of our problem.

This paper is a starting point for the program described above. We investigate
the structure of finite dimensional division algebras of minimal rank and show that
these are the finite simple field extensions.

Another question, intimately related to the rank problem, is that of determining
the structure of the variety of optimal algorithms for a given bilinear computational
problem. We will do this for the algorithm variety of finite simple field extensions
K/k (provided the base field k is large enough), and in particular we will determine
the orbit space of this variety under the action of the isotropy group of K/k in the
sense of [4]. Furthermore, we shall compare this with the orbit space of optimal
algorithms for polynomial multiplication.

We will now fix some of the mathematical terminology used in this paper.

An element a of an algebra is called a unit if a has a multiplicative inverse. If
o is an algebra, a € o, then L,(R,) denotes the operator of left (right) multiplication
with a.

Let V be a vectorspace over a field k. If x € V we will write [x] for the subspace
of V generated by x. End (V) denotes the k-algebra of all endomorphisms, GI(V)
the group of all automorphisms of the vectorspace V. If ¢: V - W is a linear mapping,
then ¢*: W* > V* denotes the adjoint of ¢.

If £ and K are fields, then K/k means that K is an extension of k; [K : k] denotes
the degree of the extension K/k, i.e., the dimension of the k-vectorspace K.) denotes
the set of primitive elements of a simple field extension K/k. v, denotes the permutation
group of n elements and #M the cardinality of the set M, and [marks the end of
a proof. In general the terminology is that of [4].

1. Division algebras with minimal rank.

1.1. Preliminaries. Let ®: U XV > W be a bilinear mapping between finite
dimensional vectorspaces over a field k, te U* ® V* ® W the tensor corresponding
to ®. In [5] we introduced the notion ‘layer of ¢”°. In order to make this notion more
flexible we would like to generalize it to a coordinate-free one and show up its relation
to the left and right multiplication in case ® is the multiplication in a finite dimensional
algebra.

"=, @+ ® o, is a direct sum of division algebras, then & has minimal rank if and only if
all the &f,’s have [7]. However, one can derive more generally from a preliminary version of [1] that if &f
is semisimple and f=sf; @ - - - @ , is a decomposition of s into simple algebras, then & has minimal
rank if and only if all the &,’s have.

DIVISION ALGEBRAS OF MINIMAL RANK 103

Let
R
1.1.1) t=Y u,®v, w,
p=1

be a representation of ¢ as sum of rank-one tensors u, @ v, Qw,e U*®@ V*®@ W.
For xe U, ye V, x€ W* we define the layers of ¢ with respect to x, y, and x
respectively as

R R R
Iy = 21 up(x)vp @ w,, = }:l Up(Y)up R w, = Zl X(Wp)up ® v,
p= p= p=
Note that r, e V@ W, e U*® W, and ¢, e U* ® V* can be interpreted as linear
mappings
t: VoW, :U->W, t:U->V*

Note further that the definition of these layers is independent of the choice of the
representation (1.1.1) of ¢ because for all (x, y)e U X V we have

L) =P, y), t'x)=D(x,y),
t(x)(y) =x(P(x, y)).

This also shows that in case ® is the multiplication in a finite dimensional algebra s,
then

t.=L, and t'=R,,

where L,, R, denote left and right multiplication in & respectively. In what follows
we also need a relation between ¢, and the left multiplication in &. This is a somewhat
subtle question, and we will answer it for the special case of a simple algebra & with
unit,

PROPOSITION 1.1. Let o be a finite dimensional simple k-algebra with unit. Then
there is a vectorspace isomorphism S: s{ » A™* such that

@ L¥=SR.S™' forallx e,
(ii) t,=SLs—1, forallx esd™.
Proof. Let 8 be any vectorspace isomorphism §: of > o£*. Consider the subspaces
R = {R,|x € A}

and
Ly ={6"'L*s|x e A}

and End (&f). These are subalgebras of End (&), and since x — R, and x—>8 L%
(x e) are antiautomorphisms from & onto # and 5 respectively, # and £ are
simple subalgebras of End (&f). ¢:R,—8 'L¥s is an algebra isomorphism from %
onto ¥ which leaves the center k - id of End («f) elementwise fixed. Hence the
classical Skolem-Noether theorem [8] applies: there is a T € GI(«f) such that ¢ (R,) =
TR, T 'forallx e, ie.,

S'L*§=TR.T™! forallxe«.
Hence

VY L¥=(86T)R.(6T)7,

xesd

104 HANS F. DE GROOTE

S := 8T is a vectorspace isomorphism from & onto &¢* and (i) holds. To prove (ii),
consider x € £* and x, y € . Then

b(0)(y) = x (xy) = LEX)(Y) = SRS X)) = (S(STx) - x)(»),

hence t,(x)=SLs-1,(x) for all x. O

Remarks 1.2. (1) S is not unique: if S fulfills L} =SR,S™' for all x e and
a € o is a unit, then also $:=SL, gives the desired link between L¥ and R,. Conversely,
if S;, S, are isomorphisms & > such that Proposition 1.1 (i) holds, then S, =
S1Lsi1s,1, where 1 denotes the unit element of &f. We will use this possibility of
changing S later on.

(2) Using Wedderburn’s structure theorem [8], it is not difficult to show that
Proposition 1.1 also holds for semisimple k-algebras. Proposition 1.1 however, cannot
be generalized to nonsemisimple algebras, as the example & = k[X >, X?]/(X®, X7)
shows.

(3) If « is a division algebra, i.e., if L, is a vector space isomorphism whenever
x #0, then S can be defined by S(x) = y o L,, where yx is a fixed but arbitrary element
of of*\{0}.

1.2. Characterization of division algebras with minimal rank. Let &f be a finite
dimensional k-algebra with unit element 1 and let s be the number of maximal
(two-sided) ideals of /. As usual the algebra &f itself is not regarded as a maximal ideal.

In [1] A. Alder and V. Strassen showed that 2 dim & —s is a lower bound for
the (commutative) complexity of the multiplication in &, hence also a lower bound
for the rank of &, i.e., the rank of the tensor of &/.

If & is a division algebra (also called a ‘“‘skew field”’” sometimes) this lower bound
is simply 2 dim &/ — 1, for (0) is the only maximal ideal of &. This is a well-known
lower bound and its proof is in fact an almost trivial exercise.

The only known examples of division algebras for which 2 dim & — 1 is the actual
rank are the simple algebraic field extensions of k, provided k has enough elements
[13]. Therefore we are faced with the question whether this class of examples is
exhaustive or not. We will show here that a division algebra & with minimal rank
2dim & —1 is generated (as an algebra) by a single element, i.e., is a simple field
extension of k.

In what follows, & is a unitary n-dimensional division algebra with minimal rank,
t the tensor of its multiplication.

LEmMmA 1.3, Ift= 2,2,':11 u, ®v, ®w, e 4* ® A* ® sfisan optimal decomposition

of t, then any subset of {uq,"*,uan-1}, {U1,**,Van-1} Or {wy, -+, Wa_1} with n
elements is linearly independent.

Proof. Let{w,,, -, w,}={wi, -, ws,—1} be an n-element subset. Without loss
of generality we may assume that p, =i for i =1, - - -, n. Consider a non-zero x € &
which is orthogonal to {u,+1, * * -, U2,-1}, i.€., it satisfies the equations u,(x) =0 for
p=n+1,:++,2n—1. Then the layer ¢, = L, of ¢ with respect to x is simply

L.=Y u,(x)v, ®w,.
p=1

Because &« is a division algebra, x is a unit and therefore L, € GI(&f). This implies

that {v1, -+, v,} and {wq, -+, w,} are linearly independent subsets of o* and &
respectively.

If {u,, + -, u,,} is an n-element subset of {ui,* * -, uz,—1}, consider a nonzero
element y orthogonal to {vy, * * *, v2n—1}\{t,,, * - *, 1,,, } and argue with R, in the same

way as above. 0

DIVISION ALGEBRAS OF MINIMAL RANK 105

THEOREM 1.4. A division algebra of over k has rank 2 dim f —1 if and only if
A is a simple field extension of k and #k =2 dim &f —2.

Proof. The idea of the proof is to construct a primitive element for /. According
to Proposition 1.1 we choose a vectorspace isomorphism S:.sf > sf* such that ¢, =
SLs-1, for all y € «*. Consider an optimal decomposition of ¢ into tensors of rank one:

2n-1

(1.4.1) t=Y u, v, Dw,.
p=1

In order to simplify our discussion we shall use the fact that we can obtain further
optimal decompositions of ¢ by means of the transformation

u, ®v, ®w,—>A*u, ® B*v, ® Cw, p=1,-++,2n-1)

where
A=L,R,, B=L,R, C=L,1R.

and a, b, ¢ are units of &f [4, Thm. 3.1]. Hence we may assume without loss of
generality that v; =51 in decomposition (1) of ¢. From Lemma (1.3) we know that
{Wn, * + +, wa,_1} is linearly independent, i.e., is a basis of of. Let {x1, - -, xn} = *
be the dual basis:

XiWn_14))=8; forij=1,---, n.
Then we obtain foralli=1,---, n:

n—1
(1'4-2) SLS_1X¢ = tx; = z Up ® UpXi(wp) + Un—1+i ® Un—1+i-

p=1
Now choose y; L{u1,***, un-1}, y1#0, and y, L{us, * * *, un—1} such that u;(y,)=1.
In particular this implies that {y, y,}islinearly independent, i.e., y; 'y, & k. We conclude
from (2) thatforalli=1,---,n

(1.4.3) S((S_lXi) cy) = Up-1+i(Y1)Vn—1+i
and
(1.4.4) SUS7TX) - y2) = xiW1)S T+ Uy 144 (Y2)Vn 14

holds. Now (3) implies

S7xi = tn-14:(y1) (S On_100)yT
fori=1,- -, n. Substituting this in (4) we can solve for $ v, _,.; It follows that
(1.4.5) S ns1ai =Xi(Wl)[un~1+i(Y1)(y;l)’2)“‘ Mn—1+i()’2)]_1

for i=1,---,n. Observe that, for all i, u,_14:(y1)(y1 ¥2) = thn-1+:(y2), and hence
S '0n-1+4 is contained in the subfield k (y7'y,) of o generated by y1'y,. On the other
hand,

A= link {S_lv,,_1+,-|1 =i= n}
by Lemma 1.3, hence
A =k(y1'y),

and y'y, is a primitive element of the field extension Al k.
The assertion #k = 2n —2 will follow from the classification of optimal algorithms
for ¢.

106 HANS F. DE GROOTE

Conversely, it is well known that multiplication in a simple field extension of
degree n over k has rank 2n — 1 provided that #k =2n —2 (cf. [3],[12]). O

Remark 1.5. Our proof uses Proposition 1.1, hence implicitly the Skolem-
Noether theorem. It is possible, however, to give a quite analogous proof without

using Proposition 1.1: without loss of generality assume w;=1; let {x1,:*:, x,}
be the basis dual to {u,, - * *, u2,-1}. Then
n—1
L, = Zl Up(X)0p @ Wy, +Vp—14: @ Wo_141.
P
Consider z; L{v1,***, vn-1}, 21 #0, and z, L{vs, * * *, v,-1} such that v1(z,) = 1. Now

it should be clear how to proceed, and we leave this as an exercise to the reader. The
reason for the proof given for Theorem 1.4 is that it gives us information on the
structure of v, * * *, v2,-1 (cf. (1.4.5)). We will need this information later on for the
classification of optimal algorithms for ¢.

CoROLLARY 1.6. (1) If o is a noncommutative division algebra over k, then its
rank is at least 2 dim .

(2) Let k be an infinite field, K a finite algebraic extension of k. The extension
K/k is simple if and only if K has rank 2[K :k]—1.

Note that the assumption #k =00 is quite natural for the equivalence stated in
(2), for if k is a finite field, each finite algebraic extension K over k is a finite field.
The multiplicative group of a finite field is cyclic, hence the extension K/k is simple.

2. Classification of optimal algorithms for the multiplication in simple field
extensions.

2.1. Parametrization of optimal algorithms for simple field extensions. In this
subsection we will derive a parametrization of the variety of optimal algorithms for
the multiplication in a simple extension K/k of complexity 2n —1 where n = [K: k]
is the degree of the field extension.

The result is a minor modification of that in [13]. The proof, however, is much
less computational than that of S. Winograd, thus showing the power of coordinate-free
methods in algebraic complexity theory.

In what follows we will denote by ¢ the tensor of multiplication in K.

DEerFINITION 2.1. A product u ® v is called symmetric if [u]=[v].

The next lemma shows that optimal algorithms for K must have strong sym-
metries:

LEMMA 2.2, Let t=Z‘2,':11 u, ®v, @ w, be an optimal decomposition of t. If one
of the products u, ® v, is symmetric then all of them are.

Proof. Let u; ® v; be symmetric. Without loss of generality we may assume that

ur=v; by scaling (cf. [4]). Consider (n—1)-element sets {up, ", U, .}
{vpy» =+ *, U,,_,} that do not contain u;. If we can show that the products u, ® v,,
(i=1,---,n—1) are symmetric, we are done. For notational convenience we will
assume that the sets above are {u,, * - -, u,,} and {vs, - - +, v, } respectively. According

to Lemma 1.3 there are (unique) elements x, y € K,
x L{uns1, * 00, Uzn-1d Yy L{ons1,***, 201y
such that u;(x) =v:(y) = 1. As K is commutative, we have
m,=L,=R, forallzek.

Therefore

n
m,= Y u,(x)v, ®w,,
p=1

DIVISION ALGEBRAS OF MINIMAL RANK 107

and on the other hand

my = Zl v,(y)u, @ w,.
P

Now

Myoy =M, —my = gl [, ()0, =0, (YU,] @ W,

n

= 22 [uﬂ (X)'Up — U (Y)up] ® Wp,

p=

and it follows that the multiplication operator m,_, is singular. This is possible only
if m,_, =0, i.e. x =y, and from the linear independence of {w,, -, w,} we then
conclude that

up(x)vp—_-vp(x)up forp =2’- <., n.

Thus the products u; ® v,, * * *, u, ® v, are symmetric. 0

Now let §:K - K* be a k-vectorspace isomorphism with the properties (i), (ii)
of Proposition 1.1. Let t=Zﬁ';_11 u, ®v, ® w, be an optimal decomposition of ¢. By
means of the isotropy group we may assume that

(21.1) M1=01=Sl.
Then Lemma 2.2 shows that we may scale the other products in such a way that
Uy, =0,

holds for all p =1, - - -, 2n — 1. From the proof of Theorem 1.4 we see that there are
a primitive element w € K and elements @, —1+,, Bn-1+, €k such that

v Un—1+u=S(1/(an—1+vw_Bn—l+u))-

v=1,+n

As {v1, Up-1+.} (w =1, - - -, n) must be linearly independent, it follows that a;,,_;., %0
for all », hence we may scale the v,,_1+, such that

(2'1'2) —1V vn—-1+V=S(1/(w_Bn—-1+v))

with suitable 8,-1., € k. It remains to determine v, * * -, v,_1. For this we shall make

a special choice for the isomorphism S:K -» K*. Observe first that our primitive
element w does not depend on S.
Now choose x € K * such that

XJ—{19 W, " ’wn—Z}’
There is exactly one a € K with y =8 (a). Now S’ := Sm, has the property
S'1=Sa1{l,w, -, 0" %}

Finally observe that the switch from § to S’ can be achieved by applying
m¥ @m¥ ® m,—2eT° to our algorithm:

miSx =Sm,S™'Sx =S'x.
Hence we may assume that S in (2) has the property

S11{1,w, -+, 0" 2}

108 HANS F. DE GROOTE

Now let {x1, ", x.}=K* be the basis dual to {wy, -+, w,}<K. Then for all v =
1,--+,n we have
2n—1
Sms_lxv = z Up ® UpXu(W,,)+U,, ® v,.
p=n+1

According to the special choice of S,

yi= 11 @=Baie)
is orthogonal to {v,+1, * * *, U2,-1} and

y2 = Vli (@ —Bu-1+v)

is orthogonal to {v,42, * * *, V2n-1}.
Now the very same reasoning as in the proof of Theorem 1.4 shows that

_ S_1Un+1
S lvu =Un ()Xu(wn) * = .
] vz 0, (y)yity2—0.(y2)

As S =1/ (w —Bn+1) and y1'ys=1/(w — Bn+1), We see that
v,=S(1/(@@w~B) (=1,---,n),
and by suitable scaling we may assume that

vv=S(1/(w_Bv)) (V=29°°"n)'

I <=

v

The products of our algorithms are now reduced to v, ® v, (p =1, -+, 2n —1) where
V1= Sl,
(2.1.3)
v, =8S1/(w=-B,) (=2,--+,2n-1).
Since any n-element subset of {vy, - * + , v2,-1} must be linearly independent, it follows
that 8, # B, for p # 0. Hence #k =2n —2.
Conversely, if any primitive element w € K and any 2n —2 elements B8, * * , Ban—1

k are given, the products
11®v;=81®S1, v,®v,=51/(w—-8,)RS1/(w—8,))
p=2,--+,2n-1)

define an optimal algorithm for . Indeed, observe that as before we may assume that

S11{l,w,, 0" 2.

But then for all ye{l,:--,n—1}and allpe{2,- - -,2n —1} we have
1 w” 4 B! !
s (w*)=s1()=51(w* 1+"—)= 1()
w—B, w—pB, w—B, BPS o —B,
hence
s— (wn=s——p;
w—ﬂp w_Bp ?

forally=0,---,n—1.

DIVISION ALGEBRAS OF MINIMAL RANK 109

Therefore we have for all x =¥/ _ x,0” €K

1 1

o =B, () Sw -8B,
and we conclude that the products v, ® v, determine one of the well-known interpola-
tion algorithms (with one interpolation point at infinity due to the choice of §1 ® S1)
for the multiplication in K.

Thus we have the following result (cf. [13]):

THEOREM 2.3. Let k be a field, K/k a simple finite extension of k. Let S: K » K *
be a k-vectorspace isomorphism such that m* =Sm,S™" for all x € K. Let = [K : k] be
the degree of the extension K/k. If #k =2n—2 then any optimal algorithm for the
multiplication in K is determined up to equivalence modulo the isotropy group T/ by
products v, v, (p =1, +,2n—1) of the form

v1=S1, 1,=851/(w—B,) (P=2)

s m(zo %,87),

where w € K is a primitive element and B>, - * +, B2.-1 € k are pairwise different. Con -
versely, any set of products of the above form, i.e., any choice of a primitive element
w €K and of pairwise different B2, - + -, B2n—1 € k, determines an optimal algorithm for
the multiplication in K.

This description of the algorithm variety, however, is not yet satisfactory, for
some of the algorithms mentioned above are equivalent modulo the isotropy group
of K/k. There remains the task of determining the orbit space of the algorithm variety
modulo the isotropy group.

2.2. The orbit space of the algorithm variety of a finite simple field extension
modulo its isotropy group. We recall first how the (small) isotropy group I'y of a
finite dimensional algebra & over a field k looks.

THEOREM 2.4 [4, Thm. 3.1]. Let o be a finite dimensional algebra over the field
k and A*®B*® C an automorphism of the vector space d* ® A* R o. Then
A*® B* ® C eT'y if and only if there are units a, b € of and an automorphism ¢ of the
algebra sf such that

A=L,op, B=Ry°0, C=(p-1°La“1°Rb—'.
In our case of a finite simple field extension K/k, we have to consider
A=maop, B=myop, C=¢ 'omu 1,

where a, b € K\{0} and ¢ € G, the group of automorphisms of K over k.

Our first task is to determine the adjoint A* of A =m, ° ¢ € Gl(«). Now A*=
e*¥om¥ =¢*o8 om, oS with a suitable isomorphism S: K - K *, it suffices to com-
pute ¢*: K*-> K* from ¢ € G.

LEMMA 2.5. Let K/k be a finite field extension, G the automorphism group of K
over k. Then there is a k-vectorspace isomorphism S:K -» K* such that

@) m¥=Sm,S' forallxeK and
(ii) e*=Se7'S™' forallgeG.

Proof. (a) We will discuss first the special case where K/k is a Galois extension,
i.e. normal and separable. In this case the trace of K over k fulfills our requirements:
Let G = Gal (K/k) be the Galois group of the extension. The trace of an element

110 HANS F. DE GROOTE

x € K is defined as

trix)= Y o).

oeG

Recall that tr (x) is always an element of k. Now define S: K » K* by

Sx (y) = tr (xy).
S is a k-vectorspace isomorphism and for all x, y, z € K we have

m3Sy(z)=Sy(xz)=tr (y(xz))
=tr ((xy)z) = Sxy(z) = Sm.y (2),
hence
m¥*=SmS".
Let ¢ € G. Then for all x, y € K we have
@*Sx(y)=Sx(¢(y)) =tr (xe(y))
=T ole(0)= T oe(e (x)y)

oeG

=Y 7(e ' (x)y) =S¢ '(x)(y),

1eG
hence
e*=Sp '8,

(b) In this part of the proof we would like to discuss conditions for the existence
of a k-vectorspace isomorphism S: K » K * with the properties (i), (ii) where K is any
finite extension of k, and G the group of automorphisms of K over k. For ¢ € G let
I, ={p(x)—x|xeK}. I, is a k-vectorspace and, as ¢ leaves k elementwise fixed, of
dimension =n —1. (n:=[K:k].) Let S: K - K* be a k-vectorspace isomorphism with
property (i). Then an easy calculation, using the fact that Sx(y)=S1(xy)(x, y e K),
shows that S also satisfies property (ii) if and only if S1 1 {x¢(y) —(p_l(x)ylx, yeK}.
Now x¢(y)—¢ '(x)y = (¢ —id)(@ '(x)y)(x,y €K, ¢ € G) and {¢ '(x)ylx,y eK}=K
imply that S satisfies (ii) if and only if S1.L I, for all ¢ € G.

According to the fact that if $:K - K™* has the property (i) then also S o m,
(a € K\{0}) has this property, we get

(*) There is a k-vectorspace isomorphism S: K -> K * satisfying (i) and (ii) if and
only if there is a xy € K*\{0} such that x(I,)=0 for all ¢ € G.

(c) Now let F :={xeK|e(x)=x for all ¢ € G} be the fixed field of G. Then a
theorem of E. Artin asserts that the extension K/F is Galois with Galois group
Gal (K/F)=G (see [10]). Observe that the spaces I, are also vectorspaces over the
field F. Hence by (a) and (x) there is a nonzero y € Hom (K, F) such that x(Z,)=0
for all ¢ € G. Choose any ¢ € Hom (F, k) such that £ o x #0. Then ¢ o y € K*\{0} and

f°X(I¢)=0

for all ¢ € G. According to (*), the lemma is proved. 0O
In order to find the distinct equivalence classes of the variety of optimal algorithms
for K we have, according to Theorem 2.3, to study transformations

v, ®v,—>A%, ® A*v,

DIVISION ALGEBRAS OF MINIMAL RANK 111

of the symmetric products v, ® v, described in Theorem 2.3, where A=m,° ¢,
a € K\{0}, ¢ € G. From Lemma 2.5 we conclude that

A*=o*m¥ =So 'm.S7",

hence
A*Sx =Sp ' mx
for all x € K. Therefore our problem is to investigate the action of transformations
x—e(ax)=¢(a)e(x)

on tuples (1/(ayw+B1), * * *, 1/(azn—10 +Ban-1)) € K*" ', where w € Q and the points
(a,:B,) (=1, -+,2n—1) of the projective line P; over k are pairwise distinct. In
other words, given any two such tuples (1/(ayw +81),***, 1/(@2n-10 + B2,-1)) and
1/(aiw'+B8Y), -+, 1/(asn_10"+B2.—1)), we shall look for conditions that there are
a € K\{0} and ¢ € G such that

A U1)
1 aw'+B, ae(w)+B,

S

I <€

I

Take p = 1. Then

_a1p(@)+B:1
ola)= alw'+B1

Substituting this for p =2, we obtain

aiw'+B1_aip(w)+pB: =(P(a1w +31>
a,w'+B8, a,p(w)+B, a,w+B,/

because the automorphism ¢ leaves k elementwise fixed. Notice that

a1z +
szz,_,l—Bl_
a,z +,

and
ayz +B1

Hy:z—>— ;
a,z+B,

are homographies, for (a:B) # (y:) is equivalent to the nonsingularity of the (2, 2)-
matrix (2 %). On the other hand, each nonsingular (2, 2)-matrix (5 #) defines a
homography via z —(az +8)/(yz +8) and two matrices M, M, Gl (k%) determine
the same homography if and only if M, is a scalar multiple of M;.

We will write [5] for the homography defined by (5 %). In this way the group
¢ of homographies of K over k is isomorphic to the group PGI(2) of projectivities
of P, over k.

Now we can write

H,w'=¢H,w = Hpw
forp=2,-+:,2n—1, and
o'=H5)""Hypw.
Substituting this for p =3 we get
(2.2.1) H.,(H%) 'Hypw = Hypw.

112 HANS F. DE GROOTE

If n >2, the group # of homographies over k acts fixpoint-free on (2; hence
H.,=H,H;'H})

forallp=2,--:,2n—1. A simple calculation shows that

S e L T

! ! ! !
—aa1 tajaz; —aB1taif3z

[]
€3 €4

and
(al’J : B;,:) = (ap:Bp)Ha

e, a,=¢e1a,+e3B, Bp =620, +e4B, forp=1,2,--+,2n—1.

Therefore, using the shorthand notation (w, (@1:B1), ", (@2n-1:B2n-1))E
Qx P! for the algorithm determined by (1/(a1w +B1), ", 1/(a2n—10 +B2n-1)),
we have proved:

PROPOSITION 2.6. If n>2, then an algorithm (o', (@1:81), "+, (@5 _1:B2n-1))
is contained in the orbit of (w, (a1:81), " * *, (@2,-1:B2n-1)) under the isotropy group of

K if and only if there are H € ¥ and ¢ € G such that
w'=H ‘o0 and (a):B.)=(a,:B,)H
forallp=1,---,2n-1.

We will use now the fact that PGI(2) acts sharply three-fold transitive on P;.
Therefore it is possible to transform the factors of the first three products of all
algorithms to (0:1), (1:1) and (1:0) respectively, and we conclude that for any two
equivalent algorithms of this form the corresponding H must be the identity.

Hence we have proved that if n >2, the orbit space of the algorithm variety
modulo the isotropy group is given by

Q/Gx(((0:1), (1:1), (1:0)) x PI" " N\Az, s,

where

Aw={@n - pey|3 pi=p;]

i#]
is the weak diagonal of P7'.

It remains to discuss the case of a quadratic extension K/k. Here all w € K \k are
primitive elements and the situation differs from the case [K:k]>2 because each
homography has fixed points in Q=K\k: Let w € Q and let X*+pX +q be the
irreducible polynomial of w. If H =[% 5], then Hw = (aw +b)/(cw +d) = w if and
only if cw’+(d-a)w—-b=0.Ifc = 0, then, since w& k, b =0 and a =d, i.e., H is the
identity. Otherwise

i.e. b =—qc and d = a +pc. Therefore

Fix (w) == {[Z a:_q;c]/a,cek,a;éOorc#O}

DIVISION ALGEBRAS OF MINIMAL RANK 113

is the subgroup of 7 that leaves w fixed. Observe that Fix (w) = Fix (¢ (w)) for ¢ € G,
because w and ¢ (w) have the same irreducible polynomial. Going back to (2.2.1), we
see that we can only conclude that there is a F,, € Fix (w) such that

HH '=H,F,,
i.e.
(2.2.2) H = HsF, H.

But an easy calculation shows that for every choice of (a3: 83) there exists F,, € Fix (w)
such that (a3 :83) = (as:83)F.,H holds. Hence the orbit space is simply Q/G.
It is worth remarking that the orbit space in the case k =R, K = C looks like

9, ={zeC|Imz >0},

the upper half of the complex plane.

Summarizing our results, we get the following.

THEOREM 2.7. The orbit space of the algorithm variety of simple field extensions
K/k of degree n modulo the isotropy group Tk is

Q/Gx(((0:1), (1:1), (1:0)) xPI" "\ Azpy,

where Q< K is the set of primitive elements of K, and A,,—; is the weak diagonal of
the (2n —1)-fold product of the projective line P; over k.

If we consider the action of the extended isotropy group (cf. [4, p. 16]), the
situation becomes somewhat more complicated. Here we have to take into account
the effect of permutations of the products, and the equivalence class of an algorithm
modulo the permutation group is just the set of products occurring in the algorithm.

In our case the extended isotropy group is F?qk'yzn_l. Let Uk, be the algorithm
variety of the field extension K/k. The actions of I',x and y,,_; commute on ks,
hence vy,,_; operates on the quotient k/./T %/« Let a [’-orbit be represented by
(0, Py, ++, Ps,_1), where @ € /G and the tuple (Py,** +, P3,-1)€ P2" " 1\A,,_; issuch
that P;=(1:0), P,=(1:1), P;=(0:1). We denote the set of such tuples by P3 . If
P=(Py, ,Pzn—l)eg’(zﬂ,—ala and 7 € yan-1, Write W_l(g’) for (Pr1y,*** s Pri2n—1)-
Observe that for every P e P and 7 € y2._; there is a unique H € & such that
Hm(P)e Py 4. In this way y2,_; operates on P53 «, and we write T,, for Har.

Now it can happen that the action of a nontrivial 7 € y,,_1 can also be expressed
by applying a homography (this depends on the cross ratios of the coordinate points
in P):

7 {(P)=H(P)=H(P1)," "+, H({P2.-1)),
i.e. that T (P)=2.
Hop ={H e %I 3 Hr(P)=2P}

TEY2n-1

is a subgroup of , isomorphic to
‘Y2n—1(?) = {77' € 72H—1|Tﬂ(?) = @}'

IfP=?" modT,ie. if P'=T,(P) for some 7 € y3,-1, then the groups ¥» and Hp
are conjugate subgroups of # and therefore O/G¥» = Q) /G¥# . Hence we have the
following

THEOREM 2.8. Let

@g,nl.,_otlb = {(Ph DY P2n—1)e Ip%n_l\AZn—llpl = (1:0)a P2= (1 : 1)’ P3 = (0: 1)}'

114 HANS F. DE GROOTE

Then the orbit space of the algorithm variety Ux i of the simple field extension K/k of
degree n modulo the extended isotropy group r?(/k‘an_l can be represented by the
disjoint union

1 Q/G¥5

5 _p2n—1
PeP G100/ V2n—1

where P € P and Hp ={H € #|3,c,,. , Hr(P)=P}.
If n >2 andif k is infinite, then “‘in general” the groups %5 and y,,—1(%) are trivial.
However, in case of quadratic extensions we obtain a quite nice structure: here
the only 2 to be considered is

P =((1:0),(1:1),(0:1)),
and we have y3(%?) = y,. The group ¥» =: &, isomorphic to vys, is

o-{lo 2} o}l 1 DL O)

o 1Lt oL o 1Ll-1 1l ofl1 -1f

Thus for quadratic extensions the orbit space Wx,r/ F?(/kyg is represented by /G ®.
We would like to make this quotient explicit in the special case K =C, k=R. &

is a finite subgroup of the extended modular group, and we shall exhibit a fundamental

region of G@®, i.e. a maximal set of pairwise inequivalent representatives of Q/G®.
Here is not the place to calculate such a fundamental region explicitly; we merely

state the result:
THEOREM 2.9.

We/m/Te/mya

can be represented by the fundamental region

1 V3
{zeCllzlél,lz—1|<1,O<Imz}U{-2-+—2§i}.

This fundamental region looks like the shaded set in Fig. 2.1.

Fi1G. 2.1

3. Optimal algorithms for the multiplication of polynomials. In this section we
would like to sketch how the space of orbits of optimal algorithms for polynomial
multiplication under the action of the isotropy group I' looks, and show its close
relation to the orbit space of the algorithm variety of simple field extensions. Details
of our considerations are contained in [6].

DIVISION ALGEBRAS OF MINIMAL RANK 115

For [€ N let k;[X] be the space of polynomials f € k[X] of degree deg f =/,
(I)m,n : km[X] X kn[X]-) km+n[X]9

the bilinear mapping defined by polynomial multiplication. Let t™" be the tensor
corresponding to ®,, .. If we choose the ordered canonical basis (1, X, -+, X " in
ki[X1, and if (xo0, X1, * *, x1) is the dual basis to (1, X, - - -, X'), then the layers "
of t™" are given by

(t;(n‘:n))\,u =6,-rm

where 0SA=m,0=u=n,0=Sv=m+n. As{ty.",** *, tmin}is linearly independent,
we always have rk (t™")=m +n +1, and it is not difficult to show

ProvposrTion 3.1 ([9], [12]). tk ¢™")=m +n+1 if and only if ¥k =Zm +n.

Moreover, one has the following simple parametrization of the algorithm variety
for ®,,,.:

ProposITION 3.2 (cf. [9], [12]). (i) For o € k let u,, € k. [X ¥, vo € ko[X]* be defined
by

uo(f) = fla), va(g) = gla),
and let Uso(f) = Omdeg fr Voo(8) = Sndeg g Then Poo = o ® Voo =1

m,n

Xm+n

and for a €k,

m+n
Po=u,Q@va= Y a’ty".
v=0

(ii) If #k =m + n then every optimal algorithm for the computation of P, is given
bY (Pags * * * 5 Pa,,.,) where ag, * * +, ama+n are pairwise distinct elements of k U{00}.

P, is called the product at infinity. At first glance it may appear that there are
two different kinds of optimal algorithms for ®,,,.: those which contain the product
at infinity and those which do not (‘“multiplication of polynomials by interpolation”).
In what follows we shall see that this distinction is not adequate.

It is not difficult to determine the group I'y, . of all automorphisms A* ® B* ® C
of km[XT* ® k,[XT* ® k- [X] that leave t™" fixed: A*® B*® C ™" =¢™", This
condition is equivalent to

C(A(N)B()=fg forallfekn[X], gek,[X].

Using elementary arguments on divisibility of polynomials, one obtains from this
condition the following result on the structure of the isotropy group Iy, of ®,,, .

PROPOSITION 3.3. Let k be a field. Then A* @ B* ® C €', . if and only if there
are linear polynomials L, M € k[X] such that {L, M} is linearly independent, and for
all fekn[X], gek,[X] and h € kp,.n[X],

A()=MX)"H(f), B(g)=M(X)"H(g),
C'h)=MX)"""H (h)

hold, where H = L/M.

If m=n, then [./To.={id, 712} (12 permutes the first two factors of the
tensor product), otherwise Iy, = 'oy..

In other words, I'),, is isomorphic to the group of homographies X~
(aX +B)/(yX +8), ad # By, i.e. to the automorphism group of the field k(X) over
k. A similar result for the special case m =n and a related concept of equivalence of
algorithms appear in [2].

From now on let k be large enough, say #k = co for simplicity. We would like
to investigate the action of I',,,, on the variety U,, . of scaling equivalence classes of

116 HANS F. DE GROOTE

optimal algorithms for ®,,,. For NeN, Py denotes the N-dimensional projective
space over k. Let

‘6N:={(§0:~--:§N)GIPN 3 v g,.=a"3”“"}.

a,Bek i=0,,N
It is an obvious consequence of Proposition 3.2 that the variety %, ,, is isomorphic
to €r " I\AM, .1, Where
Aminrr={d1,* dmens) EPm " H{dy, - dmens} <m +n +1}

is the weak diagonal of Pjp ™" *!

curve in P,,, isomorphic to P;:
ei(a:B)y—>(B":ap™ i ia™);

is a bijective morphism from P; onto €,, whose inverse can be defined by gluing
together the morphisms

. Moreover, it is easy to see that €, is an irreducible

defined on €,, N{(&o: "+ + : €m)|€0 # 0}, and
Ya: (o 1 m) > (Emiém—1)
defined on €,, N{(£o:* * * :&m)|ém # 0}. Hence U, ,, is isomorphic to the Zariski open set
P N\Aptnsts

and this isomorphism translates the action of I',,,,, on %, , into the action of PGI(2)
on P *"\A,1n+1. (Observe that the permutational map 1, €I, . operates identi-
cally on %, ,..) As PGI(2) operates sharply threefold transitive on P;, we have therefore
proved the following.

THEOREM 3.4. W,/ T . is isomorphic to

(((0: 1)9 (1 : 1)9 (1 : O)) X P;n+n_2)\Am+n+1-

Acknowledgment. The author is very much obliged to the referees for useful
suggestions concerning the presentation and for pointing out some inadvertances in
an earlier version of this paper.

Note added in proof. E. Feig (J. Algorithms, 2 (1981), pp. 261-281) has shown
that if A is a division algebra of minimal complexity, i.e., if L(A)=2 dim A —1, then
every commutative optimal algorithm for A is already bilinear. This means that the
results of our paper also hold for division algebras of minimal complexity.

REFERENCES

[1] A. ALDER AND V. STRASSEN, On the algorithmic complexity of associative algebras, Theoret. Comput.
Sci., 15 (1981), pp. 201-211.

[2] R. W. BROCKETT AND D. DOBKIN, On the optimal evaluation of a set of bilinear forms, Linear
Algebra and Appl., 19 (1978), pp. 207-235.

[3] C. M. FipucciA AND 1. ZALCSTEIN, Algebras having linear multiplicative complexity, J. Assoc.
Comput. Mach., 24 (1977), pp. 311-331.

[4] H. F. DE GROOTE, On varieties of optimal algorithms for the computation of bilinear mappings, 1. The
isotropy group of a bilinear mapping, Theoret. Comput. Sci., 7 (1978), pp. 1-24.

[5] , On varieties of optimal algorithms for the computation of bilinear mappings, 11. Optimal
algorithms for 2 X 2-matrix multiplication, Theoret. Comput. Sci., 7 (1978), pp. 127-148.
[6] , Multiplication of polynomials over infinite fields, Technical Report, Eberhard-Karls-Univer-

sitat, Tlibingen, 1978.

DIVISION ALGEBRAS OF MINIMAL RANK 117

[7] H. F. DE GROOTE AND J. HEINTZ, Minimal complexity of finite direct sums of division algebras,
Technical Report, J. W. Goethe-Universitdt, Frankfurt am Main, 1980.
[8] I. N. HERSTEIN, Noncommutative Rings, Carus Math. Monographs, 15, Mathematical Association
of America, Washington, DC, 1973.
[9] J.-C. LAFON, Base tensorielle des matrices de Hankel (ou de Toeplitz); applications, Numer. Math.,
23 (1975), pp. 349-361.
[10] S. LANG, Algebra, Addison-Wesley, Reading, MA, 1978.
[11] V. STRASSEN, Vermeidung von Divisionen, J. Reine Angew. Math., 264 (1973), pp. 184-202.
[12] S. WINOGRAD, Some bilinear forms whose multiplicative complexity depends on the field of constants,
Math. Systems Theory, 10 (1977), pp. 169-180.

[13] , On multiplication in algebraic extension fields, Theoret. Comput. Sci., 8 (1979), pp. 359-377.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0008 $01.25/0

DIVIDE AND CONQUER HEURISTICS FOR
MINIMUM WEIGHTED EUCLIDEAN MATCHING*

KENNETH J. SUPOWITt AND EDWARD M. REINGOLD#

Abstract. We consider the following problem: Given n points in a unit square in the Euclidean plane,
find a matching of the points such that the cost (i.e., the sum of the lengths of the edges between matched
points) is minimum. In particular, we present a class of linear time heuristic algorithms for this problem
and analyze their worst case performance. The worst case performance of an algorithm is defined as the
greatest possible cost, as a function of s, of the matching produced by the algorithm on a set of n points.
Each of the algorithms studied here divides the unit square into a few smaller regions, and then is applied
recursively to the points in each of these regions.

Key words. matching, graph algorithms, divide and conquer heuristics, computational geometry

1. Introduction. If P is a set of n points (where n is even), then a matching of
P is a set of n/2 edges such that each point of P is an endpoint of exactly one edge
of the matching. The cost of a matching is the sum of the lengths of its edges. The
Euclidean matching problem is to find minimum cost matchings when P < [0, 1]* and
the length of an edge is the Euclidean distance.

An algorithm to solve this problem in time ®(n>) is known [5], [10]. In fact, this
algorithm works not only for the Euclidean matching problem, but also for arbitrary
weighted, undirected graphs. In this paper, we consider a class of heuristic matching
algorithms that take advantage of geometry in order to give very fast running times.
Although these heuristics do not always give minimum cost matchings, we are able
to put an upper bound on the cost, as a function of n, of the matching that they produce.

For motivation, Euclidean matching has direct applications to minimizing the
time required to draw networks on a mechanical plotter (as described in [12]). In this
application the ©(n*) optimizing algorithm is unacceptable since n can be very large.

Given a matching algorithm, we define its worst-case performance as a function
f:N- R such that

f(n) =sup {the cost of the matching produced by the algorithm on P},
P

where “sup” is the least upper bound and P ranges over all sets of n points in the
unit square. We use the supremum in the definition of worst-case performance because
it is possible (since there are infinitely many rn-point sets) that there is no n-point set
for which the cost of the algorithm’s matching is maximized.

Note that this definition of worst-case performance (which is taken from [2])
measures the absolute cost of the matching in the worst case. On the other hand, for
many optimization problems (see, e.g., [6]) the absolute cost of a solution cannot be
bounded in any meaningful way, and one must settle for an analysis of the worst-case

* Received by the editors September 1, 1980, and in revised form March 1, 1982. Preliminary versions
of some of the results contained in this paper were presented at the Twelfth Annual ACM Symposium on
Theory of Computing, April, 1980. This research was supported in part by the National Science Foundation
under grants NSF MCS 77-22830 and NSF MCS 79-04897.

+ Hewlett-Packard Laboratories, Computer Research Center, Palo Alto, California 94304. This
research was conducted while this author was at the Department of Computer Science, University of Illinois
at Urbana-Champaign.

i Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801.

118

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 119

cost of a heuristic relative to the cost of an optimal solution. Since the Euclidean
matching problem lies in a bounded region, we are able to provide a more informative
analysis of the worst-case behavior.

In support of this definition of the worst-case performance, we can consider the
following remarks due to Avis [3]: Let GRE and OPT be the costs of the greedy
heuristic solution (see [12]) and the optimal solution, respectively. A (more conven-
tional) worst-case bound of

ERE = i n 1Ig1.5

OPT "3
was derived in [12]. However, for the plotter application cited there, the increased
plotter costs will be proportional to GRE —OPT, if the plotter works in a region of
fixed size. The example that leads to the bound on GRE/OPT is not particularly bad
in this measure because it is a constant, independent of n. This suggests that the
relative measure is not as appropriate as the absolute measure used in this paper.

The (absolute) worst-case performance of a greedy Euclidean matching heuristic
has been analyzed in [2]. The worst-case performance of several other heuristics, as
well as a lower bound (namely vn/vV12) on the worst-case performance of the
optimizing algorithm, is given in [15] (this issue, pp.144—156).The worst-case perform-
ance of many heuristics for the Euclidean matching problem and the more general
matching problem on weighted graphs whose weights satisfy the triangle inequality
are given in [14]. The expected performance of certain Euclidean matching heuristics
is analyzed in [9].

In this paper, we present and analyze the worst-case performance of a class of
divide and conquer heuristic algorithms. Each of these algorithms operates by par-
titioning the region containing the points into subregions and recursively solving the
smaller matching problems thus obtained. If a subregion contains an odd number of
points, then all but one are matched and the odd point is then matched with an odd
point in another subregion (there must be another such point since there are an even
number of points in total). The expected cost of the matching produced by these
heuristics when the n points are randomly chosen from a uniform distribution has
been analyzed in [11].

In discussing the time required by the heuristics we intend the real RAM model
of computation as defined by [13]. This model of computation is essentially the
random-access machine as described in [1], except that each storage location can hold
a single real number, and the following operations are available at unit cost:

1. Addition, subtraction, multiplication, and division on real numbers.

2. The “=” comparison between real numbers.

3. Trigonometric, exponential, and logarithmic functions on real numbers.

4. Indirect addressing of memory.

The real RAM has become the standard model used in computational geometry.

All of the heuristics presented in this paper can be implemented to run in
O(n log n) time under the real RAM model. However, they can all be implemented
to run in ®(n) time if we make the model more powerful by also allowing the floor
function to be available at unit cost. It is, of course, more realistic to consider the
floor function as primitive on most computers. In view of this, it is fair to say that all
of the heuristics presented here are linear time.

2. The rectangle heuristic. The first of the algorithms that we consider is the
rectangle algorithm which works as follows. n points are given in the unit square
[0, 1]°. Consider the rectangle [0, v 2]x[0, 1], which contains the unit square. If n =2

120 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

then this rectangle is bisected to form two congruent subrectangles, each with ratio
V2:1 between the long and the short sides. The heuristic is applied recursively to
each of the two subrectangles. In general, when applied to a rectangle R, the heuristic
does as specified in Algorithm 1. As an example, in Fig. 1, n = 4. The first split is on
the heavy solid line and the left half is then split along the dashed line. The matching
produced is shown as jagged line segments.

There is one more detail of the algorithm: the level of recursion is not allowed
to go beyond [Ign]. More precisely, define a rectangle to be either the original V2
by 1 region, or one of two rectangular subregions with sides having ratio v2:1 into
which a rectangle can be split. Let R(P) denote the subset of P contained in rectangle
R. Define the level of a rectangle R, denoted level (R), as follows: level (R) =0, if R
is the original Vax1 rectangle; otherwise, level (R)=1evel (R')+1, where R' is a
rectangle that was bisected to form R and its mate. The rectangle heuristic is given
in Algorithm 2.

A1LGORITHM 1. The unbounded rectangle heuristic.

if R contains at least 2 points
then _
1. bisect R to form rectangles R; and R,, each having the ratio V2:1 between
the long and short sides.

2. apply the heuristic to R;.

3. apply the heuristic to R,.

4. if R, and R, each contain an odd number of points

then

add the edge (p1, p2) to the matching, where p; is the point in R; not matched
in Step 2, and p; is that of R, not matched in Step 3.

ALcoRrITHM 2. The rectangle heuristic.

if level R)=[lgn]
then
if R contains at least 2 points
then do Steps 1-4 as described in Algorithm 1.
else
arbitrarily match the points in R until
at most one is left unmatched.

This restriction on the depth of recursion enables the algorithm to run in time
O(nlogn). The time is dominated by the partitioning of the points, and for each
point p € R(P), we can decide in which half of R it lies by a single comparison. For
each point p, we make at most one such comparison at each level of recursion; hence
at most [lg n] such comparisons are made in total per point. The total time is therefore
O(n logn).

Note that the algorithm can be implemented by unraveling the recursion; that
is, by first partitioning the n points into the 2 Menl leveln rectangles and then performing
the matching in a bottom-up fashion. Since the partitioning can be accomplished with
only two divisions and one floor function per point, this version of the algorithm is
linear under the real RAM model if the floor function is available at unit cost.

In order to analyze the worst-case cost of the matching produced by the algorithm
as a function of n, we first find the worst-case cost for arbitrary sets of points in the

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 121

< V2 »

e

—

V2

F1G. 1. The rectangle heuristic performed on four points.

V2 by 1 rectangle. Later, we will use this result to derive an upper bound on the
cost for a set of points in a 1 by 1 square within the V2 by 1 rectangle.

If P is a set of points in the V2 by 1 rectangle, then let rcost (P) denote the sum
of the lengths of the edges in the matching produced by the rectangle algorithm on
P.Forall n =0, let

C, =sup {rcost (P): P is a set of n points}.

By “set of points” we mean, here and throughout this section, a set of points in
the V2x 1 rectangle. Note that we are not primarily interested in C, for odd n, but
they are needed for the analysis. We first show that the restriction to [lg n] levels of
recursion does not affect the C,.

LEMMA 1. Let P be a set of n points, n =0. Then there is a set of points Q for
which |Q|=n and rcost (Q) Zrcost (P) and no level [Ign] + 1 rectangle contains more
than one point of Q.

Proof. If no level [Ign]+1 rectangle contains more than one point of P, then
we have nothing to prove. So let R; be alevel [Ig n] + 1 rectangle such that |R,(P)| = 2.
Then R,(P) is empty for some level [lgn] rectangle R,, since otherwise |P|=
218" +1=p (there are 2' level [rectangles). Our strategy is to show that the points
of P can be rearranged to produce a set Q of n points such that rcost(Q) = rcost(P)
and |R1(Q)|=|R1(P)|-2 and |R,(Q)| =2, but otherwise Q is just like P. Let p;, p>€
R(P) be points matched to each other by the algorithm. Define Q to be just like P
except that p; and p, are not in Q, and instead Q has points p] and p3 in diagonally
opposite corners of R,. This is illustrated in Fig. 2.

It is easily proved by induction on / that the dimensions of a level [rectangle
are 1/v2'™ by 1 /«5'. The length of a diagonal in a level [rectangle is thus V3 /2!
S0

V3 V3
d(pl,pz)é\/znmﬂ<\/§“m =d(p1, p3).

This “moving” of the two points into R, does not affect the way the algorithm matches
of the other points. Therefore rcost (Q) =Zrcost (P). In this manner we continue to
rearrange P until no level [Ig n] + 1 rectangle has more than one point init. O

122 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

[J
p
.p' 2
R,(P)
(there may also
be other points) R,(P)
(empty)
P,
R,@Q oP!
(there mo be some
points, bu¥ p,and p, Rz(?) ,
have been removed) (only p;and p,)

F1G. 2. Illustration of the proof of Lemma 1.

Lemma 1 tells us that we can analyze the algorithm as if there were no restriction
on the depth of recursion, because such an assumption does not affect the worst-case
costs, that is, the C,,.

Our strategy is to define a class of sets of points and then to show that these sets
are the worst-case input for the algorithm. Specifically, we say that a set of points P
is balanced if for all rectangles R such that |R(P)|=2, R splits into rectangles R,
R, such that

(i) if 4 divides |R (P)| then |R1(P)|=3R(P)|—1 and |R(P)| =3|R(P)|+1,
(i) if 4 does not divide |[R (P)| then |R1(P)|= [3IR (P)|], |[R2(P)|= [3IR(P)]1,
(i) if |R(P)| is even then the point p; left unmatched by the algorithm on R,
and the point p, left unmatched by R, are in diagonally opposite corners of
R.

In other words, for a balanced set, each rectangle R with an even, nonzero
number of points splits odd-odd, with the two subrectangles having almost the same
number of points, and the edge produced at the end of the algorithm on R is along
one of the diagonals of R. Intuitively, one might suspect such a set P to be a worst
case for the algorithm; this is indeed the case, as is proved in the next two lemmas.

LEMMA 2. Let P be a set of n points, n =0, n even. Then there is a set Q of n
points such that rcost (Q) Zrcost (P) and for all rectangles R such that |IR(Q)|=1, we
have:

1. |R(Q)| even implies R is split into R1, R, such that |R1(Q)|, |[R.(Q)| are both
odd, and such that R, and R, each leave unmatched points of Q in diagonally opposite
corners of R.

2. |R(Q)| odd implies R leaves a point of Q unmatched in one of its own corners.

3. |R(Q)|=2 implies that the two subrectangles of R each contain at least one
point of Q.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 123

Proof. We will construct Q by rearranging P (in the manner of Lemma 1). The
process of rearrangement is as follows:

First, we consider all rectangles R containing a single point. Let R be such a
rectangle, R(P)={p;}. Since n is even, the algorithm must match p; to some other
point p, e P outside of R. Define P' to be like P except that instead of p;, P’ has
point pi in the corner of R which is farthest from p,. The situation is shown in Fig.
3.Hence d(p1, p2) =d(p}, p2). Since this “moving” of p; to p} affects no other matches
made by the algorithm on P, we have rcost (P) = rcost (P').

.pl pa , pZ

P
R(P) R(P")

FI1G. 3. Lemma 2, rearranging a rectangle that contains one point.

Having so rearranged, if necessary, all rectangles containing exactly one point of
P, we now consider those containing two points. Let R be such a rectangle, R(P) =
{p1, p2}. Since |R(P)| is even, the arrangement of the points of P within R does not
affect the matching of any points outside of R. Therefore if p, and p, are not in
diagonally opposite corners of R, then move them there by letting P’ be like P except
that instead of having p, and p,, P’ has p| and p3 in diagonally opposite corners of
R (see Fig. 4). Since d(pi1, p2) <d(p1,p3), we have rcost (P)<rcost (P'), as desired.

Now assume we have rearranged all rectangles R with |R (P)| =k for some integer
k =2. We will now rearrange each rectangle R such that |R(P)|=k +1. Let R be
such a rectangle.

°n
R(P) R(P)

F1G. 4. Lemma 2, rearranging a rectangle that contains two points.

Case 1. k+1 is odd. Then R splits into rectangles R;, R, such that |R,(P)| is
odd and |R(P)| is even.

Case 1.1. |R,(P)|=0. Then |R,(P)| = 3. Therefore R; splits into some rectangles
S1, S such that |S;(P)|=2. Let p,, p» be two points in S; matched to each other by
the algorithm (such points must exist since §; leaves at most one point unmatched,
in which case we would have |S;(P)|=3). Now let P’ be exactly like P except that P’
has points p} and p5 in opposite corners of R,, and no point at p; or p, (see Fig. 5).
Moving p; and p, out of S; does not affect the matching of the other points in R;.
Also, d(p1, p2) <d(p4, p3), so that rcost (P) <rcost (P'). |R,(P)| is now less than k +1,
and we rearrange R;, and then rearrange R, using Case 1.2.

Case 1.2. |R5(P)|>0. Then |R,(P)], |[R,(P)|<k +1 and hence both R; and R,
have already been rearranged. In particular, R, leaves an unmatched point p; in one
of its corners. The algorithm matches p; to some point p, outside of R. If p, is already
in a corner of R, then we have nothing to rearrange. So, assume p; is not in a corner

124 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

R, R2 R, Ra2 o
P,

32 SZ

Fo———————y |
pa

S, S ,

of bP
R(P) R(P")

FI1G. 5. Lemma 2, Case 1.1.

of R (an example of such a situation is shown in Fig. 6). Now let P’ be like P except
that the points in R; have been reflected (vertically and/or horizontally) and perhaps
swapped with those in R, so that p; is now in the extreme corner from p, (see Fig.
7). This reflecting and swapping has no effect on the cost of the matching of the points
in R(P) other than p;. Therefore rcost (P)<rcost (P'), and we continue with the
rearranging.

R, R,
®
R
[J

P,

R(P)

F1G. 6. Lemma 2, Case 1.2, before rearranging.
Rl R 2
®
R
A
R(P)

F1G. 7. Lemma 2, Case 1.2, after rearranging.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 125

Case 2. k+1is even. Let R;, R, be the subrectangles of P, and assume, without
loss of generality, that |R,(P)|=|R,(P)|.

Case 2.1. |R,(P)|=0. Then proceed exactly as in Case 1.1.

Case 2.2. |R,(P)|>0. Then |[R,(P)|, |R2(P)|<k + 1. Therefore R; and R, have
already been rearranged. Since |R (P)| =|R;(P)|+|R(P)| is even, we have two cases:

Case 2.2.1. |Ry(P)|, |[R2(P)| are both even. This is the most interesting of all the
cases, since it is the only one that depends on the shape of the rectangles. Since R;,
R, already satisfy the desired properties, we have the situation pictured in Fig. 8.
That is, R is a rectangle of size av2 by a for some real a >0. R;, a subrectangle
of R, matches points p; and p, in opposite corners of R;. R, similarly matches p;
and p, in its opposite corners. S, is the even subrectangle of the subrectangle of R,
which leaves p, unmatched. S is the odd subrectangle of the subrectangle of R, which
leaves p; unmatched. (We say a rectangle is even if it contains an even humber of
points, otherwise it is odd.)

R, R,
A [
By ﬂ
S,
af——-1-———"F————
S,
v '.pl L.ps
a2
R(P)

F1G. 8. Lemma 2, Case 2.2.1, before reatranging.

Now rearrange P into P' by swapping the points in §; with those in S5, as shown
in Fig. 9. Then for some real ¢ =0,

rcost (P) =d(p, p2) +d(ps, pa) +c,

and
rcost (P') =d(p1, ps)+d(p2, p3) +c.
Now
d(p1, p2) = d(ps, pa) =V (av2/2)* +a*> = av3/V2.
Also,
d(p1, pa) =Va’+(av2)’ =av3,
and
d(pa2, p5)="(a/2)*+(av2/2)*=av3/2.

Therefore,

rcost (P) =2(a~/§/~/§)+c =av6+c <a3v3/2+c =a~/§+a~/§/2+c =rcost (P'),

and we continue to rearrange.

126 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

R| R2
A ® o
R, P
S

p:

qQ "3 L .
SZ
v .p'

4

a2 —
R(P)

Fi1G. 9. Lemma 2, Case 2.2.1, after rearranging.

Case 2.2.2. |Ri(P)|, |R»(P)| are both odd. Since |R;(P)|, |R.(P)|<k+1, we
already have that R, leaves a point p; unmatched in one of its corners, and that R,
leaves a point p, unmatched in one of its corners. If p; and p, are not in opposite
corners of R, then the appropriate reflections of R;(P) and R,(P) will produce a set
P’ of cost greater than that of P.

Thus, we continue to rearrange P until we have rearranged the original, level 0,
rectangle. This final arrangement is Q, satisfying the properties stated in the lemma. 0O

The set Q constructed from P in Lemma 1 has some of the properties of a
balanced set, but not all. The next lemma rearranges this Q so as to be balanced,
without changing rcost (Q). This will complete the proof that balanced sets constitute
a worst case for the algorithm.

LEMMA 3. Let P be a set of n points, n =0, n even. Then there is a set of n points
Q; such that rcost (Q,) Zrcost (P) and Q1 is balanced.

Proof. Let Q be a set satisfying the properties stated in Lemma 2. We will
rearrange Q into a new set Q; such that for each rectangle R, if Ry, R, are the two
subrectangles of R then ||R;(Q;)|—|R2(Q;)|| =2. Furthermore, Q; will still have the
property of Lemma 2 that even, nonempty rectangles split odd-odd leaving unmatched
points in opposite corners. Together, these properties tell us that Q, is balanced.

First, note that all rectangles R such that |R(Q)|=1 or 2 are already balanced,
and hence need no rearranging. Now assume that we have balanced all rectangles R
such that |R (Q)| =k for some integer k. Let R be a rectangle such that |R(Q)|=k +1.
Let R;, R, be the subrectangles of R. Let S;, T, be the subrectangles of R;. Let S,,
T, be the subrectangles of R,.

Case 1. R is even. Then R, R, are odd, by our choice of Q. Assume, without
loss of generality, that T and S, are both odd (see Fig. 10). Then swap S;(Q) with
T,(Q) to get, in the notation used in the proof of Lemma 2, what is pictured in Fig.
11. R;, R, were balanced before this swap, since |R;(Q)|, |R2(Q)|=k. Therefore,
letting s; =|51(Q)|, 52 =152(Q)|, t1 =|T1(Q)|, and t, =|T>(Q)|, we have that |s; —¢;|=1
and |s; —t,| = 1. Therefore

[IR1(Q"] = RQ| = (t1 +£2) ~ (s1+ 52)| =2,

which is what we want. Now this swapping of S;(Q) with T>(Q) may have made R,
or R, (or both) unbalanced. Therefore we now rearrange R; and R, (this process

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 127

R, R,
®
Sl Sz
T T
lo
R(Q)

FI1G. 10. Lemma 3, Case 1, before rearranging.

R, R,
[)
Te S2
————————— +. e e e e e e e]
T S,
®
R(Q"

F1G. 11. Lemma 3, Case 1, after rearranging.

eventually terminates since |R1(Q")|, |[R2(Q")| <|R(Q")]). Thus R is now balanced, and
we continue to rearrange other rectangles.

Case 2. R is odd. Assume, without loss of generality, that R, is even and R; is
odd. Define s1, s2, t1, t> as in Case 1. By the choice of Q (in particular, property 3
of Lemma 2), we have |R,(Q)|>0 and hence |R:(Q)|, |R2(Q)|=k. Therefore s, t;
are odd. Assume, without loss of generality, that s, is odd and s, =¢,. This situation
is illustrated in Fig. 12.

R Re
S, T,
T S2
° °
R(Q)

Fi1G. 12. Lemma 3, Case 2, before rearranging.

128 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Case 2.1. s, =t,. Then since R, is balanced, we have s, =1, + 1. Swap §1(Q) with
S>(Q) to get Q', as shown in Fig. 13. Note that we also may need to rotate S,(Q) so
that its unmatched point is diagonally opposite that of T. Since 0 =s; —#; =2, we have

[IR1(Q"]—|R2(Q"N]| =|(s2+11) = (51 +1)|
=|(s2—)+ (ti—s)|=[1+ (11 —sD|=1,

as desired.
R, R2
0
S. T,
T S
° D)
R(Q)

Fi1G. 13. Lemma 3, Case 2.1.

Case 2.2. s,<t,. Then s;=t,—1. Swap T(Q) with S>(Q) to get Q', obtaining
(after possibly rotating) the situation shown in Fig. 14. Now

[IR1(Q")| = |R2(QN]| =|(s1+52)— (11 +1)|
=|(s2—t2) + (51 —)|
=|-1+(s;—t)|=1,

as desired. Continue to rearrange other rectangles.

R] R 2
"
S T2
S2 Ty
[] []
R(Q)

FIG. 14. Lemma 3, Case 2.2.

Finally, after balancing the main, level O rectangle, let Q; be the resulting
arrangement, and we are finished. Note that the rearrangement can change neither

the cost of the set, nor the assumed properties of Q. 0
Thus the balanced sets constitute the worst case for the algorithm. Clearly, all

balanced # -point sets have the same cost C,. We now analyze the C,:
Co=C1=0, C,=+3, C;=v3/V2.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 129
A balanced set of 4n points splits into two balanced sets—one with 2n +1 points,
and one with 2n —1—and matches two points in its diagonally opposite corners. Thus

foralln=1,

1 —
Cian=—=(Cans1+Con_1)+V3.
V2

The factor 1 /«/5 is to scale down the cost from the v2x 1 region to the 1x1 /«/5
region. Similarly, for alln =1

Cins1= \/LE(C2n+1 +C2n).
And for all n =0,
Cans2= _1=(C2n+1 +Cons1) +V3, Cansa= —1=(C2n+2 +Can+1).
V2 V2

Although we have not been able to solve this recurrence for C,, we show in the

Appendix that
Gs(1+)Jn+J3 ~/6+O()
J «/n
_ 1
z1.7o7~/n—0.717+o(——),
Vn
and that

1 3 N\~ = -
Cn=(-2T/§—£+2~/2)~/n+~/3—~/6—o(1)

~1.682vVn—0.717—0(1).

Furthermore, we show that the upper bound is achievable in that for «.. ofinite class

of n,
C, (\/>~/n+~/— V6- O(Jn)

So far we have considered the performance of the rectangle algorithm on points
in the v2 by 1 rectangle. However, the fixed region matching problem is usually
considered on the unit square. Therefore we now adapt the rectangle algorithm to
the unit square as follows: Given a set of n points P in the unit square (i.e., for all
(x,y)eP,0=x =1 and 0=y =1), we perform the rectangle algorithm by considering
P tobein a \/EX 1 rectangle as shown in Fig. 15. In that figure, the unit square is
depicted by a solid line; the V2x1 rectangle is shown as a dashed line.

For the analysis of this rectangle algorithm applied to the unit square, choose
some even integer k =0 and let r = [«/ik 1 and s =+/2, Note that since k is even,
each level k rectangle has vertical dimension 1 /\/ 2% and horizontal dimension
1 /\/_ *~1_ Therefore the unit square, and hence P, lies within the leftmost set of rs
level k rectangles as shown in Fig. 16. Let d —r/«/ 2571, Our strategy is to derive
an upper bound on the cost of the rectangle algorithm on an arbitrary set in the d by
1 rectangle. Since d =1, this bound will also be an upper bound on rcost (P).

130 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

* V2

v

———————— e =]

- -

F1G. 15. Applying the rectangle algorithm to the unit square.

Let Q be a set of n points in the d X 1 region, and let

! [the sum of the lengths of all edges produced at]

k
reost (Q) =rcost (@) - Eo the ith level of recursion by the algorithm on Q 1’

Since there are 2' level i rectangles, and since the length of an edge produced at the
ith of recursion is at most V3 /«/ 2, we have

-1

V3 _ V3 -
rcost, (Q) =rcost (Q)— Z 2 75 rcost e («/2 1).

<« J2 —»

SX-—k -

ik

-—— “/.
d=rx—07x /2" 21—
F1G. 16. Covering the unit square with level k rectangles.

Therefore

(J“"—n

rcost (Q) =rcost, (Q)+

v2-

We now derive an upper bound on rcost, (Q), the sum of the lengths of the edges
produced at levels at or beyond k. There are ¢ =rs level k rectangles that compose
the d by 1 region containing Q. Call these rectangles R;, 1 =j =¢, and let n; =|R;(Q)|.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 131
By the results of the Appendix the sum of the lengths of the edges produced within
R; is at most
1 1 1 - = 1
—~c, =——[(1 +—)~/Z+~/3—~/6+O(——)].
NOLROL 2/ Vn;

The factor 1/ V2¥ is to scale the cost down to level k. Therefore

e [i)
=7—§7(1 +%§) j); Vi +0(t)
B) o

j=1

Define the function f:R' ™' > R by

t—1 t—1
fx1, %2, 0+, xm1) = > ‘/;j+ \/n - ‘Zl Xj.
i=

j=1

Taking partial derivatives shows that f is maximized at

n
X1=X2="" °=x,_1=?.
Therefore
1 1 — 1 1\ — ~
rcost; (Q)=7§7(1+Tz>t~/n/z‘+ O(t)=7_5;(1+:/§)~/rs~/n+0(rs)

_ (1) [.
- (1 2) 2 0"
_Va 1\ ~ ‘
———5(1+J—§)Jn+0(2)

Therefore

\/3 1 -
<< k - — —_— k
rcost (Q) =rcost, (Q)+O0(2%) JT(I +\/_)~/n+0(2).

By the definition of d, we have that d » 1 as k -» 00. Thus, for all ¢ >0, there is a least
value of k, k(g), for which d <1+¢; the O(2%) term becomes O(2*®)=0(1) as
n - 00. Thus we have

rcost (Q)=(1 +e)7%7=—£(1 +%)«/E+ O(1)=~(1+¢)1.436vVn+0O(1).

Notice that the O(1) term grows unboundedly as £ - 0. If we take k = 10, for instance,
thenr=23,s=32,and d = 23«/2/32 ~1.016, we get that

reost (Q) §J23/32(1 +\%)JZ +0(1)~1.447Vn+0(1).

132 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

In order to show the tightness of this bound, we again choose some even k =0,
but this time let r = |[vV2*7'], 4 =r/v2¥"1=1, and s =v2* as before. Thus the unit
square contains a d by 1 region. Construct a set Q' in the d by 1 region, so that each
of the rs level k rectangles in that region contains a balanced n/rs point set. We
choose n =|Q’| so that n/rs = b; for some i (where b; is as defined in the Appendix),
thus making C,,,s asymptotic to (1+1 /«/5)«/ n/rs. An analysis similar to the above
shows that

Jd 1\ ~
rcost (Q' 2———(1 +—_)~/n— 02"
JV2\ V2
Hence for all € >0, there is a set Q' of n points in the unit square for which

rcost (Q');(l—s)L 1+—=)Vn-0(1)=~(1-¢)1.436vn—0(1).
2

1
JV2 2
The reader may wonder why we did not simply choose some k such that the 1
by 1 square can be exactly tessellated by level k rectangles (i.e. we would have d = 1).
Unfortunately, as is easily shown, no such & exists.
In summary,

inf {x: for all n-point sets P in the unit square, rcost (P) =xv ;+o(~/r_t)}

=%ﬁ(1+:}-5)z1.436,

where *‘inf”” denotes the greatest lower bound.

3. The triangle algorithm. A square can be partitioned into two equal-sized
45°-45°-90° triangles. Also, a 45°-45°-90° triangle can be partitioned into two equal-
sized 45°-45°-90° subtriangles. This suggests a second partitioning algorithm, which
we call the triangle algorithm: given a set P of n points in the unit square, do exactly
as the rectangle algorithm, except that when a region is split, it is split into two equal-
sized 45°-45°-90° triangles. An example with n =4 is shown in Fig. 17; the first split
is along the main diagonal (shown as a solid line) and the second split is shown as a
dashed line. The matching produced is shown in jagged lines.

F1G. 17. The triangle algorithm executed on four points.

In analogy to the previous section, define a triangle T to be either one of the
two main 45°-45°-90° triangles into which the unit square is split, or one of the two
45°-45°-90° subtriangles into which a triangle may be split. Furthermore, level (T') is
defined as follows: level (T)=0 if T is one of the two main triangles (i.e. if T has
hypotenuse length v2); otherwise, level (T) =level (T")+ 1, where T" is the triangle
that was bisected to form T and its mate.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 133

Note that the level of a triangle is one less than the level of recursion on which
the triangle lies (in contrast to the level of a rectangle in the previous section, which
equals the level of recursion on which it lies). We define level in this way because our
strategy is to analyze the worst-case cost of points in a main triangle, and then use
that result to analyze the worst-case cost for points in the unit square.

If P is a set of points in the unit square, then let tcost (P) be the sum of the
lengths of the edges in the matching produced by the triangle algorithm on P. For all
n =0, let

E, =sup {tcost (P): P is a set of n points in a level 0 triangle}
and let
F,, =sup {tcost (P): P is a set of n points in the unit square}.

As mentioned above, we will first analyze the E,, and then use that result to analyze
the F,.

First note that as for the rectangle algorithm, we can restrict the levels of recursion
to at most [Ign] and so enable the algorithm to run in time O(n log n), or O(n) if
the floor function is available at unit cost. This restriction does not affect the worst-case
cost, as can be proved by an argument parallel to that in Lemma 1.

Throughout the analysis of the E,, let “set of points’” mean a set of points in a
main triangle. If T is a triangle, and P a set of points, then let T(P) denote the subset
of P contained in T. Define the notion of balanced exactly as in the analysis of the
rectangle algorithm, except substituting the word ‘‘triangle” for “rectangle,” and
understanding the “‘diagonally opposite corners’ of a triangle to be its two 45° corners.
In analogy to the rectangle results, balanced sets are the worst case for the triangle
algorithm.

LEMMA 2'. Let P be a set of n =0 points, n even. Then there is a set of n points
Q such that tcost (Q) Ztcost (P) and for all triangles T such that |T(Q)|= 1, we have

1. |T(Q)| even implies T is split into Ty, T, such that |T1(Q)|, |T»(Q)| are both
odd, and such that Ty and T, each leave unmatched points of Q in a 45° corner of T.

2. |T(Q)| odd implies T leaves a point of Q unmatched in one of its own 45° corners.

3. |T(Q)| =2 implies the two subtriangles of T each contain at least one point of Q.

Proof. By a rearranging argument, very similar to that of Lemma 2. We will give
only the most important case of the argument, that corresponding to Case 2.2.1 of
the proof of Lemma 2; the remaining cases are left to the reader. Let T be a triangle
such that |[T(P)| is even. Let T1(P) and T,(P) be the subtriangles of 7, and assume
that |T1(P)| and |T»(P)| are both even and greater than 0. Assume that both T:(P)
and T,(P) have already been rearranged to satisfy the stated properties. The situation
is as pictured in Fig. 18. Let A be the length of the hypotenuse of 7. T; matches
points p; and p, in its opposite corners. T, matches points p3 and p, in its opposite
corners. S, is the even subtriangle of the subtriangle of 7'; which leaves p, unmatched.
S is the odd subtriangle of the subtriangle of T, which leaves p; unmatched.

Now rearrange P into P’ by swapping the points in S; with those in S5, as shown
in Fig. 19. Then for some real constant ¢ >0,

tcost (P) =d(p1, p2) +d(ps, pa)+c
and
tcost (P') =d(p1, psa)+d(p2, p3)+ec.
Also,

d(p1,p2) =d(ps, pa)=h/V2, d(p1,ps)=h, d(p2ps)=h/2.

134 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

iR
T & S T2
\\?2 ///
P AN Py @
«* h >

Fi1G. 18. Lemma 2', before rearranging.

R

/ \\S‘ / /
N 4
P / Ps @

TP

F1G. 19. Lemma 2', after rearranging.

Thus
tcost (P) = hN2+c <3h +¢ =tcost (P'),

as desired.

The other cases of the rearrangement are straightforward. 0O

LEMMA 3'. Let P be a set of n =0 points, n even. Then there is a set of n points
Q1 such that tcost (Q,) = tcost (P) and Q; is balanced.

Proof. Identical to that for Lemma 3, substituting ‘“triangle” for ‘rectangle”
throughout. 0

Thus for all even n =0, we have E, =tcost (P), where P is a balanced n-point
set. The length of a level / hypotenuse is V2 2/v3 times the length of the diagonal
in a level / rectangle so that for all even n =0,

V2 o 2
E.=T c,,~\/3[(1+\/_)f+«/“ «/6+O(\/n>]

Note that for all odd n =0, E, =E,_;. To see this, let P be a set of points, such n = |P|
is odd. Then there is some p; € P such that p; is not matched to any other point by
the algorithm. Then tcost (P) = tcost (P —{p1}), and hence E, =E,_;. Therefore, for
alln =0,

V2

E.= ()~/n+ o).
NEANNG)
We now analyze the F,, which are our primary interest. Let n =0, and let P be

a set of n points in the unit square. The square is split into two main triangles, one

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 135

with m points and one with n —m points, for some m such that 0 =m =n. Thus

tcost (P)= ,max {Em+E,.—m}+ V2

V2
= max

oSm§n{¢§(+31§)(*/;+*/?f—_m_)}+0(1).

Treating the expression Vm++vn—m as a function of a real variable m and differen-
tiating shows that Vm++vn —m is maximized at m = n/2. Therefore,

tcost (P <[%(1+J_)2J7_+0(1)——(1+ 1 >~/Z+O(1).

NG VAR
Thus for all n =0,
2/ 1\ ~ -
F, =\/3(+J—5)Jn+0(1)z1.971Jn+0(1).

This bound is asymptotically achievable for an infinite class of n defined by n =2b,
for some r=0 (b, as defined in the Appendix), for which we can construct a set P
such that the unit square splits into main triangles T, T, such that T;(P) and T,(P)
are each balanced sets of b, points. Therefore, since

Co, >1+ L asr->
vb, V2 ’
as shown in the Appendix, we have
tcost (P) 2

1
= »@(1 +J5) 1.971 as n .

4. The square-rectangle algorithm. Our third divide and conquer method, the
square-rectangle algorithm, works just like the rectangle or triangle heuristics, except
that the regions are partitioned as follows: Starting with »n points in the unit square,
the square is split vertically to form two 1 by 3 rectangles. These rectangles are then
each split into two 3 by 3 squares. (As in the rectangle and triangle algorithms, we do
this splitting only if the region has at least two points in it and is at or above the
[1g n]th level of recursion). In general, each square is split vertically into two rectangles
of ratio 2:1 between the vertical and horizontal sides, and each rectangle is split into
two squares.

We do not have a tight upper bound on the cost of the matching produced by
this algorithm, but a very crude upper bound can be derived by assuming that each
region (whether square or rectangular) matches two points in its diagonally opposite
corners. Thus

52 . V5
cost= Y + Y 2'—
i even ‘/2 i odd \/EH'I
0=i=[lgn]+1 o=i=llgn]+1

=(V20+V8)Vn+0(1)=7.30vn+O(1).

Certainly the least upper bound is much lower than this; we merely wanted to show

the cost to be O(«/ﬁ). We now construct an example for which the cost is asymptotic
3

to 2Vn.

136 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Let P be a set of points in the unit square such that each even square splits into
two even rectangles, and each even rectangle R splits into odd squares S; and S, such
that S; and S, leave unmatched points in opposite corners of R. (In analogy to the
previous sections, a region is defined as even if it contains an even number of points
of P, otherwise it is odd.) Assume that P is “full”’ to some level 2r+1 in the sense
that each level 2(r —1)+1 rectangle has exactly 1 or 2 points of P in it. We can so
construct P using the technique (described in the Appendix) used to construct “full”
sets for the rectangle algorithm. Thus, if R is an even rectangle of level i, for some i
such that 1=/ =2(r—1)+1, then at level i +2, R consists of two even and two odd

—ﬂ T

I

odd even | odd
I
even — Ad '
|

odd odd }even
|

level i level i+ leveli+2

(a) R even.

]
|
|

even evenieven
odd > > !
I
[}

odd odd geven

level i level i+ leveli+2

(b) R odd.

F1G. 20, Construction of a costly example for the square-rectangle algorithm.
rectangles, as shown in Fig. 20(a). If R is odd, then at level i +2 R consists of three
even and one odd rectangle as shown in Fig. 20(b). For all i, 0=i=r—1, let

E; = the number of even rectangles of level 2i +1,
and let
O; = the number of odd rectangles of level 2i + 1.

(Note that a level k consists of rectangles rather than squares if and only if k is odd.)
By the above remarks,

andforl1=i=r-1
E;=2E;,_1+30;,.;,, O;=2E;_ 1+0;_,.
Observing that E; + O, =2 x4, we find that
Ei=$4'+5(-1), O;=34'-3(-1)"

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 137

Let n =|P|. Then
r—1
n=17Y 2E =% +%-1",
i=0

and hence

r=logs Gn)+0O(1).

Since the length of a level 2i +1 diagonal is V5/2"1 we have

cost (P)= ¥ Eiz—‘{f—lz%&—om

i=0

;)Y/g_ conjecture that the asymptotic worst-case cost for this algorithm is very close to
Vn.

5. The four-square algorithm. The last divide and conquer algorithm we consider,
the four-square algorithm, works as follows, given input points in the unit square.
Each square S (initially the unit square) that has at least two input points in it, is split
into four equal-sized subsquares. The algorithm is applied recursively to each of these
subsquares. Then the best matching of the (at most four) unmatched points is made,
the best matching of three points being the closest pair. In analogy to the above
algorithms, if a square S contains at least two points and is on the ([logsn] +1)st
level of recursion, then we arbitrarily match up the points in S until at most one is
left. Thus this algorithm also runs in time O(n log n), or O(n) if the floor function is
available at unit cost.

As with the square-rectangle heuristic, we have no tight upper bound for this
algorithm, but we know it to be ®(vn). For a lower bound, we now give an example
of cost

g(n L

—= \/—— zl, ‘/_'—O 1 .
\/2) n—0(1) 394vVn (1)

Construct a set P of points in the unit square such that each even square S splits into
S1, S2, S3, S4 such that S5, S5 are odd and S,, S, are even, and S; and S; leave
unmatched points in opposite corners of S; see Fig. 21(a). Also, as shown in Fig.
21(b), each odd square S splits into odd squares S;, S2, §; and an even square S,
such that each of the three points left unmatched in S, S», S5 is in a different corner
of S. Thus at level i, each even square contributes an edge of length 1 /s/ 271 and
each odd square contributes an edge of length 1/2". Make P such that for some integer
r, each level r — 1 square has either 1 or 2 points of P init. For 0=/=r—1 let

E; =the number of even level i squares,
and let

O; = the number of odd level i squares.
Then Eq=1, O¢g=0,andfor1=i=r—-1

Ei =2Ei_1+0,'_1, O,‘ =2E,-_1+301_1.

138 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

10
odd even
S, S,
even »
even odd
Sq S3
[]
(a) S even.
@ @]
odd odd
S, S,
odd »
even odd
S, S;
(]
(b) S odd.

F1G. 21. Construction of a costly example for the four-square algorithm.

Observing that E; + O; = 4' we find the solution

14,2 241 2
E;=34'+5 Oi=3'-3%

Let n =|P|. Note that n = O,_,+2E,_,, since each level r —2 square has 5 or 6
points of P, each level r—1 square has 1 or 2 points, and each level r square has 0
or 1 points. Thus n = 34" —3% and hence r = logs (3n +2). Therefore

r—1 r—=2 .
cost(P)= Y E;+ Y O/2'
i=0 i=0

- %(1 +-%)«/Z+«/§—2 +O(71_7¢) ~1.394Vn-0(1).

Incidentally, neglecting O(1 /«/;) terms, this expression is exactly the same as the
upper bound for the cost of the triangle algorithm on » points in a main triangle. We
have no geometric explanation for this coincidence.

6. Summary. The table summarizes the results (neglecting lower order terms) of
this paper. From the table it can be seen that, of the four partitioning strategies we
have examined, either the rectangle or the four-square gives the best worst-case
performance. We leave as an open question whether there exist any other simple
shapes that lead to better divide and conquer heuristics.

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 139

TABLE 1
Summary of results for matching in the unit square, neglecting lower order terms. The
order given for the running time assumes that the floor function is available at unit cost. If
it were not, then the times for the rectangle, triangle, square-rectangle, and four-square
algorithms would be ©(n log n).

Upper bound on
Order of Worst known worst-case
Algorithm running time example cost performance
Optimizing [5], [15] n’ 0.537Vn 0.707vn
Greedy [2], [4] n'Slogn 0.806vn 1.074Vn
Strip [15] nlogn 0.707Vn 0.707vn
Rectangle n 1.436v n 1.436v n
Triangle n 1.971Vn 1.971Vn
Square-Rectangle n 1.500v n ?
Four-Square n 1.394vn ?
7. Appendix. Bounds on C,. Recall that
Co=C1=0, C>,=v3, C;=V3/V2,
foralln =1,
1 3 1
Can =T§(Czn+1+czn—1)+ 3, Can+1 =:/'§(C2n+1+czn),
and for alln =0
1 3 1
C4n+2=T§(C2n+l+C2n+l)+ 3, C4n+3=:/—5(c2n+2+c2n+1)'

We get rather tight bounds on C, by defining_a special class of #» and solving the
recurrence for those values to within an O(l/«/ n) term.

Given an integer r =0, we say that a set of points P is full to level r if

1. P is balanced, and

2. For all rectangles R

(i) if level (R)=r—1 then |R(P)|>0, and

(ii) if level (R)=r then |R(P)|=1.
This definition implies that every level r rectangle has 0 or 1 points of P in it, and
that every level r — 1 rectangle has 1 or 2 points of P in it.

We say that an integer n is full to level r if there exists a set P such that |P|=n
and P is full to level r. We now show by induction on r that for each r =0 there is a
pair (n, n +1) for which both n and n +1 are full to level r. Clearly, 0 and 1 are both
full to level 0. Let r =0 and assume that n and n +1 are both full to level r. Then
there exist sets P,, P, +; such that |P,|=n, |P,.1|=n +1, and both P,, and P,,., are full
to level r.

Case 1. n is even. Let P,, ., be the set consisting of P, in its left subrectangle,
and P, . in its right subrectangle (as shown in Fig. 22). Let P,,.., be the set consisting
of P,., as its left subrectangle and P,.; as its right subrectangle. Both P,,.; and
P, ., are full to level r+1.

Case 2. n is odd. Let P,, be the set with subrectangles consisting of P, and P,.
Let P,,.1 be the set with subrectangles consisting of P, and P, .. Both P, and P;,+1
are full to level r+1.

140 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Thus 0, 1 are full to level 0. Also, if ¢, ¢ +1 are full to level r, then ¢ even implies
2t+1,2¢+2 are full to level r+1, and ¢ odd implies 2¢,2¢+1 are full to level r +1.
The sequence (0,1, 1,2, 2,3, 5,6, 10,11, 21,22, - -) thus consists of numbers
full to some level. In fact, it is easily proved by induction that this sequence contains
all numbers full to some level. Call the members of this sequence the full numbers.
Incidentally, it is also easy to show that if P is a balanced set of points, then P is full
to some level if and only if for each rectangle R such that |R(P)|>0, 4 does not
divide |R(P)|.

Pn Pn#

F1G. 22. Constructing the set P,, . in Case 1 of the Appendix.

Now let r =0 and let P be a set full to level r, such that |P|=n is even. We must
relate n and r. For all i =0, define

E; = |{rectangle R: level (R) =i and |R(P)| =2 is even}.
Similarly, define
O; = |{rectangle R: level (R)=i and |R (P)| is odd}.

Since n is even, we have that Eg=1, Oy,=0. Since P is balanced we have that each
nonempty even rectangle splits odd-odd, and (of course) each odd rectangle splits
odd-even. Thus, for 1=i=r—-1,

O0,=0;1+2E;_,, E =0;.

Note that O;+E;=2" because there are a total of 2' level i rectangles; thus for
1=i=r—1 we have

0i=2'-3-1), E=27"-3-1""

(Because P is full to level r, we have E; =0 for all i =r.) Since P is balanced, we can
associate with each even, nonempty rectangle R a pair of points p;, p, € P such that
p1 and p» are in opposite corners of R and are matched by the algorithm. These n/2
pairs form a partition of P. Therefore

r—1 =112) ,_1] 2”"'1 2 1
- ;= =9t —=(-1)} =—ag— —1' .
n=22E 2,~§0[32 37 3 *3CD

Define, for all r >0,
2r+1 2

r=__+— _1 r+1.
b 3 3()

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 141

Then, as just shown, the sequence (bo, b1, b2, *) =(0, 2,2, 6, 10, 22,42, - - +) consists
of all even full numbers. Define, for all r=0, w,=|2"""/3]. The sequence
(wo, w1, wa, -+ +)=(0,1,2,5,10,21, - -) arises in connection with merge insertion
[8, p. 187], and with an algorithm for finding the greatest common divisor of two
integers [7, Exer. 4.5.2.-27]. Knuth points out that it is curious that this sequence
arises in such different settings. We now add to this curiosity by observing that

r+1

23 —§=b, if r is even,
Wwr= 2r+1 1

3 —§=b,—1 if r is odd.

Thus, w, is the smaller of the two numbers full to level .

Fix some r =0, and some set P full to level r such that |P|=n is even (i.e., n = b,).
We now analyze rcost (P), that is, C,.

r—1
rcost (P)= Y. E; (length of a level i diagonal)
i=0

_ 2512 qy-1] Y3
‘.%[32 30D]Jif
2

Gl G i)

Now, n =32"""+3(-1)"*", so that using Taylor series we have

) ofl),

V27 =218 B0 - 35 15[1+ O(1/n)]=V3n/2+O(1/Vn),

(—-1—_>r=(_i—)lg(3n/2)+0(l/n)=0(1/\/;).

and

Therefore,

C, =rcost (P) = (1 +\—/1—5)\[r;+~/§—~/€+ o(%).
n

Thus we know (up to an O(1 /«/ n) term) C, for an infinite class of even n. Now
we consider the other even values of n. Fix some ¢ =0. We want to derive an upper
bound on C,, For notational convenience, let a =1 /«/5, and let D, =C,/v3 for
n =0. By induction on i it follows that for all i =1,

Dis1i—D;_1=a f1g Bi/)
13 — .

Let 2m be the largest integer such that 2m =2t and 2m = b, for some k =0. We can
write D,, as

D, =D, +) (Dis1—D;—1)
i odd,
2m+1=i=20-1

=D2 + z a g 3i/4)1
m .
i odd,
2m+1=i=2t-1

142 KENNETH J. SUPOWIT AND EDWARD M. REINGOLD

Now [8, formulas (17), (18), p. 187] imply that for all w, <i = w1, [lg (3i/4)] =k.

Therefore in particular, [lg (3i/4)] =k for all odd i such that w, =2m <2m+1=i=
2t —1<2t =wg41, so that

) QG _ (4

i odd,
2m+1=i=2t-1

—-m)ak.

We now express k in terms of m. Note that k is even if and only if w, is even.
Thus if & is even then wy =2m =32"""~% and hence k =1g 3m +1). If k is odd then
wi =2m —1=32""—1 and hence k =1g (3m —1). Thus,

1 k
Dy, =Dy +(t—m)a® =D2m+(t—m)(75)

1 1lg(3m-1)
éng +(t—m)(7-i)

=_13_c2,,,+ J%
%[@%)mw V8+0 Jm)] —
=%(«/§+1)«/E+1 f+o(%m) ngl'
LEmMa 4.
%(«5+1)f+1 V2+0 Jm) — \/_(~/2+1)~/t+1 V2+o J)

Proof. Let d = («5 + 1)/\/3. Since either 4m —2 or 4m +2 is a full number, we
have 2t =4m +2. However, if 2t =4m +2, then 2t would be a full number, implying
that 2¢ = 2m, contradicting the fact that m = 1. Therefore m =t =2m, and hence we
have that 0(1/«/;) =0(1 /«/;‘). We need show only that

— t—m
dvm+ éd\/;‘,
vim -1
i.e., that
dVi—dVm-—2_=0.
Vim—1

Define the function f:[m, 2m]- R by

Differentiation shows that f has no local minima in the range [m, 2m], so its absolute
minimum on that range occurs at one of the endpoints. But f(m)=0 and f(2m)>0,
sothat f(y)=z0form=y=2m. 0O

DIVIDE AND CONQUER HEURISTICS FOR MATCHING 143
By Lemma 4,

1 = - ~ 1
D2,=—3-(~/2+1)~/t+1—~/2+0(7t).

Therefore,
1 1
Cors(1452)V21+V3-V8+0(=),
g (V2 (s/n

As shown above, this bound is achievable [neglecting o(1) terms] when 2¢ = b, for
some k=0. An argument similar to the above, using k =1g (3m +1) instead of
Ig (3m — 1), shows that

1 3 -
C2t=(m—'2—+2\/§>\/§;+\/§—\/6—0(1).

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.
[2] D. Avis, Worst case bounds for the Euclidean matching problem, Internat. J. Comput. Math. Appl.,
7 (1981), pp. 251-257.
[3] , Personal communication.
[4] J.L.BENTLEY AND J. B. SAXE, Decomposable searching problems 1: Static-to-dynamic transformation,
J. Algorithms, 1 (1980), pp. 301-358.
[5] H. GABOW, An efficient implementation of Edmond’s algorithm for maximum matching on graphs,
J. Assoc. Comput. Mach., 23 (1976), pp. 221-234.
[6] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.
[7] D.E.KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley,
Reading, MA, 2nd edition, 1981.
, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.
[9] C. H. PAPADIMITRIOU, The probabilistic analysis of matching heuristics, in Proc. Fifteenth Annual
Allerton Conf. on Communication, Control and Computing, 1977, pp. 368-378.
[10] C.H.PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Englewood Cliffs, NJ, 1982.
[11] E. M. REINGOLD AND K. J. SUPOWIT, Probabilistic analysis of divide and conquer heuristics for
minimum weighted Euclidean matching, Networks, to appear.
[12] E. M. REINGOLD AND R. E. TARJAN, On a greedy heuristic for complete matching, this Journal, 10
(1981), pp. 676-681.
[13] M. 1. SHAMOS, Computational geometry, Doctoral thesis, Dept. Computer Science, Yale Univ., New
Haven, CT, 1978.
[14] K. J. SupowIT, D. A. PLAISTED AND E. M. REINGOLD, Heuristics for weighted perfect matching,
in Proc. Twelfth Annual ACM Symposium on Theory of Computing, 1980, pp. 398-419.
[15] K. J. SurowiT, E. M. REINGOLD AND D. A. PLAISTED, The traveling salesman problem and
minimum matching in the unit square, this Journal, this issue, pp.144-156.

[8]

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0009 $01.25/0

THE TRAVELING SALESMAN PROBLEM AND
MINIMUM MATCHING IN THE UNIT SQUARE*

KENNETH J. SUPOWIT,t EDWARD M. REINGOLD# AND DAVID A. PLAISTED%

Abstract. We show that the cost (Iength) of the shortest traveling salesman tour through n points in

the unit square is, in the worst case, a?&«/;+ o(\/;l), where 1.075= af,s,',’t =1.414. The cost of the minimum

matching of n points in the unit square is shown to be, in the worst case, aﬁ‘:.'s/n+o(~/n), where

0.537= af;‘;.' =0.707. Furthermore, for each of these two problems there is an almost linear time heuristic
algorithm whose worst case cost is, neglecting lower order terms, as low as possible.

Key words. traveling salesman problem, matching, analysis of algorithms, computational geometry,
graph algorithms, heuristics

1. Introduction. Let P be a set of n points in the (Euclidean) unit square. Define
a traveling salesman tour T of P as a set of n edges such that each point of P is an
endpoint of exactly two edges, and the resulting graph (P, T') is connected. If n is
even, then define a matching M of P as a set of n/2 edges such that each point of P
is an endpoint of exactly one edge of M. If S is a tour or a matching then let cost(S)
denote the sum of the lengths of the edges of S. The (Euclidean) traveling salesman
(respectively, matching) problem is to find a minimum cost tour (respectively,
matching).

The Euclidean traveling salesman problem is known to be NP-hard [7], [11] while
the fastest known algorithm for Euclidean matching runs in time ®(n>) [6], [13]. This
paper concerns fast heuristic algorithms for these two problems. Applications for
heuristic Euclidean matching are described in [15].

In order to evaluate a heuristic, we use the following measure: the worst-case
performance of a traveling salesman heuristic A is a function f53*: N- R such that

@ (n) = sup {the cost of A’s tour of P},
P

where P ranges over all sets of n points in the unit square. By ‘“sup” we mean the
supremum, i.e., the least upper bound; by “inf”’ we mean the infimum, the greatest
lower bound. We use the supremum in the definition of worst-case performance
because it is possible (since there are infinitely many n-point sets) that there is no
n-point set P for which the cost of A’s tour is maximized. If B is a matching heuristic
then the worst case performance of B is the function 5 defined analogously. The
first question that arises is how good the worst-case performance of any traveling
salesman (respectively, matching) heuristic can be? Let fon denote the worst-case
performance of the exhaustive optimizing traveling salesman problem algorithm. Let

foet denote the worst-case performance of the ®(n*) optimizing matching algorithm.

* Received by the editors September 1, 1980, and in revised form May 28, 1982. Preliminary versions
of some of the results contained in this paper were presented at the Twelfth Annual ACM Symposium on
Theory of Computing, April; 1980. This research was supported in part by the National Science Foundation
under grants NSF MCS 77-22830 and NSF MCS 79-04897.

t Hewlett-Packard Laboratories, Computer Research Center, Palo Alto, California 94304. This
research was conducted while this author was at the Department of Computer Science, University of Illinois
at Urbana-Champaign.

$ Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801.

144

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 145

We will show that both 5% and f o' are O(V n). Let

a P =inf {x:(Vn Z0)[f %P (n) éx«/;+o(\/_r;)]},1
and

o =inf {x: (Vn Z0)[f5 (n) =xVn+o(n),

adopting the convention that the infimum of the empty set is infinity. The statement
that £55 and f™% are ®(vn) may be rephrased as a5 and o™ are both finite and
nonzero. Thus, the answer to the question of how good the worst-case performance
of a heuristic can possibly be is a5%vn+0(vn) for the traveling salesman problem
and aom:tts/; +0(vn) for the matching problem.

There are two main results of this paper: _

1. 1.075~2/VVI2=a =V2~1.414, 0.537~1/JVI2=amt =1/42~0.707.

2. There exists a heuristic algorithm A for the traveling salesman problem such

that A runs in time O(n log n) and a ¥ = agh. Analogously, for matching there exists
P

a heuristic algorithm B that runs in O(n log n) time and has a 5 = a5".

Furthermore, if the floor function is available at unit cost, then for each
unbounded, nonnegative, nondecreasing, integer-valued function f such that f(n) is
computable in time O(nf(n)), the expression “O(nlogn)” can be replaced by
“O(nf(n))” in the statement of (2). Examples of such functions f are [lglgn], l1g*n,
a(n, n) [18], and so on. In other words, (2) says that for each of these two problems,
there exists an almost linear time heuristic algorithm whose worst-case performance
is asymptotically optimal.

The worst-case performance (as defined above) of various traveling salesman
problem and matching algorithms is given in Tables 1 and 2, respectively. For matching,
the rectangle algorithm is the best of the simple divide-and-conquer algorithms; its
worst-case behavior is analyzed in [17] (this issue, pp.118-143) and its average-case
behavior is analyzed in [14]. The greedy algorithm for matching works by iteratively
matching the two closest unmatched points; the analysis of its worst-case performance
is in [1] and its O(n"*logn) implementation is in [4]. The spiral rack matching
algorithm and its analysis are in [9].

Our results on worst-case performance should also be compared with the known
results on expected performance:

(i) The expected cost of the shortest tour of #» points drawn from a uniform
distribution in the unit square is B,sp«/ n+o(\/;), for some Bsp satisfying 0.61 = By, =
0.92 [2].

(ii) The expected cost of the minimum matching of n points drawn from a uniform
distribution in the unit square is Bmat‘/; +0(«/n), for some Bma: satisfying 0.25=
Bmar=0.402 [12].

2. Lower bounds on &% and a™%. We will show that 2/vVI2=a"% and that
1 /«/ Eéa?&'. Our strategy is to construct an infinite class of sets of points P such
that any tour of P _has cost at least (2/«/7?5«4?[and any matching of P has cost
at least (1/v Vﬁ)m. Let k =2 be an even integer. Let P be the set of points

. jmod?2 ,\/3
o A([+555e)
Osi=k—1 ! 2 I 2
0=j=12/(8V3))

! When we say that (Vn)[f(n) éx«/_r;+o(~/'r_l)], we mean that
3g:N-> R)[g(n)=o(~/;) and (Vn)[f(n)_—<_x~/;+ g(n)]).

146

TABLE 1

K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

Summary of results for the traveling salesman problem in the unit square, neglecting
lower order terms. f is any unbounded, nonnegative, nondecreasing, integer-valued
function computable in O(nf(n)) time. The order given for the running time assumes
that the floor function is available at unit cost. If it were not, then the time for the
decomposition algorithm would be ®(n log n).

Upper bound on
Order of Worst known worst-case
Algorithm running time example cost performance
Optimizing n2" 1.075vn a2 Vn
Strip nlogn 1.414Vn 1.414Vn
Decomposition nf(n) 1.075Vn alhVn

TABLE 2

Summary of results for matching in the unit square, neglecting lower order terms. f
is any unbounded, nonnegative, nondecreasing, integer-valued function computable in
O(nf(n)) time. The order given for the running time assumes that the floor function is
available at unit cost. If it were not, then the times for the rectangle, spiral rack, and
decomposition algorithms would be ®(n log n).

Upper bound on
Order of Worst known worst-case
Algorithm running time example cost performance
Optimizing [6], [13] n’ 0.537Vn amatJy
Greedy [1], [4] n'*logn 0.806vn 1.075vn
Strip nlogn 0.707Vn 0.707vn
Rectangle [17] n 1.436vn 1.436vn
Spiral rack [9] n 1.014vn 1.014vn
Decomposition nf(n) 0.537Vn amatJn

where § =1/(k —1/2) is a factor introduced so that the points of P all lie in the unit
square. An example is shown in Fig. 1 with k = 6. The points of P are vertices of a
hexagonal grid, which, incidentally, also gives the densest packing of the plane by
unit circles [16] and the worst known example for the greedy matching heuristic [1].

y

3

f
LI A

LA

V3
4(7)8'

SEAT

2024

L3y

(o] 3 28 33 43 58
F1G. 1. The vertices of a hexagonal grid.

> X

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 147

Let n =|P| and let T be any tour of P. Since 8 is the distance between the closest
pair of points in P, each edge of T has length at least §, so that

cost (T) = né.
Now
n = (number of rows of P) X (number of points per row)
(5l)35
5v3 8v3
Therefore
n> _ﬂ
N Vs V3
giving

cost (1) 25 > = ;.Jna— Nz_«sww N%J;.

Similarly, if M is a matching of P then M has n/2 edges, each of length at least §,
so that

n 1 -
=-5> Vn.
cost (M) 5 é NNivi n

3. Upper bounds on agh and amw. We present a heuristic for the traveling
salesman problem that we call the strip algorithm, and show that its worst-case
performance is at most V2n+ O(1). The algorithm can be used for matching, when
n is even, by taking the shorter of the two matchings contained in the tour found.
Therefore the worst-case performance of the strip algorithm for matching is bounded
above by vn/2+O(1). This will show that a%% =v?2 and that a=% < 1/v2.

The strip algorithm for the traveling salesman problem is a modification of one
analyzed for its expected performance in [2]. We are given a set of n points in the
unit square. Let r = [vr/2]. Divide the unit square into r vertical strips, each of
width 1/r. Construct a tour T, of the points by starting at the lowest point in the
leftmost strip, going up that strip from point to point, over to the top point of the
next strip, then down that strip point by point, up the next, and so on, finally returning
to the starting point, as shown by the jagged line in Fig. 2. For simplicity, not all of
the input points are pictured; in order to actually have 5 strips there would have to
be between 50 and 71 points.

A second tour T, is constructed in the same way, except that now the strip
boundaries are shifted by 1/(2r) to the right. There are r + 1 strips used in constructing
T, each of width 1/r. In Fig. 3, the strip boundaries for T; are shown as solid lines,
those for T, as dashed lines. Note that the leftmost of these strips contains none of
the points in its left half. Similarly, the rightmost strip contains none of the points in
its right half.

The strip algorithm outputs the shorter of the two tours 7 and 7. The algorithm
can be implemented in time O(n log n) by appropriately sorting the points.

To derive an upper bound on the cost of the tour produced, we will bound the
sum of the horizontal and vertical components, and then use the triangle inequality.
Consider paths P; and P, defined as follows: P, starts at the bottom, on the median
of the leftmost of the strips used in constructing 7';. P; follows the median of that

148 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

FIG. 2. The construction of a tour, using strips.

e . — e —— —

e —— e e e — —

——,e————e—e—— e ————— —

T
|
I
I
|
|
I
I
|
]
|
I
|
|
|
|

L e e e e e —— e —]

F1G. 3. The two sets of strip boundaries.

strip up to the top, then down the median of the next strip, up the median of the
next, and so on. For each strip, for each point in that strip, the path P; juts out to
that point and then back to the median, moving at right angles, as illustrated in Fig. 4
by the jagged line. The path P, is defined like P;, except that P, follows the medians
of the strips used to construct 7. It follows from the triangle inequality that
length (7'y) =length (P;), and that length (T>) <length (P,). We now derive an upper
bound on length (P;) +length (P,).

Consider some input point q; ¢ must lie in some strip used for T; and for P,
(shown in Fig. 5 between solid lines), and in some strip used for T, and for P, (shown
in Fig. 5 between dashed lines). In Fig. 5, a segment of P; is shown as a bold line,
and a segment of P, as a jagged line. It is clear that the total amount of horizontal
line in P; or P, jutting out to q and back is 2x1/(2r)=1/r. Since q was arbitrary,
there is a total of n/r units of horizontal line in P; and P, together that juts out to
points and back. Also, P; has r units of vertical line (that is, r strips of unit length).
P, has r+1 strips and hence r+1 units of vertical line. P, has 1—(1/r) units of
horizontal line that run from the end of one strip to the start of the next and P, has

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 149

N

—|/r—

F1G. 5. The paths P, and P, at a point q.

1 unit of such line. Finally, P, and P, each have a segment of length at most V2 that
joins the end of the last strip back to the starting position. Thus

length (T;) +length (T,) = length (P;) + length (P,)

§g+r+(r+1)+(l—%)+l+~/§+~/§
=§+2r+0(1)

=~ 12[Vn/2
gy 2RI +0)

=2v2n+0(1).

150 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

Therefore
min {length (T}), length (T>)}=V2n+O0(1),

and if n is even, the cheaper of the two matchings contained in the shorter of {T;, T,}
has cost at most «/n/2+ o).

These bounds are asymptotically achievable, as is suggested by the example
pictured in Fig. 6. T, is shown as a jagged line; T, is not shown, but looks like T}
shifted by 1/(2r) to the right. The points, which number n = 2k for some even integer
k, are arranged so that halfway between each solid vertical line and either of its two
neighboring dashed vertical lines there is a vertical string of n/r points; these points
are ¢/r apart, for some £ <1/(2r). Intuitively, these points are placed so that T; and
T, must zigzag, and hence look very much like P; and P,, respectively. This attains
the maximum amount (neglecting O(1) terms) of horizontal line for T; and for T5.
There is a point at the bottom of each strip, so as to attain the maximum vertical
length. To compute min {length (T;), length (T>)}, note that by the Pythagorean
theorem, each short, almost horizontal edge of the tour has length

VGG

2r 2r 2r

There are r((n/r)—1) of these edges. There are r long vertical pieces, each of length
1—¢. Recalling that r = [vn/2], we have

1
min {length (T), length (T)}>r (g—— 1) ;+r(1 —€)

n 1 n —
=——Z4r—re>—+r—1=v2n-1.
> 2+r re 2y r n

€20

FIG. 6. A set of points in the unit square for which length (T1) = length (T,) ~V2n.

We can easily arrange the points in this example so that each of the matchings from
T, or T, contains about half of the long vertical edges; hence the strip matching
algorithm produces a matching for this example of cost at least vn/2 —3.

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 151

4. The decomposition heuristic for the traveling salesman problem. In this section
we present a decomposition heuristic for the traveling salesman problem that achieves
(asymptotically) the best possible worst-case performance. The heuristic, given in
Algorithm 1, is reminiscent of the traveling salesman problem heuristic given by Karp
in [10]. Assuming a uniform distribution, Karp’s heuristic runs in time O(n logn)
almost everywhere, and, for all ¢ >0, outputs a tour of cost at most 1+ ¢ times that
of the optimal tour, almost everywhere. Karp’s heuristic requires exponential time
on some input sets. Our heuristic, on the other hand, always runs in time O(n log n)
and has the best possible worst-case performance, neglecting lower order terms. An
argument similar to the one we give below proves that Karp’s heuristic also has,
asymptotically, the best possible worst-case performance.

In order to avoid the sorting required by the strip heuristic, Algorithm 1 uses a
slightly crude approximation, the modified strip heuristic. It is essentially the serpentine
algorithm of [9]. Each column of subsquares in the grid is a strip and we traverse the
subsquares by going up the first strip, down the second, up the third, and so on. The
tour thus constructed visits the points in some arbitrary order that is consistent with
the cell order. Figure 7 shows an example of such a tour. The advantage of this
heuristic is that it requires only O(m) time for m points. It produces a tour of length
0(~/m)_because an edge wholly contained in one of the subsquares has length at
most v2/c =0(1/ ~/—n;) (see Algorithm 1 for the definition of c¢).

ALGORITHM 1. The asymptotically optimal decomposition heuristic for the

travelingsalesman problem on a set P of n points in the unit square.

1. ¢ « [2Vn/Ylog, f(n)], where z >2 is some real, and f(n) is a nonnegative,
unbounded, nondecreasing, integer-valued function computable in O(nf(n))
time.

2. Divide the unit square into a regular grid of ¢ subsquares, each of side length
1/c.

3. For each of the subsquares, do the following:

P’ «the subset of P inside the subsquare
while |P'|>0 do
begin
k < min {4[n/c’], |P']}
Q < a set of k points chosen arbitrarily from P’
Use dynamic programming to find the shortest
traveling salesman tour of Q [3], [8].
Distinguish one point of Q
P<P'-Q
end

4. Perform the modified strip heuristic to find a tour of the distinguished points.

5. T'<« the union of all tours found in Steps 3 and 4.

6. Convert T' to a tour T by the method of [5] (see [13])* and output T.

We first analyze the worst-case performance of Algorithm 1. Let a be a real
number such that

Vn)fe(n)=avn+o(Wn)).

2 Since T is a union of tours, the degree of each vertex in T" is even so T’ contains an Eulerian circuit.
Start at an arbitrary vertex and follow the order of the Eulerian circuit, but skip any previously encountered
point; the result is a Hamiltonian circuit. By the triangle inequality, the cost of this Hamiltonian circuit is
no more than the cost of the Eulerian circuit we started with. The cost of the Eulerian circuit is the sum
of the lengths of the edges in T".

152 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

F1G. 7. The modified strip heuristic.

We will show that
Vn)fS2(n)=avn+o(n)l.
where “dec” denotes the decomposition algorithm; this will prove that agh = agh.
In fact, it will prove that
{x: (VnZ0)[f s (m)=xVn+o(Wn)l={x: (Yn Z0)[f 52 (n) =xVn+o(n)]},
which is not implied by the equality of the infima.
Fix some input set P of n points. For notational convenience, let
(1 b=1[n/c*.

Number the subsquares from 1 to c? Foralli,1=<i=c? let B; denote the set of input
points within the ith subsquare, and let b; = |B;| mod 45. Thus the number of applica-
tions of the optimizing dynamic programming algorithm (that is, the number of

executions of the body of the while loop) when working on subsquare B; is at most
|B:| — b
—t1.
4b

Let

o
N

Bi|-b
@ ! §1 4b
thus ¢ +¢? is the total number of executions of the body of the while loop.

Now for all r=1, the cost of the tour produced by the optimizing algorithm on
r points in a 1/c by 1/c¢ square is at most [av r+o(~/;)]/c. The factor 1/c scales
down the cost from the unit square to the (1/c)x(1/c) square. Therefore the sum of
the costs of all the tours produced by the optimizing algorithm is at most

%[:(amw(ﬁm § (aﬂ+o(\@))]=g[t~/ﬁ+ 5 JE+o(c2~fb)],
i=1 i=1

(s~ 3, b0)/@b);

since b; =4b and t =c>.

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 153

The tour produced in Step 4 by the modified strip algorithm on at most ¢ points
has cost O(c). In Step 5, the tour T produced by the method of [5] (see [13]) from
T', the union of the tours found in Steps 3 and 4, has cost at most Y, - length(e),
by the triangle inequality. Therefore the total cost of the tour T produced by the
algorithm is at most

3) 2 [NEH :gl «/b—,+o(c2~/3)] +0().
Note that vb=+v[n/c?] <vn/c +1 and that ¢ = 0(vVn) so (3) can be rewritten as
4) % [t\/Zl;+ ii JE] +o(n).

Let g :R°° > R be defined by

g(bla b2, e 9bc2)=t\/4_b+ Z \/E;
i=1

1 (c2 — c2 1 c2 [
=—1\n— Z b‘)\/4b+ Z \/b,-=—_:(n— 2 b,‘)+ z \/b,
4b =1 i=1 Jab i=1 i=1
Taking partial derivatives shows that g is maximized at by =b, ="+ +=b.2=b. In this
case n = bc?, but because b = [n/c?], we have bc’>=n so that n = bc? giving

t=(n-% b,-)/(4b) = (n—bc?)/(4b) =0.
i=1
Therefore (4) is maximized when t =0 and b; =b,=" -+ =b.2=b. Hence
cost(T)é% Y \/Z+o(\/;z-)=acx/z+o(~/;)=a\/;+o(\/;),
i=1

since ~/Z<~/ﬁ/c +1. Thus
fee(n)=avn+o(n)
tsp __ _ tsp

s0 that a gec = aop as claimed. Thus the decomposition algorithm has the asymptotically
best possible worst-case performance.

We now analyze the running time of Algorithm 1. Under the real RAM model
of computation, partitioning the n points into the c> subsquares can be done in
O(n log n) time, since the subsquares form a grid. If we allow the floor function at
unit cost, then this partitioning can be done in O(n) time.

There is a dynamic programming algorithm that finds the shortest tour of r points
in time O(r2") [3], [8], hence in time O(z") for z >2. Step 3 makes at most ¢ +c”
calls on that algorithm, each with at most 46 points. Therefore the time required by
Step 3 is

o(+ez*)=0f[(n “Z b) /@b)+c* =)
-o{(3<)
nf(n)

— O(CZZMn/(‘tn/logz f(n)) =0 (log f(n)) - O(nf(n)).

154 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

There are at most

n 2 n
t+ci<—+ =O()
VTR log f(n)
points distinguished in Step 3. Therefore Step 4 can be performed in time
O (n/log f(n)).
Thus, the total running time of Algorithm 1 is O(n log n) under the real RAM

model of computation. If the floor function is available at unit cost, the running time
is O(nf(n)).

5. The decomposition heuristic for matching. In this section we present a
decomposition heuristic for matching that, like Algorithm 1 for the traveling salesman
problem, achieves (asymptotically) the best possible worst-case behavior. The heuristic,
given in Algorithm 2, is almost an exact parallel to Algorithm 1, and its analysis is
virtually identical. In particular, we can show, with the same argument as before, that
if a is a real number such that

(Vn)fox () S avn+o(n)],
then
V)l f e ()= avn+o(n)]
so that afee = agnr.
ALGORITHM 2. The asymptotically optimal decomposition heuristic for matching.
1. c« [\/ n/v N f(n)], where f(n) is a nonnegative, unbounded, nondecreasing,
integer-valued function computable in O (nf(n)) time.
2. Divide the unit square into a regular grid of ¢” subsquares, each of side length
1/c.
3. For each of the subsquares, do the following:
P’ < the subset of P inside the subsquare
if |P'| is odd then distinguish an arbitrarily chosen point
in P’ and delete it from P’
while |P'|>0 do
begin
k < the largest even integer less than or equal to
min {4[n/c?], |P'|}
Q < aset of k points chosen arbitrarily from P’
Use the optimizing matching algorithm [6], [13] to
find the minimum cost matching of Q
P<«P-Q
end
4. Perform the modified strip heuristic to find a tour of the distinguished points,
then find the less costly of the two matchings contained in the tour.
5. Output the union of all matchings found in Steps 3 and 4.

As for the time required, the partitioning takes O(n log n) under the real RAM
model of computation and O (nf(n)) if the floor function is available at unit cost: Let
b and ¢ be defined by (1) and (2), respectively; note that now b = oW f(n)). There
are at most ¢ +c” calls on the optimizing algorithm, each with at most 4b points and
hence each requiring O(b>) time. Thus Step 3 requires time

Ot +c)b¥) =0 (('—;-+c2) b3) = 0(c?*) = O(nf(n)).

TRAVELING SALESMAN PROBLEM AND MINIMUM MATCHING 155

There is at most one distinguished point in each subsquare, so Step 4 can be performed
in time O(c®)=0(n/ NETS) f(n)). The total time for Algorithm 2 is thus O(n log n) without
the floor function and O(nf(n)) with it.

6. Open problems. Many questions remain unanswered. We know that

mat - tsp
opt =a opt —\/2

2 =2
=210
7=
tsp

Does aopt = 2a 3’”" We can define afy for the minimum spanning tree problem in
analogy to agn and aopt ; the hexagonal grid example of Fig.1 establlshes that

mst

QA opt __2/~/ 12. Furthermore, it is obvious that afs =agh. Does afy =aon? How
does 2a o4 opt compare with a op; ? {? We conjecture that

tsp mst =1 mat __
aopt A opt Qopt =

2
JV12'
Finally, our decomposition algorithms are not quite linear time; are there linear time
algorithms A and B for the traveling salesman problem and matching, respectively,

for which a® = a 5% and a§™ = aL’L“t‘?

7. Acknowledgment. We gratefully acknowledge suggestions by the referee
that helped sharpen one of the time bounds, improve the notation, and clarify the
exposition.

REFERENCES

[1] D. Avis, Worst case bounds for the Euclidean matching problem, Internat. J. Comput. Math. Appl.,
7 (1981), pp. 251-257.
[2] J. BEARDWOOD, J. H. HALTON AND J. M. HAMMERSLEY, The shortest path through many points,
Proc. Cambridge Phil. Soc., 55 (1959), pp. 299-327.
[3] R. BELLMAN, Dynamic programming treatment of the travelling salesman problem, J. Assoc. Comput.
Mach., 9 (1962), pp. 61-63.
[4] J. L. BENTLEY AND J. B. SAXE, Decomposable searching problems, 1: Static-to-dynamic transforma-
tion, J. Algorithms, 1 (1980), pp. 301-358.
[5] N. CHRISTOFIDES, Worst-case analysis of a new heuristic for the travelling salesman problem, Technical
Report of the Graduate School of Industrial Administration, Carnegie-Mellon Univ., Pittsburgh,
PA, 1976.
[6] H. GABOW, An efficient implementation of Edmond’s algorithm for maximum matching on graphs,
J. Assoc. Comput. Mach., 23 (1976), pp. 221-234.
[71 M. R. GAREY, R. L. GRAHAM AND D. S. JOHNSON, Some NP-complete geometric problems, in
Proc. Eighth ACM Symposium on Theory of Computing, 1976, pp. 10-22.
[8] M. HELD AND R. M. KARP, A dynamic programming approach to sequencing problems, J. Soc. Indust.
Appl. Math., 10 (1962), pp. 196-210.
[9] M. Ir1, K. MUROTA AND S. MATSUI, Linear-time approximation algorithms for finding the minimum-
weight perfect matching on a plane, Inform. Process. Lett., 12 (1981), pp. 206-209.
[10] R. M. KARP, The probabilistic analysis of some combinatorial search algorithms, in Algorithms and
Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic Press, New York,
1977.
[11] C. H. PAPADIMITRIOU, The Euclidean traveling salesman problem is NP-complete, Theoret. Comput.
Sci., 4 (1977), pp. 237-244.
, The probabilistic analysis of matching heuristics, in Proc. Fifteenth Annual Allerton Conf. on
Communication, Control and Computing, 1977, pp. 368-378.
[13] C.H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.
[14] E. M. REINGOLD AND K. J. SUPOWIT, Probabilistic analysis of divide and conquer heuristics for
minimum weighted Euclidean matching, Networks, to appear.

(12]

156 K. J. SUPOWIT, E. M. REINGOLD AND D. A. PLAISTED

[15] E. M. REINGOLD AND R. E. TARJAN, On a greedy heuristic for complete matching, this Journal, 10
(1981), pp. 676-681.

[16] C. A. ROGERS, Packing and Covering, Cambridge Univ. Press, Cambridge, 1964.

[17] K. SupowIT AND E. M. REINGOLD, Divide and conquer heuristics for minimum weighted Euclidean
matching, this Journal, this issue, pp. 118-143.

[18] R. E. TARJAN, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach., 22
(1975), pp. 215-225.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0010 $01.25/0

SIMPLE CONSTRUCTIONS FOR MULTI-TERMINAL
NETWORK FLOW SYNTHESIS*

DAN GUSFIELD*

Abstract. The multi-terminal network flow synthesis problem is one of the few nicely solved problems
in network design, and is used widely in courses and texts on combinatorial optimization as an example
of an elegantly solved problem. The solution used in these texts is due to R. E. Gomory and T. C. Hu.
We present two simpler algorithms which improve the original method in speed, simplicity of the needed
data structures and, most importantly, in the simplicity of the networks that are constructed. The networks
constructed are planar and “uniformly optimal,” permit simple flow routing methods and simple solutions
to many sensitivity and postoptimality questions, and have as few edges as any networks produced by the
Gomory-Hu method. Further, one algorithm constructs networks with only one node of degree larger than
three, while the other algorithm constructs networks in which no node has degree greater than four.

Key words. network flow, graph algorithms, network synthesis, sensitivity analysis, planar graphs

1. Introduction. The multi-terminal network flow synthesis problem is one of
the few nicely solved problems in the area of network design. It is used widely in
courses and texts [2], [3], [6], [7] on network flows and combinatorial optimization
as an example of an elegantly solved combinatorial optimization problem. The solution
used in these texts is due to Gomory and Hu [5], and is also cited as an example of
a nondirect application of maximum spanning trees. In this paper we refer to the
Gomory and Hu method as Algorithm A. For examples where this problem arises,
see also Chien [1]. For NP-hard network design problems see Wong [8] or Garey and
Johnson [4].

We present two simpler algorithms which improve Algorithm A in speed, sim-
plicity of needed data structures and, most importantly, in the simplicity of the networks
constructed. The networks produced are ‘“‘uniformly” optimal (defined in the next
section), planar, have low node degrees, have as few edges as any produced by
Algorithm A, and allow efficient and direct solutions to problems in sensitivity analysis.
Further, flow routing algorithms for the networks are simple and can be implemented
as rules applied locally at each node. Finally, it is shown that uniformly optimal
networks with as few edges as any produced by Algorithm A can be derived from
any triangulated polygon with the correct number of nodes.

The simplicity of the constructions suggest applications in computer networks
and data transfer problems, particularly for bursty data transfer in local networks,
where the primary costs are associated with providing sufficient channel capacity.

2. Problem set up and main result. Let R be a symmetric n X n matrix, and let
r(i,j)=r(j,i)=0 be the i,j entry in R. R is called the flow requirements matrix and
r(i,j) is the i,j flow requirement. Let e denote the number of nonzero entries in R.
In the case where e is small, we will assume that the nonzero entries of R are
represented as an undirected graph to allow more efficient algorithms.

For G an undirected network with n nodes and a flow capacity on each edge,
let f(i,j) denote the maximum achievable flow in G between nodes i and j. In such
a flow, i is the source, j is the sink, there is flow conservation at every other node,
and the amount of flow sent along any edge is at most equal to the capacity of the

* Received by the editors June 22, 1981. This research was supported by the National Science
Foundation under grants MCS77-09906, MCS78-07291, MCS 81-05894.

+ University of California, Berkeley, California 94720. Present address: Computer Science Department,
Yale University, New Haven, Connecticut, 06520.

157

158 DAN GUSFIELD

edge. Of course, f(i, j) = f(J, i). Note also that when flow is sent from i to j, the entire
network is available for the i, j flow. See [2], [3], [6], [7] for a basic discussion of flow.

A network G with n nodes is called feasible for R if f(i,j)=r(i,j) for all node
pairs i, J.

Given R, we seek a network G with edge capacities, which is feasible for R, and
whose sum of edge capacities is minimum among all networks feasible for R. Any
such network is called optimal for R. We further seek an optimal network H with
flow function A, such that for any other optimal network G and its flow function f,
h(i,j)=f(,J) for all i, j pairs. Such a network is called uniformly optimal, and always
exists [5].

2.1 Main result. We give two algorithms to solve the network synthesis problem.
The first, Algorithm A’, runs in time Max [e, n log n] and constructs a network G’
with the following desirable properties:

1. G'is uniformly optimal.

2. G'is planar.

3. At most one node in G' has degree greater than three.

4. G' has as few edges as any uniformly optimal network produced by
Algorithm A.

5. The routing of flow in G' can be done by a distributed algorithm with each
node making independent decisions on where to send the incoming flow it receives.

6. The structure of G' is easily expressed, and local modifications of R result in
local and easily identified modifications of G'. This is useful for purposes of sensitivity
analysis and for design problems where successive instances of the network flow
synthesis problem are solved in the inner loop of a larger algorithm.

We then give a second algorithm, Algorithm A*, which runs in the same time as
Algorithm A’, and which constructs a network G* with the same six properties except
that Property 3 is changed to:

3*. No node of G* has degree greater than four.

Of the above seven properties, only the first one is guaranteed to hold for networks
produced by Algorithm A. Further, Algorithms A’ and A* show that the use of the
maximum spanning tree, and the revision of the original requirements needed by
Algorithm A to achieve uniform optimality are unnecessary and undesirable.

3. Algorithms and constructions. We first present Algorithm A’, which constructs
a planar uniformly optimal network with one node of high degree and all other nodes
of degree three or less.

ALGORITHM A’
1) For each index i, compute u (i) = Max [r(i, k)], and define u(n +1)=0.
2) Sort the u(i) values. Assume u(i)=u(i+1)fori =1, - -, n. Note that it then
follows that u(1) =u(2)=Max [r(i, k)].
3) For i =2 through n repeat the following:
3a) Create edge (i, i — 1) with capacity u(i)/2.
3b) Create edge (i, 1) with capacity [u (i) —u(i + 1)]/2, provided that the capacity
is nonzero.

Figure 1 shows the result of Algorithm A'. The algorithm ignores most of the
requirements, depending only on the u(i) values. Therefore R is not displayed in
Fig. 1, but the u (i) values are written next to each node.

Algorithm A’ requires time O(e) to find the u (i) in step 1), O(n logn) to sort
in step 2), and O(n) time to construct G' in step 3). Note that the network produced
is always planar, and only node 1 has degree greater than three.

MULTI-TERMINAL NETWORK FLOW SYNTHESIS 159

5 4.5

5 4, 3 2 |
u(2)=10 u(3)=10 u(4)=9 u(5)=9 u(6)=6 u(7)=4 u(2)=2

Fic. 1. G'.

We now show the correctness of Algorithm A'. Given R, let G' be the network
produced by Algorithm A’, and let f’ be the flow function of G'.

LeMMA 3.1. f'(i, j) =Min [u (i), u(j)] for all node pairs i, j.

Proof. Let i, be two arbitrary nodes, and u ({) Z u(j). Consider the path P;; from
i to j along the edges (k, k +1) for k =i through j—1. The edge with least capacity
on P;; is (j -1, j), with capacity u(j)/2. Therefore, a flow of u(j)/2 is possible along
the P;; path.

Now consider P ; the path with edges (k, k +1) for kK =1 through i — 1. The edge
with least capacity on P ; is (i — 1, i), with capacity u(i)/2=u(j)/2. G’ is undirected,
and so a flow of u(j)/2 from node i to node 1 is possible along the reverse of path P ;.

To complete the proof, we claim that a flow of u(j)/2 between nodes 1 and j is
achievable without using any edge of Py ; the union of Py; and P;;. The proof is by
backward induction on the index j. For j =n, the claim is true, since the edge (1, n)
has capacity u(n)/2. Suppose the claim is true for j =k + 1 <n, and consider node k.
Let F(k +1) be the flow of u(k+1)/2 from 1 to k +1 which avoids edges of Py .1.
By definition, F(k +1) doesn’t use edges (k +1, k) or (k, k —1), and so F(k +1) also
doesn’t use edge (1, k). Edge (1, k) has capacity u(k)/2—u(k +1)/2, and edge (k +
1, k) has capacity u(k +1)/2, for a total capacity of u(k)/2. Then to send u(k)/2
from 1 to k avoiding P, send u(k +1)/2 from k +1 to k along edge (k +1, k), and
send the rest along edge (1, k). The flow of u(k +1)/2 tonode k + 1 is sent via F(k +1),
and the proof is complete. [

THEOREM 3.1. G’ is uniformly optimal for R.

Proof. By Lemma 3.1, G' is clearly feasible for R since u(i)=r(i,) and u(j)=
r(i, 7). To show optimality, note that the total capacity of the edges incident to any
node i is u (i), which is the minimum capacity possible in any feasible network. Now
suppose there is an optimal network G with flow function f, such that f(i, j) >f'(i, j),
for some node pair i,j. Then f(i, ;) >min [u (), u(j)], and if (i) =u(j), node j must
be incident in G to edges with total capacity exceeding u(j). Therefore, G can’t be
optimal, and G’ is uniformly optimal. 0

The network G’ constructed by algorithm A’ has the undesirable property that
node 1 has high degree. For applications involving ports into a computer, or wires
wrapped on pins, small node degrees are desired. We now present an algorithm A*
which requires the same time as algorithm A’ and constructs a planar, uniformly
optimal network G* with the same number of edges as G', and with the property
that no node of G* has degree greater than four.

ALGORITHM A*
1) For each index i, compute u (i) =Max, [r(i, k)]. Call u(i) the node weight of
node i.
2) Let {w(1), -, w(t)} be the set of distinct node weights. Then for each i,
there is a unique index j such that u(i) = w(j). Order these ¢ distinct node

160 DAN GUSFIELD

weights so that w(1)>w(2)>- - ->w(t). We first construct a network G ()
containing ¢ + 1 nodes, one for each of the distinct node weights w(2) through
w(t), and two for the node weight w(1). The former set of nodes is {2, - - -, t}
and latter set is {0, 1}. G(¢) is constructed in steps 3) through 5).

3) Create an edge from node 0 to node 1 of capacity w(1)—w(2)/2, and create
an edge from node 0 to node 2 of capacity w(2)/2.

4) For i =1 to ¢t —2 do the following:

4a) Create an edge from node i to node i + 1 of capacity [w(i +1)—w(i +2)]/2.
4b) Create an edge from node i to node i +2 of capacity w(i +2)/2.

5) Create an edge from node ¢ —1 to node ¢ of capacity w(t)/2.

6) If the requirements R specify more than one node of weight w (i), i > 1, then
insert the new nodes of weight w (i) into the (i, i —2) edge of G, creating a
path of edges between node i and i —2, each with capacity w(i)/2. If R
contains more than two nodes of weight w (1), then first split the (0, 1) edge
into two parallel edges, one with capacity w(1)/2, and the other with capacity
[w(1)—w(2)]/2. Then insert the new nodes of weight w(1) into the edge
with capacity w(1)/2, creating a path of edges between nodes 0 and 1, each
with capacity w(1)/2.

7) The result of steps 1) through 6) is G*.

Figure 2 shows the result of steps 1 through 5 for ¢ = 6. Figure 3 shows G* for
the u (i) values given in Fig. 1.

THEOREM 3.2. G* is uniformly optimal for R.

Proof. We first prove the claim that in G(¢), f(i, j) = Min [w (i), w(j)]. The proof
is by induction on ¢. G(1) consists of a single edge of capacity w(1) between nodes 0
and 1, and G(2) is the graph shown in Fig. 4, and it is immediate that the claim is
correct for G(1) and G(2).

F1G. 2. G(¢) fort=6.

MULTI-TERMINAL NETWORK FLOW SYNTHESIS 161

5 ®u(|)=|o

4.5

u(2)=|0®

®

u(3)=10
4.5
3 C5>u(5)=9
® 2
u(6) =6

(
u(8)=2

F1G. 3. G* Using the same requirements as in Fig. 1.

Suppose that (i, j) =Min [w (i), w(j)] in G(¢) for t =2. G(t+1) differs from G(¢) by
the change in capacity of the (¢, —1) edge from w(z)/2 to [w(t)—w (¢ +1)]/2, and by
the addition of a node ¢ + 1 with two edges (¢ — 1, ¢ + 1) and (¢, ¢ + 1), each with capacity
w(t+1)/2. Then any amount of flow that can be sent along the (¢, ¢t — 1) edge in G(¢)
can be sent between ¢ and t—1 in G(¢t+1) via the (¢, —1) edge together with the
(t,t+1,¢—1) path. Hence the claim is proved for i,j#¢t+1. If i =¢+1 and j =¢, then
a flow of w(t+1) in G(¢+1) is possible by sending half via the (¢ +1, ¢) edge, and
half via the (t+1,¢—1,¢) path. Then if i =¢+1, a flow of w(t+ 1) can be sent to any
other node j by first sending it to node ¢, since w(¢t+1)<w(¢), and by induction a
flow of w(¢) is possible from ¢ to any other node j in G (¢). Hence the claim is proved
for G(¢).

Now we can extend the claim to G*, i.e., that in G*, f(i,j) =Min [u (i), u()].
The theorem will then follow as in the proof of Theorem 3.1. Suppose k is a node
of weight w (i) in R but not in G(¢). Then k is inserted into the (i, { —2) edge of G (¢),

w(ly- we2)
2

®

w(2)

2

FiG. 4. G(2).

162 DAN GUSFIELD

and is incident with two edges of capacity w(i)/2. In G(¢) the capacity of the (i, i —2)
edge is w(i)/2, and the sum of the capacities of the other edges incident with node i
is also w(i)/2. Hence flow to nodes i or i —1 is unaffected by the insertion of node
k, and it is clear also that f(k,j)=/f(i,j) for any node j such that u(j)=w(i). To
complete the proof it is sufficient to show that f(i, k) = w(i) = u(k). This is done by
sending w(i)/2 from i to k along the (i,i —1) path, together with a flow of w(i)/2
which is sent first from i to i — 1 without using any edge of the (i, i — 1) path, and then
from i —1 to k along the (i — 1, {) path. This completes the proof. 0

3.1 Flow routing. The regularity and simplicity of G' and G* permit simple flow
routing algorithms which can be implemented locally at each node in the networks.
Thus there is no need to run standard flow routing algorithms, or to store large routing
tables at each node. We will give, without proof, partial routing rules for G*. The
full rules for G* and the rules for G' are equally simple. Suppose u(i)=u(j), and a
flow of value v(i, j)=u(i) is sent from node i to node j. Then for any node k such
that u(k)=u(i), k forwards flow using the following three rules:

1. Node k sends no flow to nodes which have sent flow to k.

2. Any edge used to send flow out of k is used to saturation if possible.

3. Node k attempts to send flow to its neighboring nodes in order of their node
weights, largest first.

For any node k such that u(k)>u(i), k forwards flow using rules 1 and 2, but
modifies rule 3 as follows:

3'. If node k is adjacent to node j, then k sends all of its flow directly to node
j- Else, node k attempts to send flow to its neighbors of equal node weight, and then
to its other neighbors in order of their node weights, largest first.

To implement this routing scheme, a broadcast message is sent giving the source
and destination of the flow, before the actual flow begins. If the flow consists of
messages that can be prefixed with a header giving that information, then the broadcast
is unnecessary. It can be proven that the above scheme works under any order in
which the nodes receive flow and decide how to reroute. Hence there are no synchroni-
zation problems in the implementation.

3.2 Sensitivity analysis. Both constructions G’ and G* have the useful property
that many local modifications of R induce only local modifications in G' or G*.
Therefore many postoptimality and sensitivity analysis questions can be answered
without rerunning the full construction algorithm. If the flow requirements of R are
changed, but no node weights are changed, then G’ and G* remain unchanged. If
node weights are changed, but their order remains unchanged, then only the capacities
and not the underlying networks change. Further, since the edge capacities in both
G' and G* are expressed as functions of at most two node weights, the update of the
capacities is simple. If new nodes are added to R, but the set of distinct node weights
remains unchanged, then new nodes are added to G' as in step 3) of Algorithm A/,
and to G* as in step 6) of A*, If nodes are deleted from R without changing the set
of node weights, then those nodes are deleted from G’ or G* by the obvious reversal
of steps 3) and 6). If all the nodes of a given node weight w (i) are removed from R,
then all those nodes and the edges incident to them are removed from G*, two new
edges are inserted, and one additional edge capacity is changed. In G' the deleted
nodes and the incident edges are removed, one new edge is inserted, and one edge
capacity is changed. Further, every node in either G' or G* that is affected by these
changes is a neighbor of a node of weight w (/). Similarly, if nodes of a new node
weight are added to R, then the updated G* differs from the previous G* by the

MULTI-TERMINAL NETWORK FLOW SYNTHESIS 163

insertion of a connected subgraph containing the new nodes, by the deletion of two
edges running between neighbors of the new nodes and by the modification of one
other edge capacity. The updated G’ differs from the previous G' by the insertion of
a subgraph with the new nodes and the deletion of one old edge and the modification
of one capacity. If R is changed so that order of the node weights changes, then G*
and G' can be updated by considering this change as a deletion of all nodes of a given
node weight, and the insertion of new nodes of a different node weight.

4. Number of edges. We now consider the number of edges in the network
produced by Algorithms A’ and A*. We show that there are uniformly optimal
networks with fewer edges, but that none of these networks are constructable by the
Gomory-Hu method (Algorithm A). We begin with a description of Algorithm A
and an analysis of the number of edges in the networks constructed by it.

ALGORITHM A

0) For each index i in R, compute u (i) = Max, [r(i, k)]. For every pair i, j change
r(i, j) to Min [u (i), u(j)], creating matrix R'. Let H be a weighted graph with
n nodes, defined by considering R’ as the weighted adjacency matrix of H.

1) Compute a maximum weight spanning tree T of H.

2) Decompose T into a sum of subtrees, each having edges of equal weight. To
do this, define the decomposition of a tree T; recursively. If ¢; is the smallest
edge weight in T; then T; is decomposed into one copy of T; with weight ¢;
on each edge, plus the decomposition of each subtree of T; resulting from
deleting all edges of weight ¢; from T}, and subtracting c; from the weights of
all the remaining edges.

3) For every tree T; in the decomposition, create a cycle C; containing all the
nodes of T;. Set the capacity of every edge in C; to c;/2, where c; is the weight
of each edge in T:. Superimpose all of the cycles, merging common edges and
summing the capacities. The resulting network G is uniformly optimal for R.

For further explanation of Algorithm A see one of [2], [3], [5], [6], [7].

Let H and T be as above, and let G be the network constructed by Algorithm
A. To establish the number of edges in G we first examine the structure of T.

LEMMA 4.1. Let x be any edge in T. If x has weight c,, then the removal of x from
T creates two connected components, at most one of which contains an edge of weight
greater than c,.

Proof. The lemma is trivially true if one of the endpoints of x is a leaf of T, so
suppose this is not the case. Let G, and G, be the two components of T —x, with
edge y of weight ¢, >c, in G,, and edge z of weight ¢, >c¢, in G,. By the definition
of H, ¢, = u(i) for some node i in G,, and ¢, = u(j) for some node j in G,. Then H
contains the edge (i,) across the G,, G, cut, and (i, j) has weight greater than c,,
hence T can’t be a maximum weight spanning tree of H. 0

THEOREM 4.1. For a given requirements matrix R, G' and G* contain the same
number of edges, and G contains at least that many.

Proof. We first examine the number of edges of G. Recall that w(1)>: - - >w(¢)
are the ¢ distinct node weights defined by R. From the definition of R’, the only edge
weights in T are w(1) through w(¢), and all edges incident with any node i in T have
weight less than or equal to u (/). Further since T is a maximum spanning tree, every
node / is incident in T with at least one edge of weight u (7). It follows then from
Lemma 4.1 that, for any k <¢, the deletion from T of all edges of weight w(k) or
less leaves one connected subtree containing all nodes with node weights greater than
w (k) and no nodes with weight w (k) or less.

164 DAN GUSFIELD

We now examine the edges generated by the synthesis step 3), ignoring the
capacities assigned. We claim that G is the superposition of ¢ cycles, C; through C..
C; connects all the n nodes of T, and for k <t, C, contains all nodes of weight w (k)
or more and no nodes of weight w(k + 1) or less. To see this, recall that the decomposi-
tion step 2) of Algorithm A generates a sequence of subtrees of T, by beginning with
T itself and successively deleting all edges of weight w (¢) down to w(1). Step 3) creates
a cycle through the nodes of every new subtree generated in this way, and the claim
follows from the structure of these subtrees, which was established above.

We can now count the number of edges of G. For k from 1 through ¢, let N, be
the number of nodes of weight w(k). For k =2, cycle C. contains all nodes of weight
w(k), and at least one node of greater weight. Therefore, at least N, +1 edges of Cy
are incident with some node of weight w(k). None of these N, +1 edges can appear
in any other cycle C;, for j <k, and so the cycles C, through C, must contain at least
(n —Np)+ (¢t —1) distinct edges. Cycle C, contains N; edges, and so G contains at least
n—1+¢tedgesif Ny>2,and n —2+¢ edges if Ny =2.

We now examine the number of edges in G’ and then G*. Step 3b) of Algorithm
A’ produces the edge 1, i if and only if u(/)>u(i +1), and so produces ¢ edges in
total. Step 3a) produces n —1 edges, and so G’ contains no more than n —1+¢ edges.
However, u(1)=u(2), so the edge (1,2) is counted twice if N;>2. Therefore, G’
contains n —1+1¢ edges if N;>2 and n —2 + ¢ otherwise.

To count the number of edges in G* note that G (¢) contains 2¢ — 1 edges. In the
case where N1 =2, step 6) adds n —¢—1 edges to G(¢), and otherwise it adds n —¢
edges. Hence G* and G’ contain the same number of edges, and G contains at least
that many. 0O

COROLLARY 4.1. G contains the same number of edges as G' and G* if and only
if the nodes of weight w(k) form a single subpath in Cy, for all k from 1 to t.

Given an n Xn requirements matrix R, an undirected graph K on n nodes is
called a shell of R if capacities can be assigned to the edges of K so that K is uniformly
optimal for R.

CoROLLARY 4.2. Letn=t+1 with Ny=2,and N, =1 forallk =2, - ,t. Then
any triangulated polygon K with n nodes and 2n —3 =2t —1 edges is a shell for R.

To see this, note that in any triangulated polygon K there is always a node v of
degree two. We can assign v the node weight w(¢). Then the outermost cycle of K is
C.. Removing v from K gives another triangulated polygon with a node of degree
two. This node gets weight w(¢—1) and the outermost cycle is C,—;. In this way, K
decomposes into cycles C; for k from ¢ to 2, and a single edge connecting the last
two nodes of K which are given node weights w(1). This last edge is given capacity
W(1)/2, and the capacity of any other edge x in K is half the sum of all w(k) such
that x is contained in cycle Cy. It is clear by the proof of Theorem 4.1 that this
decomposition could have been produced by Algorithm A and hence is uniformly
optimal.

In the case where there are more than two nodes of weight w(1) or more than
one node of any other weight, these additional nodes can be inserted into the shell
in a way similar to the insertion of nodes in step 6) of Algorithm A*,

Note that there are uniformly optimal networks with fewer edges than G'. See
Fig. 5. Such networks are, of course, not produced by Algorithm A, A’ or A*, and
it is an open question whether there exist fast algorithms to minimize the number of
edges in a uniformly optimal network.

5. A related problem. A related problem, also solved first in [5], is to construct,
if possible, an optimal network which exactly satisfies the requirements in R. Analogous

MULTI-TERMINAL NETWORK FLOW SYNTHESIS 165

FIG. 5. G" has the same flow function as G' and G* of Figs. 1 and 3, but uses one less edge.

to the results in this paper, constructions exist for this problem, which are planar,
have low average node degree, and have as few edges as any networks produced by
the algorithm in [5]. A simple algorithm to generate these constructions is the subject
of a forthcoming paper by the author.

Acknowledgment. I would like to thank L. Babai for pointing out Corollary 4.2,
and many thanks to David Lichtenstein for his helpful comments.

REFERENCES

[1] R. T. CHIEN, Synthesis of a communication net, .B.M. J., July 1960.

[2] L. R. FORD AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton, NJ,
1962.

[3] H. FRANK AND 1. T. FRiscH, Communication, Transmission and Transportation Networks, Addison-
Wesley, Reading, MA, 1972.

[4] M. GAREY AND D. JOHNSON, Computers and Intractability : A Guide to the Theory of NP-Completeness,
W. H. Freeman, San Francisco, 1979.

[5] R. E. GoMoORY AND T. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math., 9 (1961), pp.
551-570.

[6] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.

[7] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[8] R. T. WONG, A Survey of Network Design Problems, Operations Research Center working paper OR
080-78, Massachusetts Institute of Technology, Cambridge, MA, August 1978.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0011 $01.25/0

FORMAL SEMANTICS AND ABSTRACT PROPERTIES OF STRING
PATTERN OPERATIONS AND EXTENDED FORMAL LANGUAGE
DESCRIPTION MECHANISMS*

A. C. FLECKt AND R. S. LIMAYE?

Abstract. Two formal models of string patterns are introduced. One is based on an idealization of
patterns as systems of set equations, and the other is based on an abstract procedure model of a pattern.
Each model is then shown to yield certain insights and in particular is used to explore an operation not
commonly considered in conjunction with string patterns. These two new pattern operations are (set)
complementation and reversal of cursor direction. Each is shown to have a dramatic effect on both the
expressive power and the complexity of patterns in which they are included. These pattern operations may
in turn be regarded as extensions to the usual formal language definition mechanisms (i.e., grammars and
equation systems), and our results interpreted in terms of formal language description.

Key words. string patterns, cursor functions, cursor reversal, complementation, formal language
description

Introduction. We deal in this paper with the concept of a string pattern. This
concept is best exemplified and implemented in greatest generality in the programming
language SNOBOL4 [16]. Two things about this facility are notable for our purposes.
First of all, the pattern mechanism is widely recognized to be extremely difficult to
explain and use [15], [23], [25]. Secondly, despite these difficulties there has been
essentially no evolution of the pattern concept since the SNOBOL4 language was
first developed, an undue period in relation to progress in other areas of programming
languages. We feel that this situation has been largely brought about by two facts.
First the semantics of SNOBOL4 patterns have usually been described in terms of a
specific pattern matching algorithm (see for instance [13], [16]). This we view as akin
to defining a programming language by its compiler, a situation we feel must be
changed (i.e., augmented) before much progress is possible. Secondly, the generality
of the mechanism has been achieved by adding a great many functional pattern
elements, essentially a new function for each special purpose which occurs.

Hence our goals are two-fold. First of all we are interested in developing abstrac-
tions which allow for the specification of the complex pattern semantics without
becoming involved in the excessive detail and overspecification of a particular
algorithm. This should be of indirect benefit in such work as the search for more
efficient pattern matching algorithms (e.g., [20], [21]). Secondly, we suggest the
evolution of pattern mechanisms in the alternative direction of a few very general
pattern operations which may be adapted to numerous purposes. Furthermore our
work develops the interaction of these two goals in that we follow the naturalness of
each of the two abstractions we develop to lead us to a proposal for a specific new
operation that seems to have great promise of generality and usefulness.

While we are greatly indebted to the idea of the string pattern in the sense of
SNOBOL 4 [16], we do not intend to remain faithful to any particular implementation
or semantic algorithm. Rather, our approach is to seek formalisms which fairly well
model existing structures, but then use the formalism to obtain a consistent and general

* Received by the editors April 2, 1980, and in revised form May 25, 1982. Work on this paper was
supported in part by the National Science Foundation under grants DCR75-05296 and MCS77-03902.

+ Computer Science Department and Weeg Computing Center, University of Iowa, Iowa City, Iowa
52242.

1 Computer Science Department, University of Iowa, Iowa City, Iowa 52242.

166

STRING PATTERN OPERATIONS 167

conceptualization which is not fraught with idiosyncracies. Our concern is thus both
for developing formal semantic models which are appropriate, and for identifying a
few operations which may be shown to have substantial effect on expressive power.

Our assumption will be that the reader is familiar with the concepts and ter-
minology of [16]. We emphasize that the models we explore here isolate the string
pattern (and the pattern matching process) and treat it in a manner apart from any
other programming features.

1. Patterns augmented with reversal: The procedure model and basic definitions.
It will be helpful in this section if the reader is familiar with Gimpel’s model of patterns
[12], [13]. The central abstraction is to view a pattern as a description of the way in
which the “cursor” is advanced in an arbitrary subject string. Thus Gimpel’s model
views a pattern as a function from a pre-cursor position (and subject string) to
post-cursor positions. Gimpel admits, in fact, arbitrary such functions regardless of
their computability (or noncomputability) attributes. This is an assumption in which
we do not concur, and we present an implementation abstraction for cursor manipula-
tion which implicitly contains computability constraints.

As the first step we define the syntax for a collection of string patterns. For a
given (nonempty) alphabet of characters C, we use the notations C* to represent the
set of all finite strings (sequences) over C, and A to denote the null sequence. For
§=c1C2 ¢, € C*(n20) with ¢; e C (1=i{ =n), we say that the length of s is n; also
we use the indexing notation s[i]=c;.

The following definition is phrased in terms of two binary operations alternation
and concatenation and the unary operation reversal which are all as yet unspecified;
concatenation is denoted simply by juxtaposition of its two operands, alternation is
denoted by the symbol *|”’. Often we will abuse this notation in writing such expressions
as alb|c. For the time being the reader can always supply leftmost association (i.e.,
(alb)|c); we will see shortly that our specification leads to both these operations being
associative hence avoiding any actual ambiguity in these abuses.

The idea of a string scanning mechanism that can move in either a left-to-right
or a right-to-left direction with respect to any string under consideration is very well
known in automata theory (see Rabin and Scott [22] and Gray, Harrison and Ibarra
[14]). Doyle [8] has suggested ideas along these lines for patterns, with specific pattern
primitives in the form of functions controlling scan (cursor) direction. Our suggestions
differ from both these ideas in that instead of specifying an absolute direction for the
scan (i.e., left-to-right or right-to-left), we provide for the specification of a relative
change (i.e., reversal) of a direction currently in effect (the initial direction is left-to-
right). This we show leads to more natural rules of pattern calculus. Our suggestion
is closer in spirit to that of Stewart [25] (in fact we borrow his notation in the definition
below). Stewart was guided by a model with a strong algebraic orientation and was
seeking an operation which would function as a multiplicative (i.e., concatenation)
inverse. However, he found that true inverses do not exist in his model, and the
“semi-inverse’’ Stewart does achieve fails to exist for many patterns and is not unique
for many others. In contrast, our (cursor) reversal operation may be applied to any
pattern and, as we shall show, always yields a unique result. As reversal has a number
of formal properties in common with an inverse operation, we adopt the usual inverse
notation for it; the reader is cautioned not to be misled as this is not the appropriate
conceptualization.

DeriNtTION 1. Let disjoint nonempty, finite sets C (alphabet) and I (identifiers)
be given. A pattern equation system with reversal ¥ = #(C, I), is defined hierarchically

168 A. C. FLECK AND R. S. LIMAYE

as follows:
a) a factor is any element from CUJI U{a 'lae CYU{X "|X eI};
b) a term is either A, ®, a factor or any concatenation of factors;
C) an expression is either a term or any alteration of terms;
d) an equation is written X = & and consists of an ordered pair of elements where
X eI and & is an expression;
e) a pattern equation system & consists of a collection of equations where each
X €1 occurs exactly once as the left (i.e., first) element of an equation in &.
In case the only factors which occur in a pattern equation system are from C U I, we'
say the system is context-free.
Example 1. Let C ={a, b} and I ={X, Y}. Then

%, = {X —ab|aY}
Y =b|Xb
is a pattern equation system.

The usual convention for ‘“‘matching a string against a pattern” consists of
advancing (i.e., moving the cursor left-to-right) across a substring which conforms to
the description of the pattern. With the addition of cursor reversal, this matching
process can in fact cause the retreating (i.e., moving the cursor right-to-left), and so
substrings can be scanned repeatedly for multiple purposes. The descriptive power of
this facility will be illustrated shortly. For the moment we give a simple example of
its use.

Example 2. Let C={a,b} and I =X. Then #,={X =aX|bb '} is a pattern
equation system.

Note that in Example 2, the intent is for the pattern to designate a sequence of
the form a"b(n =0), but that after the matching process, the terminating ““b” is still
the next character to be scanned (even though its presence has been verified). Our
development below is intended to provide the machinery to enable us to make such
informal statements precise and unambiguous.

It should be noted that while we impose some superficial restrictions on the form
of equations so that the technical details can be developed more succinctly, there is
no real loss of generality. For instance, an equation such as X =(a”'Y)™ is not
allowed (reversal can only be applied to individual characters and identifiers), but one
can simply add a new identifier, say Z, and write the equivalent system

xX=z"1' ZzZ=a'v

In the following we will not write the formal set notation for pattern equation
systems but will simply list the equations. As we remarked above, Definition 1 specifies
only the syntax or form of the pattern definitions we consider. The more interesting
aspect is the semantics. Our approach to this is a constructive one, and we first define
a simple programming language to be used to specify these semantics. We give only
an informal description of the syntax and semantics of this programming language.
We trust that its simplicity makes this sufficient, so that we will not be unduly diverted
from our pursuit of the string pattern ideas.

DerINITION 2. Conventions in the programming language for pattern system
definition, PLPSD:

1) Expressions. Expressions may be either integer-valued, string-valued, or
Boolean-valued; they may involve the usual constants, variables, operations, tests and
function calls (in particular the string indexing notation described above). In addition

STRING PATTERN OPERATIONS 169

we allow the special notation 6 to occur as an expression (and interpret it as the
undefined or failure value). Also function calls are written in the usual way (i.e.,
“function-ident (argument list)”’) and parameters are transmitted by value.
2) Function return statement, written
return ((expression)).
The expression is evaluated and the value (if any) is returned to the point of invocation.
3) Conditional statement, written
if (Boolean-valued expression)
then (Function return statement)
else (Function return statement).
The Boolean expression is evaluated and if its value is true the statement following
then is executed (and so control is next returned to the appropriate invocation); if
the Boolean value is false the statement following the else is executed.
4) Nondeterministic selection, written
select
(Function return statement);
(Function return statement);

(Function return statement)

end.
Exactly one of the enclosed statements is executed, and in the case of any of the
choices a valid run step is said to have occurred. That is, the select plays a role
analogous to the case-statement, except that rather than including an expression to
determine the selection, the selection is left to be made on an unspecified basis. Thus
there is a close analogy of the select semantics with that of Floyd’s ‘“choice function”
[11] (but a statement rather than a value is chosen). Our form is rather different,
however, more like the nondeterministic control structure of Allison [2], but still
devised to suit our particular purposes.

5) Function definition, written

define (identifier)((parameter list));
(select statement)|(conditional statement)
end (identifier).

Parameters are restricted to being strings or integers (and are transmitted by
value as noted above). Recursion is allowed (in fact, relied on) in our function
definitions.

With the inclusion of the nondeterministic control structure (i.e., select), each
PLPSD program may admit a whole collection of valid runs rather than defining a
single uniquely specified execution (a run may be finite or infinite and refers to a
sequence of statement executions, where each statement in the sequence is a valid
successor to the previous). Each finite run will necessarily terminate with a value and
the resulting collection of values is regarded as the set of potential outcomes of any
single execution. Note that finite and infinite runs are not mutually exclusive, and in
particular that the existence of infinite runs (i.e., nontermination) does not preclude
the occurrence of a nonempty set of outcomes. For a formal treatment of the
interactions between recursion and nondeterminism and their influence on such issues
as program termination and equivalence, the reader may wish to consult [7]; these
are not matters which we pursue here. Our purpose here is to develop a suitable
semantic model. While this is an operationally oriented model, it definitely does not
solve all the implementation problems.

170 A. C. FLECK AND R. S. LIMAYE

Of course one could allow much greater generality in the combination of the
programming elements than we have introduced here, but this will be sufficient for
our purposes.

One last preliminary which will aid the presentation of our semantics is the idea
of a simple code generation function.

DEerFINITION 3. The function “code” is defined hierarchically to operate on
(pattern) terms and expressions (see Definition 1) to produce statements in PLPSD
as follows:

1) foraterm ¢

a) if t = ®, then code (¢) =return (9)

b) if ¢t = A, then code (¢) = return (A(s, ¢))

c) ift=fifr+f, where p=1 and fi(1=i=p)is a factor,
then code (¢t) =return (f,(s, fo—1(s, - * - , f2(s, f1(s, ¢)) - - -))) and
code (t ") = code (f,f,_1 - * * f2f1), where

a’' iffi=acC,
X' iffi=Xel,
a iffi=a' withaeC,

X iff,i=X"" withXel,
2) for an expression &€ = ty|t,| - + * |¢t,, where g =1 and ;,(1=i =q) is a term,

code (&) = select
code (t1);
code (t2);

code (t,)
end

and
code (") =code (7 |tz ']+ - |t5).

The required preliminaries have now been completed. We now associate with
each pattern equation system a collection of function definitions (written in PLPSD)
which will serve as the semantic interpretation.

DEFINITION 4. Let ¥ =%(C, I) be a pattern equation system. We associate with
& a set of function definitions %5 (each definition has two parameters, a string (the
subject) and an integer (the pre-cursor position), and returns an integer (a post-cursor
position) or) in PLPSD that includes exactly:

1) the function definition

define A(s, p);
/* the NULL pattern element */
if p # 6 and 0 =p =length (s)
then return (p)
else return (9)
end A
2) for each a € C the definition
define a (s, p);
/* forward character-matching pattern elements */

STRING PATTERN OPERATIONS 171

ifp#6 and 0=p <length (s) and s[p+1]="‘a’
then return (p +1)
else return (6)
end a
3) suppose I ={X, X5, -+, X} and ¥ ={X; = & }1<i=a; for each X; e[l
define X;(s, p)
/* pattern elements constructed from pattern equations */
code (%,)
end X;
4) for each a € C the definition
define a (s, p);
/* backward character-matching pattern elements */
if p#0and 0<p =length (s) and s[p]=‘a’
then return (p — 1)
else return (9)
enda”’
5) suppose I ={X;,X,, -, X,}and ¥ ={X; = &;}1=i=n; for each X,
define X;' (s, p);
/* reversal pattern elements constructed from pattern equations */
code (871)
end X
For each of the identifiers X; € I in the system & and string s € C*, consider the
outcome of a function call such as X;(s, p). Such a call may initiate a number of
possible valid runs, each of which may be either finite or infinite; each of the finite
runs must return a value—either 6 or an integer p’ where 0 =p’ =length (s). We think
of this collection of values as the potential outcomes for the cursor position after the
pattern expression &; has been “applied” to string s starting at position p.
Example 3. Let C ={a, b}, I ={X1, X,}, &3 be

X,=alaX,, X,=Xib

and o = baab.
The function definitions which result (we omit those in clauses 1 and 2 of Definition
4) are:

define X (s, p); define X, (s, p);
select select
return (a(s, p)); return (b (s, X1(s, p)))
return (X(s, a(s, p))) end
end end X5.
end X 1,
Then

Xi(o,0)={0}, Xi(o,1)={6,2,3}, Xy(o,1)={06,4}.

To see, for instance, that 3 € X;(o, 1), we note that
(a) Xi(o,a(o, 1)) Xi(o, 1),
(b) a(o, 1) ={2} so Xi(a, a(o, 1)) = Xi(a, 2),
(¢) a(o,2)c X;(o,2)and a(o, 2) ={3}.
Similarly then, since X(o, 1) =b(0, X1(o, 1)) and b (o, 3) = {4}, 4€ X:(0, 1), etc.
Example 4. Let C ={a, b}, I ={X1, X} and ¥, be

Xi=ablaX;', X,=b"'X7l

172 A. C. FLECK AND R. S. LIMAYE

Then the associated function definitions are (we omit those for clauses 1, 2 and 4):

define X(s, p);
select
return (b (s, a(s, p)));
return (X' (s, a(s, p)))
end

end X,

define X1' (s,p);
select
return (a (s, b7 '(s, P));
return (a (s, X (s, p)))
end

end X7';

define X, (s, p);
select
retarn (X1 (s, 57 '(s, p)))
end

end Xz;

define X3 (s, p);
select
return (b (s, X, (s, p)))
end

end X',

Then, for instance, for o = aabb and X,(o, 0),

X7 (o,a(0,0)=X5" (0, 1)< Xi(a, 0);
X3 (o, 1)=b(0, X1(a, 1));

b(o,a(o, 1))=b(0,2)={3}< Xi(o, 1);
b(o, 3)=1{4},

and hence 4 € X;(a, 0).

We shall extend the natural functional equivalence of the associated pattern
functions to patterns themselves (i.e., to identifiers in the context of a pattern equation
system) in the natural way.

DEFINITION 5. Let ¥ = %(C, I) be a pattern equation system and X, Y €. Then
we say X is equivalent to Y in &, X =Y, if for the associated functions in ¥, we
have X(s,p)=Y (s, p) for all s € C* and 0=p =length (s) (we omit the designation
of ¥ whenever no confusion will result). We also extend the equivalence concept to
pattern expressions as follows: &; =&, if for all pattern equation systems &% which
contain the equations X =&; and Y = &, we have X =Y.

Lastly we present the manner in which we take a pattern definition to relate to
string matching (in the sense of SNOBOL4).

DEFINITION 6. Let ¥ =%(C, I) be a pattern equation system and X €I. Then
the language associated with X in &, written Ly(X), is defined with the functions %,
by L#(X)={s|length (s) e X (s, 0)} = C*.

In the sense of SNOBOL4, L4(X) is the set of strings which will successfully
match X in fully anchored mode (i.e., anchored from both left and right). Unanchored
matching would be successful for C*L«(X)C*. From a formal languages point of view
there is little difference in the abstract properties of these two sets. We restrict our
attention to the set Lo (X).

STRING PATTERN OPERATIONS 173

Before proceeding to the statement of results, there are a number of comments
that we feel may be useful to the reader. We list these here.

Note 1. To this point the abstraction is quite faithful to SNOBOL4. That is, if
& is a context-free pattern equation system, L, (X) is usually exactly the collection
of strings that will be successfully matched if one writes the same equations (i.e.,
assignments) in SNOBOL4; however all identifiers on the right-hand side must be
written with the unevaluated expression operator to conform to the relational view
(and the recursion) of our idealization. There are certain troublesome cases in the
standard implementations of SNOBQOL4 such as left-recursion and/or various quick-
scan heuristics, but these problems are not inherent in the process and can be avoided
with the use of other algorithms (e.g., see [20], [21]).

Note 2. The conventions of Definition 1 correspond to writing patterns in a sort
of “normal form.” That is, something such as (a|aX)Y is not a valid pattern expression
in these conventions. However, we will permit such an abuse of notation and assume
that it represents a shorthand for the expression ZY, where Z is a new identifier,
together with the augmentation of the pattern equation system under consideration
by the equation Z = alaX.

Note 3. The family of languages L(X) arising from the context-free pattern
equation systems £ of Definition 1 is precisely the family of context-free languages
(see [10]). Also if the context-free system is one-sided linear, then the language is
regular.

At the beginning of this section we pointed out that we were suggesting a model
similar in nature to Gimpel’s [12], [13] but which has essential constructability
characteristics. In fact, as our first result shows, there are some technical differences
which place our assumptions more in line with the algebraic version of Gimpel’s model
put forth by Stewart [25].

THEOREM 1. Let P, Q and R be pattern expressions with reversal. Then

(i) (PQ)R=P(QR),
(ii) P|(Q|R)=(P|Q)IR,
(iii) PlQ=Q|P,

(iv) P(Q|R)=PQ|PR,

(v) (P|Q)R =PR|QR,
(vi) PA=AP=P,

(vii) PO=OP=0,
(vii) ®' =,
(ix) A7'=A,

® (PQ)'=Q P,
(i) (PlQ)'=P7"IQ7,
(xii) (P"")'=P.

We provide only the proof of selected parts, as they are representative of the
organization of details in the other parts.

Proof of (iv). This part is one of the properties which distinguishes this model
from Gimpel’s.

We first must express the identity in terms of a proper system in the way suggested
in Note 2 above. Thus we assume that we are considering a system & which has U,
V, W, X, Y, Z €I and includes the equations

X=P, Y=Q, Z=R,
U=Y|Z, V=XU W=XY|XZ,

and we wish to show that V =,W.

174 A. C. FLECK AND R. S. LIMAYE

The procedures associated with & will include

define X (s, p); define Y(s,p); define Z(s, p);
code (P) code (Q) code (R)
end X ; endY; end Z,;
define U (s, p); define V (s, p);
select return (U (s, X (s, p)))

return (Y(s,p)); end V;
return (Z (s, p))
end
end U,
define W (s, p);
select
return (Y (s, X (s, p)));
return (Z (s, X (s, p)))
end

end W.

Hence if g€ V (s, p), then there exists p'e X(s,p) and qe U(s,p"). But if g€
Uf(s,p'), then either qe Y(s,p’) or qe Z(s,p') and so in either case q€ W(s, p).
Similarly for the argument in the converse direction. Hence V=W.

We consider now the details for the identities explicitly involving reversal. Parts
(viii) and (ix) are directly due to the definitions.

Proof of (x): We suppose a system & which includes the equations

V=P, W=Q, X=VW,
Y=X"', Z=wlv.
Then we wish to show that Y (s, p)=Z (s, p) for all s € C* and 0=p =length(s). For
such a system we have the function definitions:
define Y (s, p);
select
return (X (s, p))
end
endY;
define Z (s, p);
select
return (V" '(s, W(s, D))
end
end Z;
define X (s, pP);
select
return (V "'(s, W '(s, p)))
end

end X ! ;

and so clearly the result follows.
Proof of (xi). We suppose a system & which includes the equations

V=P, W=Q, X=V|W, Y=X"', Zz=viw.

Then a direct application of the definition of the code function shows that Y =, Z.
Proof of (xii). We suppose a system & which includes the equations

X=P, Y=X! Z=Y.

STRING PATTERN OPERATIONS 175

For such a system we would have the function definitions
define X (s, p);
select
code (P)
end

end X,

define Y (s, p);
select
return (X (s, p))
end

end Y,

define Z (s, p);
select
return (Y '(s, p))
end

end Z.

So again we have X =4 Z, and the result follows. 0

The rules of pattern calculus given by parts (ix)—(xii) are strong motivation for
our choice of notation for the reversal operation. We strongly prefer this means of
specifying the direction of cursor movement and its clarity of expression over the
suggestions in Doyle [8]. However, care must be taken not to regard reversal as a
true inverse for concatenation, as our subsequent results will indicate.

As the above result illustrates, the operations we have defined behave according
to a desirable (and familiar) calculus. The ability to specify only context-free pattern
systems is much too restrictive to be used exclusively in practice. This has been
overcome in SNOBOL4 by adding a great many functional elements which are allowed
to occur as constituents. These numerous added elements serve to both expand the
set of primitives (each with its own particular properties) and to defeat a systematic
pattern calculus through special individual definition. The alternative we explore in
this section is the addition of the single reversal operation which, as we have demon-
strated, behaves nicely. Our next goal is to explore how this operation enhances the
expressive power of pattern systems.

Example 5. Let C ={a, b}, I ={X} and consider the pattern system with the single
equation X = blab. Then A% XX ' # X "X # A. This follows from the observations that
XX ab, 0)=1{0,0, 1} and X ' X (ab, 0) = {6} whereas A(s, p) ={p} for all s € C* and
0=p =length (s).

The above example clearly contrasts the reversal operation with a multiplicative
(i.e., concatenation) inverse. It can be verified that if for a pattern expression P,
PP (s, p) 2 {6}, then A(s, p) = {p}= PP"'(s, p). A closer connection with the multiplica-
tive identity cannot be made.

The principle working property for the reversal operation is captured in the next
theorem.

THEOREM 2. Let P be any pattern with reversal, s C*, m and n be natural
numbers with 0 =m, n <length (s). Then m € P(s, n) if and only if n eP 7 '(s, m).

Proof. We provide just the proof outline here. Clearly from property (xii) of
Theorem 1, we need only show that m € P(s, n) implies n € P~'(s, m). This is estab-
lished by a structural induction argument as follows:

Anchor. If P is any of the atomic patterns (see Definition 1) a, a ', Aor ®
(where a € C), then the result is clearly true.

176 A. C. FLECK AND R. S. LIMAYE

Induction. Suppose the result is true for all patterns defined with fewer than r
occurrences of the operations of alternation, concatenation and reversal and let P be
a pattern involving r occurrences.

Case 1. P=Q". Follows by Theorem 1 (xii) and the induction assumption.

Case 2. P=QR. Then m € P(s, n) if and only if there exists k with k € Q(s, n)
and m € R (s, k). But then by the induction assumption, n € Q '(s,k)andk €R _l(s, m)
and hence n € R"'Q'(s, m). But by Theorem 1 (x), R"'Q '=P".

Case 3. P=Q|R.Then m € P(s, n) if and only if either m € Q(s, n) or m € R (s, n).
But then, respectively, either n €eQ (s,m) or neR (s, m) by induction. But by
Theorem 1 (xi), P = Q"llR"1 and hence n € P~ '(s, m) in either case.

Note that since recursive definitions are allowed, a formalization of this outline
must be carried out by an induction on |m —n|. 0O

For the connection of the operations with the sets of strings described we have:

THEOREM 3. Let P and Q be pattern expressions with reversal, occurring in the
pattern equation system &. Then

(i) Ls(P|Q)=Ly(P)ULy(Q),
(ii) Ly(P) - L¢(Q)< Ly(PQ), and

(iii) Lg(P)+ L¢(Q)=Lg(PQ), if ¥ is context-free (i.e., does not contain reversal).

Proof. We again omit details which follow directly from the definitions. But to
establish that equality does not hold in part (ii), the reader can verify that for P = abc
and Q = (bc) 'bc|a we have L(P)={abc}, L(Q)={a}, and L(PQ)={abc, abca}. 0O

The main reason for the addition of the reversal operation to patterns is to gain
expressive power. This goal is indeed achieved and our next several results are intended
to show the extent of the success.

We have earlier pointed out the connection between context-free patterns (i.e.,
without reversal) and context-free grammars. Because of this connection it is natural
to categorize patterns in the same way one does grammars. In particular the facts that
two-way finite automata accept no more languages than one-way finite automata and
that these regular sets are exactly the languages defined by the right-linear grammars
(see [24] for definitions and results) might lead one to conjecture that right-linear
patterns augmented with reversal define only the regular sets. The ob-
servant reader will have noted that we have already presented a counterexample to
this conjecture in Example 4 where L(X)={a"b"|n = 1}. In fact such systems can even
define non-context-free languages as we point out in the next example.

Note that for pattern systems F(C, I) with reversal we say that the system is
right-linear if each constituent term is of one of the forms A, ®, a or af and that
the system is linear if it is of one of the forms A, ®,a, a8, By or aBy, where
a,yeCUC 'andBelUI".

Example 6. Let C={a,b,c,d,e} and I={S, T, U, V, W, X, Y, Z} and consider
the pattern system with equations

S =af, W=b"'Wla'X,
T=bU"cV, X=aY,
U=e'T7, Y =6Z""c,
V=c'W, Z=d7'Y’},

While the details are tedious, it can be verified for this system that L(S)=
{ab"cd"e"|n = 0}.

STRING PATTERN OPERATIONS 177

Note that if one does not insist on the right-linear restriction, the above system
can be written more succinctly as

S=al, T=bTelcc™'W,
W=b"'Wla'aY, Y=bYdc.

An equally important point we believe should be strongly made, namely, that
often patterns which could be written without the use of reversal become more clear
and more succinct when expressed using reversal. We illustrate with

Example 7. Let C ={#, a, b, ¢} and suppose one is interested in specification of
the set of strings L ={# X|X €{a, b, c}* and X contains at least one of each of the
letters a, b, c}.

We take I ={o, a, B8, v, R, U} and define the system

o= #apyU, y = aylbylc,
a = balcalaR, U =A|laU\bU|cU,
B =aB|cB|bR, R=a 'R|b'R|cT'R|# " #.

The informal approach of this system is that each of the patterns continues to
scan right until it finds an occurrence of one of the desired letters (« searches for a,
B for b, and v for ¢), failing if none is found and invoking R when it is; R ‘“‘rewinds”
the cursor position back to the marker # and the next search can then be made.
Formally one can verify that length (s)e o (s, 0) if and only if se L.

Now L is regular so that a right-linear pattern without reversal can be written.
As is pointed out in [3], this would require a variable for each of the subsets of
{a, b, c}. If one uses the full generality of context-free patterns (without reversal), a
fairly succinct pattern can be written. But one need only expand the collection of
search characters by one or two before the complexity of patterns without reversal
become overly burdensome, while the scheme given above using reversal is simply
expanded by one new equation for each additional search character; the correctness
of the description remains apparent.

We now develop our last major result for patterns with reversal. This result will
lead to a number of additional observations.

THEOREM 4. A language L < C* is the language associated with a pattern equation
system with reversal if and only if L is accepted by a two-way, nondeterministic pushdown
automata (without endmarkers).

Proof (outline). As proof we provide the constructions in both directions, but in
the tradition of formal language theory we omit the proofs of the correctness of the
constructions. This is compensated for in large part by the similarity of the constructions
to those which are standard in the identification of ordinary context-free grammars
and the ordinary (i.e., one-way) pushdown automata. We do not present the definitional
details of two-way pushdown acceptors (without endmarkers). The conventions we
follow are those of [14]. Our one departure is that we use empty stack acceptance
(i.e., machine exists from right end of the input and stack is empty) in place of final
state acceptance and thus require the luxury of null moves on input. This alternative
convention for acceptance may be shown to agree with final state acceptance by
techniques similar to those used for this demonstration in the usual one-way case.

First of all, suppose we are given a pattern definition with reversal #(C, I'), and
that X eI. We construct a two-way pushdown automata which accepts L(X) (by

178 A. C. FLECK AND R. S. LIMAYE

empty stack) as follows:
(i) the input alphabet is C;
(ii) the stack alphabetis CUIUC “'UI! Gee., C7'is a set of symbols written
a~" for each a € C and similarly for I™");
(iii) the initial stack symbol is X;
(iv) the state set is taken to consist of {qo, q1} (qo is initial);
(v) the transition function & is defined by:

(a) foreach Y €1, if ¢ is a term other than ® and A occurring in the equation
for Y, then (0, qo,) €8(qo, A, Y) and (0, qo, t ") €8(qo, A, Y ') (where
the sequence for t! is obtained as indicated in Definition 8);

(b) for each Y eI, if A is a term occurring in the equation for Y, then
(0, qo, A) € 5(‘103 Aa Y) and (0’ qo, A) € 5((10, A’ Y_l);

(c) foreach aeC, (1,qo,A)€b(qo, a, a);

(d) foreach acC, (-1, q;, a Ve 8(qo, A, a™);

(e) foreachaeC, (0,q0,A)€d(q1, a, a™h.

Conversely suppose we are given a two-way pushdown acceptor A that accepts
the language L(A) by empty stack. The input alphabet of A is taken as the set C and
the set I is taken to consist of all triples of the form (s, v, s'), where s and s’ are states
of A, together with one additional abstract symbol, say a. Then the equations of the
corresponding pattern equation system ¥(C, I) are as follows:

(1) @ ={s0, Yo, So){S0, Y0, S1)|* * *[{S0, Y0, 5») Where 7y, is the initial stack symbol
of A and so, 51, * * *, 5, are its states (with so initial);

(ii) for each (1,s’,y1 - y:)€d(s, a, v), where a € C and y; is a stack symbol
for 1=i=k (and k =0), we include the following terms in the equation for
(s, v, s") for each state s”: for each sequence of states ¢, - -, f,_; the term
als’, y1, t1){t1, Y2, t2) * * * {tx—1, Y1, 8") (note that for k=1 this term is
a(s’', y1,s") and for k =0 this term is a);
(iii) for each (0,s’, y1 - yx)€8(s, a,v), where a € C and v; is a stack symbol
for 1 =i = k(k =0), we include the following terms in the equation for (s, v, s")
for each state s”: for each sequence of states ¢;,:--,f#,—; the term
aa"l(s', Y1, Xt V2, t2) * + * (te—1, Vi S™)5
(iv) for each (—1,s',v1- - v)€b(s, a,y), where ae C and v; is a stack sym-
bol for 1=i=k(k =0), we include the following terms in the equation for
(s, v,s")y for each state s": for each sequence of states ¢, -, #_1 the
term aa '(ci' ezt len XS, 1, i)t Y2, t2) - -+ {fit, Vi 8" (Where C =
fer, 5 ead)s

(v) for each (0,s’,y1* yx)€b(s, A, v), where v; is a stack symbol for 1=i=
k (k =0), we include the following terms in the equation for (s, v, s”) for each
state s”: for each sequence of states ti, -, #—_1 the term (s’,y1,t1)
(t1, Y2, t2) * * * {tx-1, Y&, s") (note for k =1 this term is (s', y1, s") and for k =0
this term is A).

Then in the pattern equation system we have constructed, L(a) is the set accepted
by A by empty stack. 0

The two-way pushdown acceptors are known to accept a considerably broader
class of languages than context-free, and so we have firm evidence of the strength of
the extension provided by the cursor reversal operation. In fact, the association of
the preceding theorem is sufficiently direct that techniques used with two-way push-
down acceptors may be translated fairly directly. Of course, simply following the
construction given in the above proof is one way to accomplish the translation, but
it is generally a very extravagant one. Usually if one uses the insight of the acceptor

STRING PATTERN OPERATIONS 179

approach and then develops the pattern, succinctness may be achieved as well. We
illustrate with two examples.

Example 8. C={a,b,c} and K ={a"b"c"|n =Z1}. This is one of the standard
examples of a non-context-free language, and the technique for accepting K with a
two-way pushdown acceptor is shown in [14]. This approach may be adapted to
patterns with the result

W =aXbY, X = AlaXxb,
Y=a'Z|p"'Ye, Z=aZ|pZ|cc",

which has L(W)=K.

Example 9. C ={a, b} and K ={ba’"|n =0}. This is another non-context-free
language whose acceptance is illustrated in [14]. Again, that approach adapts directly
to patterns with reversal, giving the succinct description

P=baQ, Q=Alaa 'RQ, R=a 'Raalb”'b,

which has L(P)=K.

It is of some significance that our identification is with two-way PDAs without
endmarkers rather than those with endmarkers, as there are technical differences. For
instance, with endmarkers one obtains closure under intersection while without
endmarkers this is unknown. This is largely a technical rather than a substantive
difference, however, as if we have b€ C and patterns P and Q over C, then for
R=bPbb'Q 67U, where U is a pattern which matches bC*b, we have L(R)=
b(L(P)NL(Q))b. The techniques of [14] may be adapted to deduce the closure of the
family of languages defined by context-free patterns with reversal under union and
inverse-gsm map and nonclosure under homomorphism. Also the absence of the
endmarkers has no effect on the validity of the basic undecidability results: it is
undecidable if the languages specified by these devices are empty, finite or infinite.

On the other hand there is the result of [1] that such languages can be accepted
on a random access machine in time »°>. This implies that there is a pattern matching
algorithm for this extended class of patterns whose worst case time exceeds by very
little that which is required for only the context-free case. This is an important factor
which makes reversal a very attractive extension.

Lastly we might note that most of the work on two-way pushdown acceptors has
dealt with the model which includes endmarkers. As can be observed in the examples
we presented here, endmarkers are often very handy. In fact the concept of endmarkers
could be included in that of the pattern (in fact SNOBOL4 effectively has such
elements—POS(0) and RPOS(0)), but this treatment is somewhat more clumsy and
contributes no essentially different results, so we have preferred to omit them. For
the development as it would be done with endmarkers, the reader can see [19].

2. Patterns augmented with complementation: The set system model. In this
section we explore an alternative extension to the context-free pattern equation
systems. We examine the extension provided by augmenting these patterns with a
different additional operation: complementation. As is well known, the context-free
languages are not closed under complementation, so we anticipate an increase in
expressive power. However, considerable technical difficulty is encountered, and in
fact we are forced to introduce a new model to carefully account for semantic details.

DEFINITION 7. A pattern equation system with complementation, ¥ =¥(C, I), is
defined as in Definition 1 with the sole exception that in part a) for a factor we allow
any element of the form C UT plus elements of the form —X, where X € .

180 A. C. FLECK AND R. S. LIMAYE

While it is a commonly considered operation in formal languages, the use of
complementation as a constituent in definition mechanisms has been considered
relatively little previously (see [4], [18], [21]). Making use of the procedure model
we introduced in the preceding section for semantics does not appear technically
feasible. The difficulties arise because of the nondeterminism which occurs as an
inherent aspect of that model. This trouble arises for classical models as well; for
instance the context-free languages are accepted by nondeterministic push-down
automata, and closure under complementation fails (i.e., languages defined with
complementation cannot be expressed with the push-down model), and the context-
sensitive languages are accepted by nondeterministic linear bounded automata; it is
still not known if complementation can be incorporated in this model (i.e., the question
of closure under complementation is open). In fact we have not found a way in which
to express the desired semantics of complementation in the procedure model described
earlier. Hence we abandon that approach to semantics and pursue an alternative.

Of course, as a set operation, complementation is easily understood, but things
become more complicated when it can be used in a recursive way. Nevertheless, it is
the basic set nature that leads us to explore the following approach to the precise
semantics of complementation.

DEFINITION 8. Let disjoint nonempty, finite sets C (alphabet) and I (identifiers)
be given. A set equation system & = F(C, I) is defined hierarchically as follows:

a) a factor consists of any (constant) set c = C*, identifier X € I or complemented

identifier 1.X;

b) a ferm is any finite concatenation of one or more factors;

c) an expression is any finite union of one or more terms;

d) an equation is an ordered pair (X, &) with X eI and € an expression, and is

written X = &

e) a set equation system & consists of a finite collection of equations where each

X eI occurs exactly once as a left element in the set.
If each of the constant sets is finite (or cofinite), the system is called finitary.
Example 10. Let C ={a, b} and I ={X, Y}. Then

- {X ={ab} U{a}Y,}
Y ={p}UX{b}
is a (finitary) set system.
DEFINITION 9. Let ¥ = %(C, I') be a set equation system where I = {X, - - -, X,,}.
A solution to & is an n-tuple (o4, - - * , 0,,), where o; € C*(1 =i =n), with the property

that if, in &, X; is uniformly replaced by o;(1 =i =n), then each of the equations is a
valid set equality over C*. For an identifier X; eI, we say o; is a language of X,
written L#(X;) =0, If & has no solution it is said to be inconsistent; otherwise it is
consistent. For instance, {a™0™|m =1}, {a"b™""|m = 0}) is a solution of the system
of Example 10.

There is a clearly intended isomorphism between pattern equation systems and
set equation systems—pattern alternation, concatenation and complementation corres-
pond, respectively, to set union, concatenation and complementation. The set of strings
which successfully match a pattern is taken to be the language of the corresponding
set equation system. Under this isomorphism, context-free pattern equation systems
(or context-free grammars) correspond to finitary set systems not involving com-
plementation (this relation is illustrated by Examples 1 and 10). It is well known that
such set systems are consistent. One can define a partial order on solutions

STRING PATTERN OPERATIONS 181

(o1, ,00)=(ch, * + +, o1) by requiring that o; =0 (1 =i =n). Then, while in gen-
eral there may be many solutions, there is always a unique smallest solution. This
gives precisely the language of the corresponding grammar or, as pointed out earlier,
of the context-free pattern equation system. These facts are well known (see [5], [6],
[247), but this view is infrequently used in the formal languages literature. The addition
of the complementation operator does not disturb the intuition of set equations, but
it does greatly complicate other views (e.g., grammars, acceptors, etc.), and so we are
urged towards set equations.

It may again be noticed that we impose some superficial restrictions on the form
of set system equations so that the technical details can be developed more succinctly.
However, there is no real loss of generality. For instance an equation such as X =
a—1(aX) is not allowed (complementation can only be applied to identifiers), but one
can simply add a new identifier, say Y, and write the equivalent system

X=a"Y, Y =aX.

When set equations systems are augmented to allow complementation (as in
Definition 8), two new problems do arise, however. First of all, the systems may be
inconsistent (X = “1.X is an obvious example), and a system such as

X ={a}UY, Y ={UX

is just a little less obvious—more complicated instances can of course be given.
Secondly, consistent systems still may have many solutions but need not any longer
have a unique smallest solution. For instance,

Example 11.

X1=_!X2, X2=X2

has solutions (&, C*) and (C*, &) but not (&, O).

To illustrate that there does not appear to be any clear intuitive ground for
choosing among several solutions, we include one more example.

Example 12. C ={a, b},

X1=_|X1_|X2, X2=X2—IX1
has solutions (&, C*) and ((a +b)*b(a +5b)* a*) and possibly others. Motivation
leading to a preference here seems missing.

In [20] and [21], Liu and Fleck show that if complementation is avoided on
recursive definition chains in the systems, a consistent system must result. Moreover,
they arrive at a preferred solution to such a system (as there still may be several) via
a rewriting scheme approach. This restriction against using complement recursively,
however, rules out some intuitively understandable systems which give very concise
descriptions in some cases. Our goal here is specifically to explore systems where
complementation is allowed to occur in a recursive way.

Example 13. C ={a, b},

X = —X{a, b}.

L(X)=all strings of odd length. This is quite easily surmised since clearly A ¢ L(X)
(as all strings in L(X) end with either “a” or “b”) and so A € 7 L(X). But then
{a, b} = L(X). Hence 7 L(X)N{a, b}= O, etc. And this is a unique solution.
Example 14. C ={a, b},
Xi={a}U{a}"X,, X,={p}U{b} X,

has a unique solution with L(X;) = (ab)*a(A +a(a +b)*).

182 A. C. FLECK AND R. S. LIMAYE

Example 15. C ={a, b},
X =~1X{ab}

has a unique solution, namely L(X) =b*aa*b((a +bb* +abb*)aa*b)*.

We will shortly present the techniques for dealing with such examples.

One of the motivations for the addition of the complementation operator was
the increase in expressive power that could be achieved. In the preceding examples
we have given an informal indication that in addition to greater expressive power we
are able to achieve much more concise descriptions for languages that could be
expressed without complementation. In fact formal results have been developed which
show that the relative conciseness that can be achieved through the use of com-
plementation is in fact remarkable [17], [26].

Our goal of allowing complementation to be used, possibly in a recursive way,
as in the last examples, while avoiding inconsistent systems or those such as Examples
11 and 12, suggests that we seek conditions under which we can be sure that a unique
solution exists. We next arrive at sufficient conditions for this desirable circumstance.

DEFINITION 10. Let ¥ = %(C, I) be a set equation system and I ={X,, -+, X,,}.
Then we define

Ao ={X;|some term ¢ in the equation for X; is a product of constant sets and A € ¢}
and

Ap= {X:|every term in the equation for X; has as a factor a constant set c where A€ c},
and then inductively for £ =0

Ar+1=Ar U{X;|some term in the equation for X; consists of only factors which are
either: 1) constant sets which include A, or 2) X € Ay, or 3) 1.X; where
X, i€ ./_\k}

and

Ars1=AU {X;|every term in the equation for X; contains some factor w_hich is either:
1) a constant set which does not include A, or 2) Xj € A, or 3) =X
where X; € Ag}.

We note that Agc A;<- -+ and ApcA;<- - and so we must have A, =A,, and
A, =A,, for all m >n. Also of course A, NA, =3, If A, UA, =T we shall say that &
is A-determined.

The following result is clear from the definitions and is presented without proof.

THEOREM 5. Let =%(C,{X1, *,X,}) be a set equation system and
(o1, +,0n) be any solution of &. Then X;€ A, implies A € o; and X €A, implies
A o;(1=i=n). Hence for a finitary, A-determined system, A € a;(1=i=n) may be
algorithmically determined.

DEFINITION 11. Let $=%(C,I) be a A-determined set equation system and
I={X,, - -,X.,}. Then we define

7o ={X;|every nonconstant term in the equation for X; either: 1) includes some factor
which is a constant set that does not contain A, or 2) includes at least two
factors each of which is either X; € A,, or —1.X; with X;e A,.},

and then inductively for k =0,

mi+1 = i U{Xi|every nonconstant term in the equation for X; either: 1) includes some
factor which is a constant set that does not contain A, or 2) includes
only factors which are either constant sets, X; or —1.X; with X € m:}.

STRING PATTERN OPERATIONS 183

Again of course mo S < - - so that 7, = 7, for all m >n. If 7, =1 and either m =0
or mn—1#1I, then & is said to be reductive of degree m.

The next several results generalize some recent work by Leiss [18]. The systems
of Leiss allow only a very restricted form of concatenation (i.e., one-sided concatena-
tion of a single variable with a single constant set) and forbid the occurrence of the
null string in constant sets. We impose neither of these restrictions, but note that the
reductive property does put restrictions on the interactions of these phenomena.

THEOREM 6. Each reductive set equation system has at most one solution.

Proof. Suppose that ¥=%(C,I) is the set equation system, where I=
{Xi, - -+, X,.}. We show that a solution, if one exists, must be unique. So we suppose
that (o1, *+,0,) and (o1, * * , o;,) are two solutions to ¥. We show by induction on
|z| that z e o; if and only if z e o} (1 =i =n).

Main anchor step (|z| =0 or |z| =1). First of all, A €o; and A €| if and only if

X:.eA,(1=i=n) as & is A-determined. Now for a € C suppose a € o;. Then we

show that a e o{ by another induction on j, the smallest index so that X; e m;

(since & is reductive there is some such index).

Anchor step (j =0). Since a € g;, there is some term ¢ in the equation for X;

so that aet(oy, * * +, 0,)(t(01, - * -, o) denotes the set obtained by replacing

each identifier X; in ¢ by the set o;, for 1=i=n). Now if ¢ is constant then
clearly a €oi. Otherwise ¢ is a product of factors, say ¢t =f,f>- - f,, and as

X; € mo there are two possibilities:

(1) Some factor, say f,(1=q =p) is a constant and A £f,. But then for ae
t(g1,*+,0,)wemusthavea € f,andA € fi (o1, ++,0,)fork #q(l=k =p)
andsoact(ol, - ,on <ol

(2) Two factors are variables in A, or complemented variables from A,. But
this contradicts ¢ denoting a string of length 1 and hence is in fact impossible.

Induction step (j =j+1). Now we assume that for a € C, a € o; if and only if

a ea; for all i such that X; € 7;(j =0). Then suppose that X; € 7j.1 —m;(j =0)

and a € o;. Hence for some term ¢ in the equation for Xj, act(oq, ", on).

Now if ¢ is constant, then clearly a € o;. Otherwise ¢ is a product of factors,

say t=fif>- - f,, and as X; € 7;,1 there are two possibilities:

(1) Some factor, say f,(1=q=p), is a constant and A¢f,. But then since
act(oy, **,0,) we must have aef, and A €fi(oy, - +,0,) for k#
q(1=k=p)andsoacoi.

(2) Each f,(1 =g =p) is either a constant set, or X € 7; or —1.X with X; € ;.

Again we must have some f,(1=q =p) with aef,(o1,'*+,0,) while A €
frlo1, -+, 0n) for all r #q(1=r=p). If f, is constant, the argument is the
same as in case (1) above. If f, = X, € 7, then a e f,(o1, - -, 0n) = 0 and
so by induction hypothesis a € o} and hence a € f,(o1, * - +, o,). Also since
& is A-determined, A €f, (o1, ,0,) for r#£q(1=r=p) and hence a €
t(oi, * +,on)<oi. Similarly the argument follows if f, =X, where
Xk € ;.

Thus we have established the anchor for our main induction on |z|.
Main induction step (note the need for the anchor for |z| =0, 1). We now assume
that z e o; if and only if zeo}(1=i=n) for all z with |z|=m (and m =1) and
let y € o; with |y|=m +1. We show that y eo; by another induction on j, the
smallest index so that X; € 7;.
Anchor step (j =0). Since y € g, there is some term ¢ in the equation for X; so
that yet(oy, * + +, o). Now if ¢ is constant, then clearly y € o;. Otherwise ¢ is
a product of factors, say ¢ = f1f * « - fp, and as Xj € 7o there are two possibilities:

184 A. C. FLECK AND R. S. LIMAYE

(1) Some factor, say f,(1=q=p),isaconstantand A€f,. Theny =y1y> - - yp,
where yi € fi(oy,+,0.)(1=k =p) and |y,|>0. Hence |y.|=m for k #
q(1=k =p). Now each of the factors f; for k #q(1=k =p) is either a
constant, a variable X, or a complemented variable —1 X,(1=r=n). Hence
by the main induction hypothesis for all k, 1=k =p, yrfi(ol, ", 0n)
andsoyet(oh, ' ,on) S0l

(2) Two factors, say f, and f, are either variables in A, or complemented
variables from A,. Thus y =y;y, -y, where yi€fi(o1, - +,0,) and
|vql, ly:|>0. Hence |yc|=m for all 1 =k =p and so, as with case (1), we can
apply the main induction hypothesis to conclude that y e o;.

Induction step (j =j +1). Finally assume that y € o; if and only if y € o}, for all

i such that X; € ; and let X, € 7;.1 — m;(j 2 0). Details here are similar to those

given in cases above and so are omitted.

This then completes the main induction argument and establishes the uniqueness
(but not the existence) of solutions to reductive systems. 0

The other major concern is that a solution does indeed exist. To present this
argument we will use the

Notation. For a < C* and each m =0 we let a™ ={w € a||w|=m}, and if & is an
expression of a set equation system over variables X1, - -+, X, and a1, * *, @, € C¥,
then &(ay, - -, a,) will denote the set obtained by replacing each occurrence of
variable X; by set a; (1 =i =n) and performing the indicated set operations.

LEMMA. Let ¥ ={X;=&;|1 =i =n} be a reductive set equation system and suppose
that a; < C*(1 =i =n) are sets such that a; includes all constant terms of &; and A € «;
ifandonlyif X; € A,. Thenforeachw € &;(ay, - * +, a,) with |w|=m >0(1 =i =n)either:

a) w belongs to a constant term of &, or

b) X;em(k =0) and w is formed by the concatenation of strictly shorter subwords

which belong to constant sets, «; or —aj(l1=j=n); that is, we
G anr ™), or

¢) X;em1(k=0) and w e a;or w e Ta; for some X;e m(1=j=n).

THEOREM 7. Each reductive set equation system has a (unique) solution. Further-
more, if the system is finitary, then each component of the solution is a recursive set.

Proof. Suppose that & ={X;=&;|1 =i =n}. We construct a solution inductively
by defining o} for 1=i=n andj=0, 1,2, - - - where o} contains only strings of length
at most j and the solution (o4, * -, 0,,) is given by o; = U2, glforl=i=n.

We first of all define

0_{@ XA,
TETUAY i X eAn

Then assuming that ¢}(j = 0) is defined for all 1 =i =n, we define o!™" by induction
on k such that X; € . For X; € mo, ol*' = (&(a}, - - -, o))" and for X; € mis1(k Z0),
o!*! is defined to be all strings of length at most j+1 in the set obtained by the
evaluation of &; with respect to the sets: o’ " if X, € 7 and o)y, if X,n € m(1=m =n).

The argument that (o1, * * *, 0,,) is in fact a solution is by induction on the length
of strings. For strings of length zero, it is clear by Theorem 5 that all equations are
satisfied. The induction step follows by a direct application of the lemma above.

To see that the component sets of the solution are recursive, just note that each
of the steps in the construction of o can be carried out algorithmically provided that
the constant sets are finite (or even if they are just computable). O

Hence we have established, in terms of the readily determined sets A,, A, and
m;(1=i=n), a sufficient condition for the existence and uniqueness of a solution.

STRING PATTERN OPERATIONS 185

While this condition does not characterize those systems which possess a unique
solution, we would like to point out its rather considerable generality. For the
context-free case (i.e., no use of complementation) quite a number of special forms
which result in unique solutions have been investigated. The uniqueness claims in [28,
Thms. 2.1 and 2.3] can be deduced since it is easily seen that the reductive property
is implied by the hypotheses. Similar comment holds for a number of the uniqueness
results of [27, (e.g., Thms. 6.1, 9.1; Egs. 7.1, 7.1', 7.4, 7.4', 7.5, 7.8]. Also the rather
general condition in [24] of the absence of the so-called “empty word property” can
be shown to imply the reductive property for the systems considered and hence the
uniqueness result there [24, Thm. II1.2, p. 121] can be deduced as well. It might also
be noted for the context-free languages, if one takes the equations in Greibach normal
form, one has a reductive system. The only work known to us which uses the
complement operator in a system of equations is [4] and [18]. However, the restrictions
assumed there lead to solutions which are always regular; moreover, it is easily verified
that these same restrictions imply the reductive property, and so the uniqueness result
presented there may also be viewed as following from our general result.

Having established some of the generality of our reductive property and having
already made the point of the necessity of dealing with systems with unique solutions,
we henceforth restrict attention to such systems. Another important aspect of our
interests are those relating to computability. For the most part we will concern ourselves
with the finitary systems. This could be relaxed somewhat by providing some construc-
tive finite description for coefficient sets, but this becomes cumbersome and as we
shall shortly see, adds no generality unless sets considerably more complex than
context-free were to be admitted as coefficients.

Our next result is motivated by the connection between equation systems without
complement and context-free grammars and the fact that the one-sided linear gram-
mars characterize the regular sets. Since the regular sets are closed under complement,
we might anticipate that the one-sided linear equation systems with complementation
have solutions which are always regular. Recall that this same line of thought failed
when applied to cursor reversal in the previous section. The problem is that the
operation (complementation in this case) can be used recursively in the definitions.
However, in this case the result holds and the proof provides the means to deal with
several of the examples given earlier in this section.

Many of the transformation techniques for formal grammars apply without essen-
tial change to the systems we consider here. For instance, if in some system ¥ =% (C, I)
a term of the form X;{sa} occurs, where X; €I, s € C* and a € C, then we can consider
the system &' =%'(C, I U{Z}) which is obtained from & by replacing this term by
Z{a} and adding the equation Z = Xj{s}. Clearly, the solution sets of &' have not
been perturbed from those of & (though of course the solutions for &' have an
additional component corresponding to the new variable Z which does not occur in
solutions to). We make implicit use of such techniques in proving the following:

THEOREM 8. The solution sets for each one-sided linear, reductive set equation
system (with complement) whose constant sets are finite are regular sets.

Proof. We will assume that the system is given in left-linear form (the approach
for right-linear systems is comparable), taking I ={X}, - - -, X,,}. We suppose ¥ (C, I)
consists of

X, =foUX fiu- - -UX,foU-Xifor U UX,fon

for 1 =i =n, where each of the sets f;(0=j =2n) is finite. By the comments preceding
the theorem we may assume without loss of generality that the sets fj(1=i=n,

186 A. C. FLECK AND R. S. LIMAYE

0=j=2n) contain strings of length at most 1. For each solution set o;(1=i=n) we
define a finite state acceptor A; The intuitive idea for the construction is that an
accepting run for a string w should end in a state which consists of exactly the variables
X; for which w is in the solution o;. Let A; = (S, C, 8, so, F;) for 1 =i =n, where

S (the states) ={so} U2 () (P) is the collection of all subsets of I and s¢
is a new abstract element not in I);

F_{{seg’(l)lXies} if X; € A,
U {so}UfseP)|Xies) if Xie A,

and we define the next-state function 8, §: S X C > § as follows: for a € C let
t(so, a) ={X,la e fo}U{X,|X, €A, and a e f7}
U{X,|X,eA,andacf’.,}.

Then let 5(so, a) be the smallest set 7 which contains #(so, @) with the property that
X, et and A €f; implies X, €7 and X, €7 and A € fn., implies X, € 7.

For s e 2(I) and each a € C define (s, a) ={X,|3X, €s and a e fi} U{X,|3X, &5
and a €f,+,}. Then let §(s, a) be the smallest set 7 which contains ¢(s, a) and has the
property that X, €7 and A €f; implies X, €7 and X, € and A €f},, implies X, € 7.
We omit the rather tedious argument of the correctness of A;. It is another double
induction with the main induction on the length of string and a subinduction on the
smallest index of the containing = set, similar in many respects to the proof of the
uniqueness theorem. 0

COROLLARY. Each one-sided linear, reductive set equation system (with comple -
ment) whose constant sets are regular has regular solution sets.

Proof. Regard the system as a set equation system over an extended alphabet
that includes the constant sets. By the preceding result, the solution sets to the system
over this extended alphabet are regular. But the solution sets to the original system
are clearly obtained by substitution of elements from the constant sets in place of
those extended alphabet symbols, and the regular sets are closed under substitution. 0

Our primary interest has been in developing a useful and general condition to
guarantee unique solutions in systems utilizing complementation. Clearly this must
be in the context of some restrictions on the constant sets allowed (e.g., for arbitrary
L< C* X =L uniquely “defines” L in a trivial way). The preceding result examines
a certain combination of restrictions on the constant sets and the equation forms. As
was suggested earlier, if one is to restrict only the nature of the constant sets, the
finitary systems seem most natural to consider. We present a few results to relate the
languages which can be expressed with finitary reductive systems to the usual formal
languages hierarchy.

THEOREM 9. The finitary reductive languages properly contain the context-free
languages and are closed under union, product, complement and intersection.

Proof. For a context-free language K = C*, one takes a Greibach normal form
grammar G with K = L(G). Then as we have already mentioned the naturally corre-
sponding set equation system $(G) is finitary and reductive. In fact it can be verified
that Ao U /—\0 =] = 0.

The closure properties follow by the usual constructions, though there are some
additional facts to be verified. We illustrate with just one of these results.

Let & and &, be finitary reductive systems over disjoint sets of variables, say n;
variables in &;(i =1, 2). Also let X; be a variable of &%;(i =1, 2). A finitary reductive

STRING PATTERN OPERATIONS 187

system &g s0 that Ly (Xo) = Le,(X1) U Lg,(X>) is as follows:

the variables and equations of %, are those of &; together with those of %,

plus the new variables X, and the new equation X, = X; U X5; i_t_ may then

be verified that Xs€ Amax(n1n2)+1 ifA e Lg’l(Xl) U Lyz(Xz), and Xo € Amax(nl,n2)+1

otherwise, so &, is A-determined; also X € mmax(ny,np+1 SO Fo is reductive.
The other operations may be treated similarly and the details are omitted. O

This result also provides the justification for a very nice pattern calculus for the
reductive context-free patterns augmented with complementation. The underlying set
oriented semantics naturally provides for the usual commutative, associative, distribu-
tive and DeMorgan’s laws. These are sufficiently familiar that they do not require
restatement here. The fact that such constructions do not violate the reductive property
makes this property a relatively workable restriction.

Also with respect to decision problems, most results are negative. Since the
context-free grammars are included, all the problems which are undecidable for the
context-free case are undecidable for the finitary reductive set equation systems.
Moreover, the undecidability of equality with C* for the context-free case and the
closure of the finitary reductive systems under complementation implies the undecida-
bility of the emptiness problem for these systems. Of course, as we pointed out
previously, membership is decidable.

Conclusions. We have introduced two formal semantic models for string patterns.
Each of these models may be adopted for the context-free patterns. Each model leads
to the exploration of a significant extension to the context-free case. In both cases
the nature of the extension is to provide much greater expressive power and moreover
to add succinctness in many cases that could be treated without the extension. Each
model must be regarded as successful in treating certain aspects which do not seem
natural to the other model. It would seem desirable to explore both of the extensions
(i.e., cursor reversal and complementation) in the context of a single model. This
would allow the investigation of the interactions of the extensions and a determination
of the effect of these interactions on expressive power and complexity. It is not
apparent that either of the models presented here can be adapted to serve in this
unifying role. Nonetheless we feel that these results demonstrate the potential for
considerable benefit to be derived from the alternative approach of extending the
context-free patterns by a few very general operations instead of by a great many
rather special purpose ones. The results on expressive power are encouraging, and in
the case of the procedure model, while an actual implementation would still require
a mechanism for the efficient elimination of nondeterminism, Theorem 4 together
with the results of [1] suggest that this is indeed feasible.

REFERENCES

[1] A. V. AHO, J. H. HOPCROFT AND J. D. ULLMAN, Time and tape complexity of pushdown automaton
languages, Inform. and Control, 13 (1968), pp. 186-206.

[2] L. ALLISON, Phrase structures, non-determinism and backtracking, Inform. Process. Lett., 7 (1978),
pp. 139-143.

[3] B. H. BARNES, A two-way automaton with fewer states than any equivalent one-way automaton, IEEE
Trans. Comput., C-20 (1971), pp. 474-475.

[4] J. A. BRZOZOWSKI AND E. LEISS, On equations for regular languages, finite automata and sequential
networks, Theoret. Comput. Sci., 10 (1980), pp. 19-35.

[5] N. CHOMSKY AND M. P. SCHUTZENBERGER, The algebraic theory of context-free languages, in
Computer Programming and Formal Systems, P. Braffort and D. Hirschberg, eds., North-Holland,
Amsterdam, 1963.

188 A. C. FLECK AND R. S. LIMAYE

[6] J. H. CONWAY, Regular Algebra and Finite Machines, Chapman and Hall, London, 1971.
[7] J. W. DE BAKKER, Semantics and termination of nondeterministic recursive programs, in Automata,
Languages, Programming, Edinburgh Univ. Press, 1976, pp. 435-477.
[8] J. N. DOYLE, A generalized facility for the analysis and synthesis of strings, and a procedure-based
model of an implementation, S4D48, Dept. of Computer Science, Univ. of Arizona, Tucson, AZ,
1975.
[9] A. C. FLECK, Towards a theory of data stuctures, J. Comput. System Sci., 5 (1971), pp. 475-488.
[10] , Formal models for string patterns, in Current Trends in Programming Methodology, Vol. IV:
Data Structuring, R. Yeh, ed., Prentice-Hall, Englewood Cliffs, NJ, 1978.
[11] R. W. FLOYD, Nondeterministic algorithms, J. Assoc. Comput. Mach., 14 (1967), pp. 636-644.
[12] J. F. GIMPEL, A theory of discrete patterns and their implementation in SNOBOL4, Comm. ACM, 16
(1973), pp. 91-100.
[13] , Algorithms in SNOBOL4, John Wiley, New York, 1976.
[14] J. N. GRAY, M. A. HARRISON AND O. H. IBARRA, Two-way pushdown automata, Inform. and
Control, 11 (1967), pp. 30-70.
[15] R. E. GRISWOLD, Extensible pattern matching in SNOBOL4, Proc. ACM Annual Conf., Minneapolis,
MN, 1975, pp. 248-252.
[16] R. E. GRISWOLD, J. F. POAGE AND 1. P. POLONSKY, The SNOBOL4 Programming Language,
Prentice-Hall, Englewood Cliffs, NJ, 1971.
[17] J. HARTMANIS, On the succinctness of different representations of languages, in Automata, Languages
and Programming, Lecture Notes in Computer Science, 71, Springer-Verlag, New York, 1979.
[18] E. LE1ss, On generalized language equations, Theoret. Comput. Sci., 14 (1981), pp. 63-77.
[19] R. S. LIMAYE, Analysis of string patterns using a procedure-type model and formal languages, Doctoral
dissertation, Univ. of Iowa, Iowa City, 1978.
[20] K. C. L1u, On string pattern matching: A new model with a polynomial time algorithm, this Journal,
10 (1981), pp. 118-140.
[21] K. C. L1iu AND A. C. FLECK, String pattern matching in polynomial time, 6th Annual ACM Symposium
on Principles of Programming Languages, San Antonio, TX, 1979, pp. 222-225.
[22] M. O. RABIN AND D. SCcOTT, Finite automata and their decision problems, IBM J. Res. Develop., 3
(1959), pp. 114-125.
[23] D. G. RiPLEY AND R. E. GRISWOLD, The measurement of SNOBOL4 programs, SIGPLAN Notices,
10 (1975), pp. 36-53.
[24] A. SALOMAA, Theory of Automata, Pergamon Press, New York, 1969.
[25] G. F. STEWART, An algebraic model for string patterns, in Second ACM Symposium on Principles of
Programming Languages, Palo Alto, CA, 1975.
[26] L. J. STOCKMEYER, The complexity of decision problems in automata theory and logic, Tech. Rep.
MAC TR-133, Project MAC, Massachusetts Institute of Technology, Cambridge, MA, 1974.
[27] T. URPONEN, On axiom systems for regular expressions and on equations involving languages, Ann.
Univ. Turku, Ser. A 1, 145 (1971), pp. 1-51.
, Equations with a Dyck language solution, Inform. and Control, 30 (1976), pp. 21-37.

(28]

SIAM J. COMPUT. ©1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, February 1983 0097-5397/83/1201-0012 $01.25

ON PROVING UNIFORM TERMINATION AND RESTRICTED
TERMINATION OF REWRITING SYSTEMS*

J.V.GUTTAG,t D. KAPUR,# aND D.R. MUSSER#

Abstract. In mechanical theorem proving, particularly in proving properties of algebraically specified
data types, we frequently need a decision procedure for the theory of a given finite set of equations
(axioms). A general approach to this problem is to try to derive from the axioms a set of rewrite rules
that are “‘canonical,” i.e., they rewrite to a canonical form all terms that are equal (according the axioms
and the equivalence and substitution properties of equality). Rewrite rules are canonical if and only if they
determine a relation that is both confluent and uniformly terminating. The difficulty of proving uniform
termination has been the major drawback of the rewrite rule approach to deciding equations.

A new method of proving uniform termination is proposed. Assuming that the rewriting relation is
globally finite (for any term there are only finitely many terms to which it can be rewritten), nontermina-
tion can occur only if there are cycles. Uniform termination is proved by showing that no cycles can occur.
A method related to the Knuth and Bendix method of proving confluence is developed and used as the
basis of such proof. In most cases, the proposed method will only prove termination for terms up to a cer-
tain size; this kind of ‘‘restricted termination”” has a number of applications.

Key words. uniform termination, restricted termination, global finiteness, rewrite rules, confluence,
Knuth-Bendix algorithm, overlap closure, canonical, rewrite dominoes, equational axioms, theorem
proving

1. Introduction. Term rewriting systems, also called (sets of) rewrite rules, are
a model of computation that has the interesting and useful property of being directly
applicable to obtaining decision procedures for equational theories. A term rewriting
system is said to be uniformly terminating' if for every term, every sequence of
rewrites starting from that term is of finite length. This property corresponds to the
uniform halting property of Turing machines, a fact which Huet and Lankford
(1977) used to demonstrate the undecidability of uniform termination.

In one of the main applications of term rewriting systems, the Knuth-Bendix
(1970) approach to obtaining equational decision procedures, we start with a set of
equations and attempt to derive from them a set of rewrite rules with the uniform
termination property, as well as the property of confluence (for any term all
sequences of rewrites emanating from it are extendable to a common term). If this
can be done, the rules compute a canonical form for each class of terms that are
equivalent under the original equations. Having such a canonical form yields an
efficient decision procedure for the theory of the original set of equations.

Another application of rewrite rules is to produce ‘‘direct implementations’’ of
abstract data types (Guttag, Horowitz, and Musser, (1978)). Such implementations
are generally not efficient enough to be used in production programs, but can be
helpful during the design of new data types and of programs that use the data types.
Direct implementations are guaranteed to terminate if and only if the rewrite rules
have the uniform termination property.

*Received by the editors December 18, 1981, and in revised form June 11, 1982. This paper was
typeset at the General Electric Research and Development Center using the Troff software developed
for the Unix operating system.

tLaboratory for Computer Science, Masachusetts Institute of Technology, Cambridge, Mas-
sachusetts 02139.

+General Electric Company, Corporate Research and Development, Schenectady, New York
12301.

IMore commonly called ‘“finitely terminating” or ‘‘Noetherian.”

189

190 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

Although undecidable in general, the uniform termination property can be
proved for particular term rewriting systems in a variety of ways, mostly based on
the mapping of terms into a well founded partially ordered set (see Huet and Oppen
(1980) for a survey). An unfortunate problem with attempting to prove uniform
termination this way is that, for rule sets of any significant size, an appropriate map-
ping is often very difficult to construct — it may require a great deal of ingenuity. In
this paper, we present a new approach to proving termination, which, though not as
general as the previous methods, is more algorithmic. This method will usually not
yield a complete proof of uniform termination by itself. However, it can be used for
proving restricted termination (i.e., termination of a finite set of terms), which has
applications as discussed later in the paper. The method can possibly be used to sim-
plify the application of other methods of proving uniform termination.

When the original rules are not uniformly terminating, one would often like to
be able to detect this situation quickly, e.g., in order to avoid wasting time attempt-
ing to construct a proof of uniform termination. Under some reasonable restrictions
on the form of rewrite rules, our approach provides such a test. That is, we show that
if the rules are globally finite (that is to say, the number of different terms to which
any term can be rewritten is finite) and every rule is right-linear or every rule is left-
linear, our method can be used to effectively search for cycles in the rewriting rela-
tion.

In an effort to make this paper self-contained, we devote § 2 to a short tutorial
on term rewriting systems. The reader familiar with the literature in this area will
need only to skim this section. We describe the basic mechanism of term rewriting
systems, and state and prove a well known result relative canonicity to uniform ter-
mination and confluence. We also relate the property of global finiteness to uniform
termination; in particular, we show that if a reduction relation is globally finite and
acyclic, it is uniformly terminating.

In § 3 we address the problem of showing that a rewriting relation is globally
finite. We first prove that global finiteness is undecidable, and then develop some
syntactic conditions sufficient to ensure global finiteness.

In §§ 4 and 5, we address the problem of showing that a rewriting relation is acy-
clic. The main problem is the size of the space of terms that must be traversed in
searching for cycles. Our main results show that the search space can be cut down
significantly. We show how to construct, from a set of rules R, another set of rules
we call the overlap closure of R, with the property that if a reflexive rule is contained
in it, then the rewriting relation of R has a cycle. The overlap closure corresponds to
a subset of the transitive closure of the rewriting relation.

Our main theorem here states that a partial converse holds, so that generation
of the overlap closure and looking for reflexive rules is sufficient to detect a cycle if
one exists. In proving this theorem in § 5, we develop several lemmas of indepen-
dent interest and a new way representing rewrite rules and sequences of rewrites
using what we call rewrite dominoes and ‘‘rewrite domino layouts.’” We will introduce
this representation and use it in presenting the proofs of our main results about the
overlap closure. We believe that this representation also will be useful in the study
of other areas of rewrite rule theory.

The generation of the overlap closure is very similar to the way the Knuth-
Bendix process generates rules in attempting to produce a confluent rewriting rela-
tion. Its construction is based on the use of derived pairs of terms obtained from
superpositions of the right hand side of one rule with the left hand side of another.

TERMINATION OF REWRITING SYSTEMS 191

This is in contrast to the Knuth-Bendix process, which uses critical pairs obtained
from superpositions of the left hand sides of the rules.

Like the Knuth-Bendix process, the overlap closure process may fail to ter-
minate (that is, it may continue to generate new rules indefinitely). In fact, when the
original rules are uniformly terminating, it will usually happen that overlap closure
generation is nonterminating. In this case, the overlap closure process does not by
itself yield a proof of uniform termination (see Huet and Oppen (1980)). As we
show in § 6, apart from showing nontermination, partial generation of the overlap
closure is useful in some applications where it suffices to have a proof of ‘‘restricted
termination’’ — in this case termination for all ‘‘small’’ terms.

The overlap closure construction is more general than the forward chain con-
struction discussed by Dershowitz (1981). As discussed in § 5, the overlap closure
can be used in proofs of termination of both right-linear and left-linear rewriting sys-
tems, whereas forward chains require an additional strong assumption in the case of
left-linear rewriting systems.

2. Definitions, notation, and basic theory.

2.1 Term rewriting systems. We begin with a definition of ‘‘terms.”” We
assume a denumerably infinite set of distinguishable symbols called variable symbols,
and a disjoint finite set of distinguishable symbols called function symbols. A term is
defined inductively as either (1) a variable symbol, or (2) a function symbol fol-
lowed by a finite sequence of terms. In the latter case, if f is the function symbol
and ¢, - - -, t, is the sequence of terms, the term is denoted f (¢, - - -,¢,) and the ¢
are called the arguments of the term. The number of arguments, n, is called the arity
(nullary, unary, binary, etc.) of the function symbol. A constant term is written as
f () and binary terms will sometimes be written in infix notation, e.g., (x+y) «z for
o(+(x,y),2).

The subterms of a term are the term itself and the subterms of its arguments.
Like a variable, a term of the form f () has no subterms other than itself. A subterm
position and corresponding subterm within a term is a finite sequence of nonnegative
integers separated by ‘“.”’ and a related term determined as follows: to the null
sequence (denoted < >) corresponds the entire term. If £ (¢, - - -, ¢,) is the subterm
at position / then the subterm at position i.j is ¢;.

For example, the subterm positions and corresponding subterms within
f(x, g(y,k(z)) h()) are:

f(x,8(,k(2)),n())

1 X

2 g(y,k(2))
2.1 y

2.2 k(z)

221 :z

3 h(Q)

We write ¢[i] for the subterm at position / within term ¢.

A rewrite rule is an ordered pair of terms (/,r) such that every variable that
occurs in r occurs also in /. We usually denote the rule as /| — r. A term rewriting sys-
tem is a set (usually finite) of such rules. This is all there is to the syntax of term
rewriting systems; they also have a very simple semantics, to which we now turn.

Two terms are identical if (1) they are identical variables, or (2) they have iden-
tical function symbols and their sequences of arguments are identical. We write

== t, for this relation.

192 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

A substitution is a mapping 6 from variable names to terms such that 6 (v) == v
for all but a finite number of variable symbols. It is denoted by an expression of the
form [¢/vy, - --,t,/v], where the k > 0 variable symbols v;, - - -, v, are distinct.
(The case k=0 is the identity substitution.) The domain of a substitution 6 is
extended to the set of all terms by inductively defining 0(f(¢;,---,t,)) to be
SO, - -,0()).

A set of rewrite rules, R, generates a binary relation ‘““—’’ on the set of all
terms, called the rewriting relation, as follows:

1. Forevery rule (/,r) in R, and every substitution 6, 6 (/) — 6 (r) holds.

2. If t— u, then for every function symbol f and sequence of terms

ty, b, b, with =1t for some i, f(¢&, .t 1)
f(ty, - u, -+ ,t,) also holds.

Whenever t— u, we say that ‘¢ rewrites directly to # (using R).” An
equivalent way of defining the direct rewriting relation is as follows:

We say that t, has the form of t, if there is a substitution 8 such that 8 (¢;) == t,;
also we say that t, is matched by t,. Then t rewrites directly to u (using R) if and
only if there is a subterm position i such that ¢[i] is matched by the left-hand side /
of some rule /— r of R, say 8 (/) == ¢[il, and u can be obtained from ¢ by replacing
t[i] by 9(r) at position i. We write this as [# with 6 (r) at i].

2.2. Reduction relations. As in Huet (1980), we now develop a number of
concepts at a more abstract level than term rewriting systems: we assume a set E and
a binary relation ‘“—” on E, called ‘‘reduction.” When definitions or lemmas
depend on the set E being a set of terms and the reduction relation being the rewrit-
ing relation generated by a set of rewrite rules, we make explicit note of this fact.

The reflexive and irreflexive transitive closures of — are denoted — “and — 7,
respectively. Thus 4 — " B if and only if there are elements 4, - - -,4,, n = 0, such
that A=Ay, A,= B and Ay— A,— -+ — A,;, for A—" B we require n > 1. The
sequence Ay— - - — A, is called a reduction sequence from Ayto 4,.

Let < be the relation defined by 4« B if and only if A — B or B— A. The
reflexive transitive closure of <, denoted «— ", is the abstract version of ‘‘equality’’
(it is an equivalence relation on E; and in the case of a term rewriting system, it is
moreover an equality relation since the substitution property holds). In order to deal
with < "in terms of — *, we will define and use canonical forms in E.

First, we define an element P of E to be terminal if there is no element Q such
that P— Q. If A—"B and B is terminal, then we call B a terminal form of A. An
element can have many distinct terminal forms. A nonterminating reduction sequence
from A is an infinite sequence 4y— 4;— --- with 4y= A4. The reduction relation
— is said to be terminating for A if there is no nonterminating reduction sequence
from A, and — is said to be uniformly terminating if it is terminating for every ele-
ment of E.

We say any B and C are joinable if there exists a D such that B— "D and
C—"D. The relation — is confluent from A if for every B and C such that 4 —"B
and 4A— " C, B and C are joinable. We say — is uniformly confluent if it is confluent
from every element of E.

LEMMA 2.2.1 (well known). If— is uniformly confluent, the terminal form of any
element, if it exists, is unique.

Proof Let A— "B and A— " C, with both B and C terminal. By confluence
from A, there must be a D such that B— "D and C— "D, but since B and C are
terminal, we must have B = D= C. O

TERMINATION OF REWRITING SYSTEMS 193

Let = be an equivalence relation on E. We say that — is canonical with respect to
= if it is uniformly terminating and any two elements have the same terminal form
if and only if they belong to the same = — equivalence class. If — is canonical with
respect to — ", we simply say that it is canonical.

THEOREM 2.2.2 (well known). A reduction relation— is canonical if and only if it
is both uniformly terminating and uniformly confluent.

Proof. First, suppose — is canonical; then by definition it is uniformly terminat-
ing;, we have to show that it is uniformly confluent. Let 4 be any element and sup-
pose A— "B and 4— " C; then B—"C and, since — is canonical, B and C have
the same terminal form. Thus — is confluent from 4, for all A4.

In the other direction, suppose — is uniformly terminating and uniformly
confluent. Let 4 and B be any elements such that 4 < " B; we have to show that 4
and B have the same terminal form. By definition of <", there are elements
Ay, ,A, n=20, such that A= 4y, A,= B and for 0< i< n—1 either 4,— A, or
A;;— A, The proof is by induction on n. If n=0, then 4= B and, by confluence
and Lemma 2.2.1, they have the same terminal form. If »> 0, then by the induction
hypothesis, 4yand 4,_; have the same terminal form, T, say. If 4,_;— 4,, then by
confluence from A, ;, T is also the terminal form of A, The other case is
A,— A,_y: by confluence from A4, and Lemma 2.2.1, T is also the terminal form of
A4, O

In the case of a term rewriting relation, Knuth and Bendix (1970) showed how
to perform the test for uniform confluence by examining how the left-hand sides of
the rules “‘overlap’’ each other, producing ‘‘critical pairs’’ of terms to be checked for
confluence. Out approach to proving uniform termination relies on a generalized
notion of overlapping, yielding ‘‘derived pairs.”’ This will be discussed in § 4.1.

2.3. Relating uniform termination to global finiteness and acyclicity. A
reduction relation — is locally finite if for every A in E; the set of elements B such
that 4 — B is finite; and — is globally finite if the set of B such that 4 — " B is finite.

LEMMA 2.3.1. Ifa reduction relation is globally finite and acyclic, it is uniformly ter-
minating.

Proof. Any nonterminating reduction sequence would either have to repeat
some element (hence be a cycle) or contain infinitely many distinct elements (hence
be globally infinite). Thus all reduction sequences have to terminate. O

The converse does not hold in general but does hold for locally finite reduction
relations.

THEOREM 2.3.2. A locally finite reduction relation is uniformly terminating if and
only if it is both globally finite and acyclic.

Proof. The if part is immediate from the lemma. Suppose the relation is not glo-
bally finite or is cyclic. In the latter case, it is obviously not uniformly terminating. In
the former case, since the the relation is assumed to be locally finite, we can apply
Koenig’s lemma to some element which has infinitely many decendants, concluding
that there must be an infinite path of reductions from that element; thus the relation
is not uniformly terminating. O

Since it is easily shown that the rewriting relation of a finite set of rules is locally
finite, we have the following.

COROLLARY 2.3.3. The rewriting relation of a finite set of rules is uniformly ter-
minating if and only if it is both globally finite and acyclic. O

In the next section we investigate methods of proving global finiteness, and in
§8§ 4 and 5 methods for proving that a rewriting relation is acyclic.

194 J. V. GUTTAG, D. KAPUR AND D. R, MUSSER

3. Proving global finiteness. In general, we cannot decide uniform termination
algorithmically, as the following result of Huet and Lankford (Huet and Lankford
(1977, Thm. 1)) shows.

THEOREM 3.1. The uniform termination problem for rewrite rule systems is undecid-
able, even for terms restricted to unary and nullary function symbols.

From this result we can show that the question of global finiteness for rewrite
rule systems is also undecidable.

THEOREM 3.2. There is no decision procedure for global finiteness of rewrite rule
systems.

Proof. Let R={I,— r} be a finite set of rewrite rules in which all terms /; and
are built from a finite set {f, - -,fJ U (g1, - -,&, of function symbols, where
each f;is unary and each g; is nullary, and a variable symbol x. Let 4 be a function
symbol distinct from any of the f;or g;.

Construct a new set of rules

R'={—h(r)} U {fi(h(x)— h(fi(x):1<i<k}.

Then for any ty,ty, * * *,¢,,
to— t;— -+ —t, (using R),
if and only if

to— h(t) — -+ — h"(t,) (using R).

where h" denotes the n-fold composition of 4. The set R is uniformly terminating if
and only if R’ is globally finite (because if R is not globally finite, then R is not uni-
formly terminating). By the Huet and Lankford result, this means there can be no
decision procedure for global finiteness. O

Thus we must be satisfied with finding conditions that are sufficient to guarantee
global finiteness. We begin with a simple sufficient condition that we can show is
syntactically checkable.

Define the size of a term ¢ to be the number of function and variable symbols it
contains. Denoting this Size(7), we have Size (f (g(x, f(x)))) = 5, for example.

A rewrite rule, t— u, is nonexpanding if for every substitution 6,
Size (9 (#)) > Size(6(u)). Otherwise, a rewrite rule is called expanding.

A rewrite rule system R is said to be nonexpanding if and only if every rule in R
is nonexpanding; we also say that the rewriting relation of R is nonexpanding.

LEMMA 3.3. Ifa rewriting relation— is nonexpanding, it is globally finite.

Proof. Since the relation is nonexpanding, if #— "« then Size(u) < Size(?).
Also the only variables that can occur in u are those in ¢. Thus there are only finitely
many possibilities for #, and — must be globally finite. O

The next lemma and theorem justify our claim that the nonexpanding condition
is syntactically checkable. We define Num (v, 1) to be the number of occurrences of
the variable v in the term ¢.

LEMMA 3.4. Let@ be the substitution [t/ vy, - - - ,t,/v). Then for any term t,

Size(® (1)) = Size (1) + 3 Num (v,) (Size(r) — 1.
=1

Proof. With suitable inductive definitions of Size and Num, the lemma follows

easily by induction on the structure of terms. O
THEOREM 3.5. A rewrite rule, t — u, is nonexpanding if and only if:

TERMINATION OF REWRITING SYSTEMS 195

1) Size(t) > Size(u), and
2) forevery variable v int, Num(v,¢) > Num(v,u).
Proof. Let 0 be any substitution [#;/v{, - - -, #/v,]. By Lemma 3.3,

(*) Size(9(#)) — Size(0(u))

— Size(1) — Size(w) + 3, (Num(v,1) — Num(v,,u)) Size (1) — 1),
j=1
from which it is obvious that if 1) and 2) hold, then (*) is always nonnegative,
implying that ¢ — u is nonexpanding.

Now suppose 1) or 2) fails to hold. If 1) fails, the identity substitution would
make (*) negative. Suppose 2) fails, i.e., there is a v for which Num(v,) <
Num (v, u). Then again (*) can be made negative: taking § = [s/v] for some term s,
(*) simplifies to

Size (¢) — Size (1) + Num (v,) — Num (v, u)) (Size(s) — 1),

which becomes negative when Size(s) is sufficiently large. Thus ¢ — u fails to be
nonexpanding. O

Requiring a rewriting relation to be nonexpanding is restrictive since there are
useful expanding but globally finite relations. For example, a set of rules for canoni-
calizing propositional formulas to their disjunctive normal form would include the
following distributive law which is expanding though the rewriting relation is glo-
bally finite.

x- (+z)—=x-y+x-z

This restriction does have the advantage of requiring only strictly local, rule at a
time, syntactic analysis. We have looked at relaxations of this restriction that
preserve this locality property. An approach to relaxing this restriction so that
rewrite rules using the if-then-else operator, which often arise in equational
specifications of abstract data types, can be handled is discussed in Appendix A. The
following two equations taken from a specification of the data type set specify one of
its operations, has?, which tests for set membership.

has?(i,null) = false,
has?(i,insert(i’,s)) — if i = i’ then true else has? (i, s).

The rule, expressed using the if-then-else operator, corresponding to the second
equation is

has?(i,insert(i’,s)) — if-then-else (i = i',true,has?(i,s)).

This approach can handle most rewriting systems that we have come across in
specifying abstract data types (Musser (1980)).

4. Searching for cycles. We remind the reader of our basic approach to proving
uniform termination: proving global finiteness, and proving there are no cycles in
the rewriting relation. We have dealt with global finiteness in the previous section,
and we now turn to the question of cycles. We assume we are given a term rewriting
system R={/,— ri} whose rewriting relation is globally finite, and we wish to deter-
mine whether or not there is any cycle of terms

(*) to—b tl—b c e e — tn—b tO

196 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

The following development of a method of searching for cycles is based on
some generalizations of notions that Knuth and Bendix (1970) used in testing for
uniform confluence.

4.1. Superpositions and derived pairs. The defintions of superpositions and
derived pairs depends on the important concept of ‘‘unification.”

Two terms ¢ and u are said to be unifiable if there is a substitution 8 such that
0(t) = 0(u). 0 is called a unifier of ¢t and u, and whenever 0 is chosen so that it is a
factor of any other unifier 9, (i.e., , can be written as a composition 6, for some
0,), then it is called a most general unifier (m.g.u.) of ¢ and u. It can be shown that
the m.g.u. of two terms, if it exists, is unique up to variable renaming.

Consider, for example, the terms: t= f(x,g,(y)) and u= f(h(z),w) and the
substitutions:

0,=[n(g(u))/x,g(u)/z,g(y)/wland

0,=[h(2)/x,g(»)/ wl.

6 unifies z and u to the term f(h(g(u)),g(»)), and

0, unifies ¢ and u to the term f(h(z),g(»)).

0, is clearly not the most general unifier of ¢ and u since it is not a factor of 9. 6,, on
the other hand, is the most general unifier of ¢ and u.

Two terms are said to overlap if one is unifiable with a nonvariable subterm of
the other. In determining whether an overlap exists, the variables of one term are
renamed, if necessary, so as not to conflict with those of the other term. Two terms
could overlap in many ways resulting in many superpositions as discussed below.

Let s and ¢ overlap. Their superposition is defined as either

a) s unifies with a nonvariable subterm ¢’ of ¢, by m.g.u. 8, in which case 6 ()

is called a superposition of s and ¢; or

b) ¢ unifies with a nonvariable subterm s’ of s, by m.g.u. 8, in which case 6 (s)

is called a superposition of s and ¢.

Consider, for example, the terms s = x"lex and = (x'sy") «z'. The substitu-
tion 6 = [x~1/x',x/y'] unifies x"1ex with x'ey’. The resultant superposition of s
and tis (x lex)ez".

Now consider ordered pairs of terms (r,s) and (¢,u) such that s and ¢ overlap,
as above. (If the variables of ¢ must be renamed, the same renaming must be applied
to u.) Then along with the superposition 6 () or #(s) we obtain the derived pair of
terms < p,q>, where

a) if s unifies with a nonvariable subterm ¢[i] by m.g.u. 9,

p=1[6() with 9(r) at il,

g=10(u);
b) if ¢ unifies with a nonvariable subterm s[i] by m.g.u. 6,
p=10(r),

g = [0 (s) with 9(u) at i].

In the case of a rewriting system R = {(/,r)}, the derived pairs obtained from
the pairs (r;,1) and (I, r)) are called critical pairs.
Consider, for example, obtaining a critical pair from the rewrite rules:

-1

X lex— e,

(x' ey ez’ = x' o (y'ez).

TERMINATION OF REWRITING SYSTEMS 197

We begin by constructing the ordered pairs (e, x lex) and ((x'ey') ez,
x'e(y'ez")). As we saw earlier x~!ex can be unified with x’«y’ using the substitution
0= [x"1/x", x/»']l. This leads to the derived pair < eez’, x le(xez)> which is a
critical pair of the rules.

The computation of critical pairs is central to the Knuth-Bendix test for
confluence (Knuth and Bendix (1970)). In this application, it is always the left-hand
sides that are superposed with each other. In the method of searching for cycles to be
described, we consider superpositions of the right- and left-hand sides as well.

4.2. Overlap closure. For a term rewriting system R, the overlap closure of R,
written OC(R), is the term rewriting system defined inductively as follows:
a. Bveryrule r — sin R is also in OC(R).
b. Whenever r — s and t— u are in OC(R), every derived pair < p,q> of
(r,s) and (t,u) isin OC(R) (as p — ¢q).
c. No other rules are in OC(R).

That each derived pair is in fact a rewrite rule is shown by the following:
LEMMA 4.2.1. Ifr,s,t,u are terms such that (r,s) and (t,u) are rewrite rules, then
every derived pair < p,q> of (r,s) and (t,u) is also a rewrite rule.
Proof. One just has to verify that for each case in the definition of derived pair
that every variable that occurs in g occurs also in p. O
Examples of overlap closures:
i. LetR={f(x)— g(x)}, then OC(R)=R.
ii. Let R={f(x)—g(h(x)), h(x)— k(x)}, then OCR)= Ry {f(x)—
g(k(x))}.
iii. Let R={xe(yez)— (xey)ez}, then from the superposition
(x «(x'ey")) oz’ we obtain the rule

X o((X'oy') oz') — ((x ox") oy') oz
and from the superposition (x ¢« ((x’¢y') «z') we obtain

x.(x'o(y'oz')) i (x .(x'.y’)) oz

These rules then lead to further rules, and OC(R) is infinite.
iv. Let R={f(x)— g(x), g(h(x)) — f(h(x))}. Then OC(R) consists of R
and the reflexive rules f(h(x)) — f(h(x)) and g(h(x)) — g(h(x)).

The name “‘overlap closure’’ comes from the fact that the rules of OC(R) are a
subset of the transitive closure of the rewriting relation of R:

LEMMA 4.2.2. Ifp— q isin OC(R) thenp—* q (usingR).

Proof. By induction on the construction of p— g in OC(R). The basis of the
induction is the case that p— ¢ is included in OC(R) by virtue of being a rule of R.
Then obviously p—7 ¢ holds. If (p— ¢) is included in OC(R) by being a derived
pair of (r,s) and (¢,u) then by the induction hypothesis for the two rules (r,s) and
(t,u) we have r—%*s and t—* u. By the definition of derived pair and the transi-
tivity of —*, we then have p—*¢q. O

COROLLARY 4.2.3. IfOC(R) contains a reflexive rule, t— t, then the rewriting
relation &f R has a cycle.

Preof. Immediate from the Lemma. O

We would like to have the converse of this corollary, that if the rewriting rela-
tion of R has a cycle, then OC(R) contains a reflexive rule. This would permit
searching for cycles by incrementally computing OC(R), looking for a reflexive rule.

198 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

While we have not been able to prove this in full generality, we will present in the
next section a restricted version and its proof. The proof is not easy, because the
overlap closure of R is in general much smaller than the full transitive closure of R.
It is this small size, relative to the transitive closure, however, that makes it feasible
to use the overlap closure as the basis of an approach to proving uniform termination
or gt least, a useful notion of ‘‘restricted termination.”’ These ideas will be discussed
in§ 6.

5. Rewrite dominoes and overlap closure theorems. In order to be able to
develop and prove useful results about the overlap closure, we need to be able to
deal precisely with the various cases of overlap between successive applications of
rewrite rules in a rewrite sequence. We have found it useful to introduce a new
representation of rewriting that helps to make such cases clear.

The domino representation (or rewrite domino) of a rewrite rule is a rectangle
divided into left and right halves in which are inscribed tree representations of the
left and right terms of the rule. Function symbols in the terms are represented by
labelled circles in the trees. Variable symbols are represented by labeled rectangles,
called ¢‘variable boxes.”” For examples of some rules and their corresponding rewrite
dominoes, see Fig. 1.

RULE DOMINO

J1x.8(y,2) = 8(f(x.y),2)

2. fixfv.)) = fifxy),2)

3. Slok()—=x

4. h(x)=i(x)

5. h(x)=>j(x)

6. Jix),j(x))—1(x) (7]

FIG. 1. A set of rewrite rules and their corresponding rewrite dominoes.

TERMINATION OF REWRITING SYSTEMS 199

For each kind of domino (that is, each domino corresponding to a specific rule),
we assume there is an infinite stock of dominoes of that kind with their variable rec-
tangles filled in with all possible ierms. For each such domino, we also assume an
infinite number of copies are available in the stock.

A sequence of rewrites can be represented by a domino layout, which is a two-
dimensional arrangement of dominoes that obeys the rules of matching correspond-
ing to those of term rewriting (§ 2). Before giving the formal definition of a layout,
we refer the reader to an example of a rewrite sequence using the rules given in
Fig. 1 and its corresponding domino layout as shown in Fig. 2. Another example is in
Fig. 3, and the two layouts in Figs. 2 and 3 could be concatenated to give a single
longer layout.

We draw trees oriented sideways with the root at the left, and we will use nested
triangles to represent trees schematically. We will give a simultaneous inductive
definition of the terms layout, position of a domino in a layout, adjacency of dominoes
in a layout, and right-end dominoes of a layout. (These definitions may seem tedious,
but are necessary to avoid dependence in proofs on intuitive geometric notions.)

The basis of the definitions is a unit layout from t to w: a horizontal arrangement
of atree ¢, adomino, D, with trees u and v, and another tree w,

< <L <

in which at some position, i, in ¢ (as defined in § 2) there is a subtree ¢’ that is identi-
cal to wu, ignoring the variable boxes that appear in u; and w is the tree
[z with v at {].

The position of D in this layout is i, and D is a right-end domino. A layout is
defined as follows: a unit layout is a layout; and if L is a layout from ¢yto ¢;and L is
a unit layout from ¢, to f,, then the concatenation L* of L and L, with ¢, deleted, is
a layout from ¢y to t,. The position of the domino D; of L, in the new layout L is
the position i of D;in L. In L*, D, is said to be adjacent to just those dominoes of
D and L that satisfy: D is a right-end domino of L and the position j of D is a prefix
of i or iis a prefix of j (recall that positions are sequences of natural numbers).
These dominoes are also said to be adjacent to Dy, so that adjacency is a symmetric
relation. Finally, we say that D is a right-end domino of L™, and each domino of L
is a right-end domino of L* if and only if it is a right-end domino of L and it is not
adjacent to D;.

The examples in Figs. 2 and 3 illustrate a number of observations we can make
about this representation of rewriting:

1. Two dominoes that are not in the transitive closure of the adjacency rela-
tion represent rewrites of disjoint subterms. Thus in drawing layouts we
allow one of such a pair of dominoes to be placed above the other. In other
words, in a domino layout there is no distinction between different orders
of rewriting when the rules are being applied to disjoint subterms; e.g., the
layout in Fig. 3 would not be different if rule 5 had been applied before
rule 4 or before rule 3. One can think of these rules being applied in paral-
lel, since the order of application is always immaterial in this case. The lay-
out representation just makes this property especially evident.

J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

200

“(z *814 u1 mokv] ay1 fo uoPNULUOD D) INOKD] 42Yjouy "¢ Ol

@))8 «— (@O ON)IE «— (@ (o) PI)HE « (@1 (wyf)3

9

ofll[c®o

[C R0
[0

v

OFO|OF®

I3
@
OFO|OFD| 0@ ®
D
® ®
OO0 (D D
O—f* OY0

‘(] *81] fo saounwop Suisn) aouanbas Sunimad 8uipuodsai105 ay3 pup MOLD] OUNUOD 1ML Y “T "OIF

@O EMNHE ~ (@YD HE ~ QO)30 T ((q“(0)y)30)f(0)y)f

k4

020"

TERMINATION OF REWRITING SYSTEMS 201

2. To the property that ‘‘the rightmost term of a rewrite sequence is terminal’’
corresponds the property that ‘‘there is no way to play a domino on the lay-
out” (formally, there is no way to concatenate a unit layout onto the lay-
out). The layout is said to be blocked. (The layout in Fig. 3 is blocked.)

3. Thus the rules have the uniform termination property if and only if every
possible layout eventually is blocked. Equivalently, there are no infinite lay-
outs.

Our purpose with this representation of rewriting is to provide a conceptual tool
for finding and presenting proofs of new results about term rewriting systems. The
first result we will prove with the aid of rewrite dominoes is one that will allow us to
speed up the search for cycles by considering only those sequences of rewrites in
which a ‘“major rewrite’’ occurs.

A rewrite to— t; is called a major rewrite if it is by application of a rule, t— u, to
the entire term f; i.e., for some substitution 8, # (¢) = tyand 0 (u) = ¢;. When only a
proper subterm of ¢(is matched, ¢ty— ¢, is called a minor rewrite.

In a layout, a domino is called a major domino (of the layout) if it represents a
major rewrite, and a minor domino otherwise.

A major cycle is a cycle in which at least one of the rewrites is major.

THEOREM 5.1. Ifa rewriting relation has a cycle, it has a major cycle.

Proof. Let us define the corridor of a domino D in a layout to be the horizontal
rectangle containing all dominoes whose positions in the layout are equal to or
extensions of the position of D, using the definition of position as a sequence of nat-
ural numbers. (For example, in Fig. 3, the central domino has position 1.1 and its
corridor contains it and the top leftmost domino, which has the same position, but
does not contain the bottom leftmost domino, which has position 1.2, or the right-
most domino, which has position 1. The corridor of the rightmost domino contains
all of the dominoes of the layout.) If we add to a corridor of a domino D the
appropriate trees at either end, it forms a sublayout of the original layout, and D is a
major domino of this sublayout.

Any two corridors in a layout are either disjoint or one is contained in the other.
Therefore, we can determine a sublayout which has a domino that is major in it, as
follows: start with any leftmost domino and follow its corridor to the right; whenever
a domino is encountered that does not lie in the corridor, adopt its corridor. When
we reach the right end, we have a corridor containing a layout. If the whole layout is
cyclic, the sublayout corresponding to this corridor will be also, and will represent a
major cycle. O

‘““Major cycle” is a weaker notion than ‘“‘prime cycle’’ introduced by Klop
(1980), i.e., every prime cycle is a major cycle but not vice versa. Consider for
example, the rewriting system, {f(x,y)— f(y,x),a0)—b50),b()—a()}. The
cycle

f@0,60)— £(60),a)) — £(60O),b0))
= f(60,a0) = f(a0,a)) = f(a(),b0)
is a major cycle but is not a prime cycle because another cycle
a()—=b()—al)

is contained in it. Klop also proves a result about prime cycles similar to
Theorem 5.1.

202 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

We now want to define some terminology and some manipulations of layouts
that will be useful in proving theorems about the overlap closure of a set of rules.
Consider an adjacent pair of dominoes in a layout. Let ¢ and u be the trees on the
adjacent halves, where a subtree ¢’ of ¢ is identical to u (possibly #'= ?):

] « [

If either of ¢ or u is contained entirely within a variable box, i.e., the match is
not between two nonvariable subterms, we say that the pair of dominoes is weakly
matched, and otherwise that it is strongly matched.

Examples. In Fig. 3, the domino pair

xoro Jifove
owm 2 |0z 0ll[650)
(0

is weakly matched. Similarly the pair

that appears in the concatenation of the layouts of Figs. 2 and 3 is weakly matched,
while all the other adjacent pairs are strongly matched.

A term is said to be linear if no variable occurs in it more than once. A rewrite
rule is lefi-linear if its left term is linear and right-linear if its right term is linear.

Now suppose we have two weakly matched dominoes, as in Fig. 4a, where ¢ is
contained in the x variable box. If the (s,t) domino is right-linear (i.e., ¢ is linear),
then the pair of dominoes can be transposed as follows: remove the (u,v) domino
from the layout and move the (s,?) domino to the right, so that copies of the (u,v)
domino can be inserted to the left of the (s,7) domino, one adjacent to each x box in
s (see Fig. 4b). Then the resulting configuration is still a layout, (the dominoes all
match, using the same set of rules) with the same end trees. This is the case also
when a symmetric kind of transposition is performed on a layout in Fig. 5a, produc-
ing the layout in Fig. 5b, where we assume that the (#,v) domino is left-linear.

Such transpositions cannot necessarily be performed on strongly matched domi-
noes, but we will define a different kind of manipulation for this case. Strong match-
ing corresponds to the concept of overlapping in the definition of derived pairs: if

TERMINATION OF REWRITING SYSTEMS 203

K| [

(@)

(b)

FiG. 4. Transposition of weakly matched dominoes, where left domino is right-linear.

(b)

FI1G. 5. Transposition of weakly matched dominoes, where right domino is left-linear.

204 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

(r,s) and (t,u) are rules that have a derived pair <p,q>, then the dominoes
corresponding to (r,s) and (¢,u) can be placed in a layout so that they are strongly
matched. The layout configuration shows just where the strong match occurs and
identifies a potential derived pair.

Suppose now that instead of our stock of dominoes corresponding to a given
rule set R, we have a stock corresponding to OC(R), the overlap closure of R. Then
for any strongly matched pair of dominoes in a layout there is a domino in our stock
which corresponds to a derived pair generated by the matching pair. By a technical
lemma proved in Appendix B, we can replace the strongly matched pair in the layout

by the ‘‘derived pair domino”’ thus identified, and the result will still be a layout with
the same end trees.

We are now in a position to prove:
THEOREM 5.2. Suppose the rewriting relation of R is globally finite and every rule in

R is right-linear. If the rewriting relation of R has a cycle, OC(R) contains a reflexive
rule.

Proof. (By construction.) Let
() == =0

be a given cycle. Corresponding to (*) is a cyclic domino layout

. C1C 1

I N D |
-]

where the dominoes correspond to rules of R. In fact since each of these rules is also
in OC(R), we may take this layout as a layout of dominoes corresponding to rules of
OC(R). We will show how to manipulate this layout to a form that shows there is a
reflexive rule t— ¢ in OC(R).

We describe the manipulations as an algorithm operating on the cyclic lay-
out (**).

Step 1. [Extract major cycle.] As in the proof of Theorem 5.1, extract from (**)
a sublayout representing a major cycle, making it the layout subject to the following
steps. Also replace ¢, with its subterm matched by the layout.

Step 2. [Push major dominos to right end.] Manipulate the layout to a form in
which all of the major dominoes are together at the right end, by means of transposi-
tions or replacements by derived pair dominoes: whenever D is a major domino and
E is a minor domino adjacent to D on the right

:

either D and E are weakly matched, in which case they can be transposed, or they
are strongly matched, in which case they can be replaced by the derived pair domino
they define — which is a major domino. This derived pair domino is also right linear,
as the lemma in Appendix C shows.

TERMINATION OF REWRITING SYSTEMS 205

Step 3. [Look for cycle among major dominoes.] There is now a nonempty
sequence of major dominoes Dy, - - -, D,, at the right end of the layout:

<Jagle] - [

These dominoes can only be strongly matched — except for the case where the
right-hand side of D; is just a variable, but shortly we will show that such a possibility
can be ruled out. If there is some contiguous subsequence D;, - - -, D; that forms a
cyclic layout

then, since there can only be strong matches, these dominoes can be combined by
j— i+ 1 replacements into a single domino D that forms a cyclic layout:

JBEd

Let D represent (p,q). Then there is a substitution @ such that uy=60(p) and
0(q) = uy, i.e., 9 unifies p and q. Furthermore, a derived pair of (p,q) and (p,q) is
the reflexive rule (9 (p), 9(g)). Since this is in OC(R), we terminate the algorithm.

Step 4. [Duplicate.] If no such subsequence exists, concatenate to the layout a
copy of the layout. Return to Step 2 with the resulting layout:

=TI R N N R R IR

That concludes the statement of the algorithm. Before considering the question of
termination of the algorithm, we dispense with the detail mentioned in Step 3: the
case of adjacent major dominoes D and E where the right term u of D is just a vari-
able. We can assume the left term ¢ of D is not just a variable (if it were then it
would have to be the same variable as ¥ and we would already have a reflexive rule).
Since the layout is cyclic, if we drop D from the layout, we obtain a layout that has as
its right end term a proper subterm identical to the left end term. From this we con-
clude that the term rewriting relation is not globally finite, contrary to assumption.
This contradiction rules out the case under discussion.

It is obvious that each step of this algorithm is effective and terminating. Overall
termination is guaranteed by the following facts:

a. At the kth execution of Step 2, the number of major dominoes, m, at the
right end is at least 2.

b. Let ¢'{¥) denote the term to the left of D in the layout at the k th execution
of Step 3. Since each t’é") is derived from ¢ty and the rewriting relation is
globally finite, there are only finitely many distinct possibilities for #'{¥). By
a), then, there is one such term for which arbitrarily long layouts of major

206 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

dominoes exist. Again by global finiteness, these layouts cannot all continue
without producing a term, u,, that is a duplicate of some term previously
obtained in the layout.

Since the algorithm always terminates, and does so with a reflexive rule in
OC(R), this proves the theorem. O

The corresponding theorem obtained by replacing ‘‘right-linear’” by ‘‘left-
linear’’ can also be proved in a similar manner. Combining these theorems with
Corollary 4.3, we have:

THEOREM 5.3. Suppose the rewriting relation of R is globally finite and every rule in
R is right-linear or every rule in R is lefi-linear. Then the rewriting relation of R is uni-
Sformly terminating if and only if OC(R) contains no reflexive rule.

In the next section we explore some applications of this theorem.

Recently, Dershowitz (1981) has proposed a ‘‘forward chain’’ construction for
rewriting systems and proved that a right-linear rewriting system is uniformly ter-
minating if and only if it has no infinite forward chains. However, for left-linear sys-
tems the analogous result requires that the left-hand sides of the rules be nonover-
lapping, a problem that we had independently encountered when considering the
forward chain construction and a similar backward chain construction. We were thus
led to invent the overlap closure construction. The following example from
Dershowitz (1981) illustrates the advantage of the overlap closure construction over
forward chains. Using the forward chain construction, it is not possible to determine
the nontermination of this left-linear rewrite system, as pointed out by Dershowitz.
The rewriting system is

f(@O),b0),x) = f(x,x,60)),
b()— a().
These rules have only two forward chains, both finite:
f(0,b0),x) = f(x,x,60)) = f(x,x,a()), and b0 — a(),

but we cannot conclude anything about the termination of the rules because they are
not right-linear and, although they are left-linear, the left-hand sides are overlap-
ping. But in the overlap closure construction, the rules have a derived pair rule

S(BO,60,x) = fx,x,60)),
which, when overlapped with itself, gives the reflexive rule
SBO,60,60)— £(60O,b0),60),

as a derived pair, proving that the rules are nonterminating.

An open question about the power of the overlap closure construction is
whether the assumption of left-linearity or right-linearity is necessary. Although we
have not been able to find proofs of our results without this assumption, we have
also been unable to construct a counterexample.

6. Using the overlap closure. Theorem 5.3 implies that the uniform termina-
tion property for globally finite, right-linear (left-linear) rewrite systems is decidable
when the overlap closure is finite. Unfortunately, OC(R) will usually be infinite.

When OC (R) is infinite, Theorem 5.3 implies that nontermination is semidecid-
able. In our experience, if R is nonterminating, then there is a cycle involving terms
of size comparable to the terms in the rules. Since rules in OC(R) get very big soon,
we are likely to generate a reflexive rule very quickly.

TERMINATION OF REWRITING SYSTEMS 207

Theorem 5.3 has utility for proving ‘‘restricted termination,” i.e., termination
for all terms in some set S. We describe this as termination over S. A particularly
interesting set to look at is the set of all terms of limited size.

LEMMA 6.1. Ifa rewriting relation arrow is globally finite and S is finite, termination
over S is decidable.

Proof. For each element of S, we just have to follow all possible rewriting paths
until we either reach a terminal form or a cycle. By global finiteness, there can be
only finitely many such paths and each is of finite length. O

Let OC,(R)={(/,r) in OC(R): Size(/) < n}. If R contains only nonexpanding
rules, then OC ,(R) can be computed by starting with the empty set, inserting all
rules (/,r) of R such that Size(/) < n, and continuing to compute and insert derived
pairs until a set S is reached such that for any rules (r,s) and (¢t,u) from S any
derived pair (p,q) is either in S or has Size(p) > n. As for OC(R), checking
whether OC ,(R) has a reflexive rule is better for deciding termination over set of
terms of size < n than the brute force approach suggested in the proof of the above
lemma, because the search space in the former case is reduced considerably.

LEMMA 6.2. Suppose R contains only right-linear (left-linear) and nonexpanding
rules. If OC ,(R) contains no reflexive rule, R is terminating over the set of all terms of
size n or less.

Proof. By contradiction. Suppose there is a cycle with terms of size less than or
equal to n; from the cycle, we will construct a reflexive rule in OC ,(R) in the same
way as in the proof of Theorem 5.2.

Let the cycle be

t0—> t1—> P — tm== tO'

The size of ¢; is less than or equal to #; note that the size of each term in the cycle is
the same, as rules are restricted to be nonexpanding. Using the construction sug-
gested in the proof of Theorem 5.2, we can extract a major cycle. In Step 2, if the
rules are right-linear (left-linear), weak matches between adjacent dominoes are
transposed to the left (right). At the end of Step 2, there is a nonempty sequence of
major dominoes having terms of size k at the right (left) end of the domino layout.
If there is some contiguous subsequence that forms a cyclic layout, then there is a
reflexive rule in OC ;(R). Otherwise, we do Step 4. Since all dominoes have terms of
size k, their derived pairs will be of size less than or equal to k. So, we will eventu-
ally get a reflexive rule in OC,(R). O

A reduction relation arrow is said to be canonical over S if it is terminating over
S and any two elements in S have the same terminal form if and only if they belong
to the same < “equivalence class. Thus for a term rewriting relation that is canonical
over S, equations expressed using terms drawn from S are decidable by rewriting to
terminal forms and checking for identity. We have the following partial generaliza-
tion of Theorem 2.2.2.

THEOREM 6.3. Ifa reduction relation arrow is both terminating over S and uniformly
confluent, it is canonical over-S.

Remark. Uniform confluence, not just ‘‘confluence over S,” is necessary here.
The following rewrite system illustrates this point.

a(x)— h(x),
a(x) — k(x).

208 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

If S={h(x),k(x)}, then clearly — is both terminating over S and confluent over S,
but is not canonical over S, as h(x) = k(x).

Proof. By contradiction. Let ¢; and ¢, be in S for which arrow is not canonical;
i.e., t;and t, belong to the same «— " equivalence class but they have different termi-
nal forms ¢{ and ¢,.

1 [’lc—b R t’kq—» t,

where «— stands for either — or «—. If ¢;— ¢'|, then ¢'; also has the terminal form ¢{.
Otherwise, if #;<— t';, then t'; has the terminal form #; by uniform confluence. Simi-
larly, for any ¢';= ¢';, ';and ¢'; have the same terminal form ¢;. In particular, , has
the terminal form ¢{, but ¢, is also the terminal form of ¢, implying that ¢; == ¢,.
Hence the contradiction. O

The above theorem about restricted canonicity is useful only if it is possible to
prove uniform confluence (or more importantly to transform a given set of rules
into a uniformly confluent set of rules having the same equational theory as the orig-
inal set) in the absence of uniform termination requirement on the rule set. We have
attempted to modify the Knuth-Bendix algorithm to do this, but without success.
Peterson and Stickel (1981) remark that such an approach for establishing uniform
confluence is not likely to be successful, as it would allow one to prove the decidabil-
ity of the word equation problem over free semigroups in a simple way as follows:

Given the rule set for semigroups

Xe(yez) = (xey) ez,
(Xep)ez— xe(yez);

to solve a word equation problem (i.e., for a pair of terms, t; and t,, whether there
exists a substitution of variables which make the resulting instances of #; and ¢,
equal in the theory of free semigroups), we add the following rules

h(tl) nad 0,
h(tz) nad 1,

where & is a new function symbol distinct from all other function symbols appearing
in words. (0 and 1 are assumed to be distinct.) If the above set of rules is uniformly
confluent, then there does not exist any substitution @ such that §(z;) = 6(z,) in the
theory of free semigroups; otherwise, such a substitution exists. The word equation
problem over free semigroups is a difficult problem which has been worked on for
over 20 years and only recently solved by Makanin who gives a very lengthy and
complex proof.

Proving restricted termination is useful in analyzing automatic implementation
of a data type generated from its algebraic specification as discussed in Guttag,
Horowitz, and Musser (1978). An implementation of an operation is essentially tak-
ing the expression corresponding to the operation invocatiun and simplifying it using
the rewrite rules specifying the operation behavior. It is possible to run such an
implementation and evaluate expressions whose termination can be proved a priori.
Analysis of the operation behavior is helpful in designing abstract data types.

Proving restricted termination is also useful in an OBJ-like system (Goguen and
Tardo (1979)) for designing specification of abstract data types and algorithms using
equational axioms. Axioms are viewed as unidirectional rewrite rules and
specifications are analyzed by interpreting expressions. OBJ has a memory mode in

TERMINATION OF REWRITING SYSTEMS 209

which during the simplification of expressions, rewriting of expressions in the pres-
ence of cycles is allowed. While rewriting a term, when a term from the set S whose
termination is proved is hit, there is no need to store the intermediate terms gen-
erated in the rewriting from that point onwards.

7. Conclusion. In rewrite rule theorem proving, as elsewhere, almost all of the
interesting questions are undecidable. A particularly interesting undecidable ques-
tion, with a number of practical ramifications, is whether or not a given set of rewrite
rules has the uniform termination property. The motivation behind the work
presented in this paper is the circumvention of this undecidability.

Our rather distinctive approach to this began with dividing the problem of prov-
ing uniform termination into the separable component problems of proving global
finiteness and proving acyclicity. We then dealt with the former by developing
sufficient conditions for establishing global finiteness. The conditions developed in
§ 3 and Appendix A seem reasonably general, and, moreover, are computationally
easy to check. They are based on showing that every instance of each rule is nonex-
panding, a property for which we presented syntactically checkable necessary and
sufficient conditions.

Proving acyclicity, on the other hand, is not amenable to any kind of local, rule
at a time, analysis. Our approach to dealing with this problem started with the
development of a procedure that finds a cycle if one exists but may not terminate
otherwise. The obvious procedure for doing this, which is tremendously inefficient,
is based on the enumeration of all terms over the alphabet of the rewriting system.
Our procedure, which is closely related to the Knuth-Bendix procedure for con-
structing confluent sets of rewrite rules, is based on the computation of what we
called the overlap closure of the set of rewrite rules. In order to develop this pro-
cedure, we introduced in § 5 a new model of term rewriting called rewrite dominoes.
The primary application of this model was to prove that a set of rewrite rules, pro-
vided they are all right-linear (or all left-linear) and globally finite, has a cycle if and
only if its overlap closure contains a reflexive rule.

This result implies that in the cases where the overlap closure computation ter-
minates we can decide uniform termination of the original set of rewrite rules.
Unfortunately the overlap closure is rarely finite. However, our procedure generates
the overlap closure in such a way that for any integer n we can generate a subset of
the overlap closure that is sufficient to decide whether or not there is a cycle in which
every term is of size n or less. This gives us a decision procedure for what we called
restricted termination. We conjecture that for certain classes of term rewriting sys-
tems, it should be possible to compute a bound, #, such that if a cycle exists, there
exists a cycle in which every term is of size n or less. For such classes, the overlap
closure would provide a decision procedure for uniform termination.

We have explored the utility of restricted termination in the application of term
rewriting with which we are most familiar, the algebraic specification of abstract data
types, and see a number of interesting ways to make use of it there. We suspect the
notion of restricted termination will be useful in other application areas, but we have
not investigated this. Investigations should also be made into the usefulness of the
overlap closure computation and the domino model of term rewriting systems for
the study of properties other than uniform or restricted termination.

210 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

Appendix A. Proving uniform termination of rules using if-then-else opera-
tor. In specifying abstract data types using equations, it is often useful to introduce
an auxiliary function if-then-else with the following semantics:

if-then-else (true, x,y) = x,
if-then-else (false, x,y) = y.

But the rewrite rules corresponding to the equational axioms using if-then-else are
often expanding; for example, consider the following rule:

has?(i,insert(s,i")) — if-then-else (i = i’,true,has?(i,s)).

We will only consider rewrite rules whose right-hand side may use if-then-else opera-
tor; their left-hand sides are assumed not to use if-then-else, except for the rules

if-then-else (true, x,y) — x,
if-then-else (false, x,y) — y.

The uniform termination of such rules can be proved by considering the termination
of a corresponding set of rules that do not use if-then-else operator, as the following
theorem shows. For a rule (/,r) in R, the corresponding set D({(/,r)}) of rules is
defined as:

D(UR)

UD(R)

{(1,r)} if r does not use if-then-else.

D{,NY) = D (, [rwithbatil), where if-then-else (b, e, ey)
(1, [r with e at i]), is a subterm of r
(1, [r with e, at i])}) at position i.

A rule (/,r) expressed using if-then-else is called componentwise-nonexpanding if the
corresponding derived set of rules, D({(/,r)}), is nonexpanding. Similarly, the rule
set R is componentwise-nonexpanding if D (R) is nonexpanding.
6 THEOREM A.l. If R is componentwise-nonexpanding, then R is uniformly terminat-
ing if and only if D(R) is uniformly terminating.
Proof. Since R is componentwise-nonexpanding, D(R) is nonexpanding and
hence globally finite.

(i) ==> (by contradiction)

Assume that D(R) is not uniformly terminating and R is. Since D(R) is globally
finite, there is a cycle tp— t;— - - — t,== to, n > 0. This cycle must use a rule in
D({I— r}) such that r contains the if-then-else operator, otherwise R would have a
cycle. From the above cycle, we can construct a sequence of rewrites in R such that
wherever a rule from the set corresponding to a rule in R using if-then-else is
applied in the cycle, we apply the rule in R. Let the sequence of rewrites be

t0—> t'1—> e — tln'

t', in that case contains fo, which can be further rewritten. Thus we get an infinite
sequence of rewrites using R, implying R is not terminating, which is a contradic-
tion.

(ii) <= (by contradiction)

TERMINATION OF REWRITING SYSTEMS 211

Assume that R is not uniformly terminating and D (R) is. There are two possibili-
ties:

(a) R leads to an infinite sequence of rewrites.

to—ptl-—; ...—»tn_>

Since R is componentwise-nonexpanding, there must exist i, j such that j > i and
the subterm, ¢';, in ¢; being rewritten at the i+ 1st step is a subterm in ¢, From the
rewriting sequence

ti_" ...-.tj, (*)

we can construct a finite set S of rewriting sequences in D(R) by following the
rewriting sequence (*) as follows:
(i) Initialize S to be { ¢,}.
(ii) At a rewriting step f,— #;4; in which the subterm ¢, at position m is
rewritten using the rule (/,r) of R,
(a) if r does not use if-then-else operator, discard sequences in S whose
last term does not have ¢’ at position m and extend other sequences in
S by rewriting ¢', at position m using (,r),
(b) otherwise, discard sequences in S whose last term does not have ¢ at
position m and extend other sequences in S by rewriting ¢’ at positon
m in all possible ways using every rule in D({(/,r)}).
Thus S will have a sequence with its last term having ¢'; as a subterm. This implies
that D(R) is nonterminating.

(b) R has a finite cycle:

Using the same argument as in (a), it can be shown that D(R) also has a finite
cycle. O

The above theorem can be generalized to handle rules having the following
property: the rules use function symbols that have the following semantics and that
do not appear in the left-hand side of any rules other than the rules giving their
semantics;

Slxy, - ,x) = x, forl<i<n.

Note that if-then-else operator is a particular case of the above function symbol f
when n=2. So, for proving uniform termination of such rules, we derive from the
rules using these function symbols on their right-hand side, a corresponding set of
rules which do not use these function symbols and prove uniform termination of the
new set.

Appendix B. Proof of lemma used in Theorem 5.2.

LeEmMMA B.1. Suppose ty— t, using r— s applied at position i,t,— t, using t— u
applied at ij, and sljl and t overlap determining the derived pair <p,q> =
<0(r),[0(s) witho(u) at j1>. Then ty— t, using p— q applied at i. A similar result
holds for the case in which s unifies with a subterm of t.

Proof. Rename the variables of ¢ and u, if necessary, so that s and ¢ have no
variable in common. There is some subterm 7y[i] and a substitution 6; such that
01(r) = tolil and 7,= (7o with 0,(s) at i].

Again, there is some subterm #,[(ij)] and a substitution @, such that
0,(1) = t,[(i.)] and t,= [¢, with 6,(w) at i.j].

212 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

Since the variables of s and ¢ are disjoint, we have (9;U 0, (s[j]) = 0,(s[j]) =
0,(£)= (9;U 6, (¢). That is, 6, U 9, is a unifier of s[j] and ¢ and therefore has 6 as
afactor:

01U 08,= 030, for some substitution 3.

Thus tlil=0,(r)= 0,V 0)(r)= (05¢0)(r)= 03(0(r))= 65(p). That is, ¢, is
matched by p at i. Now consider 65(q); it is

65 ([0 (s) with 6 (u) at j])

= [93(6(s)) with 83(6(w)) at]

= [9,(s) with 6,(u) at j].
Thus t,= [¢; with 8,(u) at i«]

= [[#o with 6,(s) at i] with 0,(u) at ie]

= [# with [6,(s) with 8,(u) at /] at i]

= [¢, with 95(q) at], showing that t,— ¢, using p — ¢ applied at i.
We omit the proof of the case in which s unifies with a subterm of ¢. O

Appendix C. Derived pair construction is (left, right) linearity preserving.

THEOREM C.1. If r—s and t—u are two right linear rules with disjoint variable
sets, then each of their derived pairs, < p,q> is also right linear.

Proof. There are three cases:

(i) s unifies with the subterm ¢[i] of ¢ by their m.g.u. 6.
The corresponding derived pair < p,g> has

p=[0(r) with0(r) at il,

g=0(u).

Since s is linear, by the following lemma, substitutions for any two distinct variables
in ¢[i] in # do not have a common variable. The variables in ¢ other than the ones in
t[i] do not play any role. So 6 (u) is linear.

(ii) the subterm s[i] of s unifies with ¢ by their m.g.u. 9.
The corresponding derived pair < p,g> has

p=0(r),

g =[6(s) with 8 (u) at i].

Since sli] is linear, by the lemma, substitutions for any two distinct variables in ¢ in
6 do not have a common variable. So, 6 (s) and 6 (u) are linear. And, ¢ is thus linear.

(iii) if subterms of s do not unify with ¢ or s does not unify with subterms of ¢,
then there are no derived pairs of r— sand t— u. O
By a similar argument, it can also be proved that every derived pair of two left linear
rules is left linear.
LEMMA C.2. Lett and u be unifiable terms with disjoint variable sets, and@ be their
most general unifier. Let 6* be the restriction of 0 to the variables of u, say
0*=1le;/vy, - --,e,/v,). Ift islinear, then all variables in e, - - - ,e, are distinct.

TERMINATION OF REWRITING SYSTEMS 213

Proof. For every variable x having k (>1) occurrences in u, replace different
occurrences of x by distinct variables x;, - - -, x; that do not appear in ¢ and u. Let u’
be the resulting term which is linear.

By the following lemma, in the m.g.u. 8’ of ¢ and u’, substitutions for distinct
variables in ¢ and u' do not have a common variable. Let o , be the m.g.u. for the set
of terms 6'(x;), 1< i< k, the substitutions for the variables used to replace multiple
occurrences of x in u. If these o, for every variable x having multiple occurrences
in u are composed with 9', we get a unifier of # and u.

In this unifier, substitutions for variables in # do not have a common variable.
From this, it is evident that the m.g.u. of ¢t and u cannot have substitutions for
variables in u that share common variables. O

LEMMA C.3. For two unifiable terms t and u, ift and u are linear, then the substi-
tutions in their m.g.u. 0 for any two distinct variables of t or u do not have common vari-
ables.

Proof. By induction on the structure in term ¢.

Basis. t is a variable.

Then 6 (#) = u and the statement trivially holds.

Inductive step. t== f(t{, - - - ,t,)

For ¢ and u to be unifiable, either u is a variable or u== f(u;, - - -,u,). The
case of u being a variable is handled as in the basis step.

For the case u== f(uy, - - *,u,), for each i, 1< i< n, t; must unify with u; by
their m.g.u. 0, say. By the inductive hypothesis, the statement holds for each of 6 ,.
Since ¢ and u are linear, the disjoint union of 6;, 1< i< n, is the m.g.u. 8 of ¢ and u.
It follows that the statement of the lemma holds for 6 also. O

Acknowledgments. The basic idea of conducting a search for repeated terms
(cycles) or subterms sprang from discussions in 1977 between one of the authors
(Musser) and Dallas Lankford. We thank P. Gloess, G. Huet, and J. Levy for their
interest and assistance in refuting some of our earlier conjectures, thus helping us
arrive at the notion of the overlap closure and the theorems of § 5. We also thank
P. Narendran for assistance in constructing the proof of the theorems in
Appendix C, J. Goguen for discussions of the approach to term rewriting used in
OBJ, and M. O’Donnell for helpful comments and pointing out the relationship
between some of the definitions in § 5 to Klop’s work.

REFERENCES

N. DERSHOWITZ, Termination of linear rewriting systems — preliminary version, in Automata, Languages, and
Programming, S. Even and O. Kariv, eds., Eighth Colloquium, Israel, Lecture Notes in Computer
Science 115, Springer-Verlag, New York, 1981.

J.A. GOGUEN AND J. TARDO, An introduction to OBJ-T, Proc. of Conference on Specification of Reliable
Software, 1979.

J.V. GUTTAG, E. HoroWITZ, AND D.R. MUSSER, Abstract data types and software validation, Comm. A.C.M.,
21 (1978), pp. 1048-1064.

G. Huer, Confluent reductions: abstract properties and applications to term rewriting systems, J. ACM, 27
(1980), pp. 797-821.

G. HUET AND D.S. LANKFORD, On the uniform halting problem for term rewriting systems, Rapport Laboria
283, INRIA, Paris, March 1978.

G. HUET AND D.C. OprPEN, Equations and rewrite rules: a survey, in Formal Languages Theory: Perspectives
and Open Problems, R. Book, ed., Academic Press, New York, 1980.

214 J. V. GUTTAG, D. KAPUR AND D. R. MUSSER

J.W. KLoP, Reduction cycles in combinatory logic, in To H.B. Curry, Essays on Combinatory Logic, Lambda
Calculus and Formalism, J.P.Seldin and R. Hendley, eds., Academic Press, New York, 1980,
pp. 193-214.

D.E. KNUTH AND P. BENDIX, Simple word problems in universal algebra, in Computational Problems in
Abstract Algebra, J. Leech, ed., Pergamon Press, New York, 1970, pp. 263-297.

D. MUSSER, Abstract data type specification in the AFFIRM system, IEEE Trans. Software Engineering, 6
(1980), pp. 24-31.

G.E. PETERSON AND M.E. STICKEL, Complete sets of reductions for equational theories, J. ACM, 28 (1981),
pp. 233-264.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, May 1983 0097-5397/83/1202-0001 $01.25/0

CONCURRENCY CONTROL BY LOCKING*
CHRISTOS H. PAPADIMITRIOU*

Abstract. We present a geometric method for studying concurrency control by locking. When there
are only two transactions, our method yields an exact characterization of safe locking policies and also of
deadlock-free locking policies. Our results can be extended to more than two transactions, but in that case
the problem becomes NP-complete.

Key words. database, concurrency control, transaction, locking, two-phase locking, geometry of
locking, serializability, safety, NP-complete problems

1. Introduction. A database consists of a set of named data objects called entities.
The values of these entities must at any time be related in some ways, prescribed by
the integrity constraints of the database. When a user accesses or updates a database,
she/he may have to violate temporarily these integrity constraints, in order to restore
them at some later time, with the specific data changed. For example, in a banking
system, there may be no way to transfer funds from an account to another in a single
atomic step, without temporarily violating the integrity constraint stating that, say,
the sum of all balances equals the total liability of the bank. For this reason, several
steps of the interaction of the same user with the database are grouped into a
transaction. Transactions are assumed to be correct, that is, they are guaranteed to
preserve consistency when run in isolation from other transactions.

When many transactions access and update the same database concurrently, the
consistency of the database may fail to be restored after all transactions have been
completed. If, for example, transaction 1 consists of the two steps

x=x+1, x=x-1
and transaction 2 of the single step
X =2%x,

and the consistency requirement is simply ‘“x =0, then executing transaction 2
between the two steps of transaction 1 turns a consistent database into an inconsistent
one. This is despite the fact that both transactions are individually correct; that is,
each preserves database consistency when run alone. We must therefore find ways to
prevent such undesirable interleaving without excessively harming the parallelism and
overall efficiency of the system. This is the database concurrency control problem,
already discussed extensively in the literature (see [Pa2], [EGLT1], [EGLT2], [SLR],
[BGRP], [Pal], [KP], [Ya], [SK]).

Since we assume that each transaction is by itself correct, a reasonable goal for
the database concurrency control mechanism would be to rearrange the steps of the
transactions so that the resulting sequence of steps is serializable. This means that its
effect is as though the transactions executed without any interleaving, one after the
other in some order. Serializability has been widely recognized as the right notion of
correctness (e.g. [EGLT1], [SLR], [Pal]). In fact, in [KP] we show that it is the most
liberal notion of correctness possible, when only syntactic information (i.e., the names
of the entities accessed at each step) is available. We denote the set of all serializable
schedules by SR.

* Received by the editors December 15, 1981, and in revised form June 7, 1982.
+ Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, and National Technical University of Athens, Greece.

215

216 CHRISTOS H. PAPADIMITRIOU

A very common way for implementing concurrency control is locking. In this
method each entity is equipped with a binary semaphore—its lock—and transactions
synchronize their operation by locking and unlocking the entities that they access.
The lock-unlock steps are inserted in a transaction according to some locking policy.
A locking policy may have the property that, if all transactions are locked according
to it, then any interaction is guaranteed to be serializable. Such a locking policy is
called safe. A classical example of safe locking policies is the two-phase locking (2PL)
policy proposed in [EGLT1]. In 2PL a transaction must lock an entity before accessing
it, and must not unlock it until after the last access of the entity, and after the last
lock of the transaction is granted. Thus a transaction has two phases: the locking phase,
during which the transaction requests (but does not release) locks, and the unlocking
phase, during which locks are released but not requested. 2PL is a safe locking policy
[EGLT1]. Another safe locking policy is the tree policy of [SK], in which the entities
are arranged in a tree, typically one reflecting some logical or physical structure, and
transactions access whole subtrees. An entity may be locked only if its father entity
is currently locked. This tree policy can be further generalized to the digraph policy
and the hypergraph policy [Ya]; the latter is shown in [Ya] to be the most general
safe locking policy possible, in the sense that all safe policies can be considered as
special cases of the hypergraph policy.

In [Pal], [KP] we proposed a measure whereby the performance of concurrency
control mechanisms in general—and locking policies in particular—can be evaluated
in a uniform setting. This measure is expressed in terms of the class of all sequences
of transaction steps that can be the response of the concurrency controller to a stream
of execution requests. The richer this class, the fewer unnecessary delays and rearrange-
ments of steps will occur, and the greater the parallelism supported by the system.

In this paper we study safe locking policies in a theoretical, unifying way. In § 2
we describe our model and define our terminology.

In §§ 3 and 4 we characterize safe locking policies. We first give a characterization
of safety for the case of two transactions. To do so, we employ a geometric methodology
reminiscent of that used by Dijkstra for studying deadlocks [CES], [CD]. Here we
use it in a very different way to study incorrect completions. (We ignore deadlocks, as
seems reasonable to do in view of their limited significance in this context; see [GLPT].)

Besides its independent interest and elegance, the two-transaction solution is the
building block for resolving the general case (§ 4). It turns out that a locking policy
defined on d > 2 transactions is safe if and only if all of its two-transaction subsystems
are safe, plus a combinatorial condition. This combinatorial condition turns out to be
NP-complete, but it is simple enough to have some interesting corollaries. For example,
all specific locking policies mentioned above can be shown to be safe as immediate
consequences of the condition.

Versions of several of the results in this paper—in particular those in § 4—were
independently obtained by Mihalis Yannakakis—see the first part of [Ya]. Both our
results and those in [Ya] were announced in a joint extended abstract [YPK].

2. Definitions. A transaction system 7={Ty, -, T,} is a set of transactions. A
transaction T; = (T}, - - -, Tim,) is a sequence of actions or transaction steps. Each action
T}; has associated with it an entity, x; € E, where E is a set of entities. The x;;’s need
not be distinct.

Each action Tj; is thought of as the indivisible execution of the following:

Tyt = xy

Xij = fi(ta, -+,).

CONCURRENCY CONTROL BY LOCKING 217

The first instruction stores the current value of x; to a local variable ¢;, not in E,
and the second changes x;; in the most general possible way based on all available
local (to the transaction) information. The ¢;’s are all distinct. A schedule (or history)
s of 7 is a permutation of all steps of = such that j <k =m; implies s(T;) <s(Ti). The
set of all schedules is denoted by S. s is called serial if, for all i and j <m,;, s(T;;)+1=
§(T;j+1). Two schedules are equivalent if they are equivalent as parallel program
schemata with uninterpreted f;’s; s is serializable (notation: s € SR) if it is equivalent
to some serial schedule.

Deciding serializability of a schedule s is known to be an NP-complete problem
if we distinguish between reading and writing steps [Pa], [PBR], but can be easily
done in our model of actions as follows [EGLT1]: Construct a digraph D(s) by
associating a node with each transaction T; and drawing an arc (T}, T;) whenever, in
the schedule s, T; updates an entity before T; does. Then s is serializable if and only
if D(s) is acyclic.

A locked transaction system L(r) is a special augmented version of the (ordinary)
transaction system 7. The operator L performing this augmentation is called a locking
policy. A locking policy transforms each transaction of = by inserting lock x and unlock
x steps, x € E, according to the following rules:

(1) For each entity x there is at most one lock x step in each transaction. If it

exists, then there is also a unique subsequent unlock x step.

(2) Every access to an entity x is surrounded by a lock-x—unlock-x pair.

Let s be a schedule of L(7). s is said to be legal—notation: s € G(L(r))—if and
only if between any two occurrences of lock x in s there is an occurrence of unlock
x. Let L™" be the operator that removes all lock-unlock steps; the set L™ (G (L(7)))—
O(L) for short—is the output set of the locking policy L, and it captures the essential
amount of parallelism supported by L.

We say that a locked transaction system L(7) is safe if and only if any schedule
in O(L) is serializable. We say that it is deadlock-free if and only if for any legal prefix
p of a schedule of L(7), there is a suffix s such that p - s € G(L(r)).

Given a transaction system 7, there are certain well-known locking policies that
can be applied to it. One is the two-phase locking (2PL) policy [EGLT1]. In it we
insert locks surrounding the accesses of all entities in each transaction, subject to the
following rule: The last entity to be locked is locked before the first entity is unlocked.
Thus, a transaction is divided into two phases: the locking phase, during which locks
are acquired but not released, and the unlocking phase, in which locks are released
but not requested. Notice that this does not uniquely define a locking policy; it is in
fact a family of locking policies. In an extremely conservative interpretation, we could
lock all entities before the first step, and unlock them after the last. More reasonably,
we could request for entities at the first step that they are accessed, and release locks
at the end of the transaction. In fact, it is shown in [KP] that the latter interpretation
of 2PL is the best possible concurrency control, when syntactic information is acquired
in an incremental, dynamic manner (best in terms of the parallelism allowed). It was
first shown in [EGLT1] that 2PL is safe (though not deadlock-free).

If the entities are unstructured (that is, transactions access them in all possible
permutations of orders and patterns) then 2PL is the best possible locking policy.
Suppose, however, that the entities form a tree, and are accessed by transactions as
follows:

(a) A transaction accesses a subtree, whose root is the first entity to be accessed

(after, of course, it is locked).

(b) After this, when an entity is locked, its parent must be locked and not yet

unlocked.

218 CHRISTOS H. PAPADIMITRIOU

Then this family of locking policies, called the tree policy, is shown in [SK] to be
both safe and deadlock-free. This holds for the more general digraph policy of [Ya].
In fact, the latter is generalized in [Ya] to the hypergraph policy which, it is proved,
is the most general possible safe policy.

In this paper we are only discussing what is known as the exclusive version of
locking. There are, however, variants of locking in which locks of different kinds are
defined (e.g., shared locks or read-locks, intention locks, etc.). Certain kinds of locks
may coexist with others, whereas certain other kinds cannot. In [Pa3] we show that
in some respects these more general kinds of locking behave in a way very similar to
ordinary exclusive locks. It appears that the results of this paper can be quite easily
generalized to these kinds of locks.

3. The geometry of locking. Consider a transaction system 7 consisting of two
transactions, 7' and T>. In the coordinate plane (Fig. 1) take the two axes to correspond
to T and T,, and the integer points 1,2, etc., on these axes to correspond to the steps
T11, Ths, etc. (respectively T,y, Ts, etc.) of the transactions. A point p may present

T, (7,7)
S2

unlock x Tzg
/ ‘P ‘u

unlock y T2s

y Tea g;%g 7
Lock s

y T3
d
an
x Tr2 i }
Lock x T2 ; \
; 7 s
|
(0,0) 1 »
T Tz Tz Ta Tis s T
tock y lock x X y unlock x unlock y
FiG. 1

a possible state of progress made toward the completion of T, and T,. T; and T, will
in general be locked transactions and will therefore contain properly nested lock-
unlock steps. Each entity x such that both 7 and T, contain a lock-x-unlock-x pair,
has the effect of creating a forbidden region (a rectangle delimited by the grid lines
corresponding to the four lock x or unlock x steps), the points of which represent
unreachable states (see Fig. 1). Adding such rectangles to the plane has some con-
sequences. For example, the point u is now unreachable, yet not in any rectangle; in
contrast, point d is a state of deadlock.

What is the geometric image of a schedule? A schedule is a nondecreasing curve
from the point (0, 0) to the point (m;+ 1, m,+ 1), not passing through any other grid
point, nor through any rectangle (e.g., 4 in Fig. 1). (In fact, a schedule is more precisely

CONCURRENCY CONTROL BY LOCKING 219

a class of such curves, all of which cross the same line segments of the grid.) To read
the schedule off any such curve, we simply enumerate the grid lines that it intersects.
For example, in Flg. 1h= T11T12T13T14T15T21T22T16T23T24T25T26. The two serial
schedules are represented by the curves s; and s, in Fig. 1.

Let 4 and k' be schedules such that & =#,5:S5h5, h' = h1S2S1h2, and Sy, S, are
steps not updating the same variable. We then write &z ~h'. Let ~ be the transitive-
reflexive closure of ~. The following fact has appeared many times in the literature
[EGLT1], [PBR], [Pal].

LEMMA 1. Let h, h' be schedules. Then h =h' if and only if h~h'.

Consider the point set § =[0, m;+1]%x[0, m,+1]—R, where R is the set of all
forbidden rectangles. In other words, S is the relevant nonforbidden region of the
plane. Let € be the set of all nondecreasing curves from (0, 0) to (m;+1, m,+1) in
S. We can partition these curves into homotopy classes. Two curves in € are homotopic
if their union can be shrunk into a single point. In Figure 2, for example, 4, and h,
are homotopic, whereas 4, and /3 are not (since they “‘enclose” a forbidden rectangle).
Homotopy is an equivalence relation in 4. Also, if two curves represent the same
schedule, then they are homotopic.

T h)

Fi1G. 2

LeEMMA 2. Two schedules are equivalent if and only if any two corresponding
curves are homotopic.

Proof. We first notice that condition (a) in our definition of locking has as a
consequence that every forbidden rectangle contains a grid point (T'y;, T5;) such that
T1: and T,; update the same entity x; and conversely, any such point is surrounded
by a forbidden rectangle. It follows that two curves in € are homotopic in [0, m; + 1] X
[0, m,+1]—R if and only if they are homotopic in [0, m;+ 1]x[0, m,+ 1]— P, where
P is the set of all points (Ty;, T;) such that T;; and T,; update the same entity. Now
any two curves h, h'€ € are homotopic in [0, m;+1]x[0, m,+ 1]—P if and only if A
can be transformed into 4’ via a continuous transformation, avoiding all points in P.
Such a continuous transformation can be broken down into finitely many transforma-
tions of one of the following two types:

(a) transformations that do not change the schedule represented by the curve

(Fig. 3a),

(b) transformations in which the curve crosses a grid point not in P. (Fig. 3b.)

Type (a) leaves the corresponding schedule unchanged. Also, type (b) changes
the schedule 4 into a &’ such that 4 ~ &'. Therefore, we have from the above discussion
that two curves are homotopic if and only if the corresponding schedules satisfy
h'™~h;or,by Lemma 1, if andonlyif h=h'. O

220 CHRISTOS H. PAPADIMITRIOU

4 f

s
!
]
=g f
D iy
7 e
[B /7"

(a) (b)
FiG. 3

Since the two serial schedules are s; and s, of Fig. 1, we conclude from Lemma
2 that nonserializable schedules are exactly those that are homotopic to neither.

THEOREM 1. A schedule is not serializable if and only if the corresponding curve
separates two rectangles.

Thus 4; and A, in Fig. 2 are serializable schedules, whereas k3 is not. Hence 7
is unsafe.

Certain further geometric concepts help illuminate the concept of safety of
two-transaction systems. Let R be any subset of the plane, possibly disconnected. We
call two points (x1, y1) and (x,, y,) in the plane incomparable if (x;1—x2) - (y1—y2) <0
(points p and q in Fig. 4). Then R is said to be closed if, for any two incomparable
points (x1, y1) and (x,, y,) that are connected in R, the points (x;, y,) and (x», y1) are
also in R. The closure of R is the smallest closed region that contains R. Notice that
closure (R) is always well-defined (see Fig. 4).

LEMMA 3. If a connected rectilinear" region R is closed, then R is the region
contained between two increasing curves that intersect only at their endpoints.

4

closure (R)

FiG. 4

Proof. The boundary of a rectilinear region R is not as in the lemma only if it

contains a fragment like
s
or &.
7

In both cases closedness is contradicted. O

We make here the following helpful observation: The forbidden rectangles corre-
sponding to two locked transactions have the property that each of their edges has a
unique ordinate or abscissa. As a consequence, the same is true for the rectangles

! A region is called rectilinear if it is the union of rectangles with edges parallel to the axes.

CONCURRENCY CONTROL BY LOCKING 221

comprising the closure of the forbidden region, as the closure of a rectilinear region
has rectangles with ordinates and abscissas among those of the original rectangles. A
helpful corollary is that components of the closure may not accidentally “touch” at
a line, or just a point. If they are disconnected, they are clearly divided by corridors
of width one. Therefore, a nondecreasing curve avoiding all components can always
be turned to one that avoids all grid points (except (0, 0) and (m,+1, m,+1)).

A (my+ 1, my+1)

i
1
—_——

5P

FI1G. 5

LEMMA 4. Let R be a closed (possibly disconnected) rectilinear subset of [0, m,+
11x[0, m,+1], and let p be a point in [0, m;+1]X[0, m+1]—R. Then there is a
nondecreasing curve from (0,0) to p and from p to (m;+1,my+1) in [0, m;+1]x
[0, m;+1]—-R.

Proof. We shall only prove the second claim, as the first is completely symmetric.
From p we first go parallel to the x-axis to increasing x’s, see Fig. 5. If we do not
“hit” a component of R, we are done; otherwise, we follow the nondecreasing curve
in the boundary of the component (Lemma 3) and when it ends we again proceed
parallel to the x-axis. It is clear that we shall eventually reach the x =m;+1 line. O

THEOREM 2. 7 is safe if and only if the closure of the union of the forbidden
rectangles is connected.

Proof. Suppose that 7 is unsafe. Then, by Theorem 1, there is an increasing curve
h from (0, 0) to (m;+1, m,+ 1) which separates two rectangles »; and r,. Consider
the region that consists of all grid squares not touched by A. This region is closed,
contains all rectangles and is disconnected, and each of its components contains a
rectangle. It follows that the closure of the forbidden region is the union of two
nonempty subsets of the two components, and thus it is disconnected.

For the “if” direction, suppose that the closure is disconnected. There are two
cases. Either there is a vertical line which hits two components of the closure, or there
is not. In the second case (Fig. 6a) there is a vertical line which separates two com-
ponents—and thus a nondecreasing curve, consisting of two horizontal and one vertical

A

N

(a) (b)
FIG. 6

222 CHRISTOS H. PAPADIMITRIOU

line segments, which also separates two components. In the first case, (Fig. 6b) consider
this line, and a point p on it that is in between the two components. By Lemma 4,
there is a nondecreasing curve from (0, 0) to p and one from p to (m;+1, m,+1).
Their union is a nondecreasing curve that separates the two components. [

In a rectilinear region R we can define the lower-left boundary, LLB (R), to be
the union of all horizontal segments that are lower boundaries of R, together with all
vertical segments that are left boundaries of R (that is, LLB (R) is the set of all points
(x, y) such that (x +68, y + &) € R whereas (x =6, y —¢) £ R, for all §, e >0). The proof
of the following result is now straight forward.

THEOREM 3. 7is deadlock-free if and only if LLB (R) 2 LLB (closure (R)), where
R is the union of the forbidden rectangles.

Theorems 2 and 3 lead to fast algorithms for the solution of the safety and
deadlock problems for locked transaction systems [LP]. There are other insights that
are offered by this geometric viewpoint. For example, the correctness of 2PL has now
become very intuitive. 2PL says that all rectangles must contain the point p whose
projections p; and p, mark the phase-shift points of the two transactions (see Fig. 7).
Thus the rectangles are certainly connected, so is their closure, and the correctness
of 2PL follows immediately from Theorem 2.

! m
unlocking
phase T_
N A
|
locking phase :
I
i
i
I
|
!
locking<J p, L unlocking
phase ! phase
FiG. 7

4. More than two transactions. Consider now a set of d >2 locked transactions
T={Ty, -, T,}. We wish to study the problem of safety of . If any subset of 7 with
two transactions is unsafe, then clearly so is 7. Define the graph G(r)=(r, A) with
transactions as nodes, and with [T}, T;]€ A if and only if T; and 7; update a common
entity. From our assumption above it follows that, for any [T;, T;]€ A, the closure of
the forbidden region on the (T}, T;)-plane is connected. Therefore, any schedule A of
7 will have a projection on the (T}, T;)-plane that is either equivalent to T:T; or
equivalent to T;T; (see Fig. 8). In the first case we write T; <, T}, and in the latter
T, <, T.

LEMMA 5. h is serializable if and only if (1, <p) is acyclic.

Proof. The lemma follows by observing that (7, <j) is exactly the digraph con-
structed for testing the serializability of # in §2. 0.

Therefore, for = to be safe, for each directed cycle that corresponds to an
undirected cycle in G(7) there must be a reason why no A exists that has this same
cycle in the graph of <. Intuitively, the reason is that there is a contradiction in the
order in which the curve of A intersects the prisms with bases marked
Py, P, ---,0Q1,Q, in Fig. 8. This is captured as follows: With each pair
([T, T;], [T}, T,]) of edges in A we associated a digraph B,,. The vertices of this

CONCURRENCY CONTROL BY LOCKING 223

A
3 h'
s X 2
P, P3
hll
P, P2
Py
NN
;T'
Q | !
q,L K« ’ya
] qz QZ 0/3 ;
a3 3
a0 p, P2 P3
/ 9 92 % 9a
(a) (b)
Fi1G. 8

digraph are the vertices p,,, q. of the P,, and Q, regions (see Fig. 8). There is an arc
from u to v if and only if (a) either u is a p,, or v is a g, (or both), and (b) the
T;-coordinate of u is smaller than the T;-coordinate of v. The construction is illustrated
in Fig. 8b. Finally, if C is a directed cycle corresponding to a simple undirected cycle
in G(r), we let B¢ be the union of all B;;, digraphs for all consecutive triples (73, T}, Tk)
of C. The result is the following:

THEOREM 4. 7 is safe if and only if

(a) the restriction of T to any two transactions is safe, and

(b) for all directed cycles C corresponding to undirected simple cycles of G(r), the

digraph Bc has a cycle.

Proof. We shall assume throughout the proof that condition (a) holds, as otherwise
both directions are easy. Suppose that r is unsafe, and yet (b) holds. Then there is a
schedule & such that <, has a simple cycle C. By condition (b), B¢ has a cycle.
Consider, however, the order whereby % enters (equivalently, leaves) the different
prisms P, Q,, etc., appearing in Bc. This order must be, by the construction of B,
consistent with the arcs in Bc. This, however, is a contradiction, since Bc was assumed
to have a cycle, and therefore to be inconsistent with any linear order.

Conversely, suppose that (b) does not hold; suppose, that is, that there is a
directed cycle C such that B¢ is acyclic. Let (p1, q1, - * *) be a linear order consistent
with Bc. We construct a nonserializable schedule /4 of = as follows: We first arrange
all transactions not appearing in C in some serial order. We then execute the
transactions in C by starting with all program counters to 0, and by successively
considering the next point in the order. If this point lies on the (T} T;)-plane, where
(T;, T;) € C, then we proceed by arranging the steps of 7; and then the steps of T; that
bring the state to the point considered. Since the order is consistent with B, this will
always be possible; after the last point we somehow schedule all remaining steps. It

224 CHRISTOS H. PAPADIMITRIOU

is easy to see that, if 4 is the resulting schedule, then (7, <;) contains the cycle C,
and therefore h is not serializable. 0

Based on Theorem 4, we obtain extremely easy proofs of correctness of several
locking policies:

COROLLARY 1. Any transaction system obeying 2PL is safe.

Proof. That the two-transaction subsystems of any transaction system that obeys
2PL is safe follows trivially from Theorem 2, as discussed in the end of the previous
section. Property (b) of Theorem 4 follows from the fact in 2PL the graphs B are
complete bipartite. 0

COROLLARY 2. Any transaction system obeying TP is safe.

Proof. Since the common variables of any two transactions form a rooted tree in
TP, condition (a) of Theorem 4 is trivial. Condition (b) also follows easily from the
tree structure. O

Consider now the special case in which any two transactions have at most one
variable in common—or, equivalently, the closure of the forbidden region on all planes
is either empty or rectangular.

CoROLLARY 3. Under the above assumption 7 is safe if and only if each of the
restrictions of T to every biconnected component of G () obeys 2PL.

Another consequence of Theorem 4 is an algorithm for checking a transaction
system for safety.

COROLLARY 4. Checking a transaction system T for safety can be done in time
polynomial in the number of minimal cycles of G (7).

In general, of course, G(r) will have an exponential number of minimal cycles,
and thus Corollary 7 does not imply a genuine polynomial-time algorithm. In fact,
such an algorithm is quite unlikely in view of the next result:

THEOREM 5. Testing a transaction system for nonsafety is NP-complete.

Proof. Recently Fortune, Hopcroft and Wyllie [FHW] showed that almost all
digraph homeomorphism problems—specifically, those whose pattern is not a rooted
tree of depth one—are NP-complete. From their results one immediately deduces
that the following problem is NP-complete:

“Given a digraph D =(V, A) and four arcs (v1, v2), (v2, v3), (U1, U2), (U2, Us)€EA,
is there a simple cycle C of D such that C = (vy, v, U3, * * *, U1, U, U3, * * + 5, V1)?”

We shall reduce this problem to the nonsafety problem. Given a digraph D =
(V, A) and four arcs (v1, v2), (v2, v3), (U1, U2), (42, us) we shall construct a locked
transaction system 7 such that C exists in D if and only if 7 is unsafe. 7 has one
transaction T, for each node v of D. Let us assume that for no nodes u, v € V, does
A contain both (4, v) and (v, u)—that is, ANA" "= (it is easily seen that this is
not a loss of generality, since a new node can always be placed in the middle of an
arc). We shall next describe the graphs B, for (4, v), (v, w)e A. Unless (i, v, w) =
(u1, u2, u3) or (vy, vz, v3), By, is the graph shown in Fig. 9a, realized as shown in
Fig. 9b. For these two triples, B,,,,, is as shown in Fig. 9c, realized as in Fig. 9d.

Consider now any simple cycle in D. The corresponding union of the B,,,,’s will
consist of concatenations of graphs such as in Figs. 9a and 9c. It is easy to see that
such a concatenation is acyclic only if it contains at least two copies of Fig. 9c, that
is, only if C passes through (vy, v2, v3) and (u1, us, us). Conversely, consider any
directed cycle C, whose undirected version is a simple cycle in G(7), such that B¢ is
acyclic. If, however, any arc (u, v) of C is not in A—that is, (v, u) € A—then B¢ will
contain two complete bipartite graphs corresponding to (u, v), its predecessors and
its successor edge in C (by the construction in Fig. 9b, d). It follows easily that B¢
could not be acyclic. Thus all arcs in C are also in A, and in fact, since B¢ was acyclic,
all four (v, v3), (v2, v3), (41, Uz), and (uz, usz) are in C. The theorem follows. 0O

CONCURRENCY CONTROL BY LOCKING 225

TU
/ o
p p' p‘__I—‘
1 'TV
a q q
I S
(a)
T (b)
, T,
P P Y p‘],
p 1——|
q q' -
(c) [‘[q T
\ T,
(d)
F1G. 9

Consequently, we can view Corollary 3 as suggesting an efficient algorithm for a
special case of the NP-complete problem of nonsafety—namely, the case in which
any two transactions interact by at most one entity. The result is tight, since the proof
of Theorem 5 (see Figs. 9b, d) suggests that the problem remains NP-complete when
two entities per pair of transactions are allowed.

[AHU]

[BGRP]

(CD]
[CES]
[EGLT1]

[EGLT2]
[FHW]

[GI]
[GLPT]
[Ka]

(KM]

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

P. A. BERNSTEIN, M. GOODMAN, J. B. ROTHNIE AND C. H. PAPADIMITRIOU, Analysis
of Serializability of SSD-1: A system of distributed databases (The fully redundant case),
IEEE Trans. Software Engng, SE-4 (1978), pp. 154-168.

E. G. COFFMAN, JR. AND P. J. DENNING, Operating Systems Theory, Prentice-Hall, Engle-
wood Cliffs, NJ, 1973.

E. G. COFFMAN, JR., M. J. ELPHICK AND A. SHOSHANI, Systems deadlock, Comput.
Surveys, 3 (1971), pp. 67-68.

K. P. ESWARAN, J. N. GRAY, R. A. LORIE AND I. L. TRAIGER, The notions of consistency
and predicate locks in a database system, Comm. ACM, 19 (1976), pp. 624-633.

, Onthenotions of consistency and predicate locks,IBM Research ReportRJ 1487,1974.

S. FORTUNE, J. E. HOPCROFT AND J. WYLLIE, The directed subgraph homeomorphism
problem, Theoret. Comput. Sci. 10 (1980), pp. 111-121.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Fransisco, 1978.

J. N. GRAY, R. A. LORIE, G. R. PutzOoLU AND 1. L. TRAIGER, Granularity of locks and
degrees of consistency in a shared data base, IBM Research Report RJ 1654, 1975.

R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R. E. Miller and J. W. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.

R. M. KARP AND R. E. MILLER, Properties of a model for parallel computations: Determinacy,
termination and queuing, SIAM J. Appl. Math., 14 (1966), pp. 1390-1410.

226

[KP]
[LW]
tLP]
[Pal]
[Pa2]
[Pa3]
[PBR]
[SK]

[SLR]

[Ya]

[YPK]

CHRISTOS H. PAPADIMITRIOU

H. T. KuNG AND C. H. PAPADIMITRIOU, An optimality theory of concurrency control for
databases, Proc. ACM-SIGMOD Conference, 1979,

Y. E. LIEN AND P. H. WEINBERGER Consistency, concurrency, and crash recovery, Proc.
ACM-SIGMOD Conference, 1978,

W. Lipskl, JR. AND C. H. PAPADIMITRIOU, A fast algorithm for testing for safety and
deadlocks in locked transaction systems, J. Algorithms, 2 (1981), pp. 211-226.

C. H. PAPADIMITRIOU, Serializability of concurrent updates, J. Assoc. Comput. Mach., 26
(1979), pp. 631-653.

————, The Theory of Database Concurrency Control, monograph, in preparation.

, On the power of locking, Proc. 1981 SIGMOD Conference

C. H. PAPADIMITRIOU, P. A. BERNSTEIN AND J. B. ROTHNIE, Computational problems
related to database concurrency control, Conference on Theoretical Computer Science,
University of Waterloo, Ontario, 1977, pp. 275-282.

A. SILBERCHATZ AND Z. KEDEM, Consistency in hierarchical database systems, J. Assoc.
Comput. Mach., 27 (1980), pp. 72-80.

R. E. STEARNS, P. M. LEWiSs AND D. J. ROSENKRANTZ, Concurrency control for database
systems, in Proc. 17th Annual Symposium on Foundations of Computer Science, 1976, pp.
19-32.

M. YANNAKAKIS, A theory of safe locking policies in database systems, J. Assoc. Comput.
Mach., to appear.

M. YANNAKAKIS, C. H. PAPADIMITRIOU AND H. T. KUNG, Locking policies: Safety and
freedom from deadlock, Proc. 20th ACM Conference on Foundations of Computer Science,
1979, pp. 283-287.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, May 1983 0097-5397/83/1202-0002 $01.25/0

DYNAMIC BIN PACKING*
E. G. COFFMAN, Jr.*, M. R. GAREY{ AND D. S. JOHNSONY

Abstract. Motivated by potential applications to computer storage allocation, we generalize the classical
one-dimensional bin packing model to include dynamic arrivals and departures of items over time. Within
this setting, we prove close upper and lower bounds on the worst-case performance of the commonly used
First Fit packing algorithm, and, using adversary-type arguments, we show that no on-line packing algorithm
can satisfy a substantially better performance bound than that for First Fit.

Key words. approximation algorithms, memory management, performance evaluation, storage
allocation, worst-case bounds

1. Introduction. One-dimensional bin packing plays an important role in a large
variety of combinatorial problems arising in operations research and computer science.
The classical model [4] assumes an unbounded collection of equal-capacity bins and
a given set of items, each of which has a size no larger than the common bin capacity.
The optimization problem, which is easily seen to be NP-hard [2], is to pack the given
items into as few bins as possible, subject to the requirement that the items in each
bin sum to no more than the bin capacity. Most work on this problem and its many
variants (e.g., see [3]) has concentrated on proving close bounds on the worst-case
performance of simple ‘“‘approximation algorithms” that might be expected to construct
near-optimal packings.

In certain potential applications, such as those relating to computer storage
allocation, the classical model fails to be realistic in that dynamic arrivals and departures
of items are not considered; that is, a model is needed in which items arrive over
time, reside for varying amounts of time in the bins to which they are assigned, and
then depart from the packing. The contribution of this paper is the formulation of
such a ‘“dynamic” bin packing model and the analysis of some approximation
algorithms within this context. A summary of our results can be found at the
end of § 2.

As mentioned, a principal motivation for our model is dynamic storage allocation
in computer systems. Here the items are records or files, and the bins are storage
units, such as disk cylinders, limited by the property that records cannot effectively
be “overlapped” from one unit to the next. The problem we address through our
model is that of how to distribute records among storage units so that at all times
each unit will have sufficient space to hold all the records assigned to it. We explicitly
assume that a record can always be packed in any storage unit that has sufficient total
space available for it, and hence we do not consider the related problem of how one
manages space within a storage unit in order to avoid fragmentation or ‘“‘checkerboard-
ing”’ [5] that might prevent a record from fitting even though the total space available
would be sufficient for it.

2. The model. Our model is a natural extension of the classical static one-
dimensional bin packing model. The items to be packed will be described by a finite
sequence or list L =(py, ps,**+,pn). Each item (or piece) p; in L corresponds to a
triple (a;, d;, s;), where a; is the arrival time for p,, d; is its departure time, and s; is its
size. The item p; resides in the packing for the time interval [a;, d;), and we assume

* Received by the editors July 29, 1981, and in revised form May 27, 1982.
T Bell Laboratories, Murray Hill, New Jersey 07974.

227

228 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

that d; —a; >0 for all i. Without loss of generality, the common bin capacity will be
taken always to be 1, so we also assume that each s; satisfies 0 <s; =1. Finally, we
shall assume that the items in L are ordered so that a;=a>=---=a,.

Motivated by applications such as dynamic storage allocation, we shall restrict
our attention to packing rules that do not move items from one bin to another once
they have been packed, and that operate on-line, i.e., that pack items as they arrive
without any knowledge of future arrivals. Thus such an algorithm will assign the items
in L to bins in order of increasing index, under the single constraint that at each time
t there be no bin that contains “currently active” items whose sizes sum to more than
1. We use L, to denote the sublist of items in L that are active at time ¢ (i.e., for
which a; =t <d,').

Given this setting, it is natural that a First Fit (FF) packing rule be of central
interest. The FF rule to be analyzed maintains two lists of bins: a list of currently
empty bins and a list of currently occupied bins, with the latter ordered so that the
times of most recent transition from empty to nonempty are nondecreasing. We use
B, B, - - + to denote the bins in the occupied-bin list, in this order, and /; to denote
the level (sum of item sizes) for B, taking care always to ensure that the time of
definition is clear from context.

For each i, the FF rule attempts to pack p; at time a; into the first occupied bin
(one with lowest index) that has sufficient available space for p; (i.e., whose level /;
satisfies 1 —/; =s;). If no such occupied bin exists, p; is placed into an empty bin and
that bin is appended to the list of occupied bins. The departure of p; at time d; simply
causes an increase by the amount s; in the available space in the bin in which it was
packed, and, if the bin becomes empty at that time, it is moved to the list of empty
bins. It is readily seen that the ordering for occupied bins described above is maintained
by this procedure.

Let FF (L, t) denote the number of occupied bins in the FF packing of L at time
t. Our measure of performance for the FF rule applied to L is defined by

FF(L)= max FF (L,1).

In words, FF (L) is the maximum number of occupied bins ever required by FF in
processing L. This definition and notation can be extended to an arbitrary packing
algorithm A simply by replacing FF with A.

An example illustrating the application of FF is shown in Fig. 1. Let m be an
integer divisible by 6, and let ¢ =1/2m. The list L,, is described as follows: First, m
items of size 5— ¢, followed by m items of size 1—¢, followed by m items of size 2¢
arrive. These are packed by FF as shown in Fig. 1(a). Then, all the items of size 3—¢
depart, and a sequence of m items of sizes %, i+e 3, %+s, s, 1, 3+e¢ arrives. Figure
1(b) shows the FF packing at this point, with the number of nonempty bins having
increased from m to 3m/2. Finally, all the items of size j+e and 3—¢ depart, and
5m/6 items of size 1 arrive. The final FF packing, now with 7m/3 nonempty bins, is
shown in Fig. 1(c). Thus FF (L,,)=7m/3, with the maximum being achieved when
the last item arrives.

We shall be comparing FF (L) (or, in general, A(L)) with two different measures
of how tightly the items in L can be packed. The first, OPTg (L), is the maximum
number of bins ever required in dynamically packing L when the current set of items
is repacked into the minimum possible number of bins each time a new item arrives.
The second, OPTng (L), is the maximum number of bins ever required in dynamically
packing L when no rearrangement of items is allowed but the items are otherwise

DYNAMIC BIN PACKING 229

packed optimally, i.e., so as to achieve the least possible value of this maximum over
all such packings of L, with L assumed to be fixed and known in advance. (For
OPTx (L) it is irrelevant whether or not L is known in advance.) Clearly OPTg (L) =
OPTnr (L) for all lists L. For the example given above, it is not difficult to see that
OPTR (L,,) =m+1 and for m divisible by 9, OPTng (L) = (10m/9)+1.

ZGL

1/3-€| |I/3-€ 1/3-€
(a) [X X
2/3-€| [2/3-€ 2/3-€
| 2 m
26\ . / L X X oo A
(b) I/3+€ 1/3+€
2/3-€| [2/3-€ 2/3-€
173 173
| 2 m m+| 3m/2
(c) / XX} /| o0 % | |eoe]| |
2€—m / 41173 173
|

2 m m+| 3m/2 ™Tm/3
F1G. 1. An illustration of the application of FF for dynamic bin packing.

As in earlier bin packing studies, our specific comparisons will focus on asymptotic
values of certain ‘“‘performance ratios.” For an arbitrary packing algorithm A, let

A(L)
Wrn(A)=sup ————
ralA)= 3P OPT, (L)
where the supremum is taken over all sequences of n triples (a;, d,, s;) satisfying a; =0,
di>a,0<s;=1,forl1=i=n,and a;=a,='''=a, We then define

Wgr(A) =lim sup Wg,.(A).

Similar definitions apply to Wxgr(A). Note that the lists L,, in our example show that
Wkr (FF)=7/3 and that Wyr (FF)=21/10.

The above notation will be extended in a natural way to account for situations
in which there is an upper bound on maximum item size. In particular, we use W (A, k)
to denote the asymptotic bound for algorithm A in the case that all item sizes s; satisfy
si=1/k, k an integer. Clearly Wr(A) = Wr(A, 1).

A standard approach to obtaining bounds on the quantity Wk has been to prove
the somewhat stronger result that for all L

A(L)=a - OPTg (L)+8

for constants @ and 3. Then Wgr(A) is bounded above by the multiplicative constant
a. This will also be our approach, although we shall omit the rather tedious derivations
of the less interesting additive constants 3, primarily in order to keep the paper down
to manageable size.

230 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

The organization of the remainder of the paper and an outline of the main results
are as follows:
In § 3 we derive upper bounds for Wx (FF, k). Specifically, we show that

k+1 1 k2
< =
Wk (FF, k)= p +k_1logk2_k+1, k=2,
5 3. J13-1
~2.897.

N=>+>
WR(FFa) 2 zlog 2

(All logarithms in this paper are to base e.) We also describe a slightly modified version
of FF for which Wy is bounded above by 2.788 - - - .
In § 4, we derive the following lower bounds for Wg (FF, k):

Wi (FF, k)= 14 1

X F, k=2,

11
Wr(FF, 1) éz— =2.750.

The lower bound of 2.750 holds also for our modified version of FF.

In § 5 we go beyond the analysis of the single algorithm FF and prove lower
bounds on Wy that hold for arbitrary on-line packing algorithms. In particular, we
show that for any on-line algorithm A

k+1 1

Wr(A, k)= WNR(A,k)iT'{'m, k=2,

AZRIE]

Wir(A, 1)§§~2.388 JE

showing that the corresponding bounds for FF and our modified version of FF
are not too far from the best that one could hope for (even if comparison to the
nonrearranged optimum is more appropriate).

Section 6 then concludes the paper with a brief discussion of our results and some
directions for further research.

3. Upper bounds for First Fit. Since the proofs of the result for k£ =1 (the general
case) and k =2 differ substantially, we shall work out the results separately.
THEOREM 1. Fork =2,

k+1+ 1 | k>
k k-1 %k k+1

Proof. We shall show for any list L = (p1, pa, * * *, p.) satisfying s; = 1/k, 1 =i=n,
that

Wr(FF, k)=

FF(L)=a - OPTr (L)+0O(1)

where a is the upper bound given in the theorem statement and the constant
represented by O(1) is independent of L and n.

DYNAMIC BIN PACKING 231

We begin by observing that we can restrict our attention to lists L satisfying two
special properties. The first property is that

FF(L)=FF (L,a,)>FF (L,t), 0=t<a,,

i.e., that the maximum number of bins is used when the last item is packed and not
before. This is justified by noting that, if i is the least index such that FF (L, a;) =FF (L),
then the truncated list L' consisting of only the first i items in L satisfies FF (L") =FF (L)
and OPTx (L')=OPTg (L), and hence must violate the desired bound whenever L
does.

The second property is that no occupied bin ever becomes empty during the
process of applying FF to L. This is justified by noting that, if some occupied bin
becomes empty during the FF packing of L, say at time ¢, then the list L' formed from
L by deleting all items that were ever assigned to that bin prior to time ¢ will yield
exactly the same final packing as L, which implies by our first property that FF (L') =
FF (L), and will satisfy OPTg (L") =OPTg (L). Thus again it is the case that L' will
violate the desired bound whenever L does.

Therefore, without loss of generality, let L = (p1, p2, * * *, p) be any list satisfying
the above two properties and having s; =1/k for all i, 1=i=n. Let m =OPTx (L).
Notice that the second of our two properties implies that the index of an occupied
bin, determined from its position on the occupied-bin list, never changes during the
FF packing of L, so there will be no confusion when we refer to bin i (or B;) without
reference to a specific time. We shall preceed by deriving lower bounds on the size
of the smallest item that FF can possibly place in bin B; and on the level /; required
in B; whenever an item of size s is packed into some bin B; with j >i. These bounds
will then be used in conjunction with the requirement that no item size exceed 1/k
and the fact that the sum of all item sizes is at most OPTg (L) = m to obtain an upper
bound on FF (L).

Let h; denote the size of the smallest item that FF ever places in bin B;, and
suppose that such an item p is placed in B; at time . Then at that time the levels of
all lower-indexed bins must exceed 1 - #;, or FF would have placed p in one of them
instead. Furthermore, since no item size exceeds 1/k, every such preceding bin B;
must contain at least k items (or p would fit there as a kth item) and hence the level
of B; must also be at least k - ;. Thus, at the time p is packed, we must have

(1) l,' = max {1 —hj, k- hi}, l<]

In particular, using just the fact that /; >1-h; and the fact that the sum of all item
sizes cannot exceed m, we obtain

(G-DQA-h)+h;<m,

which implies, for j >2,
m—1
i>1———.
h; =2
Setting j equal to i in this inequality and substituting into (1), we conclude that when
p is packed into B,

@) wzmax(1-nk-f1-(2)}), i<

We now consider the situation in more detail when j >m (k +1)/k (the theorem
holds trivially when there is no such j). In this case, at the time a piece of size A; is

232 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

placed in B;, we must have

m(k+1)/k j—1
3) Y L+ Y L+h=m
i=1 i=1l+m(k+1)/k

Using (2) to bound the first summation, we obtain

m(k+1)/k A m(k+1)/k m— 1
@ LohzYa-m+k x o (1-55)
i=1 i=1 i=A+1 i—2
where
| k(m=1) J
))“lk—1+h,.+2

is the dividing point between those values of i for which 1—#A; gives the maximum
and those values of i for which k - (1—(m —1)/(i —2)) gives the maximum. Notice
that A <m(k +1)/k,since j =1+ m(k +1)/k implies h; >1/(k +1). Simplifying (4) and
using the conventional logarithmic approximation for the harmonic numbers, we have

mk+1) (k+1)m
k k(A —2)

Substituting (5) into the above and applying routine manipulations, we eventually
arrive at

m(k+1)/k

D l,-;)«(l—h,-)+k(

i=1

) k-(m—1)-log +o(1).

mk+1)/k +1 2
Y Lzm—km log(kk2 h; +kk2

1
) +0(1).
i=1
Substituting this expression back into (3) and replacing /;, i >m(k +1)/k, by the lower
bound k - A;, we finally have

i1 k+1, k-
©6) S h mlog(by

i=1+m(k+1)/k

Inequality (6) is the key to completing the proof. It implicitly provides a lower
bound for every hj, j >m(k +1)/k. We shall use these lower bounds to obtain a lower
bound on the sum of the A;’s for i <j, which in turn will be used to determine an
upper bound on the largest j for which 4; can be less than or equal to 1/k, the
maximum piece size allowed. That bound on j will then be our desired bound for FF (L).

To do this, let the function A (j) be defined only at integer points j =m (k +1)/k
by h(m(k+1)/k)=1/(k+1)andforj>m(k +1)/k

1)+0(1)

i-1 2_
™) > h=miog(Sr()+).

i=m(k+1)/k

It is not difficult to see that
j—1 j—1
8 X k()=) hi+O(1).

i=m(k+1)/k i=1+m(k+1)/k

Now, replacing (7) by the continuous version

2-_.
© Fy=m log (S 70+ 3)

DYNAMIC BIN PACKING 233

where

* 1
Fu=[fo)dy and fomk+D/0) =117
(k+Dm/k k
it is routine to verify that

10) FGi)= ¥ ho+oMm= Y m+oq)

i=m(k+1)/k i=1+m(k+1)/k

The solution to the differential equation (9) for F(x) is readily found to be

k2 1 —D(x/m—(k+
(11) F(JC)=m~log{k2 - me(k Dx/m—(k 1)/k)}

Hence, from (10) and (11), we have

(12) ig h~2m'log{ K? L e(k—l)(j/m_(k+l)/k)}—1+O(1)
imtemk+D/k k*-1 k*-1 ’

To complete the proof, we observe that the right-hand side of (6) is an increasing
function of 4;, and thus we can use the bound /; =1/k to obtain from (6) that
i1 3

hi=m - log
i=1+m(k+1)/k

LEOT

Combining this expression with (12) evaluated at j =FF (L), we have

m - log 3 1Zm-10g{ k? 1 e(k—l)(FF(L)/m—(k+1)/k)}_1+O(1)
> k=1 k*-1 ’
from which
k+1 1 k?
= +
FF(L)"'"(k +k—1logk2—k+1> ow

follows by straightforward algebra. 0O
In § 4 we will construct examples that come rather close to the upper bounds
given by Theorem 1. For example, we will show that

1.75= Wg (FF, 2)=3+log3~1.788.

We now examine the unrestricted (k = 1) case. It is easy to prove that Wy (FF)=3.
Specifically, the following two observations suffice. First, any item packed in a bin B;
with j >2 - OPTg (L) must have size larger than 3, since a piece of size s <3 could
not be packed in such a bin unless each of the first 2 - OPTg (L) bins were filled to a
level of at least 1—s >3, which would imply that the cumulative size of all items in
the packing was greater than OPTg (L). The bound of 3 then follows from the
observation that there can be at most OPTg (L) pieces larger than 3, since more than
that number could not possibly fit in OPTg (L) bins.

One might expect that a similar argument, using the fact that there can be at
most OPTy (L) pieces larger than 3, would allow us to conclude that Wk (FF) is
bounded above by 1+ Wk (FF, 2). Indeed, such an argument is easily seen to work
for the modified version of FF that segregates pieces larger than 3 from the other
pieces, always placing such an item in a bin by itself and never placing other items
with it. In this case, we know from Theorem 1 that the items that do not exceed %

234 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

will never occupy more than Wx (FF, 2) - OPTg (L)+ O(1) bins and that the items
larger than 3 will never occupy more than OPTx (L) bins, so we have immediately that

Wr (FFM)=3+log $~2.788,

where FFM denotes this modified version of FF.

Unfortunately, the situation with FF itself is not so simple. The difficulty arises
from the possibility of constructing lists that end up with no active items larger than
3, but that use items larger than 3 temporarily in order to force an FF packing with
more than Wx (FF, 2) - OPTx (L) bins. In particular, it is not difficult to construct such
lists that require a number of bins arbitrarily close to 2 - OPTg (L). Since the type of
upper bound argument used above would still allow for an additional OPTx (L) pieces
larger than 3 being placed beyond this point, we would have no improvement what-
soever over the trivial bound of 3 for Wx (FF). Using considerably more subtle
arguments, we shall reduce this somewhat to approximately 2.897.

THEOREM 2. Define the constant ¢ =3 log (V13 —1)/2)~.397. We have

Wgr (FF)=3+y ~2.897.

Proof. Let W denote the set of bins with indices larger than 3m/2, where
m = OPT (L). We begin with the following preliminary result.

CLAamM 2.1. Suppose a total of | items has been packed by FF in the bins of W.
Let A(l) denote their cumulative size, and let g, denote the size of the Ith such item.
Then there exists a constant ¢ such that

(13) A() gg[e”"c)”m ~1]
and
(14) gl g% e2(l—c)/3m.

Proof of Claim 2.1. When the [th item, say p,, is packed in W, the first |3m/2|
bins must each be filled to a level exceeding 1 —s;. Thus we must have

(15) (1-g)| 2|+ % g=m

Analogous to the continuous approximation made in the proof of Theorem 1, let g(x)
and G(x) be defined by

(16) (1-g) 2 4G =m

and

x

6= g dr

0

with g(0)=3 (any item placed beyond bin 3m/2 must be larger than 3). Then it is
easily verified that, for any integer [=1,

(17) G)=A()+0(1)

and

(18) 2(l) _<—_g,+0(%).

DYNAMIC BIN PACKING 235

The solution to the differential equation (16) for G is readily found to be

(19) G(x)=[—’2ﬁe2"/3m—1].

Thus from (17) we have

(20) A() ;’—Z—[J’”"‘ —1]+0(1)

and, by differentiating (19) and using (18),

1
S 1, 203m (_)
(21) gi=3¢ (0] m

The claim follows from (20) and (21) by observing that

- 1
p2V3m _ j20=0)/3m _ O(—)
m
for any constant c. [
We now show by contradiction that for all L,

FF (L)=G+¢)m+2c¢

where m = OPTg (L) and c is the constant in Claim 2.1. Thus suppose that this bound
is violated during the FF packing of some list L. As in the proof of Theorem 1, we
may assume that no occupied bin ever becomes empty during the FF packing of L,
and we may assume that the bound is violated for the first (and only) time when the
last item p, is packed. To simplify notation, we shall also assume that m is even;
although it should be clear that this does not affect the result in any significant way,
the arguments can be generalized essentially by replacing 3m/2 and 5m/2 by |3m/2]
and |5m/2] throughout.

The argument will concentrate on the structure of the packing beyond bin 3m/2.
Let (3m/2)+q be the index of the rightmost (highest-indexed) bin to contain an item
of size 3 or smaller during (0, a,]. Clearly q >m, for otherwise, since there can be
at most m items larger than %, we would have

5
FF (L)g%’fw +m §(§+¢)m.

Let p;, with s; =3, be any such item packed in bin (3m/2)+¢q, and let bin (3m/2)+r,
r =Zq, denote the rightmost nonempty bin at time a;, when p; is packed. Let P be the
set of items packed in bins to the right of bin (3m/2) +r during (0, a,]. Note that each
item in P is larger than 3, does not depart during (0, a,] (since that would create an
empty bin), and is the rightmost item at the time it is packed.

We call an item p; that is placed in a bin of W during [a;, a,] an a-item if there
exists some p; € P such that s; +s, =1 (i.e., p; and p, could fit in a single bin). Notice
that the size of each a-item is strictly between 3 and 3, because each is packed to the
right of bin 3m/2 and because each fits with some item from P. We are interested in
the a-items because they are among the items that might be packed with an item
from P in an optimal packing. We now show how the existence of a-items leads to
the desired contradiction; following that we shall deal with the case in which no
a-items exist.

236 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Let p, be the rightmost item in P that is small enough to fit with some a-item,
and consider any item p; € P that FF packs to the right of p,. Since p; is too large to
fit with any a-item, by the choice of p,, it follows that s; >s,. Now consider the set
Z, of bins from W that contain only a single item at time a,, when p,, is packed. The
items in bins of Z, at a, ar€ all larger than 1—s,, or p, would have been packed in
such a bin, and hence they are all larger than 1 —s;. Furthermore, any items that are
placed in bins of Z, after time a, either are larger than 1—s, >1—s; or are a-items
and hence must be larger than 1—s;, since p; is too large to fit with any a-items. Thus
we~conclude that no item in a bin of Z, at time a, can fit in the same bin with any
item packed to the right of p, by FF.

Let P' denote the set of items packed to the right of p, by FF. Each item in P’
is larger than 3 and thus must go in a separate bin in the optimal packing. No item
in Z, at time a, can fit in any of those bins and hence, since each is larger than 5
they must occupy at least z,/2 additional bins in the optimal packing, where z, =|Z,,|.
We then have

|P’]+%§m or |[Pl=m —%.
Therefore, if p, is packed by FF in bin (3m/2)++¢',
FF (L) -—+ +|P'|<5'" 2r'= 2
But 2¢' -z, is simply the number w of items in W at time a,, so we can write
(22) FF(L)=2" 5'" .

We now find an upper bound for w.
From Claim 2.1, the cumulative size of items in the packing at time a, is at least

(1 su) +A(W)>(1 su)'_+ [Z(W——c)/3m_1].

We know that p, is small enough to fit with some «a-item. Since there are at least r =q
occupied bins in W before any a-item is packed, we have g, as a lower bound to the
size of all a-items. Hence 1—s, = g,. Using q > ¢m and the bound in (14) to substitute
into the above bound on cumulative item size at time a,, we obtain the bound

m awm—c)/3m __rﬁ[eZ(w—c)/flm ~1]
2 2

Since this quantity can be no larger than m, we have

m _ _ m
____[62(01/m c)/3m+e2(w c)/3m]____§

2

By routine algebra, this inequality leads to

DYNAMIC BIN PACKING 237

Using 1—e” =y and log (x +y)=logx +y, x =1, y =0, this simplifies to
J13- 1) . («/E— 1
2 2

w=3m log()c+c§2(//m+3c.
Substituting this bound for w into (22), we obtain the desired contradiction.

It remains for us to handle the case when no a-items exist. In this case, we
consider the packing at time a;, and let Z; be the set of one-item bins in W at that
time. Since p; is a rightmost item of size 3 or less, all items in bins of Z; to the right
of p; at time a; are larger than 3. Furthermore, all items in bins of Z; to the left of p;
at time a; must also be larger than 3, Or p; would have been placed in one of those
bins. Therefore, no item in P can fit with any item in Z; at time a;. Since there are
no a-items, no item placed in a bin of Z; after time a; can fit with any item in P either,
and thus no item in a bin of Z; at time a, can fit with any item in P. Thus we have,
as before,

_Sm w

3m Z;
== - +
FF(L)= 2 +r+(m) D)

2
where w is the number of items in W at time a;. But, since s; =3, the cumulative size
of items in the packing at time a; is at least

3m Im m —e)/3m
(1—S,')7+A(w)37+5[e2< /am_q1,
Since this cannot exceed m, we then obtain

w=

3—mlo §+c
2 By7C

and hence, substituting into (22), we have

53 3 c (5
=(=+>1log=> —<(= +
FF (L) (2 4log2)m +2 (2+(//)m 2c,

as desired. O

4. Lower bounds for Wr (FF). In this section we again begin by considering
separately the case of Wr (FF, k), k =2.
THEOREM 3. For any k =2,
k+1 1
Wr (FF, k) 274'?.
Proof. The proof consists of showing that for arbitrarily large integers m we can
construct lists L with OPTx (L) =m such that

k:+k+1

k2
In the following we shall construct the list L and describe its FF processing at the
same time. The sum of the sizes of the items in the FF packing after each step will
be close to the maximum of m, and hence we shall specify the steps in terms of
“removing”’ certain items, ‘“‘forming’’ new items from the amount removed, and then
“packing” the newly formed items. The corresponding arrival and departure times
needed for a formal description of L in terms of triples (a; d;, s;) can be inferred
directly from this description.

FF(L)= m—2.

238 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

The construction is broken down into 3 successive stages, corresponding to the
initial packing process for bins 1 to m, bins m +1 to ((k+1)m/k)—2, and bins
((k +1)m/k)—1 to (k*+k +1)m/k*) —2. So that all these quantities will be integers,
we shall assume that m is a multiple of k°.

Stage 1. The construction begins simply by packing the first m bins completely
full with items of size ¢, where ¢ is a suitably chosen small positive number. Constraints
on the size of ¢ will be indicated in Stages 2 and 3 below.

Stage 2. In this stage we pack bins m +1 through ((k +1)m/k)—2. Just before
we pack bin m +i, 1=i{ =(m/k)—2, the current packing will be as follows:

(a) all bins have level exactly m/(m +i—1);

(b) each of bins 1 through m contains only e-items;

(c) for 1=j=i, bin m +j contains ¢ items of size (j/(m +j))+A and k —1 items

of size
1 m j)]
- +
k—l[m+i—1 t(m+j A

where ¢ is the least nonnegative integer such that this last item size is no
larger than 1/k, and A is a suitably small positive constant.
The first step in packing bin m + is to remove an amount equal to m/(m +i) X
(m +i—1) from each of the preceding m +i —1 bins. For bins 1 through m, we do
this simply by taking out a sufficient number of ¢-size items (the desired amount can
be obtained exactly if £ was chosen appropriately). For bin m +j, 1 =j <i, we remove
the k —1 “large” items from that bin and as many of the ‘“‘small” items as possible,
under the constraint that the total removed minus m/(m +i)(m +i — 1) be no larger
than (k —1)/k. Then all but m/(m +i)(m +i — 1) of this is formed into k — 1 identical
new large items, and these are repacked. This ‘“‘shaving” process, consisting of the
removal of some items in a bin, followed by the repacking of slightly smaller items
into that same bin, is performed one bin at a time for each of the bins m +j, 1 =j <.
We now prove, in a slightly more general form than is needed now, that the new large
items formed in this shaving process will indeed be repacked into the same bin by FF.
CLAM 3.1. If the current levels of all bins to the left of bin m +j are at least as
large as the new level for bin m +] and the new level for bin m +] is at least

1-—2 4
k(m+j)

then the new large items formed from bin m +j in the “shaving” process will be packed
back into bin m +j by First Fit.

Proof of Claim 3.1. Let a =(j/(m +j))+ A denote the size of the small items in
bin m +j, and let B denote the size of the newly formed large items. Note that the
rule used for determining 8 ensures that

A,

a 1
>,
(23) A k-1 k
for otherwise an additional small item would have been removed. The existence of
at least one additional small item is ensured by the lower bound on the level of bin
m +J, since

1 m 1
k—1(1_k(m+,')+A)>E‘

DYNAMIC BIN PACKING 239

We now show that 8 +1>1, where [is the least current level among the bins to the
left of bin m +j, so each of the large items will fail to fit in the preceding bins and
hence will be placed in bin m +j by FF, as required. The proof is divided into two cases:

Case 1. Suppose bin m +j has more than one small item remaining. Then, since
[is at least as large as the new level for bin m +j, we have

I=zk-1)B+2a
so, using (23),

B+1=kB +2a>k(B +k——l)>k(k) 1.

Case 2. Suppose bin m +j has exactly one small item remaining. Then we have

m
- = —+
k-1)B+az=1- Kom +7) A
which implies that
B= 1 (1—- m — I); m .
T k-1 km+j) m+j/ k(m+j)
Thus
m m
+il= +{1- +A)=1+ >1.
Bl k(m+j) (k(m+j) A

The claim follows. 0O

In the present setting, Claim 3.1 implies that the large items will always be
repacked as required, since the common bin level always exceeds k/(k +1) during
Stage 2, and for the claim to apply it need only exceed

m m k m-—2
- +AS1- +AS +A,
k(m+j) A k(+m_2) A k+1 2k A
A "1

which is less than k/(k + 1) for A sufficiently small.

The second step in packing bin m +i is to form new items from the total of
m/(m +i) that has been shaved off the preceding bins, so that these new items will
be packed into bin m +i by FF and will have the required properties. All we do in
this step is form items of size (i/(m +i))+A until the amount remaining does not
exceed (k —1)/k, and that remaining amount is then formed into k —1 equal-sized
large items. Given Claim 2 to follow and the specified levels of the preceding bins, it
should be apparent that this can be done and that the items will all be placed in bin
m +i by FF. Furthermore, the packing has the overall form required for us to go on
tobin m +i+1.

CLamM 3.2. If the integer t is chosen as small as possible so that

k— 1 m i
+A)=(k~
k m+z t(m+i A) (=18,
then
el

(i.e., the “large” item formed above is indeed a legal large item).

240 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Proof of Claim 3.2. The upper bound on S is necessarily satisfied by the way in
which B is defined, so we need only verify that 8 is not smaller than (i/(m +i))+A.
Note first that r must be at least 1, since i <m/k implies

m - k >k—l
m+i k+1 k

We now consider two cases.
Case 1. If1=i<(k—1)m/(k*—k +1), we have

i k-1
+A<
m+i A K’

(for A suitably small). Thus 8 < (i/(m +i))+ A would imply

i

i k-1
(k“l)ﬂ +W+A<k(m+

k ki

_+A)<
l

contradicting the minimality of ¢,
Case 2. If (k —1)m/(k*>—k +1) =i <m/k, then

k-l 1 A<

k> Tm+i k+1
and

k _ m _kK-k+1

k+1 m+i~ k>
Thus

m _(i,)<k2—k+2—k<k—1
m+i \m+i k> kT Tk

so ¢t must be equal to 1. Therefore

1 m i 1 i
3“k—1(m+i_(m+i+A>)>k+1>m+f+A

as required. [

In order to prepare for Stage 3 after packing bin ((k +1)m/k)—2, we carry out
the “shaving” step for the next bin but do not pack any items into that bin. Thus, at
the end of Stage 2, we have items in the first ((k +1)m/k)—2 bins, and these bins are
all at alevelslightly above k/(k + 1). Specifically, the level of each of these bins is exactly

km
k+1)m—k
and hence the sum of all the items in the bins is

mk

Mkt)m—k

Stage 3. In this stage, all bins beyond bin ((k + 1)m/k)—2 will be packed with
k items larger than 1/(k + 1), with all items going into the same bin having the same

DYNAMIC BIN PACKING 241

size and being essentially as small as possible. However, due to the “shaving” constraint
given in Claim 3.1, it will not be possible to maintain the levels of bins 1 through
((k +1)m/k)—2 at the same value, as was done during Stage 2. In order to shave
some amount off the level of bin m +J, it is necessary that the level of that bin (and
all preceding bins) be at least

m

(24) 1 “om)

+A.

Thus we will never reduce the level of bin m +j below this value. This constraint has
no effect on the first m bins, since the desired amount can always be removed from
these bins simply by removing a suitable number of e-sized items (i.e., there is no
repacking involved in the shaving process).

For sequences h;, 8, and A, i =((k +1)m/k)—1,- -, (k> +k +1)m/k*) -2, to
be specified below, pass i —((k +1)m/k)+2 of Stage 3 consists simply of ‘“‘shaving”
8, from the levels of each of bins 1 through A, forming k items of size A; from the
amount removed, and then packing those k items into bin i. The shaving process is
carried out in exactly the same manner as described for Stage 2, and we shall verify
below that the lower bound (24) on bin levels is satisfied, so that the shaving can
indeed be done in this manner.

Let (i), i=((k+1)ym/k)—1, denote the least bin level just following pass i —
((k +1)m/k)+2. From the above description, we will have

km i

25 (iYy="7—7"——- 5.
(25) © (k+1)m—k j=<(k+1z):m/k)—1 !
We now define the sequences 4;, §;, and A; as follows:

m
T k+1)’m -k i +2)

h;
mk?>

o S G m kPG +)] [k + DPm —K%G D]

(where we take h;_y=1/(k+1) for i = ((k +1)m/k)—1), and A; is the largest index,
A =((k +1)m/k)—2, such that (i) is not smaller than the minimum level that we are
allowing in bin A;, which by (24) is

m
1-24A.
oA

This choice of A; ensures that the shaving process can be carried out as required. From
(24), (25) and the definition of 8; as #; — h;_1, we have A; as the largest index satisfying

m km d
1-—+A=l(i)=——"——— J
kA; @ (k+1)m—k j=<<k+1z):m/k)—1 !
km 1
(26) "(k+1)m—k_(h‘_k+1)

k2
= T Dm ke

242 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Hence

m

k(hi+A_(k +1)2mk—k(k +1))

m

A,':

27)

%

-1

kz
hi—)
k((k+1)°m—k(k+1)
for A suitably small.
To see that h; = 1/k, we use the fact that i =<((k>+k + 1)m/k?) —2 to obtain

m
(k+1)m —k*((k*+k +1)m/k?)

m m l

hi

A

Tkt 0Pm—(k+k+Lm km &k

To show that the k items of size h; created during pass i —((k +1)m/k)+2 of
Stage 3 will be placed into bin i by FF, we need to show that h;+1/(i)>1 and that
h;>1/(k +1). The first of these follows directly from (26), which yields

k2

hi+l(l)=1+(k+1)2m—k(k+1)>1'

The second follows from the definition of A; and the fact that i > ((k + 1)m/k)—2,
since we have

m _ m _ 1
k+12°m—k*((k+D)m/k) (k+1)m k+1

h; >

Finally, we must prove that the sum of the sizes of all the items in the packing
just following each pass of Stage 3 remains no more than m. Since we remove a total
of A;8; and add kh; during pass i —((k +1)m/k)+2, it is sufficient to show that for
each i

mk i
-+ kh;—A8;)=m,
" (k+1)m—k f=((k+1)m/k)—1(i AB) = m
or:
CLAaM 3.3,
i mk (k+1)m (K> +k+1)m
kh;—A;8;) = . —lsis——F—-2.
f=((k+lz):m/k)—1(i~ A) (k+1)m—k k k2

Proof of Claim 3.3. We begin by considering individual terms in the summation.
By (27), we have

m

2
k(h" C(k+ l)zmk—k(k + 1))

k‘h,»~)\,~6,~§k~h,~—6,~ _1 .

DYNAMIC BIN PACKING 243

Using 8; = k’hh;_1/m, we obtain
khh

2
k(h"_(k +1)2mk~k(k +1)>

<kh;—kh;_1+86; = (k +1)3;.

k -hj—)\,-ﬁ,-ékh,-— +6j

Thus
(khj —A8)) = (k +1)) S;
j=((k+1)m/k)—1 i=(k+1)m/k)—1
_ 1\ (LJ&.) _1 mk
= e+ 1)k k+1>=(k+1) kK k+1) k Gkt Dm—k’
as required. [

Thus the First Fit packing proceeds as described during Stages 1, 2 and 3, and
it requires ((k*+k +1)m/k*) —2 bins. Furthermore, the sum of the sizes of the items
in the packing at any point is no more than m. It remains for us to demonstrate that
the optimal packing at each point would not encounter “fitting”’ problems that would
force it to use more than m bins. However, because of the large number of e-size
items during all three stages, it is easy to see that such fitting problems do not arise.
A packing into m bins can always be obtained from the FF packing by moving the
g-size items into bins m + 1 through 2m, filling each bin exactly to level 1 (or slightly
less, if the sum of the current item sizes is less than m), which can be done if ¢ is
chosen suitably small. Thus the optimum packing never needs more than m bins, and
the stated bound on Wx (FF, k) follows. This completes the proof of Theorem 3. [

We are now ready to go on to the case of k =1. We shall first show how the
7m/4 construction just described for k =2 can be extended to an 11m/4 construction
for k = 1, by appropriately adding on about m items larger than 3. Following this, we
sketch a different (and more complicated) construction that can be used to strengthen
the lower bound.

THEOREM 4,

Wg (FF) =4

Proof. The construction will be described in the same format as used in the proof
of Theorem 3 and will be composed of three stages.

Stage 1. For m +1=i=(7m/4)—-2, let «; denote the size of the smallest item in
bin i at the end of the (7m/4)—2 construction. Note that

a,-=£;,r—n—+A, m+1§i§§ﬂ—2;
i 2
m 3m Tm
== —_——lsE ==
w=hs a2y 2 1EIELCZ

Our first stage is identical with the (7m/4)—2 construction except that instead of
packing two items of size 3 in bin (7m/4)—2, we only pack a single item of size

1—agma-3

into that bin. This item will not fit in any of the preceding bins since their levels all
exceed 5 and this item is itself larger than 1

244 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Stage 2. For i=(Tm/4)—1,--+,(5m/2)—6, we pack bin { with a single item
larger than 3 by executing the following steps, where u (i) is defined by
7
u(i)= —2'f —4—i,

Step 1. Remove all but a single item of size «,,) from bin u (i) and remove items
of size ¢ totaling

Ay (i) ~ Ay (i)-1

from each of bins 1 through m.

Step 2. Form a new item of size 1 —a,)—1 from the amount removed and pack
it according to FF into bin i.

To verify that the new item will actually be packed into bin i by FF, we observe
that at the conclusion of Stage 1 all bins are filled to a level greater than a« (7,/4)-3.
Therefore, after applying Step 1 prior to packing bin , bins 1 through m will all be
filled to a level greater than

A (Tm/4)-3) [eu) —@ui-1]=au@-1-
i=(Tm/4)-1
Since bins m +1 through u (i) —1, and bins (7m/4)—2 through { — 1, are all at levels
greater than 1, and since bins u (i) through (7m/4)—3 are all at levels of at least a,,),
it follows that the new item of size 1 —a,)-1 Will not fit in any of these bins and thus
will be packed in bin i by FF.

To verify that the amount removed in Step 1 is always larger than the size of the
new item formed in Step 2, we observe that the amount removed from bin u(i) is
always at least a,(;), and hence it suffices to show that

m (i)~ uiy-1) + winy > 1 —aui-1.

We do this by proving the following:
Cram 4.1. Form+1<j=(Tm/4)-3,

m(af—aj_1)+aj +aj_1 >1.

Proof of Claim 4.1. We consider three cases.
Case 1. 3m/2=j=(7m/4)-3. In this case, we have

m m
m(a,~—-a,~-1)=m(9m _4(]+2)_9m —4(]+1))

2

4dm am? _

“[Om =4 +2)9m -4+)] Bml-Bm]

Since a; and «;-1 both exceed %, the result follows.
Case 2. j =(3m/2)—1. In this case, we have

4
5

4dm
3m—4

m m-4
3m—-4 3m—4

m(aj—aj_1)=m()-mA= -mA
which, by itself, exceeds 1 for A sufficiently small.
Case 3. m+1<j=(3m/2)—2. In this case, we have

m(a;— ;1) = m(lﬁﬁ"%ﬂ) = ’"(f(fni 1))'

DYNAMIC BIN PACKING 245

Thus
2 ol .
m-+2j(j-1)-m2j-1)
e T . T “+
m(a;—aj_1)+a;+a;_y -1 2A
SNLL G
jG-1

and the claim is proved. 0O

It remains for us to show that, at any point during Stage 2, there exists an optimum
packing into m or fewer bins. We already know that the sum of the sizes of the items
in the FF packing is never more than m, but we still have to show that “fitting”
problems do not force an optimum packing to use more than m bins. To show this
it suffices to show that the items to the right of bin m in the FF packing can always
be packed into m bins, since any gaps in partially filled bins in such a packing can be
filled exactly using items of size ¢ from bins 1 through m (for a suitably chosen &).
Indeed, it follows immediately from our construction that the items to the right of
bin m can always be packed into (3m/4)—2 bins. Such a packing can be formed from
the FF packing just following the placement of the item larger than 3 in bin i,
i =(7m/4)—1, simply by combining the two items in bin j and bin u(j)—1 in a single
bin for each j, (7m/4)—2=j <i. By the construction, each such pair of items sums
exactly to 1 and hence fits in a single bin. Furthermore, this reduces the number of
occupied bins to the right of bin m from i —m to

(i~m)—(i—[7—"—’—2]):3—m——2,

as required. 4 4

Stage 3. In this stage, we first remove all but a single item of size £ from each
of bins 1 through m, and we remove all but a single smallest item from bin m +1.
Note that, since the remaining items of size ¢ would all fit in a single bin with the
item remaining in bin m + 1, for ¢ suitably small, there exists an optimum packing of
the current items into (3m/4)—2 bins. We now form (m/4)+2 items of size 1 and
pack them according to FF. Since these items will not fit into any of the first (5m/2)—6
bins, they will be placed into bins (5m/2) -5 through (11m/4) —4, and hence the First
Fit packing requires (11m/4)—4 bins. Furthermore, since the items in the packing
prior to the formation of these (m/4)+2 new items could be packed into (3m/4)—2
bins, the number of bins in the optimal packing is increased to at most m by the
addition of these items, and therefore the optimum packing never exceeds m bins
during Stages 1, 2, and 3. Theorem 4 follows immediately. [

Note that the construction just given to prove that Wg (FF) =% also suffices to
prove the same lower bound for Wk (FFM), where FFM is the previously described
variant of First Fit that segregates items larger than 3 from the other items. Thus we
have

2.75= Wxr (FFM)=3+log3~2.788.

Although the construction we shall sketch in a moment seems to suggest that the
worst-case bounds for FF are worse than those for FFM, it does not appear that this
should be taken to recommend FFM over FF in practice, since one would expect FF
to be generally less wasteful of space on the average.

We now sketch an alternative construction, based on a more complicated packing
strategy, that uses the possibility of mixing items larger than 3 with items smaller than
3 in a single bin to tighten the lower bound for FF. This informal presentation is

246 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

intended to illustrate some of the complications that can arise from strategies that
use such mixing, which in turn contribute to the apparent difficulty of proving a
significantly stronger upper bound for FF than that given in Theorem 2. The construc-
tion we shall give to illustrate this yields a 2.766 bound which can be improved to
2.77 by optimizing the key parameters.

Let m be some large multiple of 64. The example is constructed in the following
stages:

Stage 1. The construction begins by following the procedure described in the
proof of Theorem 3 (for k£ =2), but halting at the point of a 105m/64 example.

Stage 2. We now want to extend the packing by m/8 bins, i.e., to within a
constant of 113m/64 = (7m/4)+(m/64), with only items smaller than 3 occurring in
the final packing. To do this, we first use the shaving procedures described earlier to
reduce the level of each bin i, 1=i<(3m/2)—2, to max{l—vy+me', 1—(m/2i)},
where ¢’ is chosen suitably small and y is chosen as indicated below. Next, we pack
m/8 items of size 1 —y +ie’, 1 =i <m/8, in decreasing sequence into bins (105m/64) +
1 through 113m/64. Using a standard argument on the total of all the item sizes, the
smallest value of y can be calculated such that this total does not exceed m when the
last of the m/8 items is packed. (The calculation, which we omit, yields a value for
y that is slightly less than 3.)

Our next step is to convert the (1 —vy)-items to y-items. To do this we first pack
an item of size y —¢'. Of course, we must assume that this can be done without causing
the total to exceed m. (Although this could be assured by packing only (m/8)—1
items in the previous step, we will assume for simplicity that this is not necessary since
it can only affect the additive constant in any case.) Since the minimum bin level is
1—y+¢' (in bin 113m/64) at the time the item of size y —¢' is packed, this item will
go in bin 113m/64 (recall the decreasing levels in the region of bins from (105m/64) + 1
to 113m/64). Just after packing this item in bin 113m/64, we remove from that bin
the other item, which has size 1—v +¢’. This procedure is then iterated back to bin
(105m/64)+ 1, with the end effect of replacing each item of size 1—1y +ie' >3 with a
complementary item of size y —ie’' <3, and these new items are in increasing order
by size. Since we replaced items larger than 3 by items smaller than 3, the sum of the
item sizes remains less than m. This completes the extension to a packing using items
no larger than 3.

Stage 3. The next step is to remove e-items from bins 1 through m until their
levels are at y <3 and to apply the shaving procedures to reduce the level of each bin
i,m+1=i=3m/2)—-2, to 1—(m/2i) (some may already be at this level). We then
use the amount removed to construct m/8 new items of size 1—y +ie’, 1=i=m/8,
and we pack these in decreasing sequence into bins (105m/64)+ 1 to 113m/64. These
items will fit exactly with the corresponding complementary items. A straightforward
calculation shows that the sum of the item sizes does not exceed m, and arguments
similar to those used earlier show the continued existence of an optimal packing into
m or fewer bins.

Stage 4. We are now in a position to execute the same procedure used in Theorem
4, to extend the 11m/4 example, for extending our 113m/64 example, repeatedly
removing all but a smallest item from a bin and packing a new item slightly larger
than the gap remaining in that bin, working backwards according to bin index. Each
of the new items will then start a new bin on the right, and the e-items remaining at
the end can be used to form additional items of size 1. It can be verified that this
yields m additional items larger than 3 (and m additional bins), for a grand total of
177m/64 bins (within an additive constant). Furthermore, the pairing process described

DYNAMIC BIN PACKING 247

in the proof of Theorem 4 carries over here to show that an optimum packing has
no more than m bins. Thus we have our desired example.

The parameters 105m/64 and 113m/64 in the example were chosen for simplicity.
Maximizing over these parameters yields values of 1.63m and 1.77m, respectively,
thus providing a 2.77m-example. Further tightening of the construction can no doubt
improve this further, although significant improvements do not appear to be possible
without altering or generalizing the method we have used.

5. Lower bounds for arbitrary on-line algorithms. Given the performance bounds
that we have derived for the First Fit algorithm, it is natural to ask how these bounds
would compare to those for other on-line algorithms. In this section we address this
question, showing that FF performs essentially as well (in the worst-case sense) as
any other on-line algorithm. We also show that our use of OPTg, rather than OPT nx,
as the performance standard for our comparisons makes very little difference as to
the final outcome. Once again we begin with the cases in which all items are no more
than 1/k in size, k = 2.

THEOREM 5. If A is any on-line dynamic bin packing algorithm, then for any
integer k =2, we have

k+1 1 1 k+2
kK k(kk+1) = k(k+1)

WR(A’ k) = WNR(A’ k)é
Proof. Specifically, we will show that there exist lists L with OPTg (L) arbitrarily
large and all items p; satisfying s; =1/k such that

k+2
k(k+1)

A(L)_—>_(1+)(OPTNR L)1),

We provide a procedure for generating such examples, tailored to algorithm A, with
the nature of the later items being dependent on how A packs the earlier ones. The
input to our procedure is the algorithm A and an integer m that is divisible by k (k + 1),
where m +1 will serve as our upper bound for OPTxz. We describe the procedure
in much the same style as we described our previous lower bound constructions, the
only significant difference being that in this case we can branch to different construc-
tions based on how A has packed the items encountered so far. The procedure, along
with a proof that it works (we initially argue only that OPTr (L) =m + 1, leaving until
the end the proof that OPTxg (L) =m + 1), proceeds as follows:
Step 1. Choose € = 1/[k(k +1)(1000)m].
Step 2. Create (m +1)/e items of size ¢ and have A pack them. (Note that the
list so far can be packed into m + 1 bins and in fact requires that many bins.)
Step 3. If there are fewer than (k +2)m/(k +1) nonempty bins in the packing,
go to Step 4. Otherwise, do the following:
3.1. Remove all but a single e-item from each of (k +2)m/(k + 1) of the bins and
remove everything from all other nonempty bins.
3.2. Create km items of size 1/k and have A pack them. (Note that the bins
with one e-item can each receive at most £ —1 such items and the other
bins can each receive at most k, so there must be at least

(k’" - 1)(%%)"')/" - k(i"ln

248 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

new bins started, for a total of at least

m(%—i+ﬁkz—_{_l—)>=m<l+%)

bins, as desired. Moreover, an optimum packing could place all km items
of size 1/k in m bins, with the e-items all going in a single additional bin.)
3.3. Halt, with A(L)=m(1+ (k +2)/k(k +1)) for this case.
Step 4. There are currently m' = ((k +2)m/(k +1)) —d nonempty bins for some
d >0. Remove as few e-items as possible from each bin so that its level has the form
(i/(k+1))+¢ for some i, 0=i=k. For each such i, let A; be the set of currently
nonempty bins with level (i/(k+1))+e, and let a; =|A;|. Note that we have the
following relationships:

(4.1) Ef: a;=m’,

4.2) 4= (k—::'—l+dk> +(k —1)ao.

(The latter inequality follows from the fact that, using upper bounds on the contents
of each bin at the end of Step 2, we have

k , ao
ak+k+1(m (ak+a0))+k+1zm,
and hence
k , k-1
aké(k+1)(m—mm +k+1a0>'

Substituting ((k +2)m/(k +1))—d for m' yields (4.2).)

Step 5. Let X =z§‘;} a;(k —i). This is the maximum number of items of size
(1/(k+1))+¢ that would fit in the m’' currently nonempty bins. Create X +
(m/(k +1))+dk items of this size and have A pack them.

(Note that all the items in the packing can still be packed into m +1 bins. The
sum of the item sizes is bounded above by

(Z%’" _d>(2§_1'+k'3) +(k—’:—1+dk)(k -1+ 1 +8)
- ’"(l(clikfi)zz)+ 7 i 1)2) (k(k T

1 m>=m+em(k+1)<m+1.

Thus all we need show is that the items larger than ¢ can be packed into m + 1 bins,
since the choice of ¢ ensures that the remaining gaps can be filled exactly with e-items.
There are at most m' items larger than &, since each has size (1/(k +1))+¢ and no
bin had more than that amount removed in Step 4. These can be packed, k per bin,
into

’

m' _k+2
= .
k k+1

|3
A
3

bins (since k =2), as required.)

DYNAMIC BIN PACKING 249

Step 6. Delete all items of size (1/(k + 1))+ that were placed in the A; bins,
0=i=k, and remove enough additional items of that size (if necessary) from the
other bins so that exactly (m/(k + 1)) +dk such items remain. Note that this deletes
precisely X of those items. Next, for 1 =i =k, delete e-items from each bin of type
A; to reduce its level from (i/(k+1))+¢ to (i —1)/k)+e, a reduction of (1+k —
i)/k(k +1) per bin. Finally, from ao of the A, bins (note that there are at least ao
bins of type A, by (4.2) and the fact that k =2), remove e-items totaling 1/k in size,
reducing the bin level to ((k —2)/k) +e.

The sum of the sizes of the items removed in this step is at least

X +§ (1+k—i)a +@_ X (m’~ao)+X—kao+gg
6. k+1 S \ktk+1)"7" k k+1 k(k+1) kk+1) &k
) x, .
Tk k(k+1)

Step 7. So long as the sum of the sizes of all items in the packing is less than
m+e(m'+(m/(k +1))+dk), repeatedly create an item of size 1/k and have A pack
it. (Note that this will never cause the sum of the item sizes to exceed

m 1
T — +=< .
m+e(m k+1+dk) c<m+1
Note also that by (6.1) at least X items of size 1/k will be created.)
Step 8. Halt. We claim that if M is the number of nonempty bins in the packing
constructed by A, then

k+2)
k(k+1))

and furthermore that for this list OPTg (L)=m + 1.

We first prove that the number of bins in the packing constructed by A is as
stated. For each i, 1 =i =k, let b; denote the number of bins at the end of Step 6 that
contained i items of size (1/(k+1))+& and no e-items. Note that ZLl ib; =
(m/(k +1))+dk. Also note that a bin with i such items at the end of Step 6 has level
at most

Mzm(1+

at the end of Step 7. Also, at the end of Step 7 no bin of type A; 0=i =k, can have
level exceeding ((k —1)/k) +e. If we let by denote the number of nonempty bins that
contain only items of size 1/k at the end of Step 7, then we have

,, m k-1 k i k=i
+{m'+—— =m' |\ ——+—+i
m (m k+1+dk>s$m(A +s)+b0+i§1b,(k+1+ A +zs)
Sk=1\ & kP+k—i m
= — |+ | LI
m(%) Elb’(k(kn))”"”(m +k+1+dk>’

or

(7.1) mgm'(k—'l)+if b,.—(k%mk)/(k(kn)).

250 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON
We also have M =m' +Zf_o b;. Combining this with (7.1), we obtain

Mzm +—+(—+dk)/k(k+1)

k+1
_m(1+ k+2 1)_g+ d
B k(k+1) k(k+1?) k k+1

_ 1+ k+2) + 1 (m d)
'"(kk+1)) kk+D\k+1_)
Since d = ((k +2)m/(k +1))—m' and m' =m, we have d =m/(k + 1), and the desired
lower bound for M follows.
We next show that the items in existence at the end of Step 7 can be packed into
m +1 bins. By the operation of this step, we know that the sum of the item sizes is
less than m +1. The idea of our packing is as follows: Combine each item of size
(1/(k + 1))+ ¢ with a collection of e-items totaling (1/k (k + 1)) — ¢ in size, thus obtain-
ing an ensemble of size 1/k. These ensembles are then combined with the items of
size 1/k and packed k per bin, every bin but one being completely full. The remaining
e-items can be used to fill up the rest of the packing, and since there will be no wasted
space and the sum of the item sizes is less than m + 1, no more than m +1 bins will
be used. This construction principle will work so long as there are enough e-items to
make all the ensembles, i.e., to mate with all the items of size (1/(k +1))+¢. Since
there are precisely (m/(k +1))+dk items of size (1/(k +1))+¢ left at this step, the
sum of the sizes of the e-items must be at least

(le dk)(k(k1+ 1)""’)

in order for our construction to work.
The sum of the e-items in the packing can be estimated by noting that at the end
of Step 6 it must be at least

k—1 Ao
A ———

k k
which, applying (4.2) and the assumption that k =2, yields

k-1 _ o k—l[m)]_g_o

—a -T2 (—k+1+dk +(k=Dao| =%
k-1 (k—1)2—1) 1)
=% (k+1+dk) (k k(k+1+dk

Thus the number of e-items in the packing is sufficient for us to form our ensembles,
and hence we have OPTg (L)=m +1.

Finally we must show that OPTng (L)=m +1, i.e., that L can be packed into
m + 1 bins with no rearrangement. In the case where we halted in Step 3, the argument
is easy. The nonrearranged packing starts out with all the e-items packed into m +1
bins in such a way that the e-items which survive Step 3.1 are all in bin m + 1. Thus,
after Step 3.1, the first m bins are completely empty, and the km items of size 1/k
created in Step 3.2 can be packed, k per bin, into these bins.

In the case where we halted at Step 8, it is easier to describe the optimal packing
by running time “backwards.” We start with the packing as it exists at the end of

DYNAMIC BIN PACKING 251

Step 7 and proceed through the steps in reverse order. When we pass the moment
of destruction (removal) for an item, we add it to the packing. When we pass the
moment of creation for an item, we delete it from the packing.

At the end of Step 7, the items of size (1/(k +1))+¢ and 1/k are packed k per
bin, with the space left over filled up with e-items. Step 7 removes all the items of
size 1/k, of which there are at least X. Step 6 then puts back in precisely X items of
size (1/(k +1))+e, plus a number of e-items. Each item of size (1/(k +1))+¢ can
then be placed in a spot vacated by an item of size 1/k, with the e-items filling up
the left-over space. Step 5 then deletes all the items of size (1/(k +1))+¢, and the
e-items created in Step 4 can fill up the gaps. Step 3 does nothing in this case, and
Step 2 simply deletes everything. Thus, as required, we have OPTng (L)=m+1. O

THEOREM 6. For any on-line dynamic bin packing algorithm, A,

WR(A)ég
and
War(A)=$~2.388 - - -,

Proof. Specifically, we show how to construct lists L1 and L, with arbitrarily large
optimum packings such that

A(L1) Z35(OPTxg (L1)- 1),
A(L2) Z5(OPTg (L)~).

To do this, we modify and extend the construction procedure given in the proof of
Theorem 5, specialized to k =2.

Steps 1 and 2 are performed exactly as given, for both L, and L. If the number
of nonempty bins at the end of Step 2 is at least (k +2)m/(k +1) = 4m/3, the remainder
of the construction will also be the same for L, and L,. In this case, we perform Steps
3.1 and 3.2 as before, obtaining a set of items of size ¢ and size 3 for which A uses
at least 5m/3 bins. We then complete the construction by replacing Step 3.3 by the
following steps:

3.3a. Remove all items of size 3 in the 4m/3 bins that contain e-items. From the

bins that contain only items of size 3, of which there are at least m/3,
remove items of size 3 until there are exactly m/3 such bins, each containing
a single item of size 3. Note that at this point the sum of the sizes of the
items in the packing is (m/6)+(dme)/3.

3.3b. Create 5m/6 items of size 1 and have A pack them. These must go in

5m/6 new bins, yielding a total of at least (5m/3)+(5m/6)=5m/2 bins.
3.3c. Halt. It is easy to see that we have OPTg (L) = OPTng (L)=m +1, so the
desired lists have been constructed in this case.
In the case where, for some d >0, only (4m/3) —d bins are nonempty after Step
2, the constructions for L, and L, differ. We first describe the modifications necessary
for constructing L. Step 3, as before, does nothing in this case, and Step 4 is executed
without change. However, we revise Step 5 as follows (with X defined as before):
5a. Create X +(m/3)+2d items of size 3 (instead of i+¢) and have A pack
them. Since the m' bins that were nonempty after Step 4 must all be filled
at most to level 5+ ¢, there will be a total of at least 4m/3 nonempty bins at
this point, at least d of which contain only items of size 3.

5b. Choose a set D of d bins that contain only items of size 3, and remove all
items of size 3 from the packing except for one in each bin in D.

252

Sc.

E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

Create X +(m/3)+d items of size 3+¢ and have A pack them.

Note that this modified Step 5 leaves a situation identical to that at the end of
the original Step 5, except for the bins in D, which have one item of size 5 instead of
size 3 +e. Steps 6 and 7 are performed as before, and Step 8 is replaced by the following:

8a.

8b.

8c..

There are at least 5m/3 nonempty bins, at least m/3 of which are not A;-bins
or D-bins. Choose a set B of m/3 of these latter bins. Remove all items not
in A;-bins, D -bins, or B-bins, and remove all but a single smallest item from
each of the D-bins and B-bins. (Note that the items deleted all have sizes
of either % or %+s.) For each item of size 3+ ¢ that was deleted, remove an
additional §—¢ in e-items from an A,-bin. There must be enough of these
in the packing since, as we argued following Step 8 in the proof of Theorem
5, there were enough e-items left in A,-bins so that every item of size 1+e
in the packing after Step 7 could be matched with such a collection of ¢-items.
This also means that all items of size 3+¢ remaining in the packing at this
point can still be matched with %—s of e-items remaining in A,-bins. Form
such a matching and remove all other e-items from the packing, leaving a
single e-item if the bin would otherwise become empty. The sum of the sizes
of the items left in the packing at this point is no more than

Create [(5m/6)—(d/3)] items of size 1 and have A pack them. Each requires
a new bin, so that we end up with a total of

Sm [Sm d'l Sm m 43
| = |25 —o=rm
3 6 3 2 9 18

(At the same time, all the items can be packed into m +1 bins. The items
of size 1 use up [(5m/6)—(d/3)] bins, and the items of size 7 and 3+¢,
together with their associated e-items, go two per bin and hence use m/6
additional bins (recall that m is divisible by k (k +1) = 6). This leaves d items
of size 3 and at most m' e-items. The items of size 3 go three per bin into
|d/3] bins, with the left-over items of size 5 and the remaining e-items fitting
in a single remaining bin. If we let d'=d —3 - |d/3], we have that the total
number of bins used in this packing is

I-S_m_‘_1]+ﬂ+l‘_1J+1_(é_’f’._fd_+d_:)+ﬁ"_+(‘_i_‘_i_’)_ +1
6 3176 1317 "\6 373)76 \373)7"T"

as required.)
Halt. L, has been constructed.

It is straightforward to check that L, can be packed into m +1 bins, without
rearrangement, again by running the packing process backwards. At Step 8a the items
of size 1 can be replaced by ensembles of size 3, along with possibly some additional
e-items. (Our sum-of-sizes arguments allow for the possibility of perhaps one extra
ensemble, but if it exists there must be room for it in the bin with left-over ¢’s and
1’s.) We then continue backwards as in the proof of Theorem 1.

The construction of the list L, in the case that there are only (4m/3) —d nonempty
bins following Step 2 proceeds exactly as the construction of L; through Step 5, using
the same modification of Step 5 to ensure that there are d D-bins containing only a
single item of size 3. For future use, we now introduce some additional notation.

DYNAMIC BIN PACKING 253

Let E denote the set of bins that contain only items of size 5+ at the end of
Step 5, and let e = |E|. Partition D and E into D; and D, and E and E», respectively,
where the subscript corresponds to the number of items in each bin in the set. Let
dy=|D1|, d,=|D5|, e1 =|E\|, and e, =|E,|. Let Aj denote the subset of bins from A,
that contain just a single e-item at the end of Step 5, and let a{ =|A¢|. Figure 2
illustrates the possible contents of the bins of each of these types at the end of Step 5.

113+ 1/3+€ I/3+€ 1/3+€

1/3+¢| |/3+e| 173 | | 173 | |v3+el |/3+e

Az) Ao)\ D D2 J\ EJ E2
A Ao D E

F1G. 2. Types of bins at the end of Step 5.

LEMMA 6.1. The following relationships hold among the set sizes:

(R1) azéig—+2d+ao,
m 3d m 2ao
=—-= =—_=20
(R2) Go=7—7 and d_3 3
(R3) d1+e1+2d2+2e2§g+2d+2a6,
m_ +d
(R4) e§€+ao+elz 1

Proof of Lemma 6.1. (R1) is simply a restatement of (4.2) for k = 2. (R2) follows
from the fact that

3 3 3

(since, at the end of Step 2, each A, bin is at most 1 full). (R3) follows from the fact
that at most | X'|—2a items of size or larger go in A; bins during Step 5. (R4) follows
from (R3), since

a aog (4m
m=—+a +a2=—0+(——a0—d)

2(d2+e2)+(d1+e1)g'—;’-+2d+2a;,

.].

which implies

o

Following the ccmpletion of Step 5, the construction of L, proceeds as follows:
Step 6. Remove e-items totaling § in size from each A,-bin and totaling t+e
from each A;-bin that contains an item of size 3+e¢, thus reducing the level of each

254 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

such bin to 3+ ¢. Then remove a single item of size 3+ & from each Ao-bin that contains
two such items. The types of bins are now as shown in Fig. 3. If e > [(m/3)+ (5a0/6)],
repeatedly remove all items from a single E-bin until equality is reached, set F = J,
and go on to Step 8.

1/3+€ I1/3+€
1/3+€

—— 1/3+€ 173 1/73 1/3+€ I1/3+€
1]
A2 N) \Po ;) D b2 , B E2 ,
A, Ao D E

FI1G. 3. Types of bins at the end of Step 6.

Step 7. So long as the sum of the bin levels, with each rounded down to the
nearest multiple of %, is less than m and the total number of items larger than ¢ is
less than 2m, do the following:

7.1. Create an item of size and have A pack it.

7.2. If this item is placed in an A, bin (in which case that bin contained only
e-items and had a level of %+e), remove from that bin all but one of the
e-items. If this item is placed in an A, bin that contained an item of size
1+¢, delete the item of size 3 +e.

(Note that Step 7 guarantees that at all times during its execution the current set
of items can be packed into m + 1 bins. Let us denote by F' the set of bins that contain
only items of size 3 at this point, let f =|F|, and let a§ be the number of A, bins that
still contain only a single item, of size ¢. Note that ag =ao =ao. We claim that the
number M of nonempty bins, i.e., M =a,+a;+ao+d +e +f, satisfies

Sm Saﬁ‘l
3 6 |

pz| 2, 208

To see this, first suppose Step 7 halted because there were 2m items of size larger
than ¢. Then we must have

2m=a;+(ap—ag)+2(d+e+f)

or
d+e +f+(a—1?2;m +92§,
Hence
M§%+9Lazﬂ+m +a—2(li
s A oD oy
_ 116m+c2_i+a0;a52116m %g§>_53_m+ag >§5n—1+261‘§

and, since M is an integer, the claim follows in this case.

DYNAMIC BIN PACKING 255
On the other hand, if Step 7 haited because the sum of the rounded bin levels
became too large, then we have
m=3(a,+ar+ao—af)+idi+e1))+3(dr+ex) +f,

or

n

1 ap 1 2
Mém+§(a2+a1+ao)+—2—0+g(d+e)+g(d2+e2).
Applying (R3) and ao+a; +a,=(4m/3)—d, we obtain
1/4m ag 1
M§m+2(3 d)+2+6(
Sm 5aj l(m d),

g+w+ug

=e—t— | ——

3 6 6\3
and hence

[om. 5a8)
M=[3+6
since d =m/3 and M is an integer.)

Step 8. Remove all but a total of 1+ ¢ in e-items from each A, bin. These are
now identical to the A; bins that received neither an item of size %+e nor an item
of size 3. Call the joint class of such bins A}. Note that a} = |A}|=a,. Remove from
each A; bin that contains an item of size 3+¢ all items except for a single item of
size %+s and a single e-item. This makes them identical to some of the A, bins. Call
this collection of identical bins Aj. Let Ag be the subset of the A, bins that contain
a single item of size 3 and a single e-item, with Aj remaining as the set of A, bins
that contain only a single e-item. Note that

ay =|A¢|=a1+ao—ag =4Tm—d—a2—a3.
Remove all but a single item of size § from each D bin, all but a single item of size
3+¢ from each E bin, and all but a single item of size 5 from each F bin. Figure 4
illustrates the types of bins remaining at this point. If d =5a¢/6, set G = J and go
to Step 10.

1/34€
ls3td |2 13 3| |3 |72
A, A A'Y Ap D D2 E F

F1G. 4. Types of bins at the end of Step 8.

Step 9. Create ag +dy+ [d—5a4/6] =d +d,+al/6+2 items of size 2 and have
A pack them. They can only be placed in Ag bins, D; bins, or new bins, so at least
[d —5a0/6] of them start new bins. Let G denote the set of such new bins. Note that
at this point the number of nonempty bins is at least

m, Sad), 1, Saf), sm
[3+6+d 6§3+d.

256 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

(We claim once again that the current collection of items can be packed into
m + 1 bins. The sum of their sizes is not too large, since it can be bounded by

n m

24w 300]) () _abaF s 1 s
3(“°+d1+[d 6] +3(3 7€) 3 3 3
2 ag 5) 4m e ag 1(4m
<<)+ 22 (22
_3(d2+2d1+6+6 s+ 20

3 2\3 76 3 ¢ 3

§5—m+% 7d: a_ﬁ_e+a2 5 5 Sme

6 6 6 3 6 9 12 3

5m 5d, 7di ag 1/m y dl) 35 Sme
=242 A 20 S (T h2d+2ah + 2) 4o+
=% "6 36 6(2+2d 2a0+5) %3673

(by (R1) and (R2))

—d—az—ag)

3m d, 9d; 11aj 3m 3d 3m 3<m)
= — 4]l =E—4— =4 | — = +1.
_._4+2+12 B 1_4 4+1_4+43+1 m

The total number of bins needed to pack the items larger than ¢ is at most

TR atranes)
(d+d1+6+6 + 2(3 d—ag—az+d,+e+f

since all d items of size 3 can go in bins with items of size 2 and all the items of size
3+¢ and 3 can go two per bin. This quantity is bounded above by

2m d d, ag 1/m A1 |'5m Sa{{‘l 4m) 5

—_— +_ —_— — — — | — — p—
3 72 2 3 2(3+2d+“°)+2< 376 173)7%
<2_m a_z’_Sa(’S 5 5 2m 1(m) 5 S5m 5

—_— -

372 12 6 12-3 2

3) =g taSmrL

h 4 6 4
The items of size e can then be used to fill in the remaining gaps.)

Step 10. Remove all but a single smallest item from each bin, which may be size
€5 5+¢e, 3,015 Letting g = |G| denote the number of items of size 5 remaining, create

(o)
2 87|37

items of size 1 and have A pack them.

(Since each item must start a new bin, we are guaranteed that there will be 5m/2
nonempty bins at the end of this step. Moreover, the collection of items can still be
packed into m + 1 bins. To show this, we consider two cases:

Case (i). d =5ag/6. In this case, g =0 by Step 8. There are thus no more than
(5m/6)—(Sag/6) items of size 1, each of which requires an entire bin in the packing.

The remaining
572429
3 6 3

DYNAMIC BIN PACKING 257

items of size greater than & can be packed, two per bin, into at most

1(_"1+(§?§+d)+§)<_"_1+.5_g§+i
2\3 6 6/-6 6 12

bins, for a total of at most m +13 bins. The remaining (4m/3)—d e-items can then be
packed into the space available in any one of the bins containing an item of size i+e.

Case (ii). d >5a(/6. In this case g =|d —5a{/6|>0. The items of size 1 and size
% use up (5m/6)—(5a4/6) bins, but now all but

[t 508
a-|a-5]=%

of the items of size 3 in D bins will fit in a bin that contains an item of size 3. The
remaining items of size greater than & can go two to a bin, for a total number of bins
that is at most

Slrl__%+[l(iaﬁ+[5_m+§?_§]_ﬂ)]< +_1_1..< +1
6 6 12\6 13 6| 3/)IF" 12"

The remaining items of size ¢ can again be packed into the space available in some
bin containing an item of size 3+ ¢.

Thus in both cases we have that at most m + 1 bins are required to pack the set
of items in the packing following Step 10.)

Step 11. Halt. The desired list L, has been constructed. 0

6. Some concluding remarks. For the cases in which all item sizes are bounded
by 1/k, k =2, our performance bounds for FF are reasonably tight and quite close
to the best that can be achieved by any on-line algorithm, even if we use the
nonrearranged optimum as our standard for comparison. For example, when k =2
we have

1.75=Wx (FF,2)=1.788
while
1.66=Wxr(A,2)= Wk (A,2)

for any on-line packing algorithm A.
For the unrestricted (k = 1) case, our bonds are somewhat less tight, with

2.75= Wx (FF)=2.897
and
2.5=Wr (A), 2.38= Wnr(A)

for arbitrary on-line algorithms A. For practical purposes, however, it is probably
sufficient simply to know that all these algorithms have worst-case performance in
the vicinity of 25 to 3 times optimal.

It is interesting to note also the rather large increase in the performance bound
for FF when going from k =2 to k =1. For dynamic bin packing the increase is
approximately 55%, from about 1.8 to about 2.8, which is to be contrasted with the
analogous increase of only 13%, from 1.5 to 1.7, for static bin packing.

Extensions on the work presented here might take any of several directions.
There is certainly room for improvements in our bounds, and methodological and
esthetic considerations provide ample justification for seeking such improvements. In

258 E. G. COFFMAN, Jr., M. R. GAREY AND D. S. JOHNSON

particular, the bounds for the k =1 case deserve further attention, and the general
on-line lower bound for Wyr seems like an especially good candidate for additional
effort. It would also be of interest to obtain bounds on the ratio OPTng/OPTk.

More generally, having studied the worst-case performance of on-line dynamic
bin packing algorithms, it is natural to ask about the expected performance of such
algorithms, under various probabilistic assumptions about the arrival times, departure
times, and sizes of the items. Such results have been difficult to obtain even for static
bin packing (e.g., see [1]), but perhaps something useful can still be said for the
dynamic case. Finally, although we have restricted our attention to on-line algorithms
in this paper, there is no reason why analogous questions might not be asked about
arbitrary fast approximation algorithms for dynamic bin packing.

REFERENCES

[1] E. G. COFFMAN, JR., K. SO, M. HOFRI AND A. C. YAO, A stochastic model of bin-packing, Inform.
and Control, 44 (1980), pp. 105-115.

[2] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[3] M. R. GAREY AND D. S. JOHNSON, Approximation algorithms for bin packing problems: A survey,
in Analysis and Design of Algorithms in Combinatorial Optimization, G. Ausiello and M. Lucertini,
eds., CISM Courses and Lectures No. 266, Springer-Verlag, Vienna, 1981, pp. 147-172.

[4] D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM, Worst-case
performance bounds for simple one-dimensional packing algorithms, this Journal, 3 (1974), pp.
299-325.

[5] D. E. KNUTH, The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading, MA, 1968, § 2.5.

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, May 1983 0097-5397/83/1202-0003 $01.25/0

WHETHER A SET OF MULTIVALUED DEPENDENCIES
IMPLIES A JOIN DEPENDENCY IS NP-HARD*

PATRICK C. FISCHERt AND DON-MIN TSOU#

Abstract. The problem of determining, given a set of multivalued dependencies, whether or not they
logically imply a given join dependency is shown to be computationally intractable.

Key words. relational database, dependency theory, multivalued dependency, join dependency

1. Introduction. Some of the semantics of a relational database [8] can be
expressed in terms of different dependencies, of which the best known are functional
dependencies (FDs) [3], multivalued dependencies (MVDs) [6], [9], and join depen-
dencies (JDs) [12]. Understanding the relationships among sets of dependencies can
therefore aid in the logical design of databases.

One constraint that should be obeyed when a relation r is decomposed into
several relations ry, - - -, ri is that the join of the constituent relations should be equal
to the original relation r, i.e., no information is lost. The losslessness of such a
decomposition is equivalent to the existence of a JD, which is expressed as a collection
of the sets of attributes in each of the relations, viz., *[R4, - * -, Ri]. It is well known
that an MVD is a special case of a JD with k =2,

We restrict ourselves here to the complexity of determining whether a set of
dependencies implies a given dependency. In particular, we settle the principal remain-
ing open question in this area concerning FDs, MVDs, and JDs. Specifically, we will
show that it is NP-hard to determine, given a set of MVDs (with or without the
inclusion of FDs), whether a given JD is implied, i.e., whether whenever a relational
database satisfies the given MVDs it must also satisfy the JD. We summarize the
other cases in Table 1 below.

TABLE 1
Complexity of testing implications.

Implies a
given FD MVD JD
Set of
FDs InP InP InP
[5] [4], [10] [1]
FDs and MVDs InP InP NP-hard
[4] [4],[10], [14] (this paper)
FDs and JDs InP InP NP-hard
[13] [13],[16] [13]

2. Preliminaries. We follow, as much as possible, the terminology of [15].

DEFINITION 1. A relation scheme V is a set of attributes A, - - - A, taken from a
universe U. A relation r is a collection of tuples (d1, " -+, d,) where each component
d; contains a value from the domain of values for the attribute A..

* Received by the editors March 15, 1982, and in revised form April 29, 1982. This research was
partially supported by the National Science Foundation under grant MCS-8007706.

t Computer Science Department, Vanderbilt University, Nashville, Tennessee 37235.

1 Wang Laboratories, Lowell, Massachusetts 01851.

259

260 PATRICK C. FISCHER AND DON-MIN TSOU

A functional dependency X » Y, where X, Y are sets of attributes contained in
U, holds for a relation r if for any two tuples ¢, t; of r if t; and ¢, agree on the
components associated with the attributes in X, i.e., on the X -components, then they
also agree on the Y -components.

A join dependency *[V4, -+, Vi] holds for a relation r if whenever there are
tuples ¢4, - -+, & of r having the property that for any i,j (1=i,j=k), t; agrees with
t; on the components V;N V}, then the tuple ¢’ (which must be well defined by the
previous condition) will also be in r, where ¢’ agrees with # on the V;-components for
l=si=sk.

A multivalued dependency X » Y is equivalent to the JD *[XY, XZ] where
Z =U-XY. (XY is a customary abbreviation for X U Y.) Hence, it holds in r if
whenever two tuples, ¢, ¢, agree on the X -components, a tuple which agrees with ¢,
of the XY -components and with #; on the XZ-components is also present in .

In our proof of the main theorem we shall use a reduction from the hitting set
problem [11]. We shall also use the tableau characterization of Aho, Ullman et al.
[17, [2], [12]. We state the necessary definitions and results next.

DEFINITION 2. Let S ={s1, $2,***,s,}beasetand T ={Ty, - : -, T},} be a family
of subsets of S. The hitting set problem is to determine, given § and T, whether or
not there exists a set W < § such that for each i, 1 =i =m, T; N W contains exactly
one element of S. Without loss of generality, we assume

T =S, NT=4J.
=1 i=1

THEOREM (Karp, [11)). The hitting set problem is NP-complete.

DEFINITION 3. A tableau is a table with a column corresponding to each attribute
in the universe U. Entries in a tableau are either a distinguished variable (a) or a
nondistinguished variable (; for some j). Note that we have dropped the column
subscripts from the tableau entries in [1] since they are unnecessary. (Comparisons
are never made between variables in different columns and entries never change
columns.)

THEOREM (Aho, Beeri, Ullman [1]). The join of relation schemes Ry, - -, Ry is
lossless; i.e. *[R1, -+, Ry] holds if and only if a row of distinguished variables (all
a’s) is derivable in a tableau as follows:

1) The initial tableau consists of one row for each given relation scheme. For
1=j=k, row j will have an a in each attribute position corresponding to members of
R; and will have b; in all other positions.

2) The tableau is modified by using rules corresponding to the system of given
dependencies: (The FD rule is not used in this paper because our construction produces
a system of MVDs only.) The MVD rule is: given an MVD X - Y, whenever two
rows of the tableau agree on the positions corresponding to the attributes in X, i.e., on
the “X-positions”’, two new rows can be generated by interchanging all of the entries in
the Y-positions. If either of the new rows is identical to one already in the tableau it is
not listed a second time.

Note that the MVD rule for tableaux exactly parallels the MVD characterization
in Definition 1. The tableau resulting from all possible applications of the rules is
called the chase of the initial tableau.

3. The main theorem.
THEOREM. It is NP-hard to determine, given a set of MVDs and a JD, whether
the JD is implied by the MVDs.

IMPLICATION OF A JD BY MVDs IS NP-HARD 261

Proof. We begin with an instance of the hitting set problem as given in Definition

2 and construct the following set of MVDs and a collection of 2n + 1 relation schemes.
The universe set of attributes will be

U={AoA1A, - A,B1B; B, }U{C;|1=i=m,1=j=n}.

The relation schemes to be joined are

ZO= U—AO’
4Zj=A0A1"‘AmC1]'C2,'"'Cmi foreachj,léjén,
Z,.+i =AXY; foreachj, 1=j=n,

where X; ={C;ls;e T;} and Y; ={Bi|s; € T;}.

The MVDs are

(Typel) AoA; " A,»ABCCyp: Cyforeachi, 1=i=m,

(Type II) AoX;»{AB.Ci1Ciz-+* Cyls;e T;} foreachj, 1=j=n,

(Type III) BB, * By —» Ao.

We wish to verify that a row of all a’s can be derived from the initial tableau
representing Zo, Z1, * * * , Z», via the rules for the given m +n +1 MVDs if and only
if there exists a hitting set W for T. From the theoremin [1], the JD *[Zo, Z1, * * , Z2u]
would then be implied by the MVDs if and only if there is a hitting set. Hence the
implication problem must be NP-hard.

The proof proceeds through a series of lemmas. First, however, we give an
example of a tableau derived from our construction.

Example. Let n =3, m =2, T1={s1, s2}, T> ={s3}. There would be 7 rows in the
initial tableau:

AO Al Bl Cll C12 C13 A2 BZ C21 C22 C23

ro bo a a a a a a a a a a
r a a b1 a bl b1 a bl a bl bl
I a a b2 b2 a b2 a b2 b2 a b2
rs a a b3 b3 b3 a a b3 b3 b3 a
rs a b4 a a b4 b4 b4 b4 b4 b4 b4
rs a b5 a b5 a b5 b5 b5 b5 b5 b5
re a b6 b6 b6 b5 b6 b6 a b6 b6 a
The MVDs would be:
(Type I) AoA1A;»A1B1C11C12C13
ApA1A2» A3B2C31ChC03
(Type 1I) AoC1n »A1B1C11C12C13
AoC12 »AB1C11C12C13
AoCyz »A3B2C31CCo3
(Type III) Ble -»A().

If one applied the rule for the first MVD (Type I, i =1) to rows r; and r, above, the
following new rows would be produced:

ry a a b2 bz a b2 a bl a bl bl
rs a a b1 a bl bl a b2 b2 a b2

262 PATRICK C. FISCHER AND DON-MIN TSOU

Returning to the proof, we will find the following abbreviations useful:
DEFINITION 4.
a) Ry= {ro, Fi,"°°, 7‘2,,}, the initial tableau;
b) ‘/, =A,'B,‘C,‘1C,‘2 e C,'n forl=i =m,
c) H(j)={i|s;e T;}for 1=j=n.
We shall refer to the various V; as *“V-groups’’. The mnemonic for H (j) is “hits
for j”. Also, in the lemmas below, we shall refer to “‘application of an MVD” when
we mean the application of an MVD rule in a tableau.
LEMMA 1. Let tableau R, be generated from R, by applying Type 1 and Type 11
MVDs until no new rows are produced. Then in every row of Ry, except ro: 1) there is
an a in the Ao position ; 2) within each V-group there are at most two a entries.
Proof. By induction on the number of applications of MVDs. These properties
clearly hold for ry, r5, * * -, r2,,. Now assume the two properties hold for an intermediate
tableau and consider the application of a Type I or Type II MVD. Since r, differs in
the Ao-position from all other rows so far generated, it cannot participate in the
application. Therefore both rows to which the MVD is applied have the given
properties. Observe that both Type I and Type II MVDs have the effect of moving
entire V-groups, never any proper subsets of a V' -group, nor the A, entry. Thus both
new rows are obtained by interchanging certain V' -groups and hence also have both
properties.
LEMMA 2. A row with all a’s can be derived, i.e. will be in the chase of R,, if and
only if the Type 111 MVD is applied to ro and to a row in R, (see Lemma 1) having
a’sin all of the B, * - - B,-positions.
Proof. 1t is obvious that an application of the Type III MVD as specified will
yield a row of all a’s. Conversely, suppose all a’s can be derived. From Lemma 1,
R, contains no such row. Therefore the Type III MVD must be used. If neither of
the two rows to which it is applied is 7o then no new rows will be created since Ay is
a in both rows. Therefore one row must be ro. Since ro has a in each of the
B; - - - B,,-positions so must the other row.
LEMMA 3. A row with all a’s will be in the chase of R, if and only if a row with
a’sin the By - - + B, positions is present in the tableau R' generated as follows:
a) Ay is removed from the universe of attributes.
b) The initial tableau R consists of the rows ry, * -+ , 12, given above but with the
Aop-column deleted.

c) The MVD:s are the Type 1 and Type 11 MVDs previously given with A, deleted.
Restated, in terms of Definition 4, they are:
Type 1) Ay -+ A, » V,foreachi,1=i=m;
Type 11(j) X;j»Uicu Viforeach j, 1=j=n.

d) The MVDs are applied until no new rows are produced (i.e. R' is the chase of
R with respect to the MVDs given above).

Proof. Immediate from Lemmas 1 and 2.

Henceforth Ry and R’ will have the meanings given in Lemma 3.

DEFINITION 5. We define the following strings of length n +2 foreachj, 1=j=n:

E;=ab;(b)) 'a(b)" ",
Fy=bysja(busj) " a(bas))" ™,
G] = (bn+]‘)n+2.

We will call these E-, F- and G-strings, respectively. In the example, the E-, F- and

IMPLICATION OF A JD BY MVDs IS NP-HARD 263

G -strings would be
E1 =a bla b1b1 F1 = b4a a b4b4 Gl = b4b4b4b4b4

E2 =a bzbza b2 F2 = bsa bsa b5 Gz = b5b5b5b5b5
E3 =a b3b3b3a F3 = bea b6<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>